1
|
Dodd RJ, Moffatt D, Vachiteva M, Parkinson JE, Chan BHK, Day AJ, Allen JE, Sutherland TE. Injury From Nematode Lung Migration Induces an IL-13-Dependent Hyaluronan Matrix. PROTEOGLYCAN RESEARCH 2024; 2:e70012. [PMID: 39606183 PMCID: PMC11589410 DOI: 10.1002/pgr2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/19/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
A consistent feature of lung injury is a rapid and sustained accumulation of hyaluronan (HA). The rodent gut-dwelling nematode Nippostrongylus brasiliensis (Nb) induces tissue damage as it migrates through the lungs. Type 2 immune responses are essential for the repair of the lungs, hence Nb infection is a well-established model to study immune-mediated lung repair. We found that Nb infection was associated with increased HA in the lung, which peaked at d7 post-infection (p.i.). Deposition of HA in the alveolar epithelium correlated with regions of damaged tissue and the type 2 immune response, which is characterized by eosinophilia and increased type 2 cytokines such as IL-13. Consistent with the accumulation of HA, we observed increased expression of the major synthase Has2, alongside decreased expression of Hyal1, Hyal2, and Tmem2, which can degrade existing HA. Expression of Tsg6 was also increased and correlated with the presence of inter-α-inhibitor heavy chain-HA complexes (HC·HA) at d7 p.i. Using IL-13-deficient mice, we found that the accumulation of HA during Nb infection was IL-13 dependent. Our data thus provide further evidence that IL-13 is a modulator of the HA matrix during lung challenge and links IL-13-mediated HA regulation to tissue repair pathways.
Collapse
Affiliation(s)
- Rebecca J. Dodd
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological SciencesUniversity of ManchesterManchesterUK
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Dora Moffatt
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Monika Vachiteva
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - James E. Parkinson
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological SciencesUniversity of ManchesterManchesterUK
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Brian H. K. Chan
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological SciencesUniversity of ManchesterManchesterUK
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Anthony J. Day
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological SciencesUniversity of ManchesterManchesterUK
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Judith E. Allen
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological SciencesUniversity of ManchesterManchesterUK
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | | |
Collapse
|
2
|
Zhang W, Wang Y, Wang L, Cao M, Cao H, Song M, Qian Y, Wang T, Liang Y, Jiang G. COPD-Like Phenotypes in TBC-Treated Mice Can be Effectively Alleviated via Estrogen Supplement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17227-17234. [PMID: 39166923 DOI: 10.1021/acs.est.4c03187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Tris(2,3-dibromopropyl) isocyanurate (TBC), recognized as an endocrine disruptor, can cause inflammatory injury to the lung tissue of mice. To investigate the specific respiratory effects of TBC, male C57BL/6J mice were administered a daily dose of 20 mg/kg of TBC over 14 days. Postexposure, these mice developed chronic obstructive pulmonary disease (COPD)-like symptoms characterized by inflammatory lung damage and functional impairment. In light of the antiestrogenic properties of TBC, we administrated estradiol (E2) to investigate its potential protective role against TBC-induced damage and found that the coexposure of E2 notably mitigated the COPD-like phenotypes. Immunohistochemical analysis revealed that TBC exposure reduced estrogen receptor alpha (ERα) expression and increased nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) expression, while E2 treatment rebalanced the expression levels of ERα and NF-κB to their normative states. Our findings indicate that TBC, as an antiestrogenic agent, may contribute to the pathogenesis of COPD through an ERα-mediated inflammatory pathway, but that E2 treatment could reverse the impairment, providing a potentially promising remedial treatment. Given the lung status as a primary target of air pollution, the presence of antiestrogenic compounds like TBC in atmospheric particulates presents a significant concern, with the potential to exacerbate respiratory conditions such as COPD and pneumonia.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, P. R. China
| | - Yuxin Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, P. R. China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, P. R. China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, P. R. China
| | - Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, P. R. China
| | - Maoyong Song
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, P. R. China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Yun Qian
- Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Miami, Florida 33174, United States
| | - Thanh Wang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping, Sweden
- Department of Thematic Studies - Environmental Change, Linköping University, SE-58183 Linköping, Sweden
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, P. R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| |
Collapse
|
3
|
Erkanli ME, Kang TK, Kirsch T, Turley EA, Kim JR, Cowman MK. The spatial separation of basic amino acids is similar in RHAMM and hyaluronan binding peptide P15-1 despite different sequences and conformations. PROTEOGLYCAN RESEARCH 2024; 2:e70001. [PMID: 39290872 PMCID: PMC11404675 DOI: 10.1002/pgr2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
Peptides that increase pro-reparative responses to injury and disease by modulating the functional organization of hyaluronan (HA) with its cell surface binding proteins (e.g., soluble receptor for hyaluronan-mediated motility [RHAMM] and integral membrane CD44) have potential therapeutic value. The binding of RHAMM to HA is an attractive target, since RHAMM is normally absent or expressed at low levels in homeostatic conditions, but its expression is significantly elevated in the extracellular matrix during tissue stress, response-to-injury, and in cancers and inflammation-based diseases. The HA-binding site in RHAMM contains two closely spaced sequences of clustered basic amino acids, in an alpha-helical conformation. In the present communication, we test whether an alpha-helical conformation is required for effective peptide binding to HA, and competitive disruption of HA-RHAMM interaction. The HA-binding RHAMM-competitive peptide P15-1, identified using the unbiased approach of phage display, was examined using circular dichroism spectroscopy and the conformation-predictive AI-based AlphaFold2 algorithm. Unlike the HA-binding site in RHAMM, peptide P15-1 was found to adopt irregular conformations in solution rather than alpha helices. Instead, our structural analysis suggests that the primary determinant of peptide-HA binding is associated with a specific clustering and spacing pattern of basic amino acids, allowing favorable electrostatic interaction with carboxylate groups on HA.
Collapse
Affiliation(s)
- Mehmet Emre Erkanli
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering New York University Brooklyn New York USA
| | - Ted Keunsil Kang
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering New York University Brooklyn New York USA
| | - Thorsten Kirsch
- Department of Biomedical Engineering, Tandon School of Engineering New York University New York New York USA
- Department of Orthopedic Surgery, Grossman School of Medicine New York University New York New York USA
| | - Eva A Turley
- Verspeeten Family Cancer Centre, London Health Sciences Centre, Lawson Health Research Institute London Ontario Canada
- Departments of Oncology, Biochemistry and Surgery, Schulich School of Medicine and Dentistry Western University London Ontario Canada
| | - Jin Ryoun Kim
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering New York University Brooklyn New York USA
| | - Mary K Cowman
- Department of Biomedical Engineering, Tandon School of Engineering New York University New York New York USA
- Department of Orthopedic Surgery, Grossman School of Medicine New York University New York New York USA
| |
Collapse
|
4
|
Avcibas R, Vermul A, Gluhovic V, Boback N, Arroyo R, Kingma P, Isasi-Campillo M, Garcia-Ortega L, Griese M, Kuebler WM, Ochs M, Lauster D, Lopez-Rodriguez E. Multivalent, calcium-independent binding of surfactant protein A and D to sulfated glycosaminoglycans of the alveolar epithelial glycocalyx. Am J Physiol Lung Cell Mol Physiol 2024; 326:L524-L538. [PMID: 38375572 PMCID: PMC11380953 DOI: 10.1152/ajplung.00283.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
Lung surfactant collectins, surfactant protein A (SP-A) and D (SP-D), are oligomeric C-type lectins involved in lung immunity. Through their carbohydrate recognition domain, they recognize carbohydrates at pathogen surfaces and initiate lung innate immune response. Here, we propose that they may also be able to bind to other carbohydrates present in typical cell surfaces, such as the alveolar epithelial glycocalyx. To test this hypothesis, we analyzed and quantified the binding affinity of SP-A and SP-D to different sugars and glycosaminoglycans (GAGs) by microscale thermophoresis (MST). In addition, by changing the calcium concentration, we aimed to characterize any consequences on the binding behavior. Our results show that both oligomeric proteins bind with high affinity (in nanomolar range) to GAGs, such as hyaluronan (HA), heparan sulfate (HS) and chondroitin sulfate (CS). Binding to HS and CS was calcium-independent, as it was not affected by changing calcium concentration in the buffer. Quantification of GAGs in bronchoalveolar lavage (BAL) fluid from animals deficient in either SP-A or SP-D showed changes in GAG composition, and electron micrographs showed differences in alveolar glycocalyx ultrastructure in vivo. Taken together, SP-A and SP-D bind to model sulfated glycosaminoglycans of the alveolar epithelial glycocalyx in a multivalent and calcium-independent way. These findings provide a potential mechanism for SP-A and SP-D as an integral part of the alveolar epithelial glycocalyx binding and interconnecting free GAGs, proteoglycans, and other glycans in glycoproteins, which may influence glycocalyx composition and structure.NEW & NOTEWORTHY SP-A and SP-D function has been related to innate immunity of the lung based on their binding to sugar residues at pathogen surfaces. However, their function in the healthy alveolus was considered as limited to interaction with surfactant lipids. Here, we demonstrated that these proteins bind to glycosaminoglycans present at typical cell surfaces like the alveolar epithelial glycocalyx. We propose a model where these proteins play an important role in interconnecting alveolar epithelial glycocalyx components.
Collapse
Affiliation(s)
- Rabia Avcibas
- Institute of Functional Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Vermul
- Institute of Functional Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vladimir Gluhovic
- Institute of Functional Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nico Boback
- Core Facility Electron Microscopy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Raquel Arroyo
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Paul Kingma
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Miriam Isasi-Campillo
- Department of Biochemistry and Molecular Biology, Complutense University Madrid, Madrid, Spain
| | - Lucia Garcia-Ortega
- Department of Biochemistry and Molecular Biology, Complutense University Madrid, Madrid, Spain
| | - Matthias Griese
- Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, German Center for Lung Research, Munich, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Keenan Research Centre, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- German Center for Lung Research (DZL), Berlin, Germany
| | - Matthias Ochs
- Institute of Functional Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- German Center for Lung Research (DZL), Berlin, Germany
- Core Facility Electron Microscopy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Lauster
- Institute of Pharmacy, Biopharmaceuticals, Freie Universität Berlin, Berlin, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
5
|
Liu D, Guo R, Shi B, Chen M, Weng S, Weng J. Fortunellin ameliorates LPS-induced acute lung injury, inflammation, and collagen deposition by restraining the TLR4/NF-κB/NLRP3 pathway. Immun Inflamm Dis 2024; 12:e1164. [PMID: 38501503 PMCID: PMC10949398 DOI: 10.1002/iid3.1164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 03/20/2024] Open
Abstract
OBJECTIVE Acute lung injury (ALI) is the prevalent respiratory disease of acute inflammation with high morbidity and mortality. Fortunellin has anti-inflammation property, but its role in ALI remains elusive. Thus, this study clarified the function of fortunellin on ALI pathogenesis. METHODS The ALI mouse model was established by lipopolysaccharide (LPS) induction, and lung tissue damage was evaluated utilizing hematoxylin-eosin (HE) staining. The edema of lung tissue was measured by the lung wet/dry (W/D) ratio. The lung capillary permeability was reflected by the protein content in bronchoalveolar lavage fluid (BALF). Inflammatory cell infiltration was measured by the evaluation of the content of myeloperoxidase (MPO), neutrophils, and leukocytes in BALF. Cell apoptosis was measured by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The secretions of inflammatory cytokines were quantified using enzyme-linked immunosorbent assay (ELISA) assays. Lung tissue collagen deposition was evaluated by Masson staining. RESULTS Fortunellin attenuated LPS-induced lung tissue damage and reduced the W/D ratio, the content of MPO in lung tissue, the total protein contents in BALF, and the neutrophils and leukocytes number. Besides, fortunellin alleviated LPS-stimulated lung tissue apoptosis, inflammatory response, and collagen deposition. Furthermore, Fortunellin repressed the activity of the Toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB)/NLR Family Pyrin Domain Containing 3 (NLRP3) pathway in the LPS-stimulated ALI model and LPS-induced RAW264.7 cells. Moreover, fortunellin attenuated LPS-stimulated tissue injury, apoptosis, inflammation, and collagen deposition of the lung via restraining the TLR4/NF-κB/NLRP3 pathway. CONCLUSION Fortunellin attenuated LPS-stimulated ALI through repressing the TLR4/NF-κB/NLRP3 pathway. Fortunellin may be a valuable drug for ALI therapy.
