1
|
Mei Z, Khalil MA, Guo Y, Li D, Banerjee A, Taheri M, Kratzmeier CM, Chen K, Lau CL, Luzina IG, Atamas SP, Kandasamy S, Kreisel D, Gelman AE, Jacobsen EA, Krupnick AS. Stress-induced eosinophil activation contributes to postoperative morbidity and mortality after lung resection. Sci Transl Med 2024; 16:eadl4222. [PMID: 39167663 PMCID: PMC11636577 DOI: 10.1126/scitranslmed.adl4222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Respiratory failure occurs more frequently after thoracic surgery than abdominal surgery. Although the etiology for this complication is frequently attributed to underlying lung disease present in patients undergoing thoracic surgery, this notion is often unfounded because many patients with normal preoperative pulmonary function often require prolonged oxygen supplementation even after minimal resection of lung tissue. Using a murine model of pulmonary resection and peripheral blood samples from patients undergoing resection of the lung or abdominal organs, we demonstrated that lung surgery initiates a proinflammatory loop that results in damage to the remaining lung tissue, noncardiogenic pulmonary edema, hypoxia, and even death. Specifically, we demonstrated that resection of murine lung tissue increased concentrations of the homeostatic cytokine interleukin-7, which led to local and systemic activation of type 2 innate lymphoid cells. This process activated lung-resident eosinophils and facilitated stress-induced eosinophil maturation in the bone marrow in a granulocyte-macrophage colony-stimulating factor-dependent manner, resulting in systemic eosinophilia in both mice and humans. Up-regulation of inducible nitric oxide synthase in lung-resident eosinophils led to tissue nitrosylation, pulmonary edema, hypoxia, and, at times, death. Disrupting this activation cascade at any stage ameliorated deleterious outcomes and improved survival after lung resection in the mouse model. Our data suggest that repurposing US Food and Drug Administration-approved eosinophil-targeting strategies may potentially offer a therapeutic intervention to improve outcomes for patients who require lung resection for benign or malignant etiology.
Collapse
Affiliation(s)
- Zhongcheng Mei
- Department of Surgery University of Maryland, Baltimore Maryland, 21201
| | - May A. Khalil
- Department of Surgery University of Maryland, Baltimore Maryland, 21201
| | - Yizhan Guo
- Department of Surgery University of Maryland, Baltimore Maryland, 21201
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh Pennsylvania, 15213
| | - Dongge Li
- Department of Surgery University of Maryland, Baltimore Maryland, 21201
| | - Anirban Banerjee
- Department of Surgery University of Maryland, Baltimore Maryland, 21201
| | - Mojtaba Taheri
- Department of Surgery University of Maryland, Baltimore Maryland, 21201
| | | | - Kelly Chen
- Department of Surgery University of Maryland, Baltimore Maryland, 21201
| | - Christine L. Lau
- Department of Surgery University of Maryland, Baltimore Maryland, 21201
| | - Irina G. Luzina
- Department of Medicine University of Maryland, Baltimore Maryland, 21201
| | - Sergei P. Atamas
- Department of Medicine University of Maryland, Baltimore Maryland, 21201
| | | | - Daniel Kreisel
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis Missouri, 63110
- Department of Surgery, Washington University in St. Louis, St. Louis Missouri, 63110
| | - Andrew E. Gelman
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis Missouri, 63110
- Department of Surgery, Washington University in St. Louis, St. Louis Missouri, 63110
| | - Elizabeth A. Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona, 85054
| | - Alexander Sasha Krupnick
- Department of Surgery University of Maryland, Baltimore Maryland, 21201
- Department of Microbiology and Immunology, University of Maryland, Baltimore Maryland, 21201
| |
Collapse
|
2
|
Shi Y, Cao Y, Han X, Xie L, Xiao K. iNOS inhibitor S-methylisothiourea alleviates smoke inhalation-induced acute lung injury by suppressing inflammation and macrophage infiltration. Int Immunopharmacol 2024; 126:111097. [PMID: 37988909 DOI: 10.1016/j.intimp.2023.111097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVE We investigated the effects of the inducible NO synthase (iNOS) inhibitor, S-methylisothiourea (SMT), in a mouse model of smoke inhalation-induced acute lung injury (ALI) and explored the underlying molecular mechanism. METHODS AND ANALYSIS A mouse model of smoke inhalation-induced ALI was established. RNA-sequencing (seq) analysis was conducted to identify the differentially expressed genes (DEGs). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed for functional annotation of DEGs. Moreover, an immunofluorescence assay using macrophage marker F4/80 was performed to assess macrophage infiltration. A hypoxia-induced HUVEC model was used to mimic smoke inhalation-induced injury in endothelial cells. Finally, a transwell assay was used to analyze the chemoattractive effects of endothelial cells on macrophages. RESULTS SMT markedly alleviated the pulmonary pathological symptoms, edema, and inflammatory response in the mouse smoke inhalation-induced ALI model. RNA-seq analysis revealed that SMT may diminish lung injury by regulating the levels of genes associated with inflammatory responses, cell chemokines, and adhesion. In vivo data revealed that the protective effects of SMT against smoke inhalation-induced ALI were partly achieved by inhibiting the production of adhesion molecules and infiltration of macrophages. Furthermore, in vitro data from the hypoxia-induced HUVEC model revealed that SMT reduced macrophage chemotaxis by inhibiting the production of chemokines and adhesion molecules in endothelial cells. CONCLUSION iNOS inhibitor SMT protects the lungs from smoke inhalation-induced ALI by reducing the production of pro-inflammatory cytokines, adhesion molecules, and chemokines in endothelial cells, thereby inhibiting inflammation and macrophage infiltration.
Collapse
Affiliation(s)
- Yinghan Shi
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing 100091, China; Chinese PLA Medical School, Beijing 100853, China
| | - Yan Cao
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing 100091, China
| | - Xinjie Han
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing 100091, China
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing 100091, China.
| | - Kun Xiao
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing 100091, China.
| |
Collapse
|
3
|
Goto D, Nagata S, Naito Y, Isobe S, Iwakura T, Fujikura T, Ohashi N, Kato A, Miyajima H, Sugimoto K, Yasuda H. Nicotinic acetylcholine receptor agonist reduces acute lung injury after renal ischemia-reperfusion injury by acting on splenic macrophages in mice. Am J Physiol Renal Physiol 2022; 322:F540-F552. [PMID: 35311383 DOI: 10.1152/ajprenal.00334.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022] Open
Abstract
Acute kidney injury (AKI) contributes to the development of acute lung injury (ALI) via proinflammatory responses. We hypothesized that activation of a nicotinic acetylcholine receptor (nAChR), which exerts cholinergic anti-inflammatory effects on macrophages, could reduce ALI after AKI. We aimed to determine whether nAChR agonists could reduce ALI after AKI and which macrophages in the lung or spleen contribute to the improvement of ALI by nAChR agonists. We induced AKI in male mice by unilateral ischemia-reperfusion injury (IRI) with contralateral nephrectomy and administered nAChR agonists in three experimental settings: 1) splenectomy, 2) deletion of splenic macrophages and systemic mononuclear phagocytes via intravenous administration of clodronate liposomes, and 3) alveolar macrophage deletion via intratracheal administration of clodronate liposomes. Treatment with GTS-21, an α7nAChR-selective agonist, significantly reduced the levels of circulating IL-6, a key proinflammatory cytokine, and lung chemokine (C-X-C motif) ligand (CXCL)1 and CXCL2 and neutrophil infiltration, and Evans blue dye (EBD) vascular leakage increased after renal IRI. In splenectomized mice, GTS-21 did not reduce circulating IL-6 and lung CXCL1 and CXCL2 levels and neutrophil infiltration, and EBD vascular leakage increased after renal IRI. In mice depleted of splenic macrophages and systemic mononuclear phagocytes, GTS-21 treatment did not reduce lung neutrophil infiltration, and EBD vascular leakage increased after renal IRI. In mice depleted of alveolar macrophages, GTS-21 treatment significantly reduced lung neutrophil infiltration, and EBD vascular leakage increased after renal IRI. Our findings show that nAChR agonist reduces circulating IL-6 levels and acute lung injury after renal IRI by acting on splenic macrophages.NEW & NOTEWORTHY Acute lung injury associated with acute kidney injury contributes to high mortality. This study showed, for the first time, that nicotinic acetylcholine receptor agonists reduced circulating IL-6 and ALI after renal ischemia-reperfusion injury in mice. These effects of α7nAChR agonist were eliminated in both splenectomized and splenic macrophage (including systemic mononuclear phagocyte)-depleted mice but not alveolar macrophage-depleted mice. nAChR agonist could reduce ALI after AKI via splenic macrophages and provide a novel strategy in AKI.
Collapse
Affiliation(s)
- Daiki Goto
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Soichiro Nagata
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshitaka Naito
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shinsuke Isobe
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takamasa Iwakura
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyuki Fujikura
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naro Ohashi
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akihiko Kato
- Division of Blood Purification, Hamamatsu University Hospital, Hamamatsu, Japan
| | - Hiroaki Miyajima
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ken Sugimoto
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideo Yasuda
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
4
|
Pan X, Xu S, Zhou Z, Wang F, Mao L, Li H, Wu C, Wang J, Huang Y, Li D, Wang C, Pan J. Fibroblast growth factor-2 alleviates the capillary leakage and inflammation in sepsis. Mol Med 2020; 26:108. [PMID: 33187467 PMCID: PMC7662026 DOI: 10.1186/s10020-020-00221-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Background Acute lung injury (ALI), which is induced by numerous pathogenic factors, especially sepsis, can generate alveolar damage, pulmonary edema and vascular hyper-permeability ultimately leading to severe hypoxemia. Fibroblast growth factor-2 (FGF2) is an important member of the FGF family associated with endothelial cell migration and proliferation, and injury repairment. Here, we conducted this study aiming to evaluate the therapeutic effect of FGF2 in sepsis-induced ALI. Methods Recombinant FGF2 was abdominally injected into septic mice induced by cecal ligation and puncture (CLP), and then the inflammatory factors of lung tissue, vascular permeability and lung injury-related indicators based on protein levels and gene expression were detected. In vitro, human pulmonary microvascular endothelial cells (HPMEC) and mouse peritoneal macrophages (PMs) were challenged by lipopolysaccharides (LPS) with or without FGF2 administration in different groups, and then changes in inflammation indicators and cell permeability ability were tested. Results The results revealed that FGF2 treatment reduced inflammation response, attenuated pulmonary capillary leakage, alleviated lung injury and improved survival in septic mice. The endothelial injury and macrophages inflammation induced by LPS were inhibited by FGF2 administration via AKT/P38/NF-κB signaling pathways. Conclusion These findings indicated a therapeutic role of FGF2 in ALI through ameliorating capillary leakage and inflammation.
Collapse
Affiliation(s)
- Xiaojun Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Shunyao Xu
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Zhen Zhou
- Department of Intensive Care Unit, Hangzhou Third Hospital, Hangzhou, 310000, Zhejiang, P. R. China
| | - Fen Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Lingjie Mao
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Hao Li
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Caixia Wu
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Junfeng Wang
- The Yiwu Affiliated Hospital of Wenzhou Medical University, Jinhua, 322000, Zhejiang, P. R. China
| | - Yueyue Huang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Dequan Li
- Department of Traumatology Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China.
| | - Cong Wang
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China.
| | - Jingye Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China.
| |
Collapse
|
5
|
Development of Noninvasive in Vivo Approach to Assess Vascular Permeability in Inflammation Using Fluorescence Imaging. Shock 2019; 50:729-734. [PMID: 29206760 DOI: 10.1097/shk.0000000000001075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION In vivo fluorescence imaging can quantify vascular permeability without requiring sacrifice of animals. However, use of this noninvasive approach for vascular permeability assessment in remote organ injury caused by systemic inflammatory disease has not been reported. METHODS Evans blue (EB) and Genhance 750 fluorescent dye were mixed and injected into mice. The lung as a remote organ and the footpad as a noninvasive observational site were assessed in a cecal ligation and puncture (CLP)-induced systemic inflammation mouse model and compared with sham and hydrocortisone pretreated (CLP + HC) mouse models. Extraction of EB in harvested tissues was assessed as a conventional indicator of vascular permeability. Fluorescent intensities in the footpad or harvested lung were assessed and their correlation was analyzed to investigate this novel, noninvasive approach for estimation of lung vascular permeability. RESULTS Fluorescent intensity in the footpad and harvested lung in the CLP group was significantly higher than in the other groups (footpad, sham vs. CLP, P < 0.0001; CLP vs. CLP + HC, P = 0.0004; sham vs. CLP + HC, P = 0.058; lung, sham vs. CLP, P < 0.0001; CLP vs. CLP + HC, P < 0.0001; sham vs. CLP + HC, P = 0.060). The fluorescent intensity in the footpad was strongly correlated with that in the lung (r = 0.95). CONCLUSIONS This fluorescent technique may be useful for vascular permeability assessment based on EB quantification. Footpad fluorescent intensity was strongly correlated with that in the lung, and may be a suitable indicator in noninvasive estimation of lung vascular permeability.
