1
|
Eosinophils in the Gastrointestinal Tract: Key Contributors to Neuro-Immune Crosstalk and Potential Implications in Disorders of Brain-Gut Interaction. Cells 2022; 11:cells11101644. [PMID: 35626681 PMCID: PMC9139532 DOI: 10.3390/cells11101644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/07/2023] Open
Abstract
Eosinophils are innate immune granulocytes actively involved in defensive responses and in local and systemic inflammatory processes. Beyond these effector roles, eosinophils are fundamental to maintaining homeostasis in the tissues they reside. Gastrointestinal eosinophils modulate barrier function and mucosal immunity and promote tissue development through their direct communication with almost every cellular component. This is possible thanks to the variety of receptors they express and the bioactive molecules they store and release, including cytotoxic proteins, cytokines, growth factors, and neuropeptides and neurotrophines. A growing body of evidence points to the eosinophil as a key neuro-immune player in the regulation of gastrointestinal function, with potential implications in pathophysiological processes. Eosinophil–neuron interactions are facilitated by chemotaxis and adhesion molecules, and the mediators released may have excitatory or inhibitory effects on each cell type, with physiological consequences dependent on the type of innervation involved. Of special interest are the disorders of the brain–gut interaction (DBGIs), mainly functional dyspepsia (FD) and irritable bowel syndrome (IBS), in which mucosal eosinophilia and eosinophil activation have been identified. In this review, we summarize the main roles of gastrointestinal eosinophils in supporting gut homeostasis and the evidence available on eosinophil–neuron interactions to bring new insights that support the fundamental role of this neuro-immune crosstalk in maintaining gut health and contributing to the pathophysiology of DBGIs.
Collapse
|
2
|
Abstract
Eosinophils affect nerve structure and function in organs such as lungs and skin, which contributes to disease pathogenesis. We have developed methods for culturing primary sensory and parasympathetic neurons in multiple species and have refined these techniques for coculture with eosinophils. Eosinophil-nerve coculture has been an essential tool for testing interactions between these cell types. Here we describe methods for coculturing primary parasympathetic ganglia, vagal sensory nerves, and dorsal root sensory nerves with eosinophils.
Collapse
Affiliation(s)
- Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Becky J Proskocil
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Zhenying Nie
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
3
|
Abstract
Bullous pemphigoid (BP) is an autoimmune blistering disorder with substantial morbidity and mortality. BP is regarded as a disorder driven by IgG due to BP180 and BP230 IgG autoantibodies, yet, new advances highlight the function of eosinophils and IgE autoantibodies in BP. Evidence supports that eosinophils are involved in BP pathogenesis, notably, these include the presence of IL-5, eotaxin, and eosinophil-colony stimulating factor in blister fluid, peripheral blood eosinophilia is present in nearly 50% of affected patients, eosinophils are found against the dermo-epidermal junction (DEJ) when BP serum is present, metalloprotease-9 is secreted by eosinophils at blister sites, blister fluid of BP patients contains eosinophil granule proteins which are located along the lamina lucida of the BMZ in patients with BP and correspond with disease clinically, eosinophil extracellular traps (EET) have been linked to DEJ splitting, IL-5 activated eosinophils cause DEJ separation when BP serum is present, and eosinophils are requisite to drive anti-BP180 IgE mediated blistering of the skin. Yet, the mechanism whereby eosinophils contribute to the pathogenesis of BP remains to be explored. In this review, we examine the role of eosinophils in BP while offering a basis to explain the pathomechanisms of eosinophils in BP.
Collapse
Affiliation(s)
- Virginia A Jones
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Payal M Patel
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyle T Amber
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA -
| |
Collapse
|
4
|
Lebold KM, Jacoby DB, Drake MG. Inflammatory mechanisms linking maternal and childhood asthma. J Leukoc Biol 2020; 108:113-121. [PMID: 32040236 DOI: 10.1002/jlb.3mr1219-338r] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022] Open
Abstract
Asthma is a chronic inflammatory airway disease characterized by airway hyperresponsiveness, inflammation, and remodeling. Asthma often develops during childhood and causes lifelong decrements in lung function and quality of life. Risk factors for childhood asthma are numerous and include genetic, epigenetic, developmental, and environmental factors. Uncontrolled maternal asthma during pregnancy exposes the developing fetus to inflammatory insults, which further increase the risk of childhood asthma independent of genetic predisposition. This review focuses on the role of maternal asthma in the development of asthma in offspring. We will present maternal asthma as a targetable and modifiable risk factor for childhood asthma and discuss the mechanisms by which maternal inflammation increases childhood asthma risk. Topics include how exposure to maternal asthma in utero shapes structural lung development with a special emphasis on airway nerves, how maternal type-2 cytokines such as IL-5 activate the fetal immune system, and how changes in lung and immune cell development inform responses to aero-allergens later in life. Finally, we highlight emerging evidence that maternal asthma establishes a unique "asthma signature" in the airways of children, leading to novel mechanisms of airway hyperreactivity and inflammatory cell responses.
Collapse
Affiliation(s)
- Katie M Lebold
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
5
|
Filippone RT, Sahakian L, Apostolopoulos V, Nurgali K. Eosinophils in Inflammatory Bowel Disease. Inflamm Bowel Dis 2019; 25:1140-1151. [PMID: 30856253 DOI: 10.1093/ibd/izz024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Clinical investigations in inflammatory bowel disease (IBD) patients have provided increasing evidence that eosinophils contribute to chronic intestinal inflammation. Accumulation of eosinophils in the gastrointestinal tract correlates with the variations of eosinophil regulatory molecules; however, their role in gastrointestinal dysfunction in IBD has not been fully elucidated. This review will describe the development and characterization of gastrointestinal eosinophils, mechanisms of eosinophil recruitment to the gastrointestinal tract. Moreover, the eosinophil-induced changes to the enteric nervous system associated with disease severity and gastrointestinal dysfunction will be analyzed with suggestive molecular pathways for enteric neuronal injury. Current and potential therapeutic interventions targeting eosinophils will be discussed.