Collapse
Affiliation(s)
- Danjuan Liu
- Department of Critical Care Medicinethe Affiliated Hospital of Putian UniversityPutianChina
| | - Rongjie Guo
- Department of Critical Care Medicinethe Affiliated Hospital of Putian UniversityPutianChina
| | - Bingbing Shi
- Department of Critical Care Medicinethe Affiliated Hospital of Putian UniversityPutianChina
| | - Min Chen
- Department of Critical Care Medicinethe Affiliated Hospital of Putian UniversityPutianChina
| | - Shuoyun Weng
- School of Ophthalmology & OptometryWenzhou Medical UniversityWenzhouChina
| | - Junting Weng
- Department of Critical Care Medicinethe Affiliated Hospital of Putian UniversityPutianChina
| |
Collapse
|
6
|
Pesold VV, Wendler O, Gröhn F, Mueller SK. Lymphatic Vessels in Chronic Rhinosinusitis. J Inflamm Res 2024; 17:865-880. [PMID: 38348276 PMCID: PMC10860572 DOI: 10.2147/jir.s436450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/30/2023] [Indexed: 02/15/2024] Open
Abstract
Purpose The purpose of this study was to analyze the nasal lymphatic system in order to uncover novel factors that might be involved in pathogenesis of chronic rhinosinusitis (CRS) with (CRSwNP) and without nasal polyps (CRSsNP). Patients and Methods Lymphatic vessels (LVs) and macrophages were localized and counted in the inferior and middle turbinate, the uncinate process and the ethmoid of CRSwNP and CRSsNP patients, the NP and the inferior turbinate of controls (n≥6 per group). Lysates of the same tissue types (n=7 per group) were analyzed for lymphatic vessel endothelial receptor 1 (LYVE-1), for matrix metalloproteinase 14 (MMP-14) and for Hyaluronic acid (HA) using ELISA. HA was localized in sections of CRSwNP NP, CRSsNP ethmoid and control inferior turbinate (n=6 per group). The results of HA levels were correlated to the number of macrophages in tissues. The nasal secretions of CRSwNP (n=28), CRSsNP (n=30), and control (n=30) patients were analyzed for LYVE-1 and HA using ELISA. Results The number of LVs was significantly lower in tissues of both CRS groups compared to the control. In the tissue lysates, LYVE-1 expression differed significantly between the CRSwNP tissues with a particularly high level in the NP. MMP-14 was significantly overexpressed in CRSwNP uncinate process. There were no significant differences in tissue HA expression. In the mucus LYVE-1 was significantly underexpressed in CRSsNP compared to CRSwNP and control, while HA was significantly underexpressed in both CRS groups. In the NP, HA and macrophages were accumulated particularly below the epithelium. Tissue levels of HA revealed a significant positive correlation with the number of macrophages. Conclusion CRS might be associated with an insufficient clearing of the nasal mucosa through the lymphatics. The accumulation of HA and macrophages might promote inflammation, fluid retention, and polyp formation. These results may provide novel CRS-associated factors.
Collapse
Affiliation(s)
- Vanessa-Vivien Pesold
- Department of Otolaryngology, Head and Neck Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, BY, Germany
| | - Olaf Wendler
- Department of Otolaryngology, Head and Neck Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, BY, Germany
| | - Franziska Gröhn
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, BY, Germany
| | - Sarina K Mueller
- Department of Otolaryngology, Head and Neck Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, BY, Germany
| |
Collapse
|
7
|
Chen Y, Huang J, Wang K, Li X, Rui Y, Fan W. Research on evolution process of full-layer incision of skin tissue under different laser incidences. JOURNAL OF BIOPHOTONICS 2024; 17:e202300284. [PMID: 37700597 DOI: 10.1002/jbio.202300284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
Considering difficulties of achieving vertical incidence of beam in different positions of skin, it is significant to study potential effects of incidence angles of laser on incisions. Surgical platform with a 1064 nm continuous fiber laser was established. Incident angle was adopted and real-time temperature fluctuations in laser operating area could be monitored. The rats were treated with laser at day 0 and day 3 after incision modeling, and H&E, Masson, Sirius Red, and Immuno-histochemical staining and enzyme-linked immunosorbent assay were adopted at day 3, 7, 14 to analyze the performance of healing. Laser with energy density of 67.54 J/mm2 can effectively accelerate wound healing in vivo, in which a laser with incident angle around 60° can effectively avoid scar hyperplasia. Therefore, the use of low energy laser with a small deflection angle has a good clinical application prospect in promoting wound healing.
Collapse
Affiliation(s)
- Yuxin Chen
- School of Material Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Jun Huang
- School of Material Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Kehong Wang
- School of Material Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Xiaopeng Li
- School of Material Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Yunfeng Rui
- Department of Orthopaedics, Southeast University, Zhongda Hospital, Nanjing, China
| | - Wentao Fan
- First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Lazrak A, Song W, Yu Z, Zhang S, Nellore A, Hoopes CW, Woodworth BA, Matalon S. Low molecular weight hyaluronan inhibits lung epithelial ion channels by activating the calcium-sensing receptor. Matrix Biol 2023; 116:67-84. [PMID: 36758905 PMCID: PMC10012407 DOI: 10.1016/j.matbio.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Herein, we tested the hypothesis that low molecular weight hyaluronan (LMW-HA) inhibits lung epithelial ions transport in-vivo, ex-vivo, and in-vitro by activating the calcium-sensing receptor (CaSR). Twenty-four hours post intranasal instillation of 50-150 µg/ml LMW-HA to C57BL/6 mice, there was a 75% inhibition of alveolar fluid clearance (AFC), a threefold increase in the epithelial lining fluid (ELF) depth, and a 20% increase in lung wet/dry (W/D) ratio. Incubation of human and mouse precision cut lung slices with 150 µg/ml LMW-HA reduced the activity and the open probability (Po) of epithelial sodium channel (ENaC) in alveolar epithelial type 2 (ATII) cells, and in mouse tracheal epithelial cells (MTEC) monolayers as early as 4 h. The Cl- current through cystic fibrosis transmembrane conductance regulator (CFTR) and the activity of Na,K-ATPase were both inhibited by more than 66% at 24 h. The inhibitory effects of LMW-HA on ion channels were reversed by 1 µM NPS-2143, or 150 µg/ml high molecular weight hyaluronan (HMW-HA). In HEK-293 cells expressing the calcium-sensitive Cl- channel TMEM16-A, CaSR was required for the activation of the Cl- current by LMW-HA. This is the first demonstration of lung ions and water transport inhibition by LMW-HA, and its mediation through the activation of CaSR.
Collapse
Affiliation(s)
- Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Division of Molecular and Translational Biomedicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Pulmonary Injury and Repair Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Gregory Fleming James Cystic Fibrosis Research Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA.
| | - Weifeng Song
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Division of Molecular and Translational Biomedicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| | - Zhihong Yu
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Division of Molecular and Translational Biomedicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Pulmonary Injury and Repair Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| | - Shaoyan Zhang
- Department of Otolaryngology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Gregory Fleming James Cystic Fibrosis Research Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| | - Anoma Nellore
- Department of Medicine, Division of Infectious Diseases, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| | - Charles W Hoopes
- Division of Cardiothoracic Surgery, Heersink School of Medicine, University of Alabama at Birmingham, AL 35295, USA
| | - Bradford A Woodworth
- Department of Otolaryngology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Gregory Fleming James Cystic Fibrosis Research Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Division of Molecular and Translational Biomedicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Pulmonary Injury and Repair Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| |
Collapse
|
9
|
Garantziotis S, Savani RC. Proteoglycans in Toll-like receptor responses and innate immunity. Am J Physiol Cell Physiol 2022; 323:C202-C214. [PMID: 35675639 DOI: 10.1152/ajpcell.00088.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM) is an active and dynamic feature of tissues that not only provides gross structure but also plays key roles in cellular responses. The ever-changing microenvironment responds dynamically to cellular and external signals, and in turn influences cell fate, tissue development, and response to environmental injury or microbial invasion. It is therefore paramount to understand how the ECM components interact with each other, the environment and cells, and how they mediate their effects. Among the ECM components that have recently garnered increased attention, proteoglycans (PGs) deserve special note. Recent evidence strongly suggests that they play a crucial role both in health maintenance and disease development. In particular, proteoglycans dictate whether homeostasis or cell death will result from a given injury, by triggering and modulating activation of the innate immune system, via a conserved array of receptors that recognize exogenous (infectious) or endogenous (tissue damage) molecular patterns. Innate immune activation by proteoglycans has important implications for the understanding of cell-matrix interactions in health and disease. In this review, we will summarize the current state of knowledge of innate immune signaling by proteoglycans, discuss the implications, and explore future directions to define progress in this area of extracellular matrix biology.
Collapse
Affiliation(s)
- Stavros Garantziotis
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Rashmin C Savani
- Division of Neonatal-Perinatal Medicine, Center for Pulmonary & Vascular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
10
|
Crotty KM, Yeligar SM. Hyaladherins May be Implicated in Alcohol-Induced Susceptibility to Bacterial Pneumonia. Front Immunol 2022; 13:865522. [PMID: 35634317 PMCID: PMC9133445 DOI: 10.3389/fimmu.2022.865522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Although the epidemiology of bacterial pneumonia and excessive alcohol use is well established, the mechanisms by which alcohol induces risk of pneumonia are less clear. Patterns of alcohol misuse, termed alcohol use disorders (AUD), affect about 15 million people in the United States. Compared to otherwise healthy individuals, AUD increase the risk of respiratory infections and acute respiratory distress syndrome (ARDS) by 2-4-fold. Levels and fragmentation of hyaluronic acid (HA), an extracellular glycosaminoglycan of variable molecular weight, are increased in chronic respiratory diseases, including ARDS. HA is largely involved in immune-assisted wound repair and cell migration. Levels of fragmented, low molecular weight HA are increased during inflammation and decrease concomitant with leukocyte levels following injury. In chronic respiratory diseases, levels of fragmented HA and leukocytes remain elevated, inflammation persists, and respiratory infections are not cleared efficiently, suggesting a possible pathological mechanism for prolonged bacterial pneumonia. However, the role of HA in alcohol-induced immune dysfunction is largely unknown. This mini literature review provides insights into understanding the role of HA signaling in host immune defense following excessive alcohol use. Potential therapeutic strategies to mitigate alcohol-induced immune suppression in bacterial pneumonia and HA dysregulation are also discussed.
Collapse
Affiliation(s)
- Kathryn M Crotty
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Samantha M Yeligar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| |
Collapse
|
11
|
RHAMM Is a Multifunctional Protein That Regulates Cancer Progression. Int J Mol Sci 2021; 22:ijms221910313. [PMID: 34638654 PMCID: PMC8508827 DOI: 10.3390/ijms221910313] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023] Open
Abstract
The functional complexity of higher organisms is not easily accounted for by the size of their genomes. Rather, complexity appears to be generated by transcriptional, translational, and post-translational mechanisms and tissue organization that produces a context-dependent response of cells to specific stimuli. One property of gene products that likely increases the ability of cells to respond to stimuli with complexity is the multifunctionality of expressed proteins. Receptor for hyaluronan-mediated motility (RHAMM) is an example of a multifunctional protein that controls differential responses of cells in response-to-injury contexts. Here, we trace its evolution into a sensor-transducer of tissue injury signals in higher organisms through the detection of hyaluronan (HA) that accumulates in injured microenvironments. Our goal is to highlight the domain and isoform structures that generate RHAMM's function complexity and model approaches for targeting its key functions to control cancer progression.
Collapse
|
12
|
Cardiovascular Effects Mediated by HMMR and CD44. Mediators Inflamm 2021; 2021:4977209. [PMID: 34335086 PMCID: PMC8286199 DOI: 10.1155/2021/4977209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. The most dangerous life-threatening symptoms of CVD are myocardial infarction and stroke. The causes of CVD are not entirely clear, and new therapeutic targets are still being sought. One of the factors involved in CVD development among vascular damage and oxidative stress is chronic inflammation. It is known that hyaluronic acid plays an important role in inflammation and is regulated by numerous stimuli, including proinflammatory cytokines. The main receptors for hyaluronic acid are CD44 and RHAMM. These receptors are membrane proteins that differ in structure, but it seems that they can perform similar or synergistic functions in many diseases. Both RHAMM and CD44 are involved in cell migration and wound healing. However, their close association with CVD is not fully understood. In this review, we describe the role of both receptors in CVD.
Collapse
|
13
|
Pandey A, Kulshrestha R, Bansal SK. Dynamic role of LMW-hyaluronan fragments and Toll-like receptors 2,4 in progression of bleomycin induced lung parenchymal injury to fibrosis. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2021. [PMCID: PMC8138115 DOI: 10.1186/s43168-021-00073-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Pulmonary fibrosis (PF) is a progressive and lethal lung disease of elderly whose incidence has been increasing following the Covid-19 pandemic caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). PF immunopathogenesis involves progressive alveolar epithelial cell damage, release of damage-associated molecular patterns (DAMPs), and extracellular matrix (ECM) injury. We assessed the dynamic role of LMW-hyaluronan (LMW-HA) as DAMP in initiation of host immune TLR-2,4 responses and as determinant in progression of ECM injury to fibrosis. Male Wistar rats were divided into Group I (saline control, n = 24) and Group II (intratracheal bleomycin, 7 U/kg/animal, n = 24). Animals were euthanized on 0, 7, 14, and 28 days. The time course of release of LMW-HA, TLR-2,4 mRNA and protein levels, and NF-κB-p65 levels after bleomycin injury were correlated with the development of parenchymal inflammation, remodelling, and fibrosis. Results Acute lung injury caused by bleomycin significantly increases the pro-inflammatory LMW-HA levels and elevates TLR-2,4 levels on day 7. Subsequently, TLR-2 upregulation, TLR-4 downregulation, and NF-κB signalling follow on days 14 and 28. This results in progressive tissue inflammation, alveolar and interstitial macrophage accumulation, and fibrosis. Conclusions LMW-HA significantly increases in PF caused by non-infectious and infectious (Covid-19) etiologies. The accumulating HA fragments function as endogenous DAMPs and trigger inflammatory responses, through differential TLR2 and TLR4 signalling, thus promoting inflammation and macrophage influx. LMW-HA are reflective of the state of ongoing tissue inflammation and may be considered as a natural biosensor for fibrotic lung diseases and as potential therapeutic targets.