Collapse
|
6
|
Ibrahim MAA, Elwan WM, Elgendy HA. Role of Scutellarin in Ameliorating Lung Injury in a Rat Model of Bilateral Hind Limb Ischemia–Reperfusion. Anat Rec (Hoboken) 2019; 302:2070-2081. [DOI: 10.1002/ar.24175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/24/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Marwa A. A. Ibrahim
- Histology and Cell Biology Department, Faculty of MedicineTanta University Tanta Egypt
| | - Walaa M. Elwan
- Histology and Cell Biology Department, Faculty of MedicineTanta University Tanta Egypt
| | - Hanan A. Elgendy
- Anatomy and Embryology Department, Faculty of MedicineMansoura University Mansoura Egypt
| |
Collapse
|
7
|
Gorrasi J, Peluffo G, Botti H, Batthyany C, Naviliat M, Barrios E, Correa H, Radi R. Lung nitroxidative stress in mechanically-ventilated septic patients: A pilot study. J Crit Care 2019; 51:204-212. [DOI: 10.1016/j.jcrc.2019.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 01/24/2023]
|
8
|
Wang L, Chung J, Gill SE, Mehta S. Quantification of adherens junction disruption and contiguous paracellular protein leak in human lung endothelial cells under septic conditions. Microcirculation 2019; 26:e12528. [PMID: 30636088 DOI: 10.1111/micc.12528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/12/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Sepsis is associated with dysfunction of MVEC resulting in organ edema and inflammation. VE-cadherin, a component of MVEC adherens junctions, may be disrupted in sepsis. However, the direct connection between individual MVEC VE-cadherin disruption and increased paracellular permeability is uncertain. METHODS Human pulmonary MVEC were cultured on a biotin matrix and treated with cytomix, as a model of sepsis, vs PBS. MVEC permeability was assessed by trans-MVEC monolayer leak of Oregon green 488-conjugated avidin, which bound subcellular biotin to localize sites of paracellular leak. Leak was correlated with individual cell-specific MVEC surface VE-cadherin continuity by fluorescence microscopy. RESULTS Cytomix treatment reduced total MVEC VE-cadherin density, disrupted surface VE-cadherin continuity, was associated with intercellular gap formation, and enhanced paracellular avidin leak. Cytomix-induced MVEC paracellular avidin leak was strongly correlated temporally and was highly contiguous with focal MVEC surface VE-cadherin disruption. Total cellular VE-cadherin density was less strongly correlated with MVEC paracellular avidin leak and individual cell-specific focal surface VE-cadherin discontinuity. CONCLUSIONS These data support a mechanistic link between septic human lung MVEC VE-cadherin disruption and contiguous paracellular protein leak, and will permit more detailed assessment of individual cell-specific mechanisms of septic MVEC barrier dysfunction.
Collapse
Affiliation(s)
- Lefeng Wang
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - Justin Chung
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| |
Collapse
|
9
|
Liu JX, Li X, Yan FG, Pan QJ, Yang C, Wu MY, Li G, Liu HF. Protective effect of forsythoside B against lipopolysaccharide-induced acute lung injury by attenuating the TLR4/NF-κB pathway. Int Immunopharmacol 2019; 66:336-346. [DOI: 10.1016/j.intimp.2018.11.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/27/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022]
|
10
|
Fu L, Zhu P, Qi S, Li C, Zhao K. MicroRNA-92a antagonism attenuates lipopolysaccharide (LPS)-induced pulmonary inflammation and injury in mice through suppressing the PTEN/AKT/NF-κB signaling pathway. Biomed Pharmacother 2018; 107:703-711. [PMID: 30138892 DOI: 10.1016/j.biopha.2018.08.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
Overwhelming lung inflammation is a key feature of acute lung injury (ALI). MicroRNAs (miRNAs) have been implicated in the regulation diverse cellular processes including the inflammatory response. However, little is known about their functions and molecular involvement in regulating the inflammatory process in ALI. Herein, we established a lipopolysaccharide (LPS)-induced ALI mouse model and used miRNA microarray analysis to investigate and compare the miRNA expression profiles in mouse lung tissues. We found that miR-92a was markedly upregulated in the lung tissues of ALI mice compared with that in normal lung tissues. This upregulation of miR-92a in LPS-induced ALI mice was further confirmed in lung tissues, splenocytes and bronchoalveolar lavage fluid (BALF) by quantitative real-time PCR. Inhibition of miR-92a by injection with antagomir-92a markedly reduced LPS-induced pathological changes associated with lung inflammation, and reduces lung wet/dry ratio (W/D ratio), and Evans blue dye extravasation (an indicator of lung epithelial permeability). Moreover, inhibition of miR-92a ameliorated the inflammatory response by reducing the repression of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6 in lung tissues. In addition, we identified that miR-92a inhibited the phosphatase and tensin homolog on chromosome ten (PTEN) by binding to its 3'-UTR in RAW264.7 murine macrophage cells. Western blot analysis demonstrated that inhibition of miR-92a may ameliorate inflammatory response through blocking PTEN/AKT/NF-κB signaling pathway in ALI mice. Collectively, these results have revealed a significant role of miR-92a in the lung inflammatory response associated with ALI in mice, and suggest that miR-92a may have potential as a prognostic indicator and novel therapeutic target for the treatment of ALI in future.
Collapse
Affiliation(s)
- Liming Fu
- Department of Emergency, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009, Henan, China.
| | - Ping Zhu
- Department of Emergency, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009, Henan, China
| | - Sanli Qi
- Department of Emergency, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009, Henan, China
| | - Chunyan Li
- Department of Emergency, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009, Henan, China
| | - Kunfang Zhao
- Department of Emergency, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009, Henan, China
| |
Collapse
|
11
|
Wang L, Mehta S, Ahmed Y, Wallace S, Pape MC, Gill SE. Differential Mechanisms of Septic Human Pulmonary Microvascular Endothelial Cell Barrier Dysfunction Depending on the Presence of Neutrophils. Front Immunol 2018; 9:1743. [PMID: 30116240 PMCID: PMC6082932 DOI: 10.3389/fimmu.2018.01743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 07/16/2018] [Indexed: 01/06/2023] Open
Abstract
Sepsis is characterized by injury of pulmonary microvascular endothelial cells (PMVEC) leading to barrier dysfunction. Multiple mechanisms promote septic PMVEC barrier dysfunction, including interaction with circulating leukocytes and PMVEC apoptotic death. Our previous work demonstrated a strong correlation between septic neutrophil (PMN)-dependent PMVEC apoptosis and pulmonary microvascular albumin leak in septic mice in vivo; however, this remains uncertain in human PMVEC. Thus, we hypothesize that human PMVEC apoptosis is required for loss of PMVEC barrier function under septic conditions in vitro. To assess this hypothesis, human PMVECs cultured alone or in coculture with PMN were stimulated with PBS or cytomix (equimolar interferon γ, tumor necrosis factor α, and interleukin 1β) in the absence or presence of a pan-caspase inhibitor, Q-VD, or specific caspase inhibitors. PMVEC barrier function was assessed by transendothelial electrical resistance (TEER), as well as fluoroisothiocyanate-labeled dextran and Evans blue-labeled albumin flux across PMVEC monolayers. PMVEC apoptosis was identified by (1) loss of cell membrane polarity (Annexin V), (2) caspase activation (FLICA), and (3) DNA fragmentation [terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)]. Septic stimulation of human PMVECs cultured alone resulted in loss of barrier function (decreased TEER and increased macromolecular flux) associated with increased apoptosis (increased Annexin V, FLICA, and TUNEL staining). In addition, treatment of septic PMVEC cultured alone with Q-VD decreased PMVEC apoptosis and prevented septic PMVEC barrier dysfunction. In septic PMN-PMVEC cocultures, there was greater trans-PMVEC macromolecular flux (both dextran and albumin) vs. PMVEC cultured alone. PMN presence also augmented septic PMVEC caspase activation (FLICA staining) vs. PMVEC cultured alone but did not affect septic PMVEC apoptosis. Importantly, pan-caspase inhibition (Q-VD treatment) completely attenuated septic PMN-dependent PMVEC barrier dysfunction. Moreover, inhibition of caspase 3, 8, or 9 in PMN-PMVEC cocultures also reduced septic PMVEC barrier dysfunction whereas inhibition of caspase 1 had no effect. Our data demonstrate that human PMVEC barrier dysfunction under septic conditions in vitro (cytomix stimulation) is clearly caspase-dependent, but the mechanism differs depending on the presence of PMN. In isolated PMVEC, apoptosis contributes to septic barrier dysfunction, whereas PMN presence enhances caspase-dependent septic PMVEC barrier dysfunction independently of PMVEC apoptosis.
Collapse
Affiliation(s)
- Lefeng Wang
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada
| | - Yousuf Ahmed
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - Shelby Wallace
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - M Cynthia Pape
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada
| |
Collapse
|
12
|
Hsu WL, Lin YC, Jeng JR, Chang HY, Chou TC. Baicalein Ameliorates Pulmonary Arterial Hypertension Caused by Monocrotaline through Downregulation of ET-1 and ETAR in Pneumonectomized Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:769-783. [DOI: 10.1142/s0192415x18500404] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Baicalein (BE) extracted from Scutellaria baicalensis Georgi is able to alleviate various cardiovascular and inflammatory diseases. However, the effects of BE on pulmonary arterial hypertension (PAH) remain unknown. Therefore, the present study aimed to examine whether BE ameliorates pneumonectomy and monocrotaline-induced PAH in rats and further investigate the underlying molecular mechanisms. Administration of BE greatly attenuated the development of PAH as evidenced by an improvement of its characteristic features, including elevation of right ventricular systolic pressure, right ventricular hypertrophy, and pulmonary vascular remodeling. Moreover, the increased protein expression of endothelin-1 (ET-1) and ETA receptor (ETAR), superoxide overproduction, and activation of Akt/ERK1/2/GSK3[Formula: see text]/[Formula: see text]-catenin pathway that occurred in the lungs of PAH rats were markedly reversed by BE treatment. Compared with the untreated PAH rats, higher expression of endothelial nitric oxide synthase (eNOS), but lower levels of inducible nitric oxide synthase and vWF were observed in BE-treated PAH rats. Collectively, treatment with BE remarkably attenuates the pathogenesis of PAH, and the protection of BE may be associated with suppressing Akt/Erk1/2/GSK3[Formula: see text]/[Formula: see text]-catenin/ET-1/ETAR signaling and preventing endothelial dysfunction. These results suggest that BE is a potential agent for treatment of PAH.
Collapse
Affiliation(s)
- Wen-Lin Hsu
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Radiation Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Yu-Chieh Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Jing-Ren Jeng
- Department of Cardiology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Heng-Yuan Chang
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tz-Chong Chou
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
13
|
Takatani Y, Ono K, Suzuki H, Inaba M, Sawada M, Matsuda N. Inducible nitric oxide synthase during the late phase of sepsis is associated with hypothermia and immune cell migration. J Transl Med 2018; 98:629-639. [PMID: 29449632 DOI: 10.1038/s41374-018-0021-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/21/2017] [Accepted: 12/04/2017] [Indexed: 11/09/2022] Open
Abstract
Hypothermia is a significant sign of sepsis, which is associated with poor prognosis, but few mechanisms underlying the regulation of hypothermia are known. Inducible nitric oxide synthase (iNOS) is a key inflammatory mediator of sepsis. However, the therapeutic benefit of iNOS inhibition in sepsis is still controversial, and requires elucidation in an accurate model system. In this study, wild-type (WT) mice showed temperature drops in a biphasic manner at the early and late phase of sepsis, and all mice died within 48 h of sepsis. In contrast, iNOS-knockout (KO) mice never showed the second temperature drop and exhibited improved mortality. Plasma nitric oxide (NO) levels of WT mice increased in the late phase of sepsis and correlated to hypothermia. The results indicate that iNOS-derived NO during the late phase of sepsis caused vasodilation-induced hypothermia and a lethal hypodynamic state. The expression of the iNOS mRNA was high in the lung of WT mice with sepsis, which reflects the pathology of acute respiratory distress syndrome (ARDS). We obtained the results in a modified keyhole-type cecal ligation and puncture model of septic shock induced by minimally invasive surgery. In this accurate and reproducible model system, we transplanted the bone marrow cells of GFP transgenic mice into WT and iNOS-KO mice, and evaluated the role of increased pulmonary iNOS expression in cell migration during the late phase of sepsis. We also investigated the quantity and type of bone marrow-derived cells (BMDCs) in the lung. The number of BMDCs in the lung of iNOS-KO mice was less than that in the lung of WT mice. The major BMDCs populations were CD11b-positive, iNOS-negative cells in WT mice, and Gr-1-positive cells in iNOS-KO mice that expressed iNOS. These results suggest that sustained hypothermia may be a beneficial guide for future iNOS-targeted therapy of sepsis, and that iNOS modulated the migratory efficiency and cell type of BMDCs in septic ARDS.