Collapse
Affiliation(s)
- Rhiannon T Filippone
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Lauren Sahakian
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia.,Department of Medicine Western Health, Melbourne University, Melbourne, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Australia
| |
Collapse
|
6
|
Drake MG, Scott GD, Blum ED, Lebold KM, Nie Z, Lee JJ, Fryer AD, Costello RW, Jacoby DB. Eosinophils increase airway sensory nerve density in mice and in human asthma. Sci Transl Med 2018; 10:eaar8477. [PMID: 30185653 PMCID: PMC6592848 DOI: 10.1126/scitranslmed.aar8477] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/07/2018] [Accepted: 08/12/2018] [Indexed: 01/06/2023]
Abstract
In asthma, airway nerve dysfunction leads to excessive bronchoconstriction and cough. It is well established that eosinophils alter nerve function and that airway eosinophilia is present in 50 to 60% of asthmatics. However, the effects of eosinophils on airway nerve structure have not been established. We tested whether eosinophils alter airway nerve structure and measured the physiological consequences of those changes. Our results in humans with and without eosinophilic asthma showed that airway innervation and substance P expression were increased in moderate persistent asthmatics compared to mild intermittent asthmatics and healthy subjects. Increased innervation was associated with a lack of bronchodilator responsiveness and increased irritant sensitivity. In a mouse model of eosinophilic airway inflammation, the increase in nerve density and airway hyperresponsiveness were mediated by eosinophils. Our results implicate airway nerve remodeling as a key mechanism for increased irritant sensitivity and exaggerated airway responsiveness in eosinophilic asthma.
Collapse
Affiliation(s)
- Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Gregory D Scott
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Emily D Blum
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Katherine M Lebold
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Zhenying Nie
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - James J Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Richard W Costello
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
7
|
Amber KT, Valdebran M, Kridin K, Grando SA. The Role of Eosinophils in Bullous Pemphigoid: A Developing Model of Eosinophil Pathogenicity in Mucocutaneous Disease. Front Med (Lausanne) 2018; 5:201. [PMID: 30042946 PMCID: PMC6048777 DOI: 10.3389/fmed.2018.00201] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune blistering disease which carries a significant mortality and morbidity. While historically BP has been characterized as an IgG driven disease mediated by anti-BP180 and BP230 IgG autoantibodies, developments in recent years have further elucidated the role of eosinophils and IgE autoantibodies. In fact, eosinophil infiltration and eosinophilic spongiosis are prominent features in BP. Several observations support a pathogenic role of eosinophils in BP: IL-5, eotaxin, and eosinophil-colony stimulating factor are present in blister fluid; eosinophils line the dermo-epidermal junction (DEJ) in the presence of BP serum, metalloprotease-9 is released by eosinophils at the site of blisters; eosinophil degranulation proteins are found on the affected basement membrane zone as well as in serum corresponding with clinical disease; eosinophil extracellular DNA traps directed against the basement membrane zone are present, IL-5 activated eosinophils cause separation of the DEJ in the presence of BP serum; and eosinophils are the necessary cell required to drive anti-BP180 IgE mediated skin blistering. Still, it is likely that eosinophils contribute to the pathogenesis of BP in numerous other ways that have yet to be explored based on the known biology of eosinophils. We herein will review the role of eosinophils in BP and provide a framework for understanding eosinophil pathogenic mechanisms in mucocutaneous disease.
Collapse
Affiliation(s)
- Kyle T Amber
- Department of Dermatology, University of California, Irvine, Irvine, CA, United States
| | - Manuel Valdebran
- Department of Dermatology, University of California, Irvine, Irvine, CA, United States
| | - Khalaf Kridin
- Department of Dermatology, Rambam Healthcare Campus, Haifa, Israel
| | - Sergei A Grando
- Department of Dermatology, University of California, Irvine, Irvine, CA, United States.,Departments of Dermatology and Biological Chemistry, Institute for Immunology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
8
|
Drake MG, Lebold KM, Roth-Carter QR, Pincus AB, Blum ED, Proskocil BJ, Jacoby DB, Fryer AD, Nie Z. Eosinophil and airway nerve interactions in asthma. J Leukoc Biol 2018; 104:61-67. [PMID: 29633324 DOI: 10.1002/jlb.3mr1117-426r] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 12/19/2022] Open
Abstract
Airway eosinophils are increased in asthma and are especially abundant around airway nerves. Nerves control bronchoconstiction and in asthma, airway hyperreactivity (where airways contract excessively to inhaled stimuli) develops when eosinophils alter both parasympathetic and sensory nerve function. Eosinophils release major basic protein, which is an antagonist of inhibitory M2 muscarinic receptors on parasympathetic nerves. Loss of M2 receptor inhibition potentiates parasympathetic nerve-mediated bronchoconstriction. Eosinophils also increase sensory nerve responsiveness by lowering neurons' activation threshold, stimulating nerve growth, and altering neuropeptide expression. Since sensory nerves activate parasympathetic nerves via a central neuronal reflex, eosinophils' effects on both sensory and parasympathetic nerves potentiate bronchoconstriction. This review explores recent insights into mechanisms and effects of eosinophil and airway nerve interactions in asthma.