Collapse
|
14
|
Wu KY, Kim S, Liu VM, Sabino A, Minkhorst K, Yazdani A, Turley EA. Function-Blocking RHAMM Peptides Attenuate Fibrosis and Promote Antifibrotic Adipokines in a Bleomycin-Induced Murine Model of Systemic Sclerosis. J Invest Dermatol 2020; 141:1482-1492.e4. [PMID: 33242499 DOI: 10.1016/j.jid.2019.11.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 10/28/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022]
Abstract
Systemic sclerosis a chronic, fibrotic disorder associated with high disease-specific mortality and morbidity. Cutaneous manifestations include dermal thickening and obliteration of dermal adipose tissue. Accumulation of low-molecular-weight hyaluronan, which signals through the receptor for hyaluronan-mediated motility, RHAMM, leads to progressive fibrosis and is correlated with increased severity of systemic sclerosis. The purpose of this study is to test the efficacy of two function-blocking RHAMM peptides, NPI-110 and NPI-106, in reducing skin fibrosis in a bleomycin-induced mouse model of systemic sclerosis. NPI-110 reduced visible measures of fibrosis (dermal thickness and collagen production, deposition, and organization) and profibrotic gene expression (Tgfb1, c-Myc, Col1a1, Col3a1). NPI-110 treatment also increased the expression of the antifibrotic adipokines perilipin and adiponectin. Both RHAMM peptides strongly reduced dermal RHAMM expression, predicting that dermal fibroblasts are peptide targets. Transcriptome and cell culture analyses using Rhamm-/- and Rhamm-rescued dermal fibroblasts reveal a TGFβ1/RHAMM/MYC signaling axis that promotes fibrogenic gene expression and myofibroblast differentiation. RHAMM function‒blocking peptides suppress this signaling and prevent TGFβ1-induced myofibroblast differentiation. These results suggest that inhibiting RHAMM signaling will offer a treatment method for cutaneous fibrosis in systemic sclerosis.
Collapse
Affiliation(s)
- Kitty Yuechuan Wu
- Division of Plastic and Reconstructive Surgery, Western University, London, Ontario, Canada
| | - Stephanie Kim
- Division of Plastic and Reconstructive Surgery, Western University, London, Ontario, Canada; Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Violet Muhan Liu
- Department of Biochemistry, Western University, London, Ontario, Canada
| | - Alexis Sabino
- Department of Life Sciences, Queen's University, Kingston, Ontario, Canada
| | - Kathryn Minkhorst
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Arjang Yazdani
- Division of Plastic and Reconstructive Surgery, Western University, London, Ontario, Canada
| | - Eva A Turley
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada.
| |
Collapse
|
15
|
Di Cicco M, Peroni D, Sepich M, Tozzi MG, Comberiati P, Cutrera R. Hyaluronic acid for the treatment of airway diseases in children: Little evidence for few indications. Pediatr Pulmonol 2020; 55:2156-2169. [PMID: 32530559 DOI: 10.1002/ppul.24901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/10/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Hyaluronic acid (HA) is major physiological component of the extracellular matrix, which, in its high molecular weight form (HMW-HA) has anti-inflammatory properties. The diffusion of many different medical devices for inhalation therapy containing HA has led to an increase in their prescription, also in children. Here, we systematically review the published evidence on the efficacy and safety of HA for the treatment of upper and lower airway diseases in childhood. METHODS Relevant published studies (randomized controlled trials) for the efficacy of HA inhalation in children with upper airways diseases, asthma, cystic fibrosis (CF), and non-CF bronchiectasis were searched in Pubmed, Scopus, and Web of Knowledge databases by combining the adequate Medical Subject Headings terms and keywords, with no limit for the year of publication. RESULTS We identified seven relevant publications for upper airways diseases, one for asthma, and five for CF, while we found no clinical trial including children with non-CF bronchiectasis. Meta-analysis was not conducted due to the heterogeneity of the included studies. CONCLUSIONS The evidence of HA efficacy in the treatment of the upper and lower airways is still limited in children. Available data suggest that inhaled HMW-HA could be useful in the treatment of recurrent upper respiratory infections and chronic or recurrent inflammation of the middle ear and adenoids as well as of the lower airways in cystic fibrosis in association with hypertonic saline solution. Studies on larger populations and on the different formulations and nebulization methods, especially in pediatric age, are urgently needed.
Collapse
Affiliation(s)
- Maria Di Cicco
- Pediatrics Unit, Allergology Section, Pisa University Hospital, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Diego Peroni
- Pediatrics Unit, Allergology Section, Pisa University Hospital, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Margherita Sepich
- Pediatrics Unit, Allergology Section, Pisa University Hospital, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maria Giulia Tozzi
- Pediatrics Unit, Allergology Section, Pisa University Hospital, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Pasquale Comberiati
- Pediatrics Unit, Allergology Section, Pisa University Hospital, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Renato Cutrera
- Department of Academic Pediatric, Respiratory unit, Pediatric Hospital "Bambino Gesù", Rome, Italy
| |
Collapse
|
16
|
Audam TN, Nong Y, Tomlin A, Jurkovic A, Li H, Zhu X, Long BW, Zheng YW, Weirick T, Brittian KR, Riggs DW, Gumpert A, Uchida S, Guo Y, Wysoczynski M, Jones SP. Cardiac mesenchymal cells from failing and nonfailing hearts limit ventricular dilation when administered late after infarction. Am J Physiol Heart Circ Physiol 2020; 319:H109-H122. [PMID: 32442025 DOI: 10.1152/ajpheart.00114.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although cell therapy-mediated cardiac repair offers promise for treatment/management of heart failure, lack of fundamental understanding of how cell therapy works limits its translational potential. In particular, whether reparative cells from failing hearts differ from cells derived from nonfailing hearts remains unexplored. Here, we assessed differences between cardiac mesenchymal cells (CMC) derived from failing (HF) versus nonfailing (Sham) hearts and whether the source of donor cells (i.e., from HF vs. Sham) limits reparative capacity, particularly when administered late after infarction. To determine the impact of the donor source of CMCs, we characterized the transcriptional profile of CMCs isolated from sham (Sham-CMC) and failing (HF-CMC) hearts. RNA-seq analysis revealed unique transcriptional signatures in Sham-CMC and HF-CMC, suggesting that the donor source impacts CMC. To determine whether the donor source affects reparative potential, C57BL6/J female mice were subjected to 60 min of regional myocardial ischemia and then reperfused for 35 days. In a randomized, controlled, and blinded fashion, vehicle, HF-CMC, or Sham-CMC were injected into the lumen of the left ventricle at 35 days post-MI. An additional 5 weeks later, cardiac function was assessed by echocardiography, which indicated that delayed administration of Sham-CMC and HF-CMC attenuated ventricular dilation. We also determined whether Sham-CMC and HF-CMC treatments affected ventricular histopathology. Our data indicate that the donor source (nonfailing vs. failing hearts) affects certain aspects of CMC, and these insights may have implications for future studies. Our data indicate that delayed administration of CMC limits ventricular dilation and that the source of CMC may influence their reparative actions.NEW & NOTEWORTHY Most preclinical studies have used only cells from healthy, nonfailing hearts. Whether donor condition (i.e., heart failure) impacts cells used for cell therapy is not known. We directly tested whether donor condition impacted the reparative effects of cardiac mesenchymal cells in a chronic model of myocardial infarction. Although cells from failing hearts differed in multiple aspects, they retained the potential to limit ventricular remodeling.
Collapse
Affiliation(s)
- Timothy N Audam
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Yibing Nong
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Alex Tomlin
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Andrea Jurkovic
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Hong Li
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Xiaoping Zhu
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Bethany W Long
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Yi Wei Zheng
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Tyler Weirick
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky.,Cardiovascular Innovation Institute, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Kenneth R Brittian
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Daniel W Riggs
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Anna Gumpert
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Shizuka Uchida
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky.,Cardiovascular Innovation Institute, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Yiru Guo
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Marcin Wysoczynski
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Steven P Jones
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
17
|
Truong JL, Liu M, Tolg C, Barr M, Dai C, Raissi TC, Wong E, DeLyzer T, Yazdani A, Turley EA. Creating a Favorable Microenvironment for Fat Grafting in a Novel Model of Radiation-Induced Mammary Fat Pad Fibrosis. Plast Reconstr Surg 2019; 145:116-126. [PMID: 31881612 DOI: 10.1097/prs.0000000000006344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Radiofibrosis of breast tissue compromises breast reconstruction by interfering with tissue viability and healing. Autologous fat transfer may reduce radiotherapy-related tissue injury, but graft survival is compromised by the fibrotic microenvironment. Elevated expression of receptor for hyaluronan-mediated motility (RHAMM; also known as hyaluronan-mediated motility receptor, or HMMR) in wounds decreases adipogenesis and increases fibrosis. The authors therefore developed RHAMM peptide mimetics to block RHAMM profibrotic signaling following radiation. They propose that this blocking peptide will decrease radiofibrosis and establish a microenvironment favoring adipose-derived stem cell survival using a rat mammary fat pad model. METHODS Rat mammary fat pads underwent a one-time radiation dose of 26 Gy. Irradiated (n = 10) and nonirradiated (n = 10) fat pads received a single intramammary injection of a sham injection or peptide NPI-110. Skin changes were examined clinically. Mammary fat pad tissue was processed for fibrotic and adipogenic markers using quantitative polymerase chain reaction and immunohistochemical analysis. RESULTS Clinical assessments and molecular analysis confirmed radiation-induced acute skin changes and radiation-induced fibrosis in rat mammary fat pads. Peptide treatment reduced fibrosis, as detected by polarized microscopy of picrosirius red staining, increased collagen ratio of 3:1, reduced expression of collagen-1 crosslinking enzymes lysyl-oxidase, transglutaminase 2, and transforming growth factor β1 protein, and increased adiponectin, an antifibrotic adipokine. RHAMM was expressed in stromal cell subsets and was downregulated by the RHAMM peptide mimetic. CONCLUSION Results from this study predict that blocking RHAMM function in stromal cell subsets can provide a postradiotherapy microenvironment more suitable for fat grafting and breast reconstruction.
Collapse
Affiliation(s)
- Jessica L Truong
- From the Division of Plastic and Reconstructive Surgery, the Schulich School of Medicine and Dentistry, and the Department of Physics and Astronomy, Western University; and the London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital
| | - Muhan Liu
- From the Division of Plastic and Reconstructive Surgery, the Schulich School of Medicine and Dentistry, and the Department of Physics and Astronomy, Western University; and the London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital
| | - Cornelia Tolg
- From the Division of Plastic and Reconstructive Surgery, the Schulich School of Medicine and Dentistry, and the Department of Physics and Astronomy, Western University; and the London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital
| | - Meredith Barr
- From the Division of Plastic and Reconstructive Surgery, the Schulich School of Medicine and Dentistry, and the Department of Physics and Astronomy, Western University; and the London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital
| | - Cecilia Dai
- From the Division of Plastic and Reconstructive Surgery, the Schulich School of Medicine and Dentistry, and the Department of Physics and Astronomy, Western University; and the London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital
| | - Thomas C Raissi
- From the Division of Plastic and Reconstructive Surgery, the Schulich School of Medicine and Dentistry, and the Department of Physics and Astronomy, Western University; and the London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital
| | - Eugene Wong
- From the Division of Plastic and Reconstructive Surgery, the Schulich School of Medicine and Dentistry, and the Department of Physics and Astronomy, Western University; and the London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital
| | - Tanya DeLyzer
- From the Division of Plastic and Reconstructive Surgery, the Schulich School of Medicine and Dentistry, and the Department of Physics and Astronomy, Western University; and the London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital
| | - Arjang Yazdani
- From the Division of Plastic and Reconstructive Surgery, the Schulich School of Medicine and Dentistry, and the Department of Physics and Astronomy, Western University; and the London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital
| | - Eva A Turley
- From the Division of Plastic and Reconstructive Surgery, the Schulich School of Medicine and Dentistry, and the Department of Physics and Astronomy, Western University; and the London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital
| |
Collapse
|
18
|
Papakonstantinou E, Bonovolias I, Roth M, Tamm M, Schumann D, Baty F, Louis R, Milenkovic B, Boersma W, Stieltjes B, Kostikas K, Blasi F, Aerts JG, Rohde GGU, Lacoma A, Torres A, Welte T, Stolz D. Serum levels of hyaluronic acid are associated with COPD severity and predict survival. Eur Respir J 2019; 53:13993003.01183-2018. [PMID: 30705130 DOI: 10.1183/13993003.01183-2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 12/10/2018] [Indexed: 11/05/2022]
Abstract
Hyaluronic acid (HA) and its degradation products play an important role in lung pathophysiology and airway remodelling in chronic obstructive pulmonary disease (COPD).We investigated if HA and its degrading enzyme hyaluronidase (HYAL)-1 are associated with COPD severity and outcome.Serum HA was assessed in a discovery cohort of 80 COPD patients at stable state and exacerbations. HA, HYAL-1 and HYAL-1 enzymatic activity were evaluated at stable state, exacerbations and 4 weeks after exacerbations in 638 COPD patients from the PROMISE validation cohort.In the discovery cohort, serum HA was higher at exacerbations compared with the stable state (p=0.015). In the validation cohort, HA was higher at moderate and severe exacerbations than at baseline (p<0.001), and remained higher after 4 weeks (p<0.001). HA was strongly predictive for overall survival since it was associated with time to death (p<0.001) independently of adjusted Charlson score, annual exacerbation rate and BODE (body mass, airflow obstruction, dyspnoea, exercise capacity) index. Serum HYAL-1 was increased at moderate (p=0.004) and severe (p=0.003) exacerbations, but decreased after 4 weeks (p<0.001). HYAL-1 enzymatic activity at stable state was inversely correlated with FEV1 % pred (p=0.034) and survival time (p=0.017).Serum HA is associated with COPD severity and predicts overall survival. Degradation of HA is associated with airflow limitation and impairment of lung function.