Collapse
Affiliation(s)
- Yudai Takatani
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Aichi, 466-8560, Japan
| | - Kenji Ono
- Division of Stress Adaptation and Protection, Department of Brain Function, Research Institute of Environmental Medicine, Nagoya University, Aichi, 464-8601, Japan
| | - Hiromi Suzuki
- Division of Stress Adaptation and Protection, Department of Brain Function, Research Institute of Environmental Medicine, Nagoya University, Aichi, 464-8601, Japan
| | - Masato Inaba
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Aichi, 466-8560, Japan
| | - Makoto Sawada
- Division of Stress Adaptation and Protection, Department of Brain Function, Research Institute of Environmental Medicine, Nagoya University, Aichi, 464-8601, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Aichi, 466-8560, Japan.
| |
Collapse
|
14
|
Konrad FM, Zwergel C, Ngamsri KC, Reutershan J. Anti-inflammatory Effects of Heme Oxygenase-1 Depend on Adenosine A 2A- and A 2B-Receptor Signaling in Acute Pulmonary Inflammation. Front Immunol 2017; 8:1874. [PMID: 29326725 PMCID: PMC5742329 DOI: 10.3389/fimmu.2017.01874] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/08/2017] [Indexed: 12/16/2022] Open
Abstract
Acute pulmonary inflammation is still a frightening complication in intensive care units. In our previous study, we determined that heme oxygenase (HO)-1 had anti-inflammatory effects in pulmonary inflammation. Recent literature has emphasized a link between HO-1 and the nucleotide adenosine. Since adenosine A2A- and A2B-receptors play a pivotal role in pulmonary inflammation, we investigated their link to the enzyme HO-1. In a murine model of pulmonary inflammation, the activation of HO-1 by hemin significantly decreased polymorphonuclear leukocyte (PMN) migration into the lung. This anti-inflammatory reduction of PMN migration was abolished in A2A- and A2B-knockout mice. Administration of hemin significantly reduced chemokine levels in the BAL of wild-type animals but had no effects in A2A-/- and A2B-/- mice. Microvascular permeability was significantly attenuated in HO-1-stimulated wild-type mice, but not in A2A-/- and A2B-/- mice. The activity of HO-1 rose after LPS inhalation in wild-type animals and, surprisingly, also in A2A-/- and A2B-/- mice after the additional administration of hemin. Immunofluorescence images of animals revealed alveolar macrophages to be the major source of HO-1 activity in both knockout strains—in contrast to wild-type animals, where HO-1 was also significantly augmented in the lung tissue. In vitro studies on PMN migration further confirmed our in vivo findings. In conclusion, we linked the anti-inflammatory effects of HO-1 to functional A2A/A2B-receptor signaling under conditions of pulmonary inflammation. Our findings may explain why targeting HO-1 in acute pulmonary inflammation has failed to prove effective in some patients, since septic patients have altered adenosine receptor expression.
Collapse
Affiliation(s)
- Franziska M Konrad
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Constantin Zwergel
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Kristian-Christos Ngamsri
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Jörg Reutershan
- Department of Anesthesiology and Intensive Care Medicine, Hospital of Bayreuth, Bayreuth, Germany
| |
Collapse
|
15
|
Janga H, Cassidy L, Wang F, Spengler D, Oestern-Fitschen S, Krause MF, Seekamp A, Tholey A, Fuchs S. Site-specific and endothelial-mediated dysfunction of the alveolar-capillary barrier in response to lipopolysaccharides. J Cell Mol Med 2017; 22:982-998. [PMID: 29210175 PMCID: PMC5783864 DOI: 10.1111/jcmm.13421] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 09/12/2017] [Indexed: 12/16/2022] Open
Abstract
Infectious agents such as lipopolysaccharides (LPS) challenge the functional properties of the alveolar‐capillary barrier (ACB) in the lung. In this study, we analyse the site‐specific effects of LPS on the ACB and reveal the effects on the individual cell types and the ACB as a functional unit. Monocultures of H441 epithelial cells and co‐cultures of H441 with endothelial cells cultured on Transwells® were treated with LPS from the apical or basolateral compartment. Barrier properties were analysed by the transepithelial electrical resistance (TEER), by transport assays, and immunostaining and assessment of tight junctional molecules at protein level. Furthermore, pro‐inflammatory cytokines and immune‐modulatory molecules were evaluated by ELISA and semiquantitative real‐time PCR. Liquid chromatography–mass spectrometry‐based proteomics (LS‐MS) was used to identify proteins and effector molecules secreted by endothelial cells in response to LPS. In co‐cultures treated with LPS from the basolateral compartment, we noticed a significant reduction of TEER, increased permeability and induction of pro‐inflammatory cytokines. Conversely, apical treatment did not affect the barrier. No changes were noticed in H441 monoculture upon LPS treatment. However, LPS resulted in an increased expression of pro‐inflammatory cytokines such as IL‐6 in OEC and in turn induced the reduction of TEER and an increase in SP‐A expression in H441 monoculture, and H441/OEC co‐cultures after LPS treatment from basolateral compartment. LS‐MS‐based proteomics revealed factors associated with LPS‐mediated lung injury such as ICAM‐1, VCAM‐1, Angiopoietin 2, complement factors and cathepsin S, emphasizing the role of epithelial–endothelial crosstalk in the ACB in ALI/ARDS.
Collapse
Affiliation(s)
- Harshavardhan Janga
- Department of Trauma Surgery and Orthopedics, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Liam Cassidy
- Systematic Proteomics & Bioanalytics, Institut für Experimentelle Medizin, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Fanlu Wang
- Department of Trauma Surgery and Orthopedics, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Dietmar Spengler
- Department of Pediatrics, University Medical Center Schleswig- Holstein, Kiel, Germany
| | - Stefanie Oestern-Fitschen
- Department of Trauma Surgery and Orthopedics, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Martin F Krause
- Department of Pediatrics, University Medical Center Schleswig- Holstein, Kiel, Germany
| | - Andreas Seekamp
- Department of Trauma Surgery and Orthopedics, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andreas Tholey
- Systematic Proteomics & Bioanalytics, Institut für Experimentelle Medizin, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Sabine Fuchs
- Department of Trauma Surgery and Orthopedics, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
16
|
Interferon-γ-Driven iNOS: A Molecular Pathway to Terminal Shock in Arenavirus Hemorrhagic Fever. Cell Host Microbe 2017; 22:354-365.e5. [DOI: 10.1016/j.chom.2017.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/11/2017] [Accepted: 07/11/2017] [Indexed: 01/21/2023]
|
17
|
Tsung YC, Chung CY, Wan HC, Chang YY, Shih PC, Hsu HS, Kao MC, Huang CJ. Dimethyl Sulfoxide Attenuates Acute Lung Injury Induced by Hemorrhagic Shock/Resuscitation in Rats. Inflammation 2017; 40:555-565. [PMID: 28028757 DOI: 10.1007/s10753-016-0502-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Inflammation following hemorrhagic shock/resuscitation (HS/RES) induces acute lung injury (ALI). Dimethyl sulfoxide (DMSO) possesses anti-inflammatory and antioxidative capacities. We sought to clarify whether DMSO could attenuate ALI induced by HS/RES. Male Sprague-Dawley rats were allocated to receive either a sham operation, sham plus DMSO, HS/RES, or HS/RES plus DMSO, and these were denoted as the Sham, Sham + DMSO, HS/RES, or HS/RES + DMSO group, respectively (n = 12 in each group). HS/RES was achieved by drawing blood to lower mean arterial pressure (40-45 mmHg for 60 min) followed by reinfusion with shed blood/saline mixtures. All rats received an intravenous injection of normal saline or DMSO immediately before resuscitation or at matching points relative to the sham groups. Arterial blood gas and histological assays (including histopathology, neutrophil infiltration, and lung water content) confirmed that HS/RES induced ALI. Significant increases in pulmonary expression of tumor necrosis factor-α (TNF-α), malondialdehyde, nuclear factor-kappa B (NF-κB), inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX-2) confirmed that HS/RES induced pulmonary inflammation and oxidative stress. DMSO significantly attenuated the pulmonary inflammation and ALI induced by HS/RES. The mechanisms for this may involve reducing inflammation and oxidative stress through inhibition of pulmonary NF-κB, TNF-α, iNOS, and COX-2 expression.
Collapse
Affiliation(s)
- Yu-Chi Tsung
- Division of Surgical Intensive Care Unit, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.,Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yang Chung
- Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289, Jianguo Rd., Sindian District, New Taipei City, 231, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hung-Chieh Wan
- Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289, Jianguo Rd., Sindian District, New Taipei City, 231, Taiwan
| | - Ya-Ying Chang
- Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289, Jianguo Rd., Sindian District, New Taipei City, 231, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ping-Cheng Shih
- Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289, Jianguo Rd., Sindian District, New Taipei City, 231, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Han-Shui Hsu
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Chang Kao
- Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289, Jianguo Rd., Sindian District, New Taipei City, 231, Taiwan. .,School of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Chun-Jen Huang
- Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289, Jianguo Rd., Sindian District, New Taipei City, 231, Taiwan. .,School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
18
|
Chua ML, Setyawati MI, Li H, Fang CHY, Gurusamy S, Teoh FTL, Leong DT, George S. Particulate matter from indoor environments of classroom induced higher cytotoxicity and leakiness in human microvascular endothelial cells in comparison with those collected from corridor. INDOOR AIR 2017; 27:551-563. [PMID: 27662430 DOI: 10.1111/ina.12341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
We investigated the physicochemical properties (size, shape, elemental composition, and endotoxin) of size resolved particulate matter (PM) collected from the indoor and corridor environments of classrooms. A comparative hazard profiling of these PM was conducted using human microvascular endothelial cells (HMVEC). Oxidative stress-dependent cytotoxicity responses were assessed using quantitative reverse transcriptase polymerase chain reaction (RT-PCR) and high content screening (HCS), and disruption of monolayer cell integrity was assessed using fluorescence microscopy and transwell assay. Scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDX) analysis showed differences in the morphology and elemental composition of PM of different sizes and origins. While the total mass of PM collected from indoor environment was lower in comparison with those collected from the corridor, the endotoxin content was substantially higher in indoor PM (e.g., ninefold higher endotoxin level in indoor PM8.1-20 ). The ability to induce oxidative stress-mediated cytotoxicity and leakiness in cell monolayer were higher for indoor PM compared to those collected from the corridor. In conclusion, this comparative analysis suggested that indoor PM is relatively more hazardous to the endothelial system possibly because of higher endotoxin content.