Collapse
Affiliation(s)
- Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Katherine M Lebold
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Quinn R Roth-Carter
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Alexandra B Pincus
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Emily D Blum
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Becky J Proskocil
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Zhenying Nie
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
9
|
Iyer AK, Jones KJ, Sanders VM, Walker CL. Temporospatial Analysis and New Players in the Immunology of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2018; 19:ijms19020631. [PMID: 29473876 PMCID: PMC5855853 DOI: 10.3390/ijms19020631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive loss of lower and upper motor neurons (MN) leading to muscle weakness, paralysis and eventually death. Although a highly varied etiology results in ALS, it broadly manifests itself as sporadic and familial forms that have evident similarities in clinical symptoms and disease progression. There is a tremendous amount of knowledge on molecular mechanisms leading to loss of MNs and neuromuscular junctions (NMJ) as major determinants of disease onset, severity and progression in ALS. Specifically, two main opposing hypotheses, the dying forward and dying back phenomena, exist to account for NMJ denervation. The former hypothesis proposes that the earliest degeneration occurs at the central MNs and proceeds to the NMJ, whereas in the latter, the peripheral NMJ is the site of precipitating degeneration progressing backwards to the MN cell body. A large body of literature strongly indicates a role for the immune system in disease onset and progression via regulatory involvement at the level of both the central and peripheral nervous systems (CNS and PNS). In this review, we discuss the earliest reported immune responses with an emphasis on newly identified immune players in mutant superoxide dismutase 1 (mSOD1) transgenic mice, the gold standard mouse model for ALS.
Collapse
Affiliation(s)
- Abhirami K Iyer
- Anatomy and Cell Biology Department, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA.
| | - Kathryn J Jones
- Anatomy and Cell Biology Department, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA.
| | - Virginia M Sanders
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Chandler L Walker
- Anatomy and Cell Biology Department, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA.
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN 46202, USA.
| |
Collapse
|
10
|
Hennigan K, Conroy PJ, Walsh MT, Amin M, O'Kennedy R, Ramasamy P, Gleich GJ, Siddiqui Z, Glynn S, McCabe O, Mooney C, Harvey BJ, Costello RW, McBryan J. Eosinophil peroxidase activates cells by HER2 receptor engagement and β1-integrin clustering with downstream MAPK cell signaling. Clin Immunol 2016; 171:1-11. [PMID: 27519953 PMCID: PMC5070911 DOI: 10.1016/j.clim.2016.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 08/02/2016] [Accepted: 08/06/2016] [Indexed: 01/21/2023]
Abstract
Eosinophils account for 1–3% of peripheral blood leukocytes and accumulate at sites of allergic inflammation, where they play a pathogenic role. Studies have shown that treatment with mepolizumab (an anti-IL-5 monoclonal antibody) is beneficial to patients with severe eosinophilic asthma, however, the mechanism of precisely how eosinophils mediate these pathogenic effects is uncertain. Eosinophils contain several cationic granule proteins, including Eosinophil Peroxidase (EPO). The main significance of this work is the discovery of EPO as a novel ligand for the HER2 receptor. Following HER2 activation, EPO induces activation of FAK and subsequent activation of β1-integrin, via inside-out signaling. This complex results in downstream activation of ERK1/2 and a sustained up regulation of both MUC4 and the HER2 receptor. These data identify a receptor for one of the eosinophil granule proteins and demonstrate a potential explanation of the proliferative effects of eosinophils. Eosinophil peroxidase (EPO) is confirmed as a ligand for the HER2 receptor. EPO activation of HER2 leads to activation of FAK, ERK and β1 integrin. EPO induces a sustained upregulation of MUC4 and HER2. Possible mechanism for the proliferative effects of eosinophils is uncovered.
Collapse
Affiliation(s)
- Kerrie Hennigan
- Department of Medicine Respiratory Research Division, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Paul J Conroy
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
| | - Marie-Therese Walsh
- Department of Medicine Respiratory Research Division, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Mohamed Amin
- Department of Medicine Respiratory Research Division, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Richard O'Kennedy
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
| | - Patmapriya Ramasamy
- Department of Medicine Respiratory Research Division, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Gerald J Gleich
- Department of Dermatology, University of Utah, Salt Lake City, USA
| | - Zeshan Siddiqui
- Graduate Entry Medical School, University of Limerick, Ireland
| | - Senan Glynn
- Department of Medicine Respiratory Research Division, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Olive McCabe
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Catherine Mooney
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Brian J Harvey
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Richard W Costello
- Department of Medicine Respiratory Research Division, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
| | - Jean McBryan
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| |
Collapse
|
11
|
Akasheh N, Walsh MT, Costello RW. Eosinophil peroxidase induces expression of cholinergic genes via cell surface neural interactions. Mol Immunol 2014; 62:37-45. [PMID: 24937179 DOI: 10.1016/j.molimm.2014.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/21/2014] [Accepted: 05/29/2014] [Indexed: 01/21/2023]
Abstract
Eosinophils localize to and release their granule proteins in close association with nerves in patients with asthma and rhinitis. These conditions are associated with increased neural function. In this study the effect of the individual granule proteins on cholinergic neurotransmitter expression was investigated. Eosinophil peroxidase (EPO) upregulated choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) gene expression. Fluorescently labeled EPO was seen to bind to the IMR-32 cell surface. Both Poly-L-Glutamate (PLG) and Heparinase-1 reversed the up-regulatory effect of EPO on ChAT and VAChT expression and prevented EPO adhesion to the cell surface. Poly-L-arginine (PLA) had no effect on expression of either gene, suggesting that charge is necessary but insufficient to alter gene expression. EPO induced its effects via the activation of NF-κB. MEK inhibition led to reversal of all up-regulatory effects of EPO. These data indicate a preferential role of EPO signaling via a specific surface receptor that leads to neural plasticity.