Collapse
Affiliation(s)
- Eleni Papakonstantinou
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital, Basel, Switzerland.,Dept of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Bonovolias
- Dept of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michael Roth
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital, Basel, Switzerland
| | - Michael Tamm
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital, Basel, Switzerland
| | - Desiree Schumann
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital, Basel, Switzerland
| | - Florent Baty
- Pneumology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Renaud Louis
- Dept of Pneumology, CHU Liege, University of Liege, GIGAI Research Group, Liege, Belgium
| | - Branislava Milenkovic
- Faculty of Medicine, University of Belgrade Clinic for Pulmonary Diseases, Belgrade, Serbia
| | - Wim Boersma
- Dept of Pneumology, Medisch Centrum Alkmaar, Alkmaar, The Netherlands
| | - Bram Stieltjes
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Konstantinos Kostikas
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital, Basel, Switzerland
| | - Francesco Blasi
- Internal Medicine Dept, Respiratory Unit and Adult Cystic Fibrosis Center Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, Dept of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Joachim G Aerts
- Dept of Pneumology, Amphia Hospital/Erasmus MC, Breda, The Netherlands
| | - Gernot G U Rohde
- Dept of Respiratory Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alicia Lacoma
- Dept of Microbiology, Hospital Universitari Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Badalona, Spain
| | - Antoni Torres
- Dept of Pneumology, Hospital Clinic, Barcelona, Spain
| | - Tobias Welte
- Dept of Pneumology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Daiana Stolz
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital, Basel, Switzerland
| |
Collapse
|
19
|
Hyaluronan biology: A complex balancing act of structure, function, location and context. Matrix Biol 2019; 78-79:1-10. [PMID: 30802498 DOI: 10.1016/j.matbio.2019.02.002] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Cell-matrix interactions are fundamental to many developmental, homeostatic, immune and pathologic processes. Hyaluronan (HA), a critical component of the extracellular matrix (ECM) that regulates normal structural integrity and development, also regulates tissue responses during injury, repair, and regeneration. Though simple in its primary structure, HA regulates biological responses in a highly complex manner with balanced contributions from its molecular size and concentration, synthesis versus enzymatic and/or oxidative-nitrative fragmentation, interactions with key HA binding proteins and cell associated receptors, and its cell context-specific signaling. This review highlights the different, but inter-related factors that dictate the biological activity of HA and introduces the overarching themes that weave throughout this special issue of Matrix Biology on hyaluronan.
Collapse
|
20
|
Johnson P, Arif AA, Lee-Sayer SSM, Dong Y. Hyaluronan and Its Interactions With Immune Cells in the Healthy and Inflamed Lung. Front Immunol 2018; 9:2787. [PMID: 30555472 PMCID: PMC6281886 DOI: 10.3389/fimmu.2018.02787] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022] Open
Abstract
Hyaluronan is a hygroscopic glycosaminoglycan that contributes to both extracellular and pericellular matrices. While the production of hyaluronan is essential for mammalian development, less is known about its interaction and function with immune cells. Here we review what is known about hyaluronan in the lung and how it impacts immune cells, both at homeostasis and during lung inflammation and fibrosis. In the healthy lung, alveolar macrophages provide the first line of defense and play important roles in immunosurveillance and lipid surfactant homeostasis. Alveolar macrophages are surrounded by a coat of hyaluronan that is bound by CD44, a major hyaluronan receptor on immune cells, and this interaction contributes to their survival and the maintenance of normal alveolar macrophage numbers. Alveolar macrophages are conditioned by the alveolar environment to be immunosuppressive, and can phagocytose particulates without alerting an immune response. However, during acute lung infection or injury, an inflammatory immune response is triggered. Hyaluronan levels in the lung are rapidly increased and peak with maximum leukocyte infiltration, suggesting a role for hyaluronan in facilitating leukocyte access to the injury site. Hyaluronan can also be bound by hyaladherins (hyaluronan binding proteins), which create a provisional matrix to facilitate tissue repair. During the subsequent remodeling process hyaluronan concentrations decline and levels return to baseline as homeostasis is restored. In chronic lung diseases, the inflammatory and/or repair phases persist, leading to sustained high levels of hyaluronan, accumulation of associated immune cells and an inability to resolve the inflammatory response.
Collapse
Affiliation(s)
- Pauline Johnson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Arif A Arif
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Sally S M Lee-Sayer
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yifei Dong
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
21
|
Abstract
Over 50 years after its first description, Bronchopulmonary Dysplasia (BPD) remains a devastating pulmonary complication in preterm infants with respiratory failure and develops in 30-50% of infants less than 1000-gram birth weight. It is thought to involve ventilator- and oxygen-induced damage to an immature lung that results in an inflammatory response and ends in aberrant lung development with dysregulated angiogenesis and alveolarization. Significant morbidity and mortality are associated with this most common chronic lung disease of childhood. Thus, any therapies that decrease the incidence or severity of this condition would have significant impact on morbidity, mortality, human costs, and healthcare expenditure. It is clear that an inflammatory response and the elaboration of growth factors and cytokines are associated with the development of BPD. Numerous approaches to control the inflammatory process leading to the development of BPD have been attempted. This review will examine the anti-inflammatory approaches that are established or hold promise for the prevention or treatment of BPD.
Collapse
Affiliation(s)
- Rashmin C Savani
- Center for Pulmonary & Vascular Biology, Division of Neonatal-Perinatal Medicine, The Department of Pediatrics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9063, USA.
| |
Collapse
|
22
|
Kwapiszewska G, Gungl A, Wilhelm J, Marsh LM, Thekkekara Puthenparampil H, Sinn K, Didiasova M, Klepetko W, Kosanovic D, Schermuly RT, Wujak L, Weiss B, Schaefer L, Schneider M, Kreuter M, Olschewski A, Seeger W, Olschewski H, Wygrecka M. Transcriptome profiling reveals the complexity of pirfenidone effects in idiopathic pulmonary fibrosis. Eur Respir J 2018; 52:13993003.00564-2018. [DOI: 10.1183/13993003.00564-2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/03/2018] [Indexed: 11/05/2022]
Abstract
Despite the beneficial effects of pirfenidone in treating idiopathic pulmonary fibrosis (IPF), it remains unclear if lung fibroblasts (FB) are the main therapeutic target.To resolve this question, we employed a comparative transcriptomic approach and analysed lung homogenates (LH) and FB derived from IPF patients treated with or without pirfenidone.In FB, pirfenidone therapy predominantly affected growth and cell division pathways, indicating a major cellular metabolic shift. In LH samples, pirfenidone treatment was mostly associated with inflammation-related processes. In FB and LH, regulated genes were over-represented in the Gene Ontology node “extracellular matrix”. We identified lower expression of cell migration-inducing and hyaluronan-binding protein (CEMIP) in both LH and FB from pirfenidone-treated IPF patients. Plasma levels of CEMIP were elevated in IPF patients compared to healthy controls and decreased after 7 months of pirfenidone treatment. CEMIP expression in FB was downregulated in a glioma-associated oncogene homologue-dependent manner and CEMIP silencing in IPF FB reduced collagen production and attenuated cell proliferation and migration.Cumulatively, our approach indicates that pirfenidone exerts beneficial effects via its action on multiple pathways in both FB and other pulmonary cells, through its ability to control extracellular matrix architecture and inflammatory reactions.
Collapse
|
23
|
Cui Z, Liao J, Cheong N, Longoria C, Cao G, DeLisser HM, Savani RC. The Receptor for Hyaluronan-Mediated Motility (CD168) promotes inflammation and fibrosis after acute lung injury. Matrix Biol 2018; 78-79:255-271. [PMID: 30098420 PMCID: PMC6368477 DOI: 10.1016/j.matbio.2018.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/09/2018] [Accepted: 08/04/2018] [Indexed: 12/15/2022]
Abstract
Acute lung injury results in early inflammation and respiratory distress, and later fibrosis. The glycosaminoglycan hyaluronan (HA) and the Receptor for Hyaluronan-Mediated Motility (RHAMM, CD168) have been implicated in the response to acute lung injury. We hypothesized that, compared to wild type (WT) mice, RHAMM knockout (KO) mice would be protected from, whereas mice with macrophage-specific transgenic overexpression of RHAMM (TG) would have worse inflammation, respiratory distress and fibrosis after intratracheal (IT) bleomycin. Compared to WT mice, 10 days after IT bleomycin, RHAMM KO mice had less weight loss, less increase in respiratory rate, and fewer CD45+ cells in the lung. At day 28, compared to injured WT animals, injured RHAMM KO mice had lower M1 macrophage content, as well as decreased fibrosis as determined by trichrome staining, Ashcroft scores and lung HPO content. Four lines of transgenic mice with selective overexpression of RHAMM in macrophages were generated using the Scavenger Receptor A promoter driving a myc-tagged full length RHAMM cDNA. Baseline expression of RHAMM and CD44 was the same in WT and TG mice. By flow cytometry, TG bone marrow-derived macrophages (BMDM) had increased cell surface RHAMM and myc, but equal CD44 expression. TG BMDM also had 2-fold increases in both chemotaxis to HA and proliferation in fetal bovine serum. In TG mice, increased inflammation after thioglycollate-induced peritonitis was restricted to macrophages and not neutrophils. For lung injury studies, non-transgenic mice given bleomycin had respiratory distress with increased respiratory rates from day 7 to 21. However, TG mice had higher respiratory rates from 4 days after bleomycin and continued to increase respiratory rates up to day 21. At 21 days after IT bleomycin, TG mice had increased lung macrophage accumulation. Lavage HA concentrations were 6-fold higher in injured WT mice, but 30-fold higher in injured TG mice. At 21 days after IT bleomycin, WT mice had developed fibrosis, but TG mice showed exaggerated fibrosis with increased Ashcroft scores and HPO content. We conclude that RHAMM is a critical component of the inflammatory response, respiratory distress and fibrosis after acute lung injury. We speculate that RHAMM is a potential therapeutic target to limit the consequences of acute lung injury.
Collapse
Affiliation(s)
- Zheng Cui
- Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Jie Liao
- Center for Pulmonary & Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Naeun Cheong
- Center for Pulmonary & Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christopher Longoria
- Center for Pulmonary & Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gaoyuan Cao
- Perelmen Center for Advanced Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Horace M DeLisser
- Perelmen Center for Advanced Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Rashmin C Savani
- Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Center for Pulmonary & Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
24
|
Hussell T, Lui S, Jagger C, Morgan D, Brand O. The consequence of matrix dysfunction on lung immunity and the microbiome in COPD. Eur Respir Rev 2018; 27:27/148/180032. [PMID: 29950305 DOI: 10.1183/16000617.0032-2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/12/2018] [Indexed: 12/23/2022] Open
Abstract
The pulmonary extracellular matrix (ECM) is a complex network of proteins which primarily defines tissue architecture and regulates various biochemical and biophysical processes. It is a dynamic system comprising two main structures (the interstitial matrix and the basement membrane) which undergo continuous, yet highly regulated, remodelling. This remodelling process is essential for tissue homeostasis and uncontrolled regulation can lead to pathological states including chronic obstructive pulmonary disease (COPD). Altered expression of ECM proteins, as observed in COPD, can contribute to the degradation of alveolar walls and thickening of the small airways which can cause limitations in airflow. Modifications in ECM composition can also impact immune cell migration and retention in the lung with migrating cells becoming entrapped in the diseased airspaces. Furthermore, ECM changes affect the lung microbiome, aggravating and advancing disease progression. A dysbiosis in bacterial diversity can lead to infection, inducing epithelial injury and pro-inflammatory reactions. Here we review the changes noted in the different ECM components in COPD and discuss how an imbalance in microbial commensalism can impact disease development.
