1
|
Koc-Gunel S, Liu EC, Gautam LK, Calvert BA, Murthy S, Harriott NC, Nawroth JC, Zhou B, Krymskaya VP, Ryan AL. Targeting fibroblast-endothelial cell interactions in LAM pathogenesis using 3D spheroid models and spatial transcriptomics. JCI Insight 2025; 10:e187899. [PMID: 39903528 PMCID: PMC11949067 DOI: 10.1172/jci.insight.187899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a progressive lung disease with limited treatments, largely because of an incomplete understanding of its pathogenesis. Lymphatic endothelial cells (LECs) invade LAM cell clusters, which include human melanoma black-45-positive epithelioid cells and smooth muscle α-actin-expressing LAM-associated fibroblasts (LAMFs). Recent evidence shows that LAMFs resemble cancer-associated fibroblasts, with LAMF-LEC interactions contributing to disease progression. To explore these mechanisms, we used spatial transcriptomics on LAM lung tissues and identified a gene cluster enriched in kinase signaling pathways linked to myofibroblasts and coexpressed with LEC markers. Kinase arrays revealed elevated PDGFR and FGFR in LAMFs. Using a 3D coculture spheroid model of primary LAMFs and LECs, we observed increased invasion in LAMF-LEC spheroids compared with non-LAM fibroblasts. Treatment with sorafenib, a multikinase inhibitor, significantly reduced invasion, outperforming rapamycin. We also verified tuberous sclerosis complex 2-deficient renal angiomyolipoma (TSC2-null AML) cells as key VEGF-A secretors; VEGF-A was suppressed by sorafenib in both TSC2-null AML cells and LAMFs. These findings highlight VEGF-A and basic FGF as potential therapeutic targets and suggest multikinase inhibition as a promising strategy for LAM.
Collapse
Affiliation(s)
- Sinem Koc-Gunel
- Hastings Center for Pulmonary Research; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine; and
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
- Department of Internal Medicine II, Infectious Diseases, and
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Emily C. Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Lalit K. Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ben A. Calvert
- Hastings Center for Pulmonary Research; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine; and
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Shubha Murthy
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Noa C. Harriott
- Hastings Center for Pulmonary Research; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine; and
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Janna C. Nawroth
- Hastings Center for Pulmonary Research; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine; and
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
- Helmholtz Pioneer Campus and Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Beiyun Zhou
- Hastings Center for Pulmonary Research; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine; and
| | - Vera P. Krymskaya
- Division of Pulmonary and Critical Care