Collapse
Affiliation(s)
- Nadim Akasheh
- Department of Medicine, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland.
| | - Marie-Therese Walsh
- Department of Medicine, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Richard W Costello
- Department of Medicine, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| |
Collapse
|
12
|
Thornton MA, Akasheh N, Walsh MT, Moloney M, Sheahan PO, Smyth CM, Walsh RM, Morgan RM, Curran DR, Walsh MT, Gleich GJ, Costello RW. Eosinophil recruitment to nasal nerves after allergen challenge in allergic rhinitis. Clin Immunol 2013; 147:50-57. [PMID: 23518598 DOI: 10.1016/j.clim.2013.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/14/2013] [Accepted: 02/11/2013] [Indexed: 02/04/2023]
Abstract
In allergen challenged animal models, eosinophils localize to airway nerves leading to vagally-mediated hyperreactivity. We hypothesized that in allergic rhinitis eosinophils recruited to nasal nerves resulted in neural hyperreactivity. Patients with persistent allergic rhinitis (n=12), seasonal allergic rhinitis (n=7) and controls (n=10) were studied. Inferior nasal turbinate biopsies were obtained before, 8 and 48h after allergen challenge. Eight hours after allergen challenge eosinophils localized to nerves in both rhinitis groups; this was sustained through 48h. Bradykinin challenge, with secretion collection on the contralateral side, was performed to demonstrate nasal nerve reflexes. Twenty fourhours after allergen challenge, bradykinin induced a significant increase in secretions, indicating nasal hyperreactivity. Histological studies showed that nasal nerves expressed both vascular cell adhesion molecule-1 (VCAM-1) and chemokine (C-C motif) ligand 26 (CCL-26). Hence, after allergen challenge eosinophils are recruited and retained at nerves and so may be a mechanism for neural hyperreactivity.
Collapse
Affiliation(s)
- Margaret A Thornton
- Department of Otolaryngology, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Nadim Akasheh
- Department of Medicine, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland.
| | - Marie-Therese Walsh
- Department of Medicine, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Michael Moloney
- Department of Medicine, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Patrick O Sheahan
- Department of Otolaryngology, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Claire M Smyth
- Department of Medicine, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Rory McConn Walsh
- Department of Otolaryngology, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Ross M Morgan
- Department of Medicine, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - David R Curran
- Department of Medicine, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Michael T Walsh
- Department of Otolaryngology, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Gerald J Gleich
- Department of Dermatology, School of Medicine, Salt Lake City, Utah, 84132, USA
| | - Richard W Costello
- Department of Medicine, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| |
Collapse
|
13
|
Halwani R, Vazquez-Tello A, Sumi Y, Pureza MA, Bahammam A, Al-Jahdali H, Soussi-Gounni A, Mahboub B, Al-Muhsen S, Hamid Q. Eosinophils induce airway smooth muscle cell proliferation. J Clin Immunol 2012. [PMID: 23180361 DOI: 10.1007/s10875-012-9836-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Asthma is characterized by eosinophilic airway inflammation and remodeling of the airway wall. Features of airway remodeling include increased airway smooth muscle (ASM) mass. However, little is known about the interaction between inflammatory eosinophils and ASM cells. In this study, we investigated the effect of eosinophils on ASM cell proliferation. Eosinophils were isolated from peripheral blood of mild asthmatics and non-asthmatic subjects and co-cultured with human primary ASM cells. ASM proliferation was estimated using Ki-67 expression assay. The expression of extracellular matrix (ECM) mRNA in ASM cells was measured using quantitative real-time PCR. The role of eosinophil derived Cysteinyl Leukotrienes (CysLTs) in enhancing ASM proliferation was estimated by measuring the release of leukotrienes from eosinophils upon their direct contact with ASM cells using ELISA. This role was confirmed either by blocking eosinophil-ASM contact or co-culturing them in the presence of leukotrienes antagonist. ASM cells co-cultured with eosinophils, isolated from asthmatics, but not non-asthmatics, had a significantly higher rate of proliferation compared to controls. This increase in ASM proliferation was independent of their release of ECM proteins but dependent upon eosinophils release of CysLTs. Eosinophil-ASM cell to cell contact was required for CysLTs release. Preventing eosinophil contact with ASM cells using anti-adhesion molecules antibodies, or blocking the activity of eosinophil derived CysLTs using montelukast inhibited ASM proliferation. Our results indicated that eosinophils contribute to airway remodeling during asthma by enhancing ASM cell proliferation and hence increasing ASM mass. Direct contact of eosinophils with ASM cells triggers their release of CysLTs which enhance ASM proliferation. Eosinophils, and their binding to ASM cells, constitute a potential therapeutic target to interfere with the series of biological events leading to airway remodeling and Asthma.