Collapse
Affiliation(s)
- Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Sylvia Lui
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Christopher Jagger
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - David Morgan
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Oliver Brand
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| |
Collapse
|
25
|
Bell TJ, Brand OJ, Morgan DJ, Salek-Ardakani S, Jagger C, Fujimori T, Cholewa L, Tilakaratna V, Östling J, Thomas M, Day AJ, Snelgrove RJ, Hussell T. Defective lung function following influenza virus is due to prolonged, reversible hyaluronan synthesis. Matrix Biol 2018; 80:14-28. [PMID: 29933044 PMCID: PMC6548309 DOI: 10.1016/j.matbio.2018.06.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022]
Abstract
Little is known about the impact of viral infections on lung matrix despite its important contribution to mechanical stability and structural support. The composition of matrix also indirectly controls inflammation by influencing cell adhesion, migration, survival, proliferation and differentiation. Hyaluronan is a significant component of the lung extracellular matrix and production and degradation must be carefully balanced. We have discovered an imbalance in hyaluronan production following resolution of a severe lung influenza virus infection, driven by hyaluronan synthase 2 from epithelial cells, endothelial cells and fibroblasts. Furthermore hyaluronan is complexed with inter-α-inhibitor heavy chains due to elevated TNF-stimulated gene 6 expression and sequesters CD44-expressing macrophages. We show that intranasal administration of exogenous hyaluronidase is sufficient to release inter-α-inhibitor heavy chains, reduce lung hyaluronan content and restore lung function. Hyaluronidase is already used to facilitate dispersion of co-injected materials in the clinic. It is therefore feasible that fibrotic changes following severe lung infection and inflammation could be overcome by targeting abnormal matrix production. Influenza causes prolonged changes in hyaluronan due to increased synthase activity Influenza induces persistent hyaluronan cross-linking by inter-alpha-inhibitor heavy chains Pockets of persistent hyaluronan are associated with CD44-expressing macrophages Digestion of hyaluronan with intranasal hyaluronidase restores lung function but upon cessation of treatment post-viral complications return
Collapse
Affiliation(s)
- Thomas J Bell
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK; Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, UK
| | - Oliver J Brand
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - David J Morgan
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Samira Salek-Ardakani
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Christopher Jagger
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Toshifumi Fujimori
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Lauren Cholewa
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Viranga Tilakaratna
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Jörgen Östling
- Respiratory, Inflammation & Autoimmunity IMED, AstraZeneca, Gothenburg, Sweden
| | - Matt Thomas
- Respiratory, Inflammation & Autoimmunity IMED, AstraZeneca, Gothenburg, Sweden
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Robert J Snelgrove
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, UK
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK.
| |
Collapse
|
26
|
Hauser-Kawaguchi A, Luyt LG, Turley E. Design of peptide mimetics to block pro-inflammatory functions of HA fragments. Matrix Biol 2018; 78-79:346-356. [PMID: 29408009 DOI: 10.1016/j.matbio.2018.01.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/22/2018] [Accepted: 01/28/2018] [Indexed: 12/26/2022]
Abstract
Hyaluronan is a simple extracellular matrix polysaccharide that actively regulates inflammation in tissue repair and disease processes. The native HA polymer, which is large (>500 kDa), contributes to the maintenance of homeostasis. In remodeling and diseased tissues, polymer size is strikingly polydisperse, ranging from <10 kDa to >500 kDa. In a diseased or stressed tissue context, both smaller HA fragments and high molecular weight HA polymers can acquire pro-inflammatory functions, which result in the activation of multiple receptors, triggering pro-inflammatory signaling to diverse stimuli. Peptide mimics that bind and scavenge HA fragments have been developed, which show efficacy in animal models of inflammation. These studies indicate both that HA fragments are key to driving inflammation and that scavenging these is a viable therapeutic approach to blunting inflammation in disease processes. This mini-review summarizes the peptide-based methods that have been reported to date for blocking HA signaling events as an anti-inflammatory therapeutic approach.
Collapse
Affiliation(s)
| | - Leonard G Luyt
- Department of Chemistry, Western University, London, ON, Canada; Department of Oncology, Schulich School of Medicine, Western University, London, ON, Canada; Department of Medical Imaging, Schulich School of Medicine, Western University, London, ON, Canada; Cancer Research Laboratories, London Regional Cancer Center, Victoria Hospital, London, ON N6A 4L6, Canada
| | - Eva Turley
- Department of Oncology, Schulich School of Medicine, Western University, London, ON, Canada; Cancer Research Laboratories, London Regional Cancer Center, Victoria Hospital, London, ON N6A 4L6, Canada; Department of Biochemistry, Schulich School of Medicine, Western University, London, ON, Canada; Department of Surgery, Schulich School of Medicine, Western University, London, ON, Canada.
| |
Collapse
|
27
|
Gaucherand L, Falk BA, Evanko SP, Workman G, Chan CK, Wight TN. Crosstalk Between T Lymphocytes and Lung Fibroblasts: Generation of a Hyaluronan-Enriched Extracellular Matrix Adhesive for Monocytes. J Cell Biochem 2017; 118:2118-2130. [PMID: 27982477 DOI: 10.1002/jcb.25842] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/14/2016] [Indexed: 01/13/2023]
Abstract
In immunity and inflammation, T cells are often associated with stromal mesenchymal cells such as fibroblasts. Hyaluronan and proteins that associate with hyaluronan such as versican and tumor necrosis factor-inducible gene-6 (TSG-6) are extracellular matrix (ECM) components that promote leukocyte adhesion, accumulation, and activation. However, the factors responsible for producing this specialized ECM and its impact on inflammatory events are not well understood. In this study, we explored the role of T cells in stimulating lung fibroblasts to produce an ECM that impacts monocyte adhesion. We found that CD3/CD28-activated human CD4+ T cells when co-cultured with human lung fibroblasts stimulated the expression of mRNA for hyaluronan synthase 2 (HAS2) and decreased the expression of hyaluronidase 2 (HYAL2). This led to an increase in the deposition of hyaluronan that formed cable-like structures within the ECM. Co-culturing activated T cells with fibroblasts also led to increased expression and accumulation of TSG-6. Surprisingly, addition of activated CD4+ T cells to the fibroblasts reduced the expression of mRNA for versican, and increased the expression of enzymes that degrade versican, such as ADAMTS4 and ADAMTS9 (a disintegrin and metalloproteinase with a thrombospondin type-1 motif) leading to a decrease in versican in the ECM of the co-cultures. Furthermore, addition of human monocytes to these co-cultures resulted in elevated monocyte adhesion to the cable-like structures in the ECM when compared to controls. These results illustrate the importance of crosstalk between T cells and fibroblasts in promoting the generation of a matrix that is adhesive for monocytes. J. Cell. Biochem. 118: 2118-2130, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Léa Gaucherand
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington
| | - Ben A Falk
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington
| | - Stephen P Evanko
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington
| | - Gail Workman
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington
| | - Christina K Chan
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington
| |
Collapse
|
28
|
de Leve S, Wirsdörfer F, Cappuccini F, Schütze A, Meyer AV, Röck K, Thompson LF, Fischer JW, Stuschke M, Jendrossek V. Loss of CD73 prevents accumulation of alternatively activated macrophages and the formation of prefibrotic macrophage clusters in irradiated lungs. FASEB J 2017; 31:2869-2880. [PMID: 28325757 DOI: 10.1096/fj.201601228r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/06/2017] [Indexed: 12/17/2022]
Abstract
While radiotherapy is a mainstay for cancer therapy, pneumonitis and fibrosis constitute dose-limiting side effects of thorax and whole body irradiation. So far, the contribution of immune cells to disease progression is largely unknown. Here we studied the role of ecto-5'-nucelotidase (CD73)/adenosine-induced changes in the myeloid compartment in radiation-induced lung fibrosis. C57BL/6 wild-type or CD73-/- mice received a single dose of whole thorax irradiation (WTI, 15 Gy). Myeloid cells were characterized in flow cytometric, histologic, and immunohistochemical analyses as well as RNA analyses. WTI induced a pronounced reduction of alveolar macrophages in both strains that recovered within 6 wk. Fibrosis development in wild-type mice was associated with a time-dependent deposition of hyaluronic acid (HA) and increased expression of markers for alternative activation on alveolar macrophages. These include the antiinflammatory macrophage mannose receptor and arginase-1. Further, macrophages accumulated in organized clusters and expressed profibrotic mediators at ≥25 wk after irradiation (fibrotic phase). Irradiated CD73-/- mice showed an altered regulation of components of the HA system and no clusters of alternatively activated macrophages. We speculate that accumulation of alternatively activated macrophages in organized clusters represents the origins of fibrotic foci after WTI and is promoted by a cross-talk between HA, CD73/adenosine signaling, and other profibrotic mediators.-De Leve, S., Wirsdörfer, F., Cappuccini, F., Schütze, A., Meyer, A. V., Röck, K., Thompson, L. F., Fischer, J. W., Stuschke, M., Jendrossek, V. Loss of CD73 prevents accumulation of alternatively activated macrophages and the formation of prefibrotic macrophage clusters in irradiated lungs.
Collapse
Affiliation(s)
- Simone de Leve
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Federica Cappuccini
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Alexandra Schütze
- Pharmacology and Clinical Pharmacology, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alina V Meyer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Katharina Röck
- Pharmacology and Clinical Pharmacology, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Linda F Thompson
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Jens W Fischer
- Pharmacology and Clinical Pharmacology, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Martin Stuschke
- Department of Radiation Oncology, University Hospital Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany;
| |
Collapse
|
29
|
Bahrami SB, Tolg C, Peart T, Symonette C, Veiseh M, Umoh JU, Holdsworth DW, McCarthy JB, Luyt LG, Bissell MJ, Yazdani A, Turley EA. Receptor for hyaluronan mediated motility (RHAMM/HMMR) is a novel target for promoting subcutaneous adipogenesis. Integr Biol (Camb) 2017; 9:223-237. [PMID: 28217782 DOI: 10.1039/c7ib00002b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hyaluronan, CD44 and the Receptor for Hyaluronan-Mediated Motility (RHAMM, gene name HMMR) regulate stem cell differentiation including mesenchymal progenitor differentiation. Here, we show that CD44 expression is required for subcutaneous adipogenesis, whereas RHAMM expression suppresses this process. We designed RHAMM function blocking peptides to promote subcutaneous adipogenesis as a clinical and tissue engineering tool. Adipogenic RHAMM peptides were identified by screening for their ability to promote adipogenesis in culture assays using rat bone marrow mesenchymal stem cells, mouse pre-adipocyte cell lines and primary human subcutaneous pre-adipocytes. Oil red O uptake into fat droplets and adiponectin production were used as biomarkers of adipogenesis. Positive peptides were formulated in either collagen I or hyaluronan (Orthovisc) gels then assessed for their adipogenic potential in vivo following injection into dorsal rat skin and mammary fat pads. Fat content was quantified and characterized using micro CT imaging, morphometry, histology, RT-PCR and ELISA analyses of adipogenic gene expression. Injection of screened peptides increased dorsal back subcutaneous fat pad area (208.3 ± 10.4 mm2versus control 84.11 ± 4.2 mm2; p < 0.05) and mammary fat pad size (45 ± 11 mg above control background, p = 0.002) in female rats. This effect lasted >5 weeks as detected by micro CT imaging and perilipin 1 mRNA expression. RHAMM expression suppresses while blocking peptides promote expression of PPARγ, C/EBP and their target genes. Blocking RHAMM function by peptide injection or topical application is a novel and minimally invasive method for potentially promoting subcutaneous adipogenesis in lipodystrophic diseases and a complementary tool to subcutaneous fat augmentation techniques.
Collapse
Affiliation(s)
- S B Bahrami
- Biological Systems and Engineering Division, BioSciences Area, Lawrence Berkeley National Laboratories, 977R225A, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wight TN, Frevert CW, Debley JS, Reeves SR, Parks WC, Ziegler SF. Interplay of extracellular matrix and leukocytes in lung inflammation. Cell Immunol 2017; 312:1-14. [PMID: 28077237 PMCID: PMC5290208 DOI: 10.1016/j.cellimm.2016.12.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022]
Abstract
During inflammation, leukocytes influx into lung compartments and interact with extracellular matrix (ECM). Two ECM components, versican and hyaluronan, increase in a range of lung diseases. The interaction of leukocytes with these ECM components controls leukocyte retention and accumulation, proliferation, migration, differentiation, and activation as part of the inflammatory phase of lung disease. In addition, bronchial epithelial cells from asthmatic children co-cultured with human lung fibroblasts generate an ECM that is adherent for monocytes/macrophages. Macrophages are present in both early and late lung inflammation. Matrix metalloproteinase 10 (MMP10) is induced in alveolar macrophages with injury and infection and modulates macrophage phenotype and their ability to degrade collagenous ECM components. Collectively, studies outlined in this review highlight the importance of specific ECM components in the regulation of inflammatory events in lung disease. The widespread involvement of these ECM components in the pathogenesis of lung inflammation make them attractive candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| | - Charles W Frevert
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Jason S Debley
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Stephen R Reeves
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - William C Parks
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| |
Collapse
|
31
|
Garantziotis S, Brezina M, Castelnuovo P, Drago L. The role of hyaluronan in the pathobiology and treatment of respiratory disease. Am J Physiol Lung Cell Mol Physiol 2016; 310:L785-95. [PMID: 26747781 DOI: 10.1152/ajplung.00168.2015] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 01/05/2016] [Indexed: 12/11/2022] Open
Abstract
Hyaluronan, a ubiquitous naturally occurring glycosaminoglycan, is a major component of the extracellular matrix, where it participates in biological processes that include water homeostasis, cell-matrix signaling, tissue healing, inflammation, angiogenesis, and cell proliferation and migration. There are emerging data that hyaluronan and its degradation products have an important role in the pathobiology of the respiratory tract. We review the role of hyaluronan in respiratory diseases and present evidence from published literature and from clinical practice supporting hyaluronan as a novel treatment for respiratory diseases. Preliminary data show that aerosolized exogenous hyaluronan has beneficial activity against airway inflammation, protects against bronchial hyperreactivity and remodeling, and disrupts the biofilm associated with chronic infection. This suggests a role in airway diseases with a predominant inflammatory component such as rhinosinusitis, asthma, chronic obstructive pulmonary disease, cystic fibrosis, and primary ciliary dyskinesia. The potential for hyaluronan to complement conventional therapy will become clearer when data are available from controlled trials in larger patient populations.