Collapse
Affiliation(s)
- M L Chua
- Centre for Sustainable Nanotechnology, School of Chemical and Life Sciences, Nanyang Polytechnic, Singapore City, Singapore
| | - M I Setyawati
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore City, Singapore
| | - H Li
- Centre for Sustainable Nanotechnology, School of Chemical and Life Sciences, Nanyang Polytechnic, Singapore City, Singapore
| | - C H Y Fang
- Centre for Sustainable Nanotechnology, School of Chemical and Life Sciences, Nanyang Polytechnic, Singapore City, Singapore
| | - S Gurusamy
- Centre for Sustainable Nanotechnology, School of Chemical and Life Sciences, Nanyang Polytechnic, Singapore City, Singapore
| | - F T L Teoh
- Centre for Sustainable Nanotechnology, School of Chemical and Life Sciences, Nanyang Polytechnic, Singapore City, Singapore
| | - D T Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore City, Singapore
| | - S George
- Centre for Sustainable Nanotechnology, School of Chemical and Life Sciences, Nanyang Polytechnic, Singapore City, Singapore
| |
Collapse
|
19
|
Xu D, Lv Y, Wang J, Yang M, Kong L. Deciphering the mechanism of Huang-Lian-Jie-Du-Decoction on the treatment of sepsis by formula decomposition and metabolomics: Enhancement of cholinergic pathways and inhibition of HMGB-1/TLR4/NF-κB signaling. Pharmacol Res 2017; 121:94-113. [PMID: 28434923 DOI: 10.1016/j.phrs.2017.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/18/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023]
Abstract
Sepsis is the major cause of morbidity and mortality in surgical patients. Huang-Lian-Jie-Du-Decoction (HLJDD), a well-known Chinese herb formula, has long been used for the treatment of sepsis. In this investigation, by leaving one herb out each time, the four component herbs of HLJDD were reformulated to four HLJDD variants Form1-4, corresponding to the removal of Phellodendri Chinensis Cortex, Scutellariae Radix, Gardeniae Fructu and Coptidis Rhizoma, respectively. Metabolomics approach combined with histological inspection, biochemical measurement and molecular biology was used to investigate the treatment effects of HLJDD and its four variants on cecal ligation and puncture (CLP) model of sepsis, which were compared to decipher the formulating principles of HLJDD. Our results showed that HLJDD exhibit the strongest therapeutic effects in the CLP models as compared with the four variants, which could be ascribed to its most significant enhancement of cholinergic anti-inflammatory pathway and inhibition of HMGB-1/TLR4/NF-κB signaling pathway. Most of all, metabolites changed specifically between groups of HLJDD and its four variants were related with the exceptional treatment effects of HLJDD.
Collapse
Affiliation(s)
- Dingqiao Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yan Lv
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Junsong Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210014, People's Republic of China.
| | - Minghua Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
20
|
Inhibition of Murine Pulmonary Microvascular Endothelial Cell Apoptosis Promotes Recovery of Barrier Function under Septic Conditions. Mediators Inflamm 2017; 2017:3415380. [PMID: 28250575 PMCID: PMC5303866 DOI: 10.1155/2017/3415380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/25/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022] Open
Abstract
Sepsis is characterized by injury of the pulmonary microvasculature and the pulmonary microvascular endothelial cells (PMVEC), leading to barrier dysfunction and acute respiratory distress syndrome (ARDS). Our recent work identified a strong correlation between PMVEC apoptosis and microvascular leak in septic mice in vivo, but the specific role of apoptosis in septic PMVEC barrier dysfunction remains unclear. Thus, we hypothesize that PMVEC apoptosis is likely required for PMVEC barrier dysfunction under septic conditions in vitro. Septic stimulation (mixture of tumour necrosis factor α, interleukin 1β, and interferon γ [cytomix]) of isolated murine PMVEC resulted in a significant loss of barrier function as early as 4 h after stimulation, which persisted until 24 h. PMVEC apoptosis, as reflected by caspase activation, DNA fragmentation, and loss of membrane polarity, was first apparent at 8 h after cytomix. Pretreatment of PMVEC with the pan-caspase inhibitor Q-VD significantly decreased septic PMVEC apoptosis and was associated with reestablishment of PMVEC barrier function at 16 and 24 h after stimulation but had no effect on septic PMVEC barrier dysfunction over the first 8 h. Collectively, our data suggest that early septic murine PMVEC barrier dysfunction driven by proinflammatory cytokines is not mediated through apoptosis, but PMVEC apoptosis contributes to late septic PMVEC barrier dysfunction.
Collapse
|
21
|
Theiler A, Konya V, Pasterk L, Maric J, Bärnthaler T, Lanz I, Platzer W, Schuligoi R, Heinemann A. The EP1/EP3 receptor agonist 17-pt-PGE 2 acts as an EP4 receptor agonist on endothelial barrier function and in a model of LPS-induced pulmonary inflammation. Vascul Pharmacol 2016; 87:180-189. [PMID: 27664754 DOI: 10.1016/j.vph.2016.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 12/18/2022]
Abstract
Endothelial dysfunction is a hallmark of inflammatory conditions. We recently demonstrated that prostaglandin (PG)E2 enhances the resistance of pulmonary endothelium in vitro and counteracts lipopolysaccharide (LPS)-induced pulmonary inflammation in vivo via EP4 receptors. The aim of this study was to investigate the role of the EP1/EP3 receptor agonist 17-phenyl-trinor-(pt)-PGE2 on acute lung inflammation in a mouse model. In LPS-induced pulmonary inflammation in mice, 17-pt-PGE2 reduced neutrophil infiltration and inhibited vascular leakage. These effects were unaltered by an EP1 antagonist, but reversed by EP4 receptor antagonists. 17-pt-PGE2 increased the resistance of pulmonary microvascular endothelial cells and prevented thrombin-induced disruption of endothelial junctions. Again, these effects were not mediated via EP1 or EP3 but through activation of the EP4 receptor, as demonstrated by the lack of effect of more selective EP1 and EP3 receptor agonists, prevention of these effects by EP4 antagonists and EP4 receptor knock-down by siRNA. In contrast, the aggregation enhancing effect of 17-pt-PGE2 in human platelets was mediated via EP3 receptors. Our results demonstrate that 17-pt-PGE2 enhances the endothelial barrier in vitro on pulmonary microvascular endothelial cells, and accordingly ameliorates the recruitment of neutrophils, via EP4 receptors in vivo. This suggests a beneficial effect of 17-pt-PGE2 on pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Anna Theiler
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitaetsplatz 4, 8010 Graz, Austria.
| | - Viktoria Konya
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitaetsplatz 4, 8010 Graz, Austria.
| | - Lisa Pasterk
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitaetsplatz 4, 8010 Graz, Austria.
| | - Jovana Maric
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitaetsplatz 4, 8010 Graz, Austria.
| | - Thomas Bärnthaler
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitaetsplatz 4, 8010 Graz, Austria.
| | - Ilse Lanz
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitaetsplatz 4, 8010 Graz, Austria.
| | - Wolfgang Platzer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitaetsplatz 4, 8010 Graz, Austria.
| | - Rufina Schuligoi
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitaetsplatz 4, 8010 Graz, Austria.
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitaetsplatz 4, 8010 Graz, Austria.
| |
Collapse
|
22
|
Li JT, Wang WQ, Wang L, Liu NN, Zhao YL, Zhu XS, Liu QQ, Gao CF, Yang AG, Jia LT. Subanesthetic isoflurane relieves zymosan-induced neutrophil inflammatory response by targeting NMDA glutamate receptor and Toll-like receptor 2 signaling. Oncotarget 2016; 7:31772-31789. [PMID: 27144523 PMCID: PMC5077975 DOI: 10.18632/oncotarget.9091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 04/18/2016] [Indexed: 01/13/2023] Open
Abstract
Neutrophil release of NO/ONOO- induces endothelial cell barrier dysfunction in inflammatory acute lung injury (ALI). Previous studies using zymosan-triggered inflammation and ALI model revealed that zymosan promotes inducible NO synthase (iNOS) expression in neutrophils, and that isoflurane inhibits zymosan-induced oxidative stress and iNOS biosynthesis. However, the underlying mechanisms remain largely unknown. We found here that in zymosan-primed neutrophils, iNOS is transcriptionally activated by NF-κB, whose nuclear translocation is triggered by excessive reactive oxygen species (ROS) and consequently activated p38 MAPK. ROS production is attributed to zymosan-initiated Toll-like receptor 2 (TLR2) signaling, in which the adaptor MyD88 recruits and activates c-Src, and c-Src activates NADPH oxidase to generate ROS. Subanesthetic isoflurane counteracts the aforementioned zymosan-induced signaling by targeting N-methyl-D-aspartic acid (NMDA) glutamate receptor and thereby suppressing calcium influx and c-Src activation. Whereas iNOS accelerates NO/ONOO- production in neutrophils which eventually promote protein leak from pulmonary microvascular endothelial cells (PMVEC), isoflurane reduced NO/ONOO- release from zymosan-treated neutrophils, and thus relieves trans-PMVEC protein leak. This study provides novel insights into the roles of neutrophils and the underlying mechanisms in zymosan-induced ALI, and has implications for the therapeutic potential of subanesthetic isoflurane in attenuating inflammatory responses causing lung endothelial cell damage.
Collapse
Affiliation(s)
- Jun-Tang Li
- Centre of Inflammation and Cancer Research, 150th Central Hospital of PLA, Luoyang, Henan, China
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei-Qi Wang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
- National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
- Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Ling Wang
- Department of Anesthesiology, 150th Central Hospital of PLA, Luoyang, Henan, China
| | - Ning-Ning Liu
- Centre of Inflammation and Cancer Research, 150th Central Hospital of PLA, Luoyang, Henan, China
| | - Ya-Li Zhao
- Centre of Inflammation and Cancer Research, 150th Central Hospital of PLA, Luoyang, Henan, China
| | - Xiao-Shan Zhu
- Centre of Inflammation and Cancer Research, 150th Central Hospital of PLA, Luoyang, Henan, China
| | - Qin-Qin Liu
- Centre of Inflammation and Cancer Research, 150th Central Hospital of PLA, Luoyang, Henan, China
| | - Chun-Fang Gao
- Centre of Inflammation and Cancer Research, 150th Central Hospital of PLA, Luoyang, Henan, China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lin-Tao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
23
|
Arpino V, Mehta S, Wang L, Bird R, Rohan M, Pape C, Gill SE. Tissue inhibitor of metalloproteinases 3-dependent microvascular endothelial cell barrier function is disrupted under septic conditions. Am J Physiol Heart Circ Physiol 2016; 310:H1455-67. [PMID: 26993226 DOI: 10.1152/ajpheart.00796.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/13/2016] [Indexed: 11/22/2022]
Abstract
Sepsis is associated with dysfunction of microvascular endothelial cells (MVEC) leading to tissue edema and multiple organ dysfunction. Metalloproteinases can regulate MVEC function through processing of cell surface proteins, and tissue inhibitor of metalloproteinases 3 (TIMP3) regulates metalloproteinase activity in the lung following injury. We hypothesize that TIMP3 promotes normal pulmonary MVEC barrier function through inhibition of metalloproteinase activity. Naive Timp3(-/-) mice had significantly higher basal pulmonary microvascular Evans blue (EB) dye-labeled albumin leak vs. wild-type (WT) mice. Additionally, cecal-ligation/perforation (CLP)-induced sepsis significantly increased pulmonary microvascular EB-labeled albumin leak in WT but not Timp3(-/-) mice. Similarly, PBS-treated isolated MVEC monolayers from Timp3(-/-) mice displayed permeability barrier dysfunction vs. WT MVEC, evidenced by lower transendothelial electrical resistance and greater trans-MVEC flux of fluorescein-dextran and EB-albumin. Cytomix (equimolar interferon γ, tumor necrosis factor α, and interleukin 1β) treatment of WT MVEC induced significant barrier dysfunction (by all three methods), and was associated with a time-dependent decrease in TIMP3 mRNA and protein levels. Additionally, basal Timp3(-/-) MVEC barrier dysfunction was associated with disrupted MVEC surface VE-cadherin localization, and both barrier dysfunction and VE-cadherin localization were rescued by treatment with GM6001, a synthetic metalloproteinase inhibitor. TIMP3 promotes normal MVEC barrier function, at least partially, through inhibition of metalloproteinase-dependent disruption of adherens junctions, and septic downregulation of TIMP3 may contribute to septic MVEC barrier dysfunction.