Collapse
Affiliation(s)
- Rabih Halwani
- Asthma Research Chair and Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Khoo SG, Al-Alawi M, Walsh MT, Hannigan K, Glynn S, Thornton M, McQuaid S, Wang Y, Hamilton PW, Verriere V, Gleich GJ, Harvey BJ, Costello RW, McGarvey LP. Eosinophil peroxidase induces the expression and function of acid-sensing ion channel-3 in allergic rhinitis: in vitro evidence in cultured epithelial cells. Clin Exp Allergy 2012; 42:1028-39. [PMID: 22702502 DOI: 10.1111/j.1365-2222.2012.03980.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Acid-sensing ion channels (ASIC) are a family of acid-activated ligand-gated cation channels. As tissue acidosis is a feature of inflammatory conditions, such as allergic rhinitis (AR), we investigated the expression and function of these channels in AR. OBJECTIVES The aim of the study was to assess expression and function of ASIC channels in the nasal mucosa of control and AR subjects. METHODS Immunohistochemical localization of ASIC receptors and functional responses to lactic acid application were investigated. In vitro studies on cultured epithelial cells were performed to assess underlying mechanisms of ASIC function. RESULTS Lactic acid at pH 7.03 induced a significant rise in nasal fluid secretion that was inhibited by pre-treatment with the ASIC inhibitor amiloride in AR subjects (n = 19). Quantitative PCR on cDNA isolated from nasal biopsies from control and AR subjects demonstrated that ASIC-1 was equally expressed in both populations, but ASIC-3 was significantly more highly expressed in AR (P < 0.02). Immunohistochemistry confirmed significantly higher ASIC-3 protein expression on nasal epithelial cells in AR patients than controls (P < 0.01). Immunoreactivity for EPO+ eosinophils in both nasal epithelium and submucosa was more prominent in AR compared with controls. A mechanism of induction of ASIC-3 expression relevant to AR was suggested by the finding that eosinophil peroxidase (EPO), acting via ERK1/2, induced the expression of ASIC-3 in epithelial cells. Furthermore, using a quantitative functional measure of epithelial cell secretory function in vitro, EPO increased the air-surface liquid depth via an ASIC-dependent chloride secretory pathway. CONCLUSIONS This data suggests a possible mechanism for the observed association of eosinophils and rhinorrhoea in AR and is manifested through enhanced ASIC-3 expression.
Collapse
Affiliation(s)
- S G Khoo
- Department of Respiratory, Otolaryngology and Molecular Medicine, Education and Research Centre, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
β2-Agonists inhibit TNF-α-induced ICAM-1 expression in human airway parasympathetic neurons. PLoS One 2012; 7:e44780. [PMID: 23049757 PMCID: PMC3458032 DOI: 10.1371/journal.pone.0044780] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 08/14/2012] [Indexed: 12/03/2022] Open
Abstract
Background Major basic protein released from eosinophils to airway parasympathetic nerves blocks inhibitory M2 muscarinic receptors on the parasympathetic nerves, increasing acetylcholine release and potentiating reflex bronchoconstriction. Recruitment of eosinophils to airway parasympathetic neurons requires neural expression of both intercellular adhesion molecular-1 (ICAM-1) and eotaxin. We have shown that inflammatory cytokines induce eotaxin and ICAM-1 expression in parasympathetic neurons. Objective To test whether the β2 agonist albuterol, which is used to treat asthma, changes TNF-alpha-induced eotaxin and ICAM-1 expression in human parasympathetic neurons. Methods Parasympathetic neurons were isolated from human tracheas and grown in serum-free medium for one week. Cells were incubated with either (R)-albuterol (the active isomer), (S)-albuterol (the inactive isomer) or (R,S)-albuterol for 90 minutes before adding 2 ng/ml TNF-alpha for another 4 hours (for mRNA) or 24 hours (for protein). Results and Conclusions Baseline expression of eotaxin and ICAM-1 were not changed by any isomer of albuterol as measured by real time RT-PCR. TNF-alpha induced ICAM-1 expression was significantly inhibited by (R)-albuterol in a dose dependent manner, but not by (S) or (R,S)-albuterol. Eotaxin expression was not changed by TNF-alpha or by any isomer of albuterol. The β-receptor antagonist propranolol blocked the inhibitory effect of (R)-albuterol on TNF-alpha-induced ICAM-1 expression. Clinical Implication The suppressive effect of (R)-albuterol on neural ICAM-1 expression may be an additional mechanism for decreasing bronchoconstriction, since it would decrease eosinophil recruitment to the airway nerves.
Collapse
|
16
|
Costello RW, Maloney M, Atiyeh M, Gleich G, Walsh MT. Mechanism of sphingosine 1-phosphate- and lysophosphatidic acid-induced up-regulation of adhesion molecules and eosinophil chemoattractant in nerve cells. Int J Mol Sci 2011; 12:3237-49. [PMID: 21686182 PMCID: PMC3116188 DOI: 10.3390/ijms12053237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 12/11/2022] Open
Abstract
The lysophospholipids sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) act via G-protein coupled receptors S1P(1-5) and LPA(1-3) respectively, and are implicated in allergy. Eosinophils accumulate at innervating cholinergic nerves in asthma and adhere to nerve cells via intercellular adhesion molecule-1 (ICAM-1). IMR-32 neuroblastoma cells were used as an in vitro cholinergic nerve cell model. The G(i) coupled receptors S1P(1), S1P(3), LPA(1), LPA(2) and LPA(3) were expressed on IMR-32 cells. Both S1P and LPA induced ERK phosphorylation and ERK- and G(i)-dependent up-regulation of ICAM-1 expression, with differing time courses. LPA also induced ERK- and G(i)-dependent up-regulation of the eosinophil chemoattractant, CCL-26. The eosinophil granule protein eosinophil peroxidase (EPO) induced ERK-dependent up-regulation of transcription of S1P(1), LPA(1), LPA(2) and LPA(3), providing the situation whereby eosinophil granule proteins may enhance S1P- and/or LPA- induced eosinophil accumulation at nerve cells in allergic conditions.