Collapse
Affiliation(s)
- Stavros Garantziotis
- Clinical Research Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina;
| | - Martin Brezina
- Clinic of Pediatric Pneumology and Phthisiology, University Hospital Bratislava, Bratislava, Slovakia
| | - Paolo Castelnuovo
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Insubria, Ospedale di Circolo, Fondazione Macchi, Varese, Italy; and
| | - Lorenzo Drago
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Galeazzi Orthopaedic Institute, Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
32
|
The Rise and Fall of Hyaluronan in Respiratory Diseases. Int J Cell Biol 2015; 2015:712507. [PMID: 26448757 PMCID: PMC4581576 DOI: 10.1155/2015/712507] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/11/2015] [Accepted: 05/03/2015] [Indexed: 12/24/2022] Open
Abstract
In normal airways, hyaluronan (HA) matrices are primarily located within the airway submucosa, pulmonary vasculature walls, and, to a lesser extent, the alveoli. Following pulmonary injury, elevated levels of HA matrices accumulate in these regions, and in respiratory secretions, correlating with the extent of injury. Animal models have provided important insight into the role of HA in the onset of pulmonary injury and repair, generally indicating that the induction of HA synthesis is an early event typically preceding fibrosis. The HA that accumulates in inflamed airways is of a high molecular weight (>1600 kDa) but can be broken down into smaller fragments (<150 kDa) by inflammatory and disease-related mechanisms that have profound effects on HA pathobiology. During inflammation in the airways, HA is often covalently modified with heavy chains from inter-alpha-inhibitor via the enzyme tumor-necrosis-factor-stimulated-gene-6 (TSG-6) and this modification promotes the interaction of leukocytes with HA matrices at sites of inflammation. The clearance of HA and its return to normal levels is essential for the proper resolution of inflammation. These data portray HA matrices as an important component of normal airway physiology and illustrate its integral roles during tissue injury and repair among a variety of respiratory diseases.
Collapse
|
33
|
Misra S, Hascall VC, Markwald RR, Ghatak S. Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer. Front Immunol 2015; 6:201. [PMID: 25999946 PMCID: PMC4422082 DOI: 10.3389/fimmu.2015.00201] [Citation(s) in RCA: 571] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/13/2015] [Indexed: 01/04/2023] Open
Abstract
The glycosaminoglycan hyaluronan (HA), a major component of extracellular matrices, and cell surface receptors of HA have been proposed to have pivotal roles in cell proliferation, migration, and invasion, which are necessary for inflammation and cancer progression. CD44 and receptor for HA-mediated motility (RHAMM) are the two main HA-receptors whose biological functions in human and murine inflammations and tumor cells have been investigated comprehensively. HA was initially considered to be only an inert component of connective tissues, but is now known as a “dynamic” molecule with a constant turnover in many tissues through rapid metabolism that involves HA molecules of various sizes: high molecular weight HA (HMW HA), low molecular weight HA, and oligosaccharides. The intracellular signaling pathways initiated by HA interactions with CD44 and RHAMM that lead to inflammatory and tumorigenic responses are complex. Interestingly, these molecules have dual functions in inflammations and tumorigenesis. For example, the presence of CD44 is involved in initiation of arthritis, while the absence of CD44 by genetic deletion in an arthritis mouse model increases rather than decreases disease severity. Similar dual functions of CD44 exist in initiation and progression of cancer. RHAMM overexpression is most commonly linked to cancer progression, whereas loss of RHAMM is associated with malignant peripheral nerve sheath tumor growth. HA may similarly perform dual functions. An abundance of HMW HA can promote malignant cell proliferation and development of cancer, whereas antagonists to HA-CD44 signaling inhibit tumor cell growth in vitro and in vivo by interfering with HMW HA-CD44 interaction. This review describes the roles of HA interactions with CD44 and RHAMM in inflammatory responses and tumor development/progression, and how therapeutic strategies that block these key inflammatory/tumorigenic processes may be developed in rodent and human diseases.
Collapse
Affiliation(s)
- Suniti Misra
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland , Ohio, OH , USA
| | - Roger R Markwald
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| | - Shibnath Ghatak
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| |
Collapse
|
34
|
Skurikhin EG, Pershina OV, Reztsova AM, Ermakova NN, Khmelevskaya ES, Krupin VA, Stepanova IE, Artamonov AV, Bekarev AA, Madonov PG, Dygai AM. Modulation of bleomycin-induced lung fibrosis by pegylated hyaluronidase and dopamine receptor antagonist in mice. PLoS One 2015; 10:e0125065. [PMID: 25927611 PMCID: PMC4415936 DOI: 10.1371/journal.pone.0125065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/20/2015] [Indexed: 12/30/2022] Open
Abstract
Hyaluronidases are groups of enzymes that degrade hyaluronic acid (HA). To stop enzymatic hydrolysis we modified testicular hyaluronidase (HYAL) by activated polyethylene oxide with the help of electron-beam synthesis. As a result we received pegylated hyaluronidase (pegHYAL). Spiperone is a selective D2 dopamine receptor antagonist. It was demonstrated on the model of a single bleomycin damage of alveolar epithelium that during the inflammatory phase monotherapy by pegHYAL or spiperone reduced the populations of hematopoietic stem /progenitor cells in the lung parenchyma. PegHYAL also reduced the levels of transforming growth factor (TGF)-β, interleukin (IL)-1β, tumor necrosis factor (TNF)-α in the serum and lungs, while spiperone reduced the level of the serum IL-1β. Polytherapy by spiperone and pegHYAL caused the increase of the quantity of hematopoietic stem/ progenitor cells in the lungs. Such an influx of blood cell precursors was observed on the background of considerable fall level of TGF-β and the increase level of TNF-α in the serum and lungs. These results show pegHYAL reduced the bleomycin-induced fibrosis reaction (production and accumulation of collagen) in the lung parenchyma. This effect was observed at a single and repetitive bleomycin damage of alveolar epithelium, the antifibrotic activity of pegHYAL surpassing the activity of testicular HYAL. The antifibrotic effect of pegHYAL is enhanced by an additional instillation of spiperone. Therapy by pegHYAL causes the flow of CD31‒ CD34‒ CD45‒ CD44+ CD73+ CD90+ CD106+-cells into the fibrous lungs. These cells are incapable of differentiating into fibroblast cells. Spiperone instillation separately or together with pegHYAL reduced the MSC-like cells considerably. These data enable us to assume, that pegHYAL is a new and promising instrument both for preventive and therapy of toxic pneumofibrosis. The blockage of D2 dopamine receptors with the following change of hyaluronan matrix can be considered as a new strategy in treatment of pneumofibrosis.
Collapse
Affiliation(s)
- Evgenii Germanovich Skurikhin
- Department of Pathophysiology and Regenerative Medicine, Research Institute of Pharmacology and Regenerative Medicine named after E.D. Goldberg, Tomsk, Russia
| | - Olga Victorovna Pershina
- Department of Pathophysiology and Regenerative Medicine, Research Institute of Pharmacology and Regenerative Medicine named after E.D. Goldberg, Tomsk, Russia
- * E-mail:
| | - Alena Mikhaylovna Reztsova
- Department of Pathophysiology and Regenerative Medicine, Research Institute of Pharmacology and Regenerative Medicine named after E.D. Goldberg, Tomsk, Russia
| | - Natalia Nikolaevna Ermakova
- Department of Pathophysiology and Regenerative Medicine, Research Institute of Pharmacology and Regenerative Medicine named after E.D. Goldberg, Tomsk, Russia
| | - Ekaterina Sergeevna Khmelevskaya
- Department of Pathophysiology and Regenerative Medicine, Research Institute of Pharmacology and Regenerative Medicine named after E.D. Goldberg, Tomsk, Russia
| | - Vycheslav Andreevich Krupin
- Department of Pathophysiology and Regenerative Medicine, Research Institute of Pharmacology and Regenerative Medicine named after E.D. Goldberg, Tomsk, Russia
| | - Inna Ernestovna Stepanova
- Department of Pathophysiology and Regenerative Medicine, Research Institute of Pharmacology and Regenerative Medicine named after E.D. Goldberg, Tomsk, Russia
| | | | | | | | - Alexander Mikhaylovich Dygai
- Department of Pathophysiology and Regenerative Medicine, Research Institute of Pharmacology and Regenerative Medicine named after E.D. Goldberg, Tomsk, Russia
| |
Collapse
|
35
|
Egger C, Cannet C, Gérard C, Dunbar A, Tigani B, Beckmann N. Hyaluronidase modulates bleomycin-induced lung injury detected noninvasively in small rodents by radial proton MRI. J Magn Reson Imaging 2015; 41:755-764. [DOI: 10.1002/jmri.24612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Christine Egger
- Novartis Institutes for BioMedical Research; Analytical Sciences and Imaging; Basel Switzerland
- University of Basel; Biocenter; Basel Switzerland
| | - Catherine Cannet
- Novartis Institutes for BioMedical Research; Analytical Sciences and Imaging; Basel Switzerland
| | - Christelle Gérard
- Novartis Institutes for BioMedical Research; Analytical Sciences and Imaging; Basel Switzerland
| | - Andrew Dunbar
- Novartis Institutes for BioMedical Research; Analytical Sciences and Imaging; Basel Switzerland
| | - Bruno Tigani
- Novartis Institutes for BioMedical Research; Analytical Sciences and Imaging; Basel Switzerland
| | - Nicolau Beckmann
- Novartis Institutes for BioMedical Research; Analytical Sciences and Imaging; Basel Switzerland
| |
Collapse
|
36
|
Ghosh S, Hoselton SA, Dorsam GP, Schuh JM. Hyaluronan fragments as mediators of inflammation in allergic pulmonary disease. Immunobiology 2014; 220:575-88. [PMID: 25582403 DOI: 10.1016/j.imbio.2014.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 12/22/2022]
Abstract
Asthma is frequently caused and/or exacerbated by sensitization to allergens, which are ubiquitous in many indoor and outdoor environments. Severe asthma is characterized by airway hyperresponsiveness and bronchial constriction in response to an inhaled allergen, leading to a disease course that is often very difficult to treat with standard asthma therapies. As a result of interactions among inflammatory cells, structural cells, and the intercellular matrix of the allergic lung, patients with sensitization to allergens may experience a greater degree of tissue injury followed by airway wall remodeling and progressive, accumulated pulmonary dysfunction as part of the disease sequela. In addition, turnover of extracellular matrix (ECM) components is a hallmark of tissue injury and repair. This review focuses on the role of the glycosaminoglycan hyaluronan (HA), a component of the ECM, in pulmonary injury and repair with an emphasis on allergic asthma. Both the synthesis and degradation of the ECM are critical contributors to tissue repair and remodeling. Fragmented HA accumulates during tissue injury and functions in ways distinct from the larger native polymer. There is gathering evidence that HA degradation products are active participants in stimulating the expression of inflammatory genes in a variety of immune cells at the injury site. In this review, we will consider recent advances in the understanding of the mechanisms that are associated with HA accumulation and inflammatory cell recruitment in the asthmatic lung.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Scott A Hoselton
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Glenn P Dorsam
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jane M Schuh
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
37
|
Schmaus A, Klusmeier S, Rothley M, Dimmler A, Sipos B, Faller G, Thiele W, Allgayer H, Hohenberger P, Post S, Sleeman JP. Accumulation of small hyaluronan oligosaccharides in tumour interstitial fluid correlates with lymphatic invasion and lymph node metastasis. Br J Cancer 2014; 111:559-67. [PMID: 24937668 PMCID: PMC4119989 DOI: 10.1038/bjc.2014.332] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/09/2014] [Accepted: 05/15/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Association studies have implicated the glycosaminoglycan hyaluronan (hyaluronic acid, HA) and its degrading enzymes the hyaluronidases in tumour progression and metastasis. Oligosaccharides of degraded HA have been ascribed a number of biological functions that are not exerted by high-molecular-weight HA (HMW-HA). However, whether these small HA oligosaccharides (sHA) have a role in tumour progression currently remains uncertain due to an inability to analyse their concentration in tumours. METHODS We report a novel method to determine the concentration of sHA ranging from 6 to 25 disaccharides in tumour interstitial fluid (TIF). Levels of sHA were measured in TIF from experimental rat tumours and human colorectal tumours. RESULTS While the majority of HA in TIF is HMW-HA, concentrations of sHA up to 6 μg ml(-1) were detected in a subset of tumours, but not in interstitial fluid from healthy tissues. In a cohort of 72 colorectal cancer patients we found that increased sHA concentrations in TIF are associated with lymphatic vessel invasion by tumour cells and the formation of lymph node metastasis. CONCLUSIONS These data document for the first time the pathophysiological concentration of sHA in tumours, and provide evidence of a role for sHA in tumour progression.