Collapse
Affiliation(s)
- Valerie Arpino
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Division of Respirology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; and
| | - Lefeng Wang
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; and
| | - Ryan Bird
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; and
| | - Marta Rohan
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Cynthia Pape
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; and
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Division of Respirology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; and Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
24
|
Abstract
The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Larissa A. Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Tissue heme oxygenase-1 exerts anti-inflammatory effects on LPS-induced pulmonary inflammation. Mucosal Immunol 2016; 9:98-111. [PMID: 25943274 DOI: 10.1038/mi.2015.39] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 04/01/2015] [Indexed: 02/04/2023]
Abstract
Heme oxygenase-1 (HO-1) has been shown to display anti-inflammatory properties in models of acute pulmonary inflammation. For the first time, we investigated the role of leukocytic HO-1 using a model of HO-1(flox/flox) mice lacking leukocytic HO-1 that were subjected to lipopolysaccharide (LPS)-induced acute pulmonary inflammation. Immunohistology and flow cytometry demonstrated that activation of HO-1 using hemin decreased migration of polymorphonuclear leukocytes (PMNs) to the lung interstitium and bronchoalveolar lavage (BAL) in the wild-type and, surprisingly, also in HO-1(flox/flox) mice, emphasizing the anti-inflammatory potential of nonmyeloid HO-1. Nevertheless, hemin reduced the CXCL1, CXCL2/3, tumor necrosis factor-α (TNFα), and interleukin 6 (IL6) levels in both animal strains. Microvascular permeability was attenuated by hemin in wild-type and HO-1(flox/flox) mice, indicating a crucial role of non-myeloid HO-1 in endothelial integrity. The determination of the activity of HO-1 in mouse lungs revealed no compensatory increase in the HO-1(flox/flox) mice. Topical administration of hemin via inhalation reduced the dose required to attenuate PMN migration and microvascular permeability by a factor of 40, emphasizing its clinical potential. In addition, HO-1 stimulation was protective against pulmonary inflammation when initiated after the inflammatory stimulus. In conclusion, nonmyeloid HO-1 is crucial for the anti-inflammatory effect of this enzyme on PMN migration to different compartments of the lung and on microvascular permeability.
Collapse
|
26
|
Gill SE, Rohan M, Mehta S. Role of pulmonary microvascular endothelial cell apoptosis in murine sepsis-induced lung injury in vivo. Respir Res 2015; 16:109. [PMID: 26376777 PMCID: PMC4574190 DOI: 10.1186/s12931-015-0266-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/24/2015] [Indexed: 02/07/2023] Open
Abstract
Background Sepsis remains a common and serious condition with significant morbidity and mortality due to multiple organ dysfunction, especially acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Sepsis-induced ALI is characterized by injury and dysfunction of the pulmonary microvasculature and pulmonary microvascular endothelial cells (PMVEC), resulting in enhanced pulmonary microvascular sequestration and pulmonary infiltration of polymorphonuclear leukocytes (PMN) as well as disruption of the normal alveolo-capillary permeability barrier with leak of albumin-rich edema fluid into pulmonary interstitium and alveoli. The role of PMVEC death and specifically apoptosis in septic pulmonary microvascular dysfunction in vivo has not been established. Methods In a murine cecal ligation/perforation (CLP) model of sepsis, we quantified and correlated time-dependent changes in pulmonary microvascular Evans blue (EB)-labeled albumin permeability with (1) PMVEC death (propidium iodide [PI]-staining) by both fluorescent intravital videomicroscopy (IVVM) and histology, and (2) PMVEC apoptosis using histologic fluorescent microscopic assessment of a panel of 3 markers: cell surface phosphatidylserine (detected by Annexin V binding), caspase activation (detected by FLIVO labeling), and DNA fragmentation (TUNEL labeling). Results Compared to sham mice, CLP-sepsis resulted in pulmonary microvascular barrier dysfunction, quantified by increased EB-albumin leak, and PMVEC death (PI+ staining) as early as 2 h and more marked by 4 h after CLP. Septic PMVEC also exhibited increased presence of all 3 markers of apoptosis (Annexin V+, FLIVO+, TUNEL+) as early as 30 mins – 1 h after CLP-sepsis, which all similarly increased markedly until 4 h. The time-dependent changes in septic pulmonary microvascular albumin-permeability barrier dysfunction were highly correlated with PMVEC death (PI+; r = 0.976, p < 0.01) and PMVEC apoptosis (FLIVO+; r = 0.991, p < 0.01). Treatment with the pan-caspase inhibitor Q-VD prior to CLP reduced PMVEC death/apoptosis and attenuated septic pulmonary microvascular dysfunction, including both albumin-permeability barrier dysfunction and pulmonary microvascular PMN sequestration (p < 0.05). Septic PMVEC apoptosis and pulmonary microvascular dysfunction were also abrogated following CLP-sepsis in mice deficient in iNOS (Nos2−/−) or NADPH oxidase (p47phox−/− or gp91phox−/−) and in wild-type mice treated with the NADPH oxidase inhibitor, apocynin. Conclusions Septic murine pulmonary microvascular dysfunction in vivo is due to PMVEC death, which is mediated through caspase-dependent apoptosis and iNOS/NADPH-oxidase dependent signaling.
Collapse
Affiliation(s)
- Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, ON, Canada.,Division of Respirology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Marta Rohan
- Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, ON, Canada
| | - Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, ON, Canada. .,Division of Respirology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,Division of Respirology, E6.204, London Health Sciences Center - Victoria Hospital, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| |
Collapse
|
27
|
Choudhury S, Kandasamy K, Maruti BS, Addison MP, Kasa JK, Darzi SA, Singh TU, Parida S, Dash JR, Singh V, Mishra SK. Atorvastatin along with imipenem attenuates acute lung injury in sepsis through decrease in inflammatory mediators and bacterial load. Eur J Pharmacol 2015; 765:447-56. [PMID: 26375251 DOI: 10.1016/j.ejphar.2015.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
Abstract
Lung is one of the vital organs which is affected during the sequential development of multi-organ dysfunction in sepsis. The purpose of the present study was to examine whether combined treatment with atorvastatin and imipenem could attenuate sepsis-induced lung injury in mice. Sepsis was induced by caecal ligation and puncture. Lung injury was assessed by the presence of lung edema, increased vascular permeability, increased inflammatory cell infiltration and cytokine levels in broncho-alveolar lavage fluid (BALF). Treatment with atorvastatin along with imipenem reduced the lung bacterial load and pro-inflammatory cytokines (IL-1β and TNFα) level in BALF. The markers of pulmonary edema such as microvascular leakage and wet-dry weight ratio were also attenuated. This was further confirmed by the reduced activity of MPO and ICAM-1 mRNA expression, indicating the lesser infiltration and adhesion of inflammatory cells to the lungs. Again, expression of mRNA and protein level of iNOS in lungs was also reduced in the combined treatment group. Based on the above findings it can be concluded that, combined treatment with atorvastatin and imipenem dampened the inflammatory response and reduced the bacterial load, thus seems to have promising therapeutic potential in sepsis-induced lung injury in mice.
Collapse
Affiliation(s)
- Soumen Choudhury
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Kannan Kandasamy
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Bhojane Somnath Maruti
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - M Pule Addison
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Jaya Kiran Kasa
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Sazad A Darzi
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Jeevan Ranjan Dash
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Vishakha Singh
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Santosh Kumar Mishra
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India.
| |
Collapse
|
28
|
Konya V, Maric J, Jandl K, Luschnig P, Aringer I, Lanz I, Platzer W, Theiler A, Bärnthaler T, Frei R, Marsche G, Marsh LM, Olschewski A, Lippe IT, Heinemann A, Schuligoi R. Activation of EP 4 receptors prevents endotoxin-induced neutrophil infiltration into the airways and enhances microvascular barrier function. Br J Pharmacol 2015; 172:4454-4468. [PMID: 26103450 DOI: 10.1111/bph.13229] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary vascular dysfunction is a key event in acute lung injury. We recently demonstrated that PGE2 , via activation of E-prostanoid (EP)4 receptors, strongly enhances microvascular barrier function in vitro. The aim of this study was to investigate the beneficial effects of concomitant EP4 receptor activation in murine models of acute pulmonary inflammation. EXPERIMENTAL APPROACH Pulmonary inflammation in male BALB/c mice was induced by LPS (20 μg per mouse intranasally) or oleic acid (0.15 μL·g-1 , i.v. ). In-vitro, endothelial barrier function was determined by measuring electrical impedance. KEY RESULTS PGE2 activation of EP4 receptors reduced neutrophil infiltration, pulmonary vascular leakage and TNF-α concentration in bronchoalveolar lavage fluid from LPS-induced pulmonary inflammation. Similarly, pulmonary vascular hyperpermeability induced by oleic acid was counteracted by EP4 receptor activation. In lung function assays, the EP4 agonist ONO AE1-329 restored the increased resistance and reduced compliance upon methacholine challenge in mice treated with LPS or oleic acid. In agreement with these findings, EP4 receptor activation increased the in vitro vascular barrier function of human and mouse pulmonary microvascular endothelial cells and diminished the barrier disruption induced by LPS. The EP2 agonist ONO AE1-259 likewise reversed LPS-induced lung dysfunction without enhancing vascular barrier function. CONCLUSION AND IMPLICATIONS Our results show that activation of the EP4 receptor strengthens the microvascular barrier function and thereby ameliorates the pathology of acute lung inflammation, including neutrophil infiltration, vascular oedema formation and airway dysfunction. This suggests a potential benefit for EP4 agonists in acute pulmonary inflammation.
Collapse
Affiliation(s)
- V Konya
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - J Maric
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - K Jandl
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - P Luschnig
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - I Aringer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.,Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - I Lanz
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - W Platzer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - A Theiler
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - T Bärnthaler
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - R Frei
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - G Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - L M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - A Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - I T Lippe
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - A Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - R Schuligoi
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
29
|
Liu G, Chen Y, Qi F, Jia L, Lu XA, He T, Fu Y, Li L, Luo Y. Specific chemotherapeutic agents induce metastatic behaviour through stromal- and tumour-derived cytokine and angiogenic factor signalling. J Pathol 2015; 237:190-202. [PMID: 25988668 DOI: 10.1002/path.4564] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/08/2015] [Accepted: 05/07/2015] [Indexed: 11/09/2022]
Abstract
Recent studies reveal that chemotherapy can enhance metastasis due to host responses, such as augmented expression of adhesion molecules in endothelial cells and increased populations of myeloid cells. However, it is still unclear how tumour cells contribute to this process. Here, we observed that paclitaxel and carboplatin accelerated lung metastasis in tumour-bearing mice, while doxorubicin and fluorouracil did not. Mechanistically, paclitaxel and carboplatin induced similar changes in cytokine and angiogenic factors. Increased levels of CXCR2, CXCR4, S1P/S1PR1, PlGF and PDGF-BB were identified in the serum or primary tumour tissues of tumour-bearing mice treated by paclitaxel. The serum levels of CXCL1 and PDGF-BB and the tissue level of CXCR4 were also elevated by carboplatin. On the other hand, doxorubicin and fluorouracil did not induce such changes. The chemotherapy-induced cytokine and angiogenic factor changes were also confirmed in gene expression datasets from human patients following chemotherapy treatment. These chemotherapy-enhanced cytokines and angiogenic factors further induced angiogenesis, destabilized vascular integrity, recruited BMDCs to metastatic organs and mediated the proliferation, migration and epithelial-to-mesenchymal transition of tumour cells. Interestingly, inhibitors of these factors counteracted chemotherapy-enhanced metastasis in both tumour-bearing mice and normal mice injected intravenously with B16F10-GFP cells. In particular, blockade of the SDF-1α-CXCR4 or S1P-S1PR1 axes not only compromised chemotherapy-induced metastasis but also prolonged the median survival time by 33.9% and 40.3%, respectively. The current study delineates the mechanism of chemotherapy-induced metastasis and provides novel therapeutic strategies to counterbalance pro-metastatic effects of chemo-drugs via combination treatment with anti-cytokine/anti-angiogenic therapy.