Collapse
Affiliation(s)
- Richard W. Costello
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland; E-Mails: (R.W.C.); (M.M.); (M.A.)
| | - Michael Maloney
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland; E-Mails: (R.W.C.); (M.M.); (M.A.)
| | - Mazin Atiyeh
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland; E-Mails: (R.W.C.); (M.M.); (M.A.)
| | - Gerald Gleich
- Department of Dermatology, University of Utah, Salt Lake City, UT 84132, USA; E-Mail:
| | - Marie-Therese Walsh
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland; E-Mails: (R.W.C.); (M.M.); (M.A.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +353-1-8093803; Fax: +353-1-8093765
| |
Collapse
|
17
|
Walsh MT, Connell K, Sheahan AM, Gleich GJ, Costello RW. Eosinophil peroxidase signals via epidermal growth factor-2 to induce cell proliferation. Am J Respir Cell Mol Biol 2011; 45:946-52. [PMID: 21454806 DOI: 10.1165/rcmb.2010-0454oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Eosinophils exert many of their inflammatory effects in allergic disorders through the degranulation and release of intracellular mediators, including a set of cationic granule proteins that include eosinophil peroxidase. Studies suggest that eosinophils are involved in remodeling. In previous studies, we showed that eosinophil granule proteins activate mitogen-activated protein kinase signaling. In this study, we investigated the receptor mediating eosinophil peroxidase-induced signaling and downstream effects. Human cholinergic neuroblastoma IMR32 and murine melanoma B16.F10 cultures, real-time polymerase chain reaction, immunoprecipitations, and Western blotting were used in the study. We showed that eosinophil peroxidase caused a sustained increase in both the expression of epidermal growth factor-2 (HER2) and its phosphorylation at tyrosine 1248, with the consequent activation of extracellular-regulated kinase 1/2. This, in turn, promoted a focal adhesion kinase-dependent egress of the cyclin-dependent kinase inhibitor p27(kip) from the nucleus to the cytoplasm. Eosinophil peroxidase induced a HER2-dependent up-regulation of cell proliferation, indicated by an up-regulation of the nuclear proliferation marker Ki67. This study identifies HER2 as a novel mediator of eosinophil peroxidase signaling. The results show that eosinophil peroxidase, at noncytotoxic levels, can drive cell-cycle progression and proliferation, and contribute to tissue remodeling and cell turnover in airway disease. Because eosinophils are a feature of many cancers, these findings also suggest a role for eosinophils in tumorigenesis.
Collapse
Affiliation(s)
- Marie-Therese Walsh
- Department of Medicine, Education and Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
18
|
Kato M, Suzuki M, Hayashi Y, Kimura H. Role of eosinophils and their clinical significance in allergic inflammation. Expert Rev Clin Immunol 2010; 2:121-33. [PMID: 20477093 DOI: 10.1586/1744666x.2.1.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Eosinophils are believed to play roles in the pathophysiology of allergic inflammation, such as bronchial asthma. However, recent studies on anti-interleukin-5 monoclonal antibody treatment of asthmatic patients raised the possibility that eosinophils may play only a limited role. More recent studies established that eosinophils are essentially involved in the development of airway remodeling. Moreover, it is theoretically conceivable that eosinophils are a cellular source of lipid mediators, such as cysteinyl leukotrienes or platelet-activating factor in asthma. Even in the absence of interleukin-5, it is likely that the 'T-helper Type 2 network', including a cascade of vascular cell adhesion molecule-1, intercellular cell adhesion molecule-1, CC chemokines, granulocyte-macrophage colony-stimulating factor, for example, can maintain sufficient eosinophilic infiltration and effector functions, such as superoxide anion generation and degranulation. Long-term studies, wherein tissue eosinophils are eliminated effectively will be required to establish the exact roles of these cells in asthma. Finally, the authors will demonstrate that eosinophils have the potential for not only playing detrimental roles but also beneficial ones.
Collapse
Affiliation(s)
- Masahiko Kato
- Gunma Children's Medical Center, Department of Allergy and Immunology, Gunma Children's Medical Center, 779 Shimohakoda, Hokkitsu, Gunma 377-8577, Japan.
| | | | | | | |
Collapse
|
19
|
Raap U, Wardlaw AJ. A new paradigm of eosinophil granulocytes: neuroimmune interactions. Exp Dermatol 2008; 17:731-8. [PMID: 18505411 DOI: 10.1111/j.1600-0625.2008.00741.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Eosinophil granulocytes have long been regarded as potent effector cells with the potential to release an array of inflammatory mediators involved in cytotoxicity to helminths and tissue destruction in chronic inflammatory diseases such as asthma. However, it has become evident that eosinophils are also involved in regulatory mechanisms modulating local tissue immune responses. Eosinophils take part in remodelling and repair mechanisms and contribute to the localized innate and acquired immune response as well as systemic adaptive immunity. In addition, eosinophils are involved in neuroimmune interactions modulating the functional activity of peripheral nerves. Neuromediators can also modulate the functional activity of eosinophils, revealing bidirectional interactions between the two cell types. Eosinophils are tissue-resident cells and have been found in close vicinity of peripheral nerves. This review describes neuroimmune interactions between eosinophil granulocytes and peripheral nerves and highlights why eosinophils are important in allergic diseases such as asthma.