Collapse
Affiliation(s)
- A Schmaus
- 1] Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany [2] Karlsruhe Institute for Technology (KIT), Campus Nord, Institut für Toxikologie und Genetik, Postfach 3640, 76021 Karlsruhe, Germany
| | - S Klusmeier
- 1] Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany [2] Karlsruhe Institute for Technology (KIT), Campus Nord, Institut für Toxikologie und Genetik, Postfach 3640, 76021 Karlsruhe, Germany
| | - M Rothley
- 1] Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany [2] Karlsruhe Institute for Technology (KIT), Campus Nord, Institut für Toxikologie und Genetik, Postfach 3640, 76021 Karlsruhe, Germany
| | - A Dimmler
- Institut und Gemeinschaftspraxis für Pathologie an den St Vincentiuskliniken Karlsruhe, Südendstrasse 37, 76137 Karlsruhe, Germany
| | - B Sipos
- Universitätsklinikum Tübingen, Department of Pathology, Liebermeisterstrasse 8, 72076 Tübingen, Germany
| | - G Faller
- Institut und Gemeinschaftspraxis für Pathologie an den St Vincentiuskliniken Karlsruhe, Südendstrasse 37, 76137 Karlsruhe, Germany
| | - W Thiele
- 1] Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany [2] Karlsruhe Institute for Technology (KIT), Campus Nord, Institut für Toxikologie und Genetik, Postfach 3640, 76021 Karlsruhe, Germany
| | - H Allgayer
- Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany
| | - P Hohenberger
- Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany
| | - S Post
- Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany
| | - J P Sleeman
- 1] Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany [2] Karlsruhe Institute for Technology (KIT), Campus Nord, Institut für Toxikologie und Genetik, Postfach 3640, 76021 Karlsruhe, Germany
| |
Collapse
|
38
|
Dicker KT, Gurski LA, Pradhan-Bhatt S, Witt RL, Farach-Carson MC, Jia X. Hyaluronan: a simple polysaccharide with diverse biological functions. Acta Biomater 2014; 10:1558-70. [PMID: 24361428 PMCID: PMC3960342 DOI: 10.1016/j.actbio.2013.12.019] [Citation(s) in RCA: 451] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/04/2013] [Accepted: 12/10/2013] [Indexed: 01/24/2023]
Abstract
Hyaluronan (HA) is a linear polysaccharide with disaccharide repeats of d-glucuronic acid and N-acetyl-d-glucosamine. It is evolutionarily conserved and abundantly expressed in the extracellular matrix (ECM), on the cell surface and even inside cells. Being a simple polysaccharide, HA exhibits an astonishing array of biological functions. HA interacts with various proteins or proteoglycans to organize the ECM and to maintain tissue homeostasis. The unique physical and mechanical properties of HA contribute to the maintenance of tissue hydration, the mediation of solute diffusion through the extracellular space and the lubrication of certain tissues. The diverse biological functions of HA are manifested through its complex interactions with matrix components and resident cells. Binding of HA with cell surface receptors activates various signaling pathways, which regulate cell function, tissue development, inflammation, wound healing and tumor progression and metastasis. Taking advantage of the inherent biocompatibility and biodegradability of HA, as well as its susceptibility to chemical modification, researchers have developed various HA-based biomaterials and tissue constructs with promising and broad clinical potential. This paper illustrates the properties of HA from a matrix biology perspective by first introducing the principles underlying the biosynthesis and biodegradation of HA, as well as the interactions of HA with various proteins and proteoglycans. It next highlights the roles of HA in physiological and pathological states, including morphogenesis, wound healing and tumor metastasis. A deeper understanding of the mechanisms underlying the roles of HA in various physiological processes can provide new insights and tools for the engineering of complex tissues and tissue models.
Collapse
Affiliation(s)
- Kevin T Dicker
- Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark, DE 19716, USA
| | - Lisa A Gurski
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Swati Pradhan-Bhatt
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Helen F. Graham Cancer Center, Christiana Care Health Systems (CCHS), Newark, DE 19713, USA
| | - Robert L Witt
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Helen F. Graham Cancer Center, Christiana Care Health Systems (CCHS), Newark, DE 19713, USA; Otolaryngology - Head & Neck Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mary C Farach-Carson
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA; Department of Bioengineering, Rice University, Houston, TX 77251, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark, DE 19716, USA; Biomedical Engineering Program, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA.
| |
Collapse
|
39
|
Dygai AM, Skurikhin EG, Ermakova NN, Pershina OV, Krupin VA, Reztsova AM, Ermolaeva LA, Khmelevskaya ES, Artamonov AV, Bekarev AA, Madonov PG, Kinsht DN. Antifibrotic activity of hyaluronidase immobilized on polyethylenoxide under conditions of bleomycin-induced pneumofibrosis. Bull Exp Biol Med 2013; 154:388-92. [PMID: 23484207 DOI: 10.1007/s10517-013-1957-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hyaluronidase immobilized on polyethylenoxide obtained by electron bean synthesis was administered intranasally and intravenously to C57Bl/6 mice after intratracheal bleomycin and the enzyme effects on the development of pneumofibrosis in animals were studied. Intranasal immobilized hyaluronidase prevented connective tissue growth in the lungs exposed to bleomycin and virtually did not modulate the infiltration of the alveolar and alveolar duct interstitium by inflammatory cells (lymphocytes, macrophages, neutrophils, plasma cells). The antifibrotic effect developed sooner after intranasal inoculation of immobilized hyaluronidase and was more pronounced than after intranasal native hyaluronidase. Intravenous injection of immobilized hyaluronidase did not modify the inflammatory process and deposition of collagen fibrils in the lung parenchyma in pneumofibrosis.
Collapse
Affiliation(s)
- A M Dygai
- Institute of Pharmacology, Siberian Division of the Russian Academy of Medical Sciences, Tomsk, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hyaluronan fragments induce IFNβ via a novel TLR4-TRIF-TBK1-IRF3-dependent pathway. JOURNAL OF INFLAMMATION-LONDON 2013; 10:23. [PMID: 23721397 PMCID: PMC3682892 DOI: 10.1186/1476-9255-10-23] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 05/23/2013] [Indexed: 12/16/2022]
Abstract
Background The extracellular matrix plays a critical role in insuring tissue integrity and water homeostasis. However, breakdown products of the extracellular matrix have emerged as endogenous danger signals, designed to rapidly activate the immune system against a potential pathogen breach. Type I interferons play a critical role in the immune response against viral infections. In the lungs, hylauronan (HA) exists as a high molecular weight, biologically inert extracellular matrix component that is critical for maintaining lung function. When lung tissue is injured, HA is broken down into lower molecular weight fragments that alert the immune system to the breach in tissue integrity by activating innate immune responses. HA fragments are known to induce inflammatory gene expression via TLR-MyD88-dependent pathways. Methods Primary peritoneal macrophages from C57BL/6 wild type, TLR4 null, TLR3 null, MyD88 null, and TRIF null mice as well as alveolar and peritoneal macrophage cell lines were stimulated with HA fragments and cytokine production was assessed by rt-PCR and ELISA. Western blot analysis for IRF3 was preformed on cell lysates from macrophages stimulate with HA fragments Results We demonstrate for the first time that IFNβ is induced in murine macrophages by HA fragments. We also show that HA fragments induce IFNβ using a novel pathway independent of MyD88 but dependent on TLR4 via TRIF and IRF-3. Conclusions Overall our findings reveal a novel signaling pathway by which hyaluronan can modulate inflammation and demonstrate the ability of hyaluronan fragments to induce the expression of type I interferons in response to tissue injury even in the absence of viral infection. This is independent of the pathway of the TLR2-MyD88 used by these matrix fragments to induce inflammatory chemokines. Thus, LMW HA may be modifying the inflammatory milieu simultaneously via several pathways.
Collapse
|
41
|
Tan JL, Chan ST, Wallace EM, Lim R. Human amnion epithelial cells mediate lung repair by directly modulating macrophage recruitment and polarization. Cell Transplant 2013; 23:319-28. [PMID: 23294809 DOI: 10.3727/096368912x661409] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human amnion epithelial cells (hAECs) have been shown to modulate inflammation and restore normal lung structure and respiratory function following bleomycin challenge in immune-competent mice. These effects are exerted despite a lack of significant engraftment of hAECs, suggesting that immunomodulatory effect mechanisms are at play. In this study, using the bleomycin model of injury, we explored the interactions between hAECs and macrophages. We administered 4 million hAECs intraperitoneally to C57Bl6 mice 24 h following a bleomycin challenge. Using FACS analysis and qPCR, we showed that hAEC administration significantly reduced macrophage infiltration into the lungs and that the majority of the pulmonary macrophages were of the M2 phenotype. Using bone marrow-derived macrophages, we then showed that hAEC-conditioned media could alter macrophage polarization, migration, and phagocytosis, without affecting macrophage survival or proliferation in vitro. This study provides the first evidence that hAECs directly influence macrophage behavior in a proreparative manner and suggests that hAECs are able to mediate these effects independently of other immune cell types.
Collapse
Affiliation(s)
- Jean L Tan
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
42
|
Foley JP, Lam D, Jiang H, Liao J, Cheong N, McDevitt TM, Zaman A, Wright JR, Savani RC. Toll-like receptor 2 (TLR2), transforming growth factor-β, hyaluronan (HA), and receptor for HA-mediated motility (RHAMM) are required for surfactant protein A-stimulated macrophage chemotaxis. J Biol Chem 2012; 287:37406-19. [PMID: 22948158 DOI: 10.1074/jbc.m112.360982] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The innate immune system protects the host from bacterial and viral invasion. Surfactant protein A (SPA), a lung-specific collectin, stimulates macrophage chemotaxis. However, the mechanisms regulating this function are unknown. Hyaluronan (HA) and its receptors RHAMM (receptor for HA-mediated motility, CD168) and CD44 also regulate cell migration and inflammation. We therefore examined the role of HA, RHAMM, and CD44 in SPA-stimulated macrophage chemotaxis. Using antibody blockade and murine macrophages, SPA-stimulated macrophage chemotaxis was dependent on TLR2 but not the other SPA receptors examined. Anti-TLR2 blocked SPA-induced production of TGFβ. In turn, TGFβ1-stimulated chemotaxis was inhibited by HA-binding peptide and anti-RHAMM antibody but not anti-TLR2 antibody. Macrophages from TLR2(-/-) mice failed to migrate in response to SPA but responded normally to TGFβ1 and HA, effects that were blocked by anti-RHAMM antibody. Macrophages from WT and CD44(-/-) mice had similar responses to SPA, whereas those from RHAMM(-/-) mice had decreased chemotaxis to SPA, TGFβ1, and HA. In primary macrophages, SPA-stimulated TGFβ production was dependent on TLR2, JNK, and ERK but not p38. Pam3Cys, a specific TLR2 agonist, stimulated phosphorylation of JNK, ERK, and p38, but only JNK and ERK inhibition blocked Pam3Cys-stimulated chemotaxis. We have uncovered a novel pathway for SPA-stimulated macrophage chemotaxis where SPA stimulation via TLR2 drives JNK- and ERK-dependent TGFβ production. TGFβ1, in turn, stimulates macrophage chemotaxis in a RHAMM and HA-dependent manner. These findings are highly relevant to the regulation of innate immune responses by SPA with key roles for specific components of the extracellular matrix.
Collapse
Affiliation(s)
- Joseph P Foley
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tolg C, Hamilton SR, Zalinska E, McCulloch L, Amin R, Akentieva N, Winnik F, Savani R, Bagli DJ, Luyt LG, Cowman MK, McCarthy JB, Turley EA. A RHAMM mimetic peptide blocks hyaluronan signaling and reduces inflammation and fibrogenesis in excisional skin wounds. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1250-70. [PMID: 22889846 DOI: 10.1016/j.ajpath.2012.06.036] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 06/14/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
Abstract
Hyaluronan is activated by fragmentation and controls inflammation and fibroplasia during wound repair and diseases (eg, cancer). Hyaluronan-binding peptides were identified that modify fibrogenesis during skin wound repair. Peptides were selected from 7- to 15mer phage display libraries by panning with hyaluronan-Sepharose beads and assayed for their ability to block fibroblast migration in response to hyaluronan oligosaccharides (10 kDa). A 15mer peptide (P15-1), with homology to receptor for hyaluronan mediated motility (RHAMM) hyaluronan binding sequences, was the most effective inhibitor. P15-1 bound to 10-kDa hyaluronan with an affinity of K(d) = 10(-7) and appeared to specifically mimic RHAMM since it significantly reduced binding of hyaluronan oligosaccharides to recombinant RHAMM but not to recombinant CD44 or TLR2,4, and altered wound repair in wild-type but not RHAMM(-/-) mice. One topical application of P15-1 to full-thickness excisional rat wounds significantly reduced wound macrophage number, fibroblast number, and blood vessel density compared to scrambled, negative control peptides. Wound collagen 1, transforming growth factor β-1, and α-smooth muscle actin were reduced, whereas tenascin C was increased, suggesting that P15-1 promoted a form of scarless healing. Signaling/microarray analyses showed that P15-1 blocks RHAMM-regulated focal adhesion kinase pathways in fibroblasts. These results identify a new class of reagents that attenuate proinflammatory, fibrotic repair by blocking hyaluronan oligosaccharide signaling.