Collapse
Affiliation(s)
- Guanghua Liu
- The National Engineering Laboratory for Anti-Tumour Protein Therapeutics, Tsinghua University, Beijing, People's Republic of China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, People's Republic of China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Yang Chen
- The National Engineering Laboratory for Anti-Tumour Protein Therapeutics, Tsinghua University, Beijing, People's Republic of China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, People's Republic of China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Feifei Qi
- The National Engineering Laboratory for Anti-Tumour Protein Therapeutics, Tsinghua University, Beijing, People's Republic of China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, People's Republic of China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Lin Jia
- The National Engineering Laboratory for Anti-Tumour Protein Therapeutics, Tsinghua University, Beijing, People's Republic of China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, People's Republic of China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Xin-an Lu
- The National Engineering Laboratory for Anti-Tumour Protein Therapeutics, Tsinghua University, Beijing, People's Republic of China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, People's Republic of China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Ting He
- The National Engineering Laboratory for Anti-Tumour Protein Therapeutics, Tsinghua University, Beijing, People's Republic of China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, People's Republic of China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Yan Fu
- The National Engineering Laboratory for Anti-Tumour Protein Therapeutics, Tsinghua University, Beijing, People's Republic of China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, People's Republic of China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Lin Li
- The National Engineering Laboratory for Anti-Tumour Protein Therapeutics, Tsinghua University, Beijing, People's Republic of China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, People's Republic of China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Yongzhang Luo
- The National Engineering Laboratory for Anti-Tumour Protein Therapeutics, Tsinghua University, Beijing, People's Republic of China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, People's Republic of China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
30
|
Magnolol ameliorates lipopolysaccharide-induced acute lung injury in rats through PPAR-γ-dependent inhibition of NF-kB activation. Int Immunopharmacol 2015; 28:270-8. [PMID: 26072062 DOI: 10.1016/j.intimp.2015.05.051] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/26/2015] [Accepted: 05/31/2015] [Indexed: 11/22/2022]
Abstract
Acute lung injury (ALI) has a high morbidity and mortality rate due to the serious inflammation and edema occurred in lung. Magnolol extracted from Magnolia officinalis, has been reported to exhibit anti-inflammatory, and antioxidant activities. Peroxisome proliferator-activated receptors (PPARs) are known to exert a cytoprotective effect against cellular inflammatory stress and oxidative injury. The aim of this study was to explore the involvement of PPAR-γ in the beneficial effect of magnolol in lipopolysaccharide (LPS)-induced ALI. We found that treatment with magnolol greatly improved the pathological features of ALI evidenced by reduction of lung edema, polymorphonuclear neutrophil infiltration, ROS production, the levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF), the expression of iNOS and COX-2, and NF-κB activation in lungs exposed to LPS. Importantly, magnolol is capable of increasing the PPAR-γ expression and activity in lungs of ALI. However, blocking PPAR-γ activity with GW9662 markedly abolished the protective and anti-inflammatory effects of magnolol. Taken together, the present study provides a novel mechanism accounting for the protective effect of magnolol in LPS-induced ALI is at least partly attributed to induction of PPAR-γ in lungs, and in turn suppressing NF-κB-related inflammatory responses.
Collapse
|
31
|
Rodrigues SF, Granger DN. Blood cells and endothelial barrier function. Tissue Barriers 2015; 3:e978720. [PMID: 25838983 DOI: 10.4161/21688370.2014.978720] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/15/2014] [Indexed: 12/18/2022] Open
Abstract
The barrier properties of endothelial cells are critical for the maintenance of water and protein balance between the intravascular and extravascular compartments. An impairment of endothelial barrier function has been implicated in the genesis and/or progression of a variety of pathological conditions, including pulmonary edema, ischemic stroke, neurodegenerative disorders, angioedema, sepsis and cancer. The altered barrier function in these conditions is often linked to the release of soluble mediators from resident cells (e.g., mast cells, macrophages) and/or recruited blood cells. The interaction of the mediators with receptors expressed on the surface of endothelial cells diminishes barrier function either by altering the expression of adhesive proteins in the inter-endothelial junctions, by altering the organization of the cytoskeleton, or both. Reactive oxygen species (ROS), proteolytic enzymes (e.g., matrix metalloproteinase, elastase), oncostatin M, and VEGF are part of a long list of mediators that have been implicated in endothelial barrier failure. In this review, we address the role of blood borne cells, including, neutrophils, lymphocytes, monocytes, and platelets, in the regulation of endothelial barrier function in health and disease. Attention is also devoted to new targets for therapeutic intervention in disease states with morbidity and mortality related to endothelial barrier dysfunction.
Collapse
Key Words
- AJ, Adherens junctions
- ANG-1, Angiopoietin 1
- AQP, Aquaporins
- BBB, blood brain barrier
- CNS, Central nervous system
- COPD, Chronic obstructive pulmonary disease
- EAE, Experimental autoimmune encephalomyelitis
- EPAC1, Exchange protein activated by cyclic AMP
- ERK1/2, Extracellular signal-regulated kinases 1 and 2
- Endothelial barrier
- FA, Focal adhesions
- FAK, focal adhesion tyrosine kinase
- FoxO1, Forkhead box O1
- GAG, Glycosaminoglycans
- GDNF, Glial cell-derived neurotrophic factor
- GJ, Gap junctions
- GPCR, G-protein coupled receptors
- GTPase, Guanosine 5'-triphosphatase
- HMGB-1, High mobility group box 1
- HRAS, Harvey rat sarcoma viral oncogene homolog
- ICAM-1, Intercellular adhesion molecule 1
- IL-1β, Interleukin 1 beta
- IP3, Inositol 1,4,5-triphosphate
- JAM, Junctional adhesion molecules
- MEK, Mitogen-activated protein kinase kinase
- MLC, Myosin light chain
- MLCK, Myosin light-chain kinase
- MMP, Matrix metalloproteinases
- NO, Nitric oxide
- OSM, Oncostatin M
- PAF, Platelet activating factor
- PDE, Phosphodiesterase
- PKA, Protein kinase A
- PNA, Platelet-neutrophil aggregates
- ROS, Reactive oxygen species
- Rac1, Ras-related C3 botulinum toxin substrate 1
- Rap1, Ras-related protein 1
- RhoA, Ras homolog gene family, member A
- S1P, Sphingosine-1-phosphate
- SCID, Severe combined immunodeficient
- SOCS-3, Suppressors of cytokine signaling 3
- Shp-2, Src homology 2 domain-containing phosphatase 2
- Src, Sarcoma family of protein kinases
- TEER, Transendothelial electrical resistance
- TGF-beta1, Transforming growth factor-beta1
- TJ, Tight junctions
- TNF-, Tumor necrosis factor alpha
- VCAM-1, Vascular cell adhesion molecule 1
- VE, Vascular endothelial
- VE-PTP, Vascular endothelial receptor protein tyrosine phosphatase
- VEGF, Vascular endothelial growth factor
- VVO, Vesiculo-vacuolar organelle
- ZO, Zonula occludens
- cAMP, 3'-5'-cyclic adenosine monophosphate
- erythrocytes
- leukocytes
- pSrc, Phosphorylated Src
- platelets
- vascular permeability
Collapse
Affiliation(s)
- Stephen F Rodrigues
- Department of Clinical and Toxicological Analyses; School of Pharmaceutical Sciences; University of Sao Paulo ; Sao Paulo, Brazil
| | - D Neil Granger
- Department of Molecular and Cellular Physiology; Louisiana State University Health Sciences Center ; Shreveport, LA USA
| |
Collapse
|
32
|
Qian XJ, Li XL, Xu X, Wang X, Feng QT, Yang CJ. α-SMA-Cre-mediated excision of PDK1 reveals an essential role of PDK1 in regulating morphology of cardiomyocyte and tumor progression in tissue microenvironment. ACTA ACUST UNITED AC 2015; 63:91-100. [DOI: 10.1016/j.patbio.2014.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 12/04/2014] [Indexed: 12/26/2022]
|
33
|
Lingaraju MC, Pathak NN, Begum J, Balaganur V, Bhat RA, Ram M, Kumar D, Kumar D, Tandan SK. Betulinic acid negates oxidative lung injury in surgical sepsis model. J Surg Res 2015; 193:856-67. [DOI: 10.1016/j.jss.2014.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/29/2014] [Accepted: 09/04/2014] [Indexed: 01/05/2023]
|
34
|
Yuan S, Patel RP, Kevil CG. Working with nitric oxide and hydrogen sulfide in biological systems. Am J Physiol Lung Cell Mol Physiol 2014; 308:L403-15. [PMID: 25550314 DOI: 10.1152/ajplung.00327.2014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are gasotransmitter molecules important in numerous physiological and pathological processes. Although these molecules were first known as environmental toxicants, it is now evident that that they are intricately involved in diverse cellular functions with impact on numerous physiological and pathogenic processes. NO and H2S share some common characteristics but also have unique chemical properties that suggest potential complementary interactions between the two in affecting cellular biochemistry and metabolism. Central among these is the interactions between NO, H2S, and thiols that constitute new ways to regulate protein function, signaling, and cellular responses. In this review, we discuss fundamental biochemical principals, molecular functions, measurement methods, and the pathophysiological relevance of NO and H2S.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana; and
| | - Rakesh P Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana; and
| |
Collapse
|
35
|
Wu Y, Ren J, Zhou B, Ding C, Chen J, Wang G, Gu G, Liu S, Li J. Laser speckle contrast imaging for measurement of hepatic microcirculation during the sepsis: a novel tool for early detection of microcirculation dysfunction. Microvasc Res 2014; 97:137-46. [PMID: 25446370 DOI: 10.1016/j.mvr.2014.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/04/2014] [Accepted: 10/17/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Sepsis is a fatal systemic inflammatory response syndrome caused by severe infection. The aim of this study was to measure hepatic microcirculation during the sepsis with laser speckle contrast imaging (LSCI), as well as investigating the underlying mechanisms. METHODS Sepsis was induced by cecal ligation and puncture. Rats were divided into the sham group and sepsis group. The hepatic microcirculation was monitored with LSCI. In addition, hepatic endothelial function (expression of cell adhesion molecules, coagulation and vascular permeability) and neutrophils accumulation in the liver were compared between the two groups. RESULTS During the sepsis, hepatic microcirculation decreased dramatically (290.3±70.1 LSPU (laser speckle perfusion units) at baseline vs. 230.4±60.7 LSPU at 12h vs. 125.2±25.4 LSPU at 48h, P<0.001). The rats developed hyperbilirubinemia since 6h. In the early phase of sepsis, the accumulation of neutrophils and formation of microthrombus increased rapidly. In the late phase, hepatic neutrophils accumulation was already at its maximum level. Meanwhile, the endothelial coagulation status shifted from procoagulation to anticoagulation. The vascular leakage was involved in the microcirculation dysfunction since 12h after sepsis. CONCLUSIONS Hepatic microcirculation dysfunction occurs early during the sepsis and is associated with liver injury. This microcirculation dysfunction is due to neutrophil-endothelium interactions, microthrombus formation and vascular leakage.
Collapse
Affiliation(s)
- Yin Wu
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Jianan Ren
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China.
| | - Bo Zhou
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Chao Ding
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Jun Chen
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Gefei Wang
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Guosheng Gu
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Song Liu
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Jieshou Li
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| |
Collapse
|
36
|
Kao RL, Xu X, Xenocostas A, Parry N, Mele T, Martin CM, Rui T. Induction of acute lung inflammation in mice with hemorrhagic shock and resuscitation: role of HMGB1. JOURNAL OF INFLAMMATION-LONDON 2014; 11:30. [PMID: 25309129 PMCID: PMC4193406 DOI: 10.1186/s12950-014-0030-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 09/29/2014] [Indexed: 01/08/2023]
Abstract
Background Hemorrhagic shock and resuscitation (HS/R) can induce multiple organ failure which is associated with high mortality. The lung is an organ commonly affected by the HS/R. Acute lung injury is a major cause of dysfunction in other organ systems. The objective of this study is to test the hypothesis that HS/R causes increased gut permeability which results in induction of high mobility group box1 protein (HMGB1) and further leads to the development of acute lung inflammation. Materials and methods A mouse model of HS/R was employed in this study. Gut permeability and bacterial translocation were assessed with circulating FD4 and lipopolysaccharide (LPS). Circulating HMGB1 was determined with ELISA. Acute lung inflammation (ALI) was determined with lung myeloperoxidase (MPO) activity and pulmonary protein leakage. Results HS/R induced intestinal barrier dysfunction as evidenced by increased circulating FD4 and LPS at 30 min and 2 hrs after resuscitation, respectively. In addition, circulating HMGB1 levels were increased in mice with HS/R as compared with sham animals (p < 0.05). HS/R resulted in ALI (increased lung MPO activity and pulmonary protein leakage in mice with HS/R compared with sham mice, p < 0.05). Inhibition of HMGB1 (A-box and TLR4−/−) attenuated the ALI in mice with HS/R. However, inhibition of HMGB1 did not show protective effect on gut injury in early phase of HS/R in mice. Conclusions Our results suggest that induction of HMGB1 is important in hemorrhagic shock and resuscitation-induced acute lung inflammation.