Collapse
Affiliation(s)
- Ulrike Raap
- Department of Dermatology and Allergology, Hannover Medical School, Hannover, Germany.
| | | |
Collapse
|
20
|
Nie Z, Nelson CS, Jacoby DB, Fryer AD. Expression and regulation of intercellular adhesion molecule-1 on airway parasympathetic nerves. J Allergy Clin Immunol 2007; 119:1415-22. [PMID: 17418379 DOI: 10.1016/j.jaci.2007.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 02/09/2007] [Accepted: 03/02/2007] [Indexed: 11/18/2022]
Abstract
BACKGROUND Eosinophils cluster along airway nerves in patients with asthma and release eosinophil major basic protein, an antagonist of inhibitory M2 muscarinic receptors on nerves. Blocking M2 function increases bronchoconstriction, leading to airway hyperreactivity. Intercellular adhesion molecule-1 (ICAM-1) mediates eosinophil adhesion to nerves. OBJECTIVE We investigated mechanisms of ICAM-1 expression by parasympathetic nerves. METHODS ICAM-1 expression was examined by immunocytochemistry of lung sections from ovalbumin-sensitized and challenged guinea pigs. ICAM-1 was measured in parasympathetic nerves isolated from subjects and guinea pigs and in human neuroblastoma cells by real-time RT-PCR, immunocytochemistry, and Western blot. RESULTS ICAM-1 was not detected in control airway parasympatheric nerves in vivo or in cultured cells. ICAM-1 was expressed throughout antigen-challenged guinea pig lung tissue and was selectively decreased by dexamethasone only in nerves. ICAM-1 was induced in human and guinea pig parasympathetic nerves by TNF-alpha and IFN-gamma and was inhibited by dexamethasone and by an inhibitor of nuclear factor-kappaB (NF-kappaB). In neuroblastoma cell lines TNF-alpha and IFN-gamma-induced ICAM-1 was blocked by an inhibitor of NF-kappaB but not by inhibitors of mitogen-activated protein kinases. Dexamethasone did not inhibit ICAM-1 expression in neuroblastoma cells. CONCLUSIONS ICAM-1 induced in nerves by antigen challenge and proinflammatory cytokines is sensitive to dexamethasone. ICAM-1 expression is also sensitive to inhibitors of NF-kappaB. Neuroblastoma cells mimic many, but not all, characteristics of ICAM-1 expression in parasympathetic nerves. CLINICAL IMPLICATIONS Dexamethasone and NF-kappaB inhibitors could prevent eosinophils from adhering to nerves by blocking ICAM-1 expression on parasympathetic nerves, thus protecting inhibitory M2 muscarinic receptors and making this pathway a potential target for asthma treatment.
Collapse
Affiliation(s)
- Zhenying Nie
- Division of Physiology and Pharmacology, Oregon Health & Science University, Portland, Ore., USA
| | | | | | | |
Collapse
|
21
|
McGarvey LPA, Morice AH. Clinical cough and its mechanisms. Respir Physiol Neurobiol 2006; 152:363-71. [PMID: 16406741 DOI: 10.1016/j.resp.2005.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 11/18/2005] [Accepted: 11/22/2005] [Indexed: 11/22/2022]
Abstract
Cough is the commonest symptom of clinical importance and the most frequent reason for new consultations with a doctor. Although therapy directed at any underlying cause for cough can be effective there is a clinical need for new treatments specifically directed at the cough itself. A major obstacle to the development of such therapy has been an imprecise understanding of the pathophysiological mechanisms responsible for cough. In this article, we review the important clinical aspects of both acute and chronic cough, offer practical insight into the existing treatment options, highlight the current understanding of cough pathophysiology and identify important areas for future research effort.
Collapse
Affiliation(s)
- L P A McGarvey
- Department of Medicine, The Queen's University of Belfast, Grosvenor Road, Belfast BT12 6BJ, N Ireland, UK.
| | | |
Collapse
|
22
|
Durcan N, Costello RW, McLean WG, Blusztajn J, Madziar B, Fenech AG, Hall IP, Gleich GJ, McGarvey L, Walsh MT. Eosinophil-Mediated Cholinergic Nerve Remodeling. Am J Respir Cell Mol Biol 2006; 34:775-86. [PMID: 16456188 DOI: 10.1165/rcmb.2005-0196oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Eosinophils are observed to localize to cholinergic nerves in a variety of inflammatory conditions such as asthma, rhinitis, eosinophilic gastroenteritis, and inflammatory bowel disease, where they are also responsible for the induction of cell signaling. We hypothesized that a consequence of eosinophil localization to cholinergic nerves would involve a neural remodeling process. Eosinophil co-culture with cholinergic IMR32 cells led to increased expression of the M2 muscarinic receptor, with this induction being mediated via an adhesion-dependent release of eosinophil proteins, including major basic protein and nerve growth factor. Studies on the promoter sequence of the M2 receptor indicated that this induction was initiated at a transcription start site 145 kb upstream of the gene-coding region. This promoter site contains binding sites for a variety of transcription factors including SP1, AP1, and AP2. Eosinophils also induced the expression of several cholinergic genes involved in the synthesis, storage, and metabolism of acetylcholine, including the enzymes choline acetyltransferase, vesicular acetylcholine transferase, and acetylcholinesterase. The observed eosinophil-induced changes in enzyme content were associated with a reduction in intracellular neural acetylcholine but an increase in choline content, suggesting increased acetylcholine turnover and a reduction in acetylcholinesterase activity, in turn suggesting reduced catabolism of acetylcholine. Together these data suggest that eosinophil localization to cholinergic nerves induces neural remodeling, promoting a cholinergic phenotype.