Collapse
Affiliation(s)
- Cornelia Tolg
- Cancer Research Laboratory Program, Lawson Health Research Institute and London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Østerholt HCD, Dannevig I, Wyckoff MH, Liao J, Akgul Y, Ramgopal M, Mija DS, Cheong N, Longoria C, Mahendroo M, Nakstad B, Saugstad OD, Savani RC. Antioxidant protects against increases in low molecular weight hyaluronan and inflammation in asphyxiated newborn pigs resuscitated with 100% oxygen. PLoS One 2012; 7:e38839. [PMID: 22701723 PMCID: PMC3372475 DOI: 10.1371/journal.pone.0038839] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 05/11/2012] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Newborn resuscitation with 100% oxygen is associated with oxidative-nitrative stresses and inflammation. The mechanisms are unclear. Hyaluronan (HA) is fragmented to low molecular weight (LMW) by oxidative-nitrative stresses and can promote inflammation. We examined the effects of 100% oxygen resuscitation and treatment with the antioxidant, N-acetylcysteine (NAC), on lung 3-nitrotyrosine (3-NT), LMW HA, inflammation, TNFα and IL1ß in a newborn pig model of resuscitation. METHODS & PRINCIPAL FINDINGS Newborn pigs (n = 40) were subjected to severe asphyxia, followed by 30 min ventilation with either 21% or 100% oxygen, and were observed for the subsequent 150 minutes in 21% oxygen. One 100% oxygen group was treated with NAC. Serum, bronchoalveolar lavage (BAL), lung sections, and lung tissue were obtained. Asphyxia resulted in profound hypoxia, hypercarbia and metabolic acidosis. In controls, HA staining was in airway subepithelial matrix and no 3-NT staining was seen. At the end of asphyxia, lavage HA decreased, whereas serum HA increased. At 150 minutes after resuscitation, exposure to 100% oxygen was associated with significantly higher BAL HA, increased 3NT staining, and increased fragmentation of lung HA. Lung neutrophil and macrophage contents, and serum TNFα and IL1ß were higher in animals with LMW than those with HMW HA in the lung. Treatment of 100% oxygen animals with NAC blocked nitrative stress, preserved HMW HA, and decreased inflammation. In vitro, peroxynitrite was able to fragment HA, and macrophages stimulated with LMW HA increased TNFα and IL1ß expression. CONCLUSIONS & SIGNIFICANCE Compared to 21%, resuscitation with 100% oxygen resulted in increased peroxynitrite, fragmentation of HA, inflammation, as well as TNFα and IL1ß expression. Antioxidant treatment prevented the expression of peroxynitrite, the degradation of HA, and also blocked increases in inflammation and inflammatory cytokines. These findings provide insight into potential mechanisms by which exposure to hyperoxia results in systemic inflammation.
Collapse
Affiliation(s)
- Helene C. D. Østerholt
- Department of Pediatrics, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute for Surgical Research, Oslo University Hospital – Rikshospitalet, Oslo, Norway
| | - Ingrid Dannevig
- Department of Pediatrics, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute for Surgical Research, Oslo University Hospital – Rikshospitalet, Oslo, Norway
| | - Myra H. Wyckoff
- Divisions of Pulmonary and Vascular Biology and Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jie Liao
- Divisions of Pulmonary and Vascular Biology and Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yucel Akgul
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mrithyunjay Ramgopal
- Divisions of Pulmonary and Vascular Biology and Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Dan S. Mija
- Divisions of Pulmonary and Vascular Biology and Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Naeun Cheong
- Divisions of Pulmonary and Vascular Biology and Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Christopher Longoria
- Divisions of Pulmonary and Vascular Biology and Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mala Mahendroo
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Britt Nakstad
- Department of Pediatrics, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ola D. Saugstad
- Department of Pediatric Research, Oslo University Hospital – Rikshospitalet, Oslo, Norway
| | - Rashmin C. Savani
- Divisions of Pulmonary and Vascular Biology and Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
45
|
Chin L, Calabro A, Rodriguez ER, Tan CD, Walker E, Derwin KA. Characterization of and host response to tyramine substituted-hyaluronan enriched fascia extracellular matrix. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1465-1477. [PMID: 21553156 PMCID: PMC3245546 DOI: 10.1007/s10856-011-4325-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 04/18/2011] [Indexed: 05/30/2023]
Abstract
Naturally-occurring biomaterial scaffolds derived from extracellular matrix (ECM) have been previously investigated for soft tissue repair. We propose to enrich fascia ECM with high molecular weight tyramine substituted-hyaluronan (TS-HA) to modulate inflammation associated with implantation and enhance fibroblast infiltration. As critical determinants of constructive remodeling, the host inflammatory response and macrophage polarization to TS-HA enriched fascia were characterized in a rat abdominal wall model. TS-HA treated fascia with cross-linking had a similar lymphocyte (P = 0.11) and plasma cell (P = 0.13) densities, greater macrophage (P = 0.001) and giant cell (P < 0.0001) densities, and a lower density of fibroblast-like cells (P < 0.0001) than water treated controls. Treated fascia, with or without cross-linking, exhibited a predominantly M2 pro-remodeling macrophage profile similar to water controls (P = 0.82), which is suggestive of constructive tissue remodeling. Our findings demonstrated that HA augmentation can alter the host response to an ECM, but the appropriate concentration and molecular weight needed to minimize chronic inflammation within the scaffold remains to be determined.
Collapse
Affiliation(s)
- LiKang Chin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH 44195, USA. Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Anthony Calabro
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH 44195, USA
| | - E. Rene Rodriguez
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Carmela D. Tan
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Esteban Walker
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kathleen A. Derwin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH 44195, USA
| |
Collapse
|
46
|
The role of CD44 in the acute and resolution phase of the host response during pneumococcal pneumonia. J Transl Med 2011; 91:588-97. [PMID: 21242959 DOI: 10.1038/labinvest.2010.206] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Streptococcus pneumoniae is the most prevalent pathogen causing community-acquired pneumonia. CD44 is a transmembrane adhesion molecule, expressed by a wide variety of cell types, that has several functions in innate and adaptive immune responses. In this study, we tested the hypothesis that CD44 is involved in the host response during pneumococcal pneumonia. On intranasal infection with a lethal dose of S. pneumoniae CD44-knockout (KO) mice showed a prolonged survival when compared with wild-type mice, which was accompanied by a diminished pulmonary bacterial growth and reduced dissemination to distant body sites. Whereas, proinflammatory cytokine responses and lung pathology were not affected, CD44 deficiency resulted in increased early neutrophil influx into the lung. In separate experiments, we confirmed a detrimental role of CD44 in host defense against pneumococci during sublethal pneumonia, as demonstrated by an improved capacity of CD44 KO mice to clear a low infectious dose. In addition, CD44 appeared important for the resolution of lung inflammation during sublethal pneumonia, as shown by histopathology of lung tissue slides. In conclusion, we show here that CD44 facilitates bacterial outgrowth and dissemination during pneumococcal pneumonia, which in lethal infection results in a prolonged survival of CD44 KO mice. Moreover, during sublethal pneumonia CD44 contributes to the resolution of the inflammatory response.
Collapse
|
47
|
Heise RL, Stober V, Cheluvaraju C, Hollingsworth JW, Garantziotis S. Mechanical stretch induces epithelial-mesenchymal transition in alveolar epithelia via hyaluronan activation of innate immunity. J Biol Chem 2011; 286:17435-44. [PMID: 21398522 DOI: 10.1074/jbc.m110.137273] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epithelial injury is a central event in the pathogenesis of many inflammatory and fibrotic lung diseases like acute respiratory distress syndrome, pulmonary fibrosis, and iatrogenic lung injury. Mechanical stress is an often underappreciated contributor to lung epithelial injury. Following injury, differentiated epithelia can assume a myofibroblast phenotype in a process termed epithelial to mesenchymal transition (EMT), which contributes to aberrant wound healing and fibrosis. We demonstrate that cyclic mechanical stretch induces EMT in alveolar type II epithelial cells, associated with increased expression of low molecular mass hyaluronan (sHA). We show that sHA is sufficient for induction of EMT in statically cultured alveolar type II epithelial cells and necessary for EMT during cell stretch. Furthermore, stretch-induced EMT requires the innate immune adaptor molecule MyD88. We examined the Wnt/β-catenin pathway, which is known to mediate EMT. The Wnt target gene Wnt-inducible signaling protein 1 (wisp-1) is significantly up-regulated in stretched cells in hyaluronan- and MyD88-dependent fashion, and blockade of WISP-1 prevents EMT in stretched cells. In conclusion, we show for the first time that innate immunity transduces mechanical stress responses through the matrix component hyaluronan, and activation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Rebecca L Heise
- Laboratory of Respiratory Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
48
|
Bitencourt CS, Pereira PA, Ramos SG, Sampaio SV, Arantes EC, Aronoff DM, Faccioli LH. Hyaluronidase recruits mesenchymal-like cells to the lung and ameliorates fibrosis. FIBROGENESIS & TISSUE REPAIR 2011; 4:3. [PMID: 21232095 PMCID: PMC3035036 DOI: 10.1186/1755-1536-4-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 01/13/2011] [Indexed: 12/12/2022]
Abstract
Hyaluronidases (HYALs) comprise a group of enzymes that degrade hyaluronic acid (HA). In this report, we reveal that a single intranasal inoculation of HYAL induces an increase in mononuclear cells within the bronchoalveolar space demonstrating a mesenchymal-like phenotype, expressing stem cell antigen-1 (SCA-1), CD44 and CD73 but not CD34, CD45, CD3, CD4, CD8 or CD19. This influx of mesenchymal stem cell (MSC)-like cells was dependent on leukotriene production within the lung parenchyma. These findings prompted experiments demonstrating that HYAL treatment potently blocked bleomycin-induced lung injury and fibrosis while decreasing transforming growth factor (TGF)-β production and collagen deposition. These data suggest that HYAL is a novel and promising tool to use autologous MSC-like cells in the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Claudia S Bitencourt
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil.
| | | | | | | | | | | | | |
Collapse
|
49
|
van der Windt GJW, Florquin S, de Vos AF, van't Veer C, Queiroz KCS, Liang J, Jiang D, Noble PW, van der Poll T. CD44 deficiency is associated with increased bacterial clearance but enhanced lung inflammation during Gram-negative pneumonia. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2483-94. [PMID: 20864681 DOI: 10.2353/ajpath.2010.100562] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Klebsiella pneumoniae is a frequently isolated causative pathogen in respiratory tract infections. CD44 is a transmembrane adhesion molecule that has been implicated in several immunological processes. To determine the role of CD44 during Klebsiella pneumonia, we intranasally infected wild-type and CD44 knockout (KO) mice with 10(2) to 10(4) colony-forming units of K. pneumoniae or administered Klebsiella lipopolysaccharide. During lethal infection, CD44 deficiency was associated with reduced bacterial growth and dissemination accompanied by enhanced pulmonary inflammation. After infection with lower Klebsiella doses, CD44 KO mice but not wild-type mice demonstrated mortality. After infection with even lower bacterial doses, which were cleared by most mice of both strains, CD44 KO mice displayed enhanced lung inflammation 4 and 10 days postinfection, indicating that CD44 is important for the resolution of pulmonary inflammation after nonlethal pneumonia. In accordance, CD44 KO mice showed a diminished resolution of lung inflammation 4 days after intrapulmonary delivery of lipopolysaccharide. CD44 deficiency was associated with the accumulation of hyaluronan together with reduced gene expression levels of the negative regulators of Toll-like receptor signaling, interleukin-1R-associated kinase M, A20, and suppressor of cytokine signaling 3. In conclusion, the absence of CD44 affects various components and phases of the host response during Klebsiella pneumonia, reducing bacterial outgrowth and dissemination and enhancing pulmonary pathology during lethal infection, and diminishing the resolution of lung inflammation during sublethal infection.
Collapse
Affiliation(s)
- Gerritje J W van der Windt
- Center for Infection and Immunity Amsterdam, Department of Pathology, Academic Medical Center, Meibergdreef 9, Room G2-130, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhu L, Zhuo L, Kimata K, Yamaguchi E, Watanabe H, Aronica MA, Hascall VC, Baba K. Deficiency in the serum-derived hyaluronan-associated protein-hyaluronan complex enhances airway hyperresponsiveness in a murine model of asthma. Int Arch Allergy Immunol 2010; 153:223-33. [PMID: 20484920 DOI: 10.1159/000314362] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 01/20/2010] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Serum-derived hyaluronan (HA)-associated proteins (SHAPs), the heavy chains of inter-α-trypsin inhibitor, covalently bind to HA to form the SHAP-HA complex. The SHAP-HA complex is involved in the pathophysiology of inflammatory diseases, including rheumatoid arthritis. We investigated whether this complex is also involved in airway allergy. METHODS SHAP-HA-deficient (bikunin knockout, KO) mice and wild-type (WT) mice were immunized twice by intraperitoneal injection of ovalbumin (OVA) and exposed to aerosol OVA for 30 min each day for 2 weeks. Twenty-four hours after the final OVA challenge, airway responsiveness to inhaled methacholine (MCh) was measured, and analysis of bronchoalveolar lavage fluid (BALF) and lung histological studies were done. RESULTS Compared to WT mice, KO mice showed higher airway hyperresponsiveness to inhaled MCh and higher late-phase responses to OVA whereas the early-phase responses were similar. Cell differentials of BALF showed an increased number of macrophages and neutrophils in KO mice. Furthermore, decreased concentrations of soluble tumor necrosis factor receptor-1 (sTNFR1) were found in BALF from KO mice whereas the levels of Th1 and Th2 cytokines were not different from WT mice. Immunochemical study of the lung tissues revealed stronger staining of sTNFR1 in KO than in WT mice. CONCLUSIONS Our results suggest that in this murine asthma model, the SHAP-HA complex has an inhibitory role in the development of airway hyperresponsiveness and allergic airway inflammation which may be attributed, at least in part, to negative feedback mechanisms exerted by sTNFR1, the shedding of which from the cell surface might also be promoted by the SHAP-HA complex.
Collapse
Affiliation(s)
- Long Zhu
- Institute for Molecular Science of Medicine, Aichi Medical University School of Medicine, Yazako, Nagakute, Japan
| | | | | | | | | | | | | | | |
Collapse
|