Collapse
Affiliation(s)
- Raymond Lc Kao
- Department of National Defense, Canadian Forces Health Services, Ottawa, ON Canada ; Critical Care Western, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON Canada ; Center for Critical Illness Research, Lawson Health Research Institute, 800 Commissioner's Rd E, N6A 5 W9 London, ON Canada
| | - Xuemei Xu
- Center for Critical Illness Research, Lawson Health Research Institute, 800 Commissioner's Rd E, N6A 5 W9 London, ON Canada
| | - Anargyros Xenocostas
- Division of Hematology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON Canada
| | - Neil Parry
- Critical Care Western, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON Canada
| | - Tina Mele
- Critical Care Western, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON Canada
| | - Claudio M Martin
- Critical Care Western, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON Canada ; Center for Critical Illness Research, Lawson Health Research Institute, 800 Commissioner's Rd E, N6A 5 W9 London, ON Canada
| | - Tao Rui
- Critical Care Western, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON Canada ; Center for Critical Illness Research, Lawson Health Research Institute, 800 Commissioner's Rd E, N6A 5 W9 London, ON Canada
| |
Collapse
|
37
|
Song D, Song G, Niu Y, Song W, Wang J, Yu L, Yang J, Lv X, Steinberg H, Liu SF, Wang B. Ulinastatin activates haem oxygenase 1 antioxidant pathway and attenuates allergic inflammation. Br J Pharmacol 2014; 171:4399-412. [PMID: 24835359 DOI: 10.1111/bph.12780] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 04/24/2014] [Accepted: 05/09/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Ulinastatin (UTI), a serine protease inhibitor, was recently found to have an anti-inflammatory action. However, the mechanisms mediating this anti-inflammatory effect are not well understood. This study tested the hypothesis that UTI suppresses allergic inflammation by inducing the expression of haem oxygenase 1 (HO1). EXPERIMENTAL APPROACH Control mice and mice sensitized (on days 1, 9 and 14) and challenged (on days 21 to 27) with ovalbumin (OVA) were treated with UTI. The effects of UTI on basal expression of HO1 and that induced by OVA challenge were examined. The involvement of UTI-induced HO1 expression in anti-inflammatory and antioxidant effects of UTI was also evaluated. KEY RESULTS UTI markedly increased basal HO1 protein expression in lungs of control mice in a time- and dose-dependent manner, and augmented HO1 protein expression induced by OVA. The up-regulation of HO1 mediated by UTI in sensitized and OVA-challenged mice was associated with reduced airway inflammation, alleviated tissue injury, reduced oxidant stress and enhanced antioxidant enzyme activities. Inhibition of HO1 activity using HO1 inhibitor, zinc protoporphyrin, attenuated inhibitory effects of UTI on inflammation and oxidant stress, and its stimulant effects on antioxidant enzyme activities. Mechanistic analysis showed that UTI increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), stimulated Nrf2 DNA binding activity and concomitantly up-regulated HO1 mRNA expression. CONCLUSIONS AND IMPLICATIONS UTI is a potent and naturally occurring inducer of HO1 expression. HO1 up-regulation contributes significantly to the anti-inflammatory and organ-protective effects of UTI, which has important research and therapeutic implications.
Collapse
Affiliation(s)
- Dongmei Song
- Department of Allergy and Otolaryngology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rentsendorj O, D'Alessio FR, Pearse DB. Phosphodiesterase 2A is a major negative regulator of iNOS expression in lipopolysaccharide-treated mouse alveolar macrophages. J Leukoc Biol 2014; 96:907-15. [PMID: 25063878 DOI: 10.1189/jlb.3a0314-152r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PDE2A is a dual-function PDE that is stimulated by cGMP to hydrolyze cAMP preferentially. In a two-hit model of ALI, we found previously that PDE2A decreased lung cAMP, up-regulated lung iNOS, and exacerbated ALI. Recent data suggest that macrophage iNOS expression contributes to ALI but later, promotes lung-injury resolution. However, macrophage iNOS is increased by cAMP, suggesting that PDE2A could negatively regulate macrophage iNOS expression. To test this, we examined the effects of manipulating PDE2A expression and function on LPS-induced iNOS expression in a mouse AM cell line (MH-S) and primary mouse AMs. In MH-S cells, LPS (100 ng/ml) increased PDE2A expression by 15% at 15 min and 50% at 6 h before decreasing at 24 h and 48 h. iNOS expression appeared at 6 h and remained increased 48 h post-LPS. Compared with control Ad, Ad.PDE2A-shRNA enhanced LPS-induced iNOS expression further by fourfold, an effect mimicked by the PDE2A inhibitor BAY 60-7550. Adenoviral PDE2A overexpression or treatment with ANP decreased LPS-induced iNOS expression. ANP-induced inhibition of iNOS was lost by knocking down PDE2A and was not mimicked by 8-pCPT-cGMP, a cGMP analog that does not stimulate PDE2A activity. Finally, we found that in primary AMs from LPS-treated mice, PDE2A knockdown also increased iNOS expression, consistent with the MH-S cell data. We conclude that increased AM PDE2A is an important negative regulator of macrophage iNOS expression.
Collapse
Affiliation(s)
- Otgonchimeg Rentsendorj
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Franco R D'Alessio
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - David B Pearse
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| |
Collapse
|
39
|
Liu G, Ye X, Miller EJ, Liu SF. NF-κB-to-AP-1 switch: a mechanism regulating transition from endothelial barrier injury to repair in endotoxemic mice. Sci Rep 2014; 4:5543. [PMID: 24986487 PMCID: PMC4078303 DOI: 10.1038/srep05543] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/16/2014] [Indexed: 11/24/2022] Open
Abstract
Endothelial barrier disruption is a hallmark of multiple organ injury (MOI). However, mechanisms governing the restoration of endothelial barrier function are poorly understood. Here, we uncovered an NF-κB-to-AP-1 switch that regulates the transition from barrier injury to repair following endotoxemic MOI. Endothelial NF-κB mediates barrier repair by inhibiting endothelial cell (EC) apoptosis. Blockade of endothelial NF-κB pathway activated the activator protein (AP)-1 pathway (NF-κB-to-AP-1 switch), which compensated for the anti-apoptotic and barrier-repair functions of NF-κB. The NF-κB-to-AP-1 switch occurred at 24 hours (injury to repair transition phase), but not at 48 hours (repair phase) post-LPS, and required an inflammatory signal within the endothelium. In the absence of an inflammatory signal, the NF-κB-to-AP-1 switch failed, resulting in enhanced EC apoptosis, augmented endothelial permeability, and impeded transition from barrier injury to recovery. The NF-κB-to-AP-1 switch is a protective mechanism to ensure timely transition from endothelial barrier injury to repair, accelerating barrier restoration following MOI.
Collapse
Affiliation(s)
- Gang Liu
- 1] Centers for Heart and Lung Research and Pulmonary and Critical Care Medicine, the Feinstein Institute for Medical Research, Manhasset, NY 11030, USA [2]
| | - Xiaobing Ye
- 1] Centers for Heart and Lung Research and Pulmonary and Critical Care Medicine, the Feinstein Institute for Medical Research, Manhasset, NY 11030, USA [2]
| | - Edmund J Miller
- Centers for Heart and Lung Research and Pulmonary and Critical Care Medicine, the Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Shu Fang Liu
- Centers for Heart and Lung Research and Pulmonary and Critical Care Medicine, the Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| |
Collapse
|
40
|
Anti-inflammatory effects of Reduning Injection on lipopolysaccharide-induced acute lung injury of rats. Chin J Integr Med 2014; 20:591-9. [PMID: 24916807 PMCID: PMC7101712 DOI: 10.1007/s11655-014-1758-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Indexed: 12/12/2022]
Abstract
Objective To evaluate the protective effects of Reduning Injection (热毒宁注射液, RDN), a patent Chinese medicine, on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats and its underlying mechanisms of action. Methods Sixty male Sprague-Dawley rats were randomly divided into 6 groups, including normal control, model, dexamethasone (DEX, 5 mg/kg), RDN-H (720 mg/kg), RDN-M (360 mg/kg) and RDN-L (180 mg/kg) groups, with 10 rats in each group. Rats were challenged with intravenous injection of LPS 1 h after intraperitoneal treatment with RDN or DEX. At 6 h after LPS challenge, lung tissues and bronchoalveolar lavage fluid (BALF) were collected, and the number of inflammatory cells was determined. The right lungs were collected for histopathologic examination, measurement of gene and protein expressions, superoxide dismutase (SOD) and myeloperoxidase (MPO) activities. Results In vivo pretreatment of RDN (360, 720 mg/kg) significantly reduced the weight of wet to dry (W/D) ratio of lung, protein content in BALF, and led to remarkable attenuation of LPS-induced histopathological changes in the lungs. Meanwhile, RDN enormously decreased BALF total inflammatory cells, especially neutrophil and macrophage cell numbers. Moreover, RDN increased SOD activity, inhibited MPO activity, alleviated LPS-induced tumor neurosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) expression in lung tissues. Furthermore, RDN (720 mg/kg) efficiently weakened nuclear factorkappa B (NF-κB) gene and protein expression. Conclusion Anti-inflammatory effects of RDN was demonstrated to be preventing pulmonary neutrophil infiltration, lowering MPO activity, TNF-α and iNOS gene expression by inhibiting NF-κB activity in LPS-induced ALI.
Collapse
|
41
|
Tsai CL, Lin YC, Wang HM, Chou TC. Baicalein, an active component of Scutellaria baicalensis, protects against lipopolysaccharide-induced acute lung injury in rats. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:197-206. [PMID: 24534526 DOI: 10.1016/j.jep.2014.02.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 02/05/2014] [Accepted: 02/08/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baicalein (BE), a phenolic flavonoid extracted mainly from the root of Scutellaria baicalensis Georgi, a Chinese herb, is traditionally used in oriental medicine. Several studies have demonstrated that BE exerts many beneficial effects including anti-inflammatory and antioxidant activities. However, its effect on acute lung injury (ALI) and the molecular mechanisms involved remain unclear and warrant further investigation. The aim of the study is to investigate whether BE improves lipopolysaccharide (LPS, intratracheally, i.t.)-induced ALI in rats, and further study the underlying mechanisms of its activity. MATERIAL AND METHODS Rats were administrated with LPS (5mg/kg/body weight, i.t.) through a 24-gauge catheter to establish the ALI model. The effects of BE on the levels of pro-inflammatory cytokines, nitrite/nitrate in bronchoalveolar lavage fluid, and the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and nuclear factor-kappa B (NF-κB) activation as well as the histopathological changes were evaluated. RESULTS Results showed that BE (20mg/kg, i.p.) treatment markedly attenuated LPS-induced lung edema, elevation of the levels of IL-1β, TNF-α, IL-6, CINC-3, and nitrite/nitrate in bronchoalveolar lavage fluid accompanied by a remarkable improvement of lung histopathological symptoms. The LPS-enhanced inflammatory cell infiltration and myeloperoxidase activity, O2(-) formation and the expression of inducible nitric oxide synthase and nitrotyrosin in lungs were all attenuated by BE. Notably, BE could augment Nrf2/HO-1 cascade, but inhibited NF-κB activation in LPS-instilled lungs that was strongly reversed by blocking HO-1 activity. CONCLUSION This study is the first to demonstrate that BE protects against LPS-induced ALI in rats. The underlying mechanisms may include inhibition of NF-κB-mediated inflammatory responses and upregulation of Nrf2/HO-1 pathway, which ultimately alleviates the pathological symptoms of ALI.
Collapse
Affiliation(s)
- Chen-Liang Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Yu-Chieh Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hui-Min Wang
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tz-Chong Chou
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
42
|
Gill SE, Taneja R, Rohan M, Wang L, Mehta S. Pulmonary microvascular albumin leak is associated with endothelial cell death in murine sepsis-induced lung injury in vivo. PLoS One 2014; 9:e88501. [PMID: 24516666 PMCID: PMC3917898 DOI: 10.1371/journal.pone.0088501] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/10/2014] [Indexed: 11/19/2022] Open
Abstract
Sepsis is a systemic inflammatory response that targets multiple components of the cardiovascular system including the microvasculature. Microvascular endothelial cells (MVEC) are central to normal microvascular function, including maintenance of the microvascular permeability barrier. Microvascular/MVEC dysfunction during sepsis is associated with barrier dysfunction, resulting in the leak of protein-rich edema fluid into organs, especially the lung. The specific role of MVEC apoptosis in septic microvascular/MVEC dysfunction in vivo remains to be determined. To examine pulmonary MVEC death in vivo under septic conditions, we used a murine cecal ligation/perforation (CLP) model of sepsis and identified non-viable pulmonary cells with propidium iodide (PI) by intravital videomicroscopy (IVVM), and confirmed this by histology. Septic pulmonary microvascular Evans blue (EB)-labeled albumin leak was associated with an increased number of PI-positive cells, which were confirmed to be predominantly MVEC based on specific labeling with three markers, anti-CD31 (PECAM), anti-CD34, and lectin binding. Furthermore, this septic death of pulmonary MVEC was markedly attenuated by cyclophosphamide-mediated depletion of neutrophils (PMN) or use of an anti-CD18 antibody developed for immunohistochemistry but shown to block CD18-dependent signaling. Additionally, septic pulmonary MVEC death was iNOS-dependent as mice lacking iNOS had markedly fewer PI-positive MVEC. Septic PI-positive pulmonary cell death was confirmed to be due to apoptosis by three independent markers: caspase activation by FLIVO, translocation of phosphatidylserine to the cell surface by Annexin V binding, and DNA fragmentation by TUNEL. Collectively, these findings indicate that septic pulmonary MVEC death, putatively apoptosis, is a result of leukocyte activation and iNOS-dependent signaling, and in turn, may contribute to pulmonary microvascular barrier dysfunction and albumin hyper-permeability during sepsis.