Collapse
Affiliation(s)
- Niamh Durcan
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rahaman M, Costello RW, Belmonte KE, Gendy SS, Walsh MT. Neutrophil sphingosine 1-phosphate and lysophosphatidic acid receptors in pneumonia. Am J Respir Cell Mol Biol 2005; 34:233-41. [PMID: 16224106 DOI: 10.1165/rcmb.2005-0126oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The phospholipids sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) act via transmembrane receptors S1P 1-5 and LPA 1-3, respectively. Both have been implicated in inflammatory responses. S1P and LPA receptor profiles on neutrophils of patients with pneumonia compared with healthy subjects were determined by PCR and Western blotting. Chemotaxis studies were performed to assess functional differences. S1P or LPA receptors were immunoprecipitated from neutrophils to assess receptor heterodimerization with CXCR1, an IL-8 receptor, by Western blotting. Receptors S1P 1, 4, and 5 and LPA 2 were expressed on neutrophils from both subject groups, but S1P 3 and LPA 1 receptor expression was mainly confined to neutrophils of patients with pneumonia. Chemotaxis of neutrophils from patients with pneumonia compared with control subjects was significantly increased in response to S1P and LPA. Pretreatment with S1P or LPA reduced IL-8-induced neutrophil chemotaxis and transcriptional expression of the CXCR1 receptor. Receptors S1P 3 and 4 and LPA 1 formed constitutive heterodimers with CXCR1. LPA treatment reduced the amount of LPA 1/CXCR1 heterodimer. Therefore, profiles of S1P and LPA receptors differ between neutrophils of patients with pneumonia and control subjects, with consequences for neutrophil function.
Collapse
Affiliation(s)
- Matiur Rahaman
- Department of Medicine, RCSI, Beaumont Hospital, Dublin 9, Ireland
| | | | | | | | | |
Collapse
|
24
|
Morgan RK, Costello RW, Durcan N, Kingham PJ, Gleich GJ, McLean WG, Walsh MT. Diverse effects of eosinophil cationic granule proteins on IMR-32 nerve cell signaling and survival. Am J Respir Cell Mol Biol 2005; 33:169-77. [PMID: 15860794 DOI: 10.1165/rcmb.2005-0056oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Activated eosinophils release potentially toxic cationic granular proteins, including the major basic proteins (MBP) and eosinophil-derived neurotoxin (EDN). However, in inflammatory conditions including asthma and inflammatory bowel disease, localization of eosinophils to nerves is associated with nerve plasticity, specifically remodeling. In previous in vitro studies, we have shown that eosinophil adhesion to IMR-32 nerve cells, via nerve cell intercellular adhesion molecule-1, results in an adhesion-dependent release of granule proteins. We hypothesized that released eosinophil granule proteins may affect nerve cell signaling and survival, leading to nerve cell remodeling. Culture in serum-deprived media induced apoptosis in IMR-32 cells that was dose-dependently abolished by inclusion of MBP1 but not by EDN. Both MBP1 and EDN induced phosphorylation of Akt, but with divergent time courses and intensities, and survival was independent of Akt. MBP1 induced activation of neural nuclear factor (NF)-kappaB, from 10 min to 12 h, declining by 24 h, whereas EDN induced a short-lived activation of NF-kappaB. MBP1-induced protection was dependent on phosphorylation of ERK 1/2 and was related to a phospho-ERK-dependent upregulation of the NF-kappaB-activated anti-apoptotic gene, Bfl-1. This signaling pathway was not activated by EDN. Thus, MBP1 released from eosinophils at inflammatory sites may regulate peripheral nerve plasticity by inhibiting apoptosis.
Collapse
Affiliation(s)
- Ross K Morgan
- Department of Medicine, RCSI, Beaumont Hospital, Dublin 9, Ireland, and Department of Dermatology, University of Utah, Salt Lake City, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Morgan RK, Kingham PJ, Walsh MT, Curran DR, Curran DC, Durcan N, McLean WG, Costello RW. Eosinophil adhesion to cholinergic IMR-32 cells protects against induced neuronal apoptosis. THE JOURNAL OF IMMUNOLOGY 2004; 173:5963-70. [PMID: 15528330 DOI: 10.4049/jimmunol.173.10.5963] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Eosinophils release a number of mediators that are potentially toxic to nerve cells. However, in a number of inflammatory conditions, such as asthma and inflammatory bowel disease, it has been shown that eosinophils localize to nerves, and this is associated with enhanced nerve activity. In in vitro studies, we have shown that eosinophil adhesion via neuronal ICAM-1 leads to activation of neuronal NF-kappaB via an ERK1/2-dependent pathway. In this study, we tested the hypothesis that eosinophil adhesion to nerves promotes neural survival by protection from inflammation-associated apoptosis. Exposure of differentiated IMR-32 cholinergic nerve cells to IL-1beta, TNF-alpha, and IFN-gamma, or culture in serum-deprived medium, induced neuronal apoptosis, as detected by annexin V staining, caspase-3 activation, and DNA laddering. Addition of human eosinophils to IMR-32 nerve cells completely prevented all these features of apoptosis. The mechanism of protection by eosinophils was by an adhesion-dependent activation of ERK1/2, which led to the induced expression of the antiapoptotic gene bfl-1. Adhesion to nerve cells did not influence the expression of the related genes bax and bad. Thus, prevention of apoptosis by eosinophils may be a mechanism by which these cells regulate neural plasticity in the peripheral nervous system.
Collapse
Affiliation(s)
- Ross K Morgan
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | | | | | | | | | | | | | | |
Collapse
|