Collapse
Affiliation(s)
- Sean E. Gill
- Pulmonary Inflammation, Injury, and Repair Lab (PIIRL), Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, Ontario, Canada
- Division of Respirology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ravi Taneja
- Pulmonary Inflammation, Injury, and Repair Lab (PIIRL), Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, Ontario, Canada
- Department of Critical Care Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Anesthesia and Perioperative Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Marta Rohan
- Pulmonary Inflammation, Injury, and Repair Lab (PIIRL), Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, Ontario, Canada
| | - Lefeng Wang
- Pulmonary Inflammation, Injury, and Repair Lab (PIIRL), Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, Ontario, Canada
| | - Sanjay Mehta
- Pulmonary Inflammation, Injury, and Repair Lab (PIIRL), Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, Ontario, Canada
- Division of Respirology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
43
|
De Cruz SJ, Kenyon NJ, Sandrock CE. Bench-to-bedside review: the role of nitric oxide in sepsis. Expert Rev Respir Med 2014; 3:511-21. [DOI: 10.1586/ers.09.39] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Fedele F, Bruno N, Brasolin B, Caira C, D'Ambrosi A, Mancone M. Levosimendan improves renal function in acute decompensated heart failure: possible underlying mechanisms. Eur J Heart Fail 2013; 16:281-8. [PMID: 24464960 DOI: 10.1002/ejhf.9] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 08/11/2013] [Accepted: 08/30/2013] [Indexed: 12/19/2022] Open
Abstract
AIMS The cardio-renal syndrome plays a critical role in acute heart failure (HF). Levosimendan, an inodilator drug, has a positive but controversial effect on kidney. Our aim was to evaluate its effects on both renal and systemic haemodynamic parameters as well as on renal function, explaining the possible mechanisms involved. METHODS AND RESULTS Patients with acute decompensated HF, moderate renal impairment, wedge pressure >20 mmHg and EF <40% were eligible. Twenty-one patients were randomized to infusion of levosimendan or placebo, on top of standard therapy. Systemic haemodynamic parameters (wedge and cardiac output) were evaluated at baseline and at 8, 16, 24, 48, and 72 h. An intravascular renal artery Doppler exam was performed at baseline, after levosimendan bolus, and 1 h thereafter. Renal blood flow, glomerular filtration rate (GFR), cystatin C, blood urea nitrogen (BUN), urinary output, sodium excretion, and plasma sodium were measured. The effect of levosimendan was beneficial and significantly different from placebo on several renal and cardiac parameters. Specifically, the levosimendan and placebo group exhibited significantly different changes over time in GFR (P = 0.037), renal blood flow (P = 0.037), and renal artery diameter (P = 0.033), with ensuing improvements in serum levels of BUN (P = 0.014), creatinine (P = 0.042), and cystatin C (P = 0.05). Concomitantly, levosimendan provided a significant increase in urine output up to 72 h (P = 0.02). These beneficial results on renal parameters were accompanied by similarly significant and favourable changes in cardiac index (P = 0.029) and PCWP (P < 0.001). CONCLUSION Levosimendan, in acute decompensated HF, has an immediate renoprotective effect, mediated by an increase in renal blood flow, due to a selective renal arterial and venous vasodilating action. TRIAL REGISTRATION NCT00527059.
Collapse
Affiliation(s)
- Francesco Fedele
- Department of Cardiovascular, Respiratory, Nephrologic, Geriatric and Anesthesiological Sciences, Sapienza University of Rome, Policlinico Umberto I, Rome, 00161, Italy
| | | | | | | | | | | |
Collapse
|
45
|
Parker JC. Acute lung injury and pulmonary vascular permeability: use of transgenic models. Compr Physiol 2013; 1:835-82. [PMID: 23737205 DOI: 10.1002/cphy.c100013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute lung injury is a general term that describes injurious conditions that can range from mild interstitial edema to massive inflammatory tissue destruction. This review will cover theoretical considerations and quantitative and semi-quantitative methods for assessing edema formation and increased vascular permeability during lung injury. Pulmonary edema can be quantitated directly using gravimetric methods, or indirectly by descriptive microscopy, quantitative morphometric microscopy, altered lung mechanics, high-resolution computed tomography, magnetic resonance imaging, positron emission tomography, or x-ray films. Lung vascular permeability to fluid can be evaluated by measuring the filtration coefficient (Kf) and permeability to solutes evaluated from their blood to lung clearances. Albumin clearances can then be used to calculate specific permeability-surface area products (PS) and reflection coefficients (σ). These methods as applied to a wide variety of transgenic mice subjected to acute lung injury by hyperoxic exposure, sepsis, ischemia-reperfusion, acid aspiration, oleic acid infusion, repeated lung lavage, and bleomycin are reviewed. These commonly used animal models simulate features of the acute respiratory distress syndrome, and the preparation of genetically modified mice and their use for defining specific pathways in these disease models are outlined. Although the initiating events differ widely, many of the subsequent inflammatory processes causing lung injury and increased vascular permeability are surprisingly similar for many etiologies.
Collapse
Affiliation(s)
- James C Parker
- Department of Physiology, University of South Alabama, Mobile, Alabama, USA.
| |
Collapse
|
46
|
Predescu DN, Bardita C, Tandon R, Predescu SA. Intersectin-1s: an important regulator of cellular and molecular pathways in lung injury. Pulm Circ 2013; 3:478-98. [PMID: 24618535 PMCID: PMC4070809 DOI: 10.1086/674439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are severe syndromes resulting from the diffuse damage of the pulmonary parenchyma. ALI and ARDS are induced by a plethora of local or systemic insults, leading to the activation of multiple pathways responsible for injury, resolution, and repair or scarring of the lungs. Despite the large efforts aimed at exploring the roles of different pathways in humans and animal models and the great strides made in understanding the pathogenesis of ALI/ARDS, the only viable treatment options are still dependent on ventilator and cardiovascular support. Investigation of the pathophysiological mechanisms responsible for initiation and resolution or advancement toward lung scarring in ALI/ARDS animal models led to a better understanding of the disease's complexity and helped in elucidating the links between ALI and systemic multiorgan failure. Although animal models of ALI/ARDS have pointed out a variety of new ideas for study, there are still limited data regarding the initiating factors, the critical steps in the progression of the disease, and the central mechanisms dictating its resolution or progression to lung scarring. Recent studies link deficiency of intersectin-1s (ITSN-1s), a prosurvival protein of lung endothelial cells, to endothelial barrier dysfunction and pulmonary edema as well as to the repair/recovery from ALI. This review discusses the effects of ITSN-1s deficiency on pulmonary endothelium and its significance in the pathology of ALI/ARDS.
Collapse
Affiliation(s)
- Dan N Predescu
- 1 Department of Pharmacology, Rush University, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
47
|
Dong X, Hu R, Sun Y, Li Q, Jiang H. Isoflurane post-treatment improves pulmonary vascular permeability via upregulation of heme oxygenase-1. Exp Lung Res 2013; 39:295-303. [DOI: 10.3109/01902148.2013.817627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Konrad FM, Neudeck G, Vollmer I, Ngamsri KC, Thiel M, Reutershan J. Protective effects of pentoxifylline in pulmonary inflammation are adenosine receptor A2A dependent. FASEB J 2013; 27:3524-35. [PMID: 23699177 DOI: 10.1096/fj.13-228122] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pentoxifylline (PTX) has been shown to exert anti-inflammatory effects in experimental acute lung injury. However, results in humans were controversial. Recent in vitro studies suggested that the adenosine receptor A2A may be required for PTX to be effective. Therefore, we studied the association between A2A and PTX in a murine model of LPS-induced pulmonary inflammation. PTX treatment (10 mg/kg) reduced cellular influx (by 40%), microvascular permeability (30%), and the release of chemotactic cytokines into the alveolar space (TNF-α 60%, IL-6 60%, and CXCL2/3 53%, respectively). These protective effects were abolished completely in A2A(-/-) mice and in wild-type mice that had been treated with the selective A2A antagonist (1 mg/kg), but effects were not different in mice with altered adenosine levels. In vitro transmigration assays revealed a pivotal role of the endothelium in PTX-mediated PMN migration, with a reduction of 50% (2 mM PTX). This effect was also A2A dependent. Further, oxidative burst of human PMNs was A2A-dependently reduced by 53% after PTX treatment. In summary, PTX exhibits its anti-inflammatory effects in LPS-induced lung injury through an A2A-dependent pathway. These results will help to better understand previous conflicting data on PTX in inflammation and will direct further studies to consider the predominant role of A2A.
Collapse
Affiliation(s)
- Franziska M Konrad
- Department of Anesthesiology and Intensive Care Medicine, University of Tübingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Therapeutic effect of C-phycocyanin extracted from blue green algae in a rat model of acute lung injury induced by lipopolysaccharide. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:916590. [PMID: 23573157 PMCID: PMC3615630 DOI: 10.1155/2013/916590] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 02/05/2023]
Abstract
C-Phycocyanin (CPC), extracted from blue green algae, is a dietary nutritional supplement due to its several beneficial pharmacological effects. This study was conducted to evaluate whether CPC protects against lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in rats. Rats were challenged with LPS (5 mg/kg body weight) intratracheally to induce ALI. After 3 h LPS instillation, rats were administrated with CPC (50 mg/kg body weight, i.p.) for another 3 h. Our results showed that posttreatment with CPC significantly inhibited LPS-induced elevation of protein concentration, nitrite/nitrate level, release of proinflammatory cytokines, the number of total polymorphonuclear cells in bronchoalveolar lavage fluid, and lung edema evidenced by decrease of lung wet/dry weight ratio accompanied by a remarkable improvement of lung histopathological alterations. Furthermore, CPC significantly attenuated LPS-induced myeloperoxidase activity, O2 (-) formation, expression of inducible nitric oxide synthase, and cyclooxygenase-2 as well as nuclear factor-kappa B (NF- κ B) activation in lungs. Additionally, CPC significantly downregulated proapoptotic proteins such as caspase-3 and Bax, but upregulated antiapoptotic proteins such as Bcl-2 and Bcl-XL in lungs exposed to LPS. These findings indicate that CPC could be potentially useful for treatment of LPS-related ALI by inhibiting inflammatory responses and apoptosis in lung tissues.
Collapse
|
50
|
The protective effect of alpha-lipoic Acid in lipopolysaccharide-induced acute lung injury is mediated by heme oxygenase-1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:590363. [PMID: 23573137 PMCID: PMC3614055 DOI: 10.1155/2013/590363] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 02/08/2013] [Indexed: 01/23/2023]
Abstract
Alpha-lipoic acid (ALA), occurring naturally in human food, is known to possess antioxidative and anti-inflammatory activities. Induction of heme oxygenase-1 (HO-1) has been reported to exhibit a therapeutic effect in several inflammatory diseases. The aim of study was to test the hypothesis that the protection of ALA against lipopolysaccharide-(LPS-) induced acute lung injury (ALI) is mediated by HO-1. Pre- or posttreatment with ALA significantly inhibited LPS-induced histological alterations of ALI, lung tissue edema, and production of proinflammatory cytokine, cytokine inducible neutrophil chemoattractant-3, and nitrite/nitrate in bronchoalveolar lavage fluid. In addition, the inflammatory responses including elevation of superoxide formation, myeloperoxidase activity, polymorphonuclear neutrophils infiltration, nitrotyrosine, inducible nitric oxide synthase expression and nuclear factor-kappa B (NF-κB) activation in lung tissues of LPS-instilled rats were also markedly reduced by ALA. Interestingly, treatment with ALA significantly increased nuclear factor-erythroid 2-related factor 2 (Nrf2) activation and HO-1 expression in lungs of ALI. However, blocking HO-1 activity by tin protoporphyrin IX (SnPP), an HO-1 inhibitor, markedly abolished these beneficial effects of ALA in LPS-induced ALI. These results suggest that the protection mechanism of ALA may be through HO-1 induction and in turn suppressing NF-κB-mediated inflammatory responses.
Collapse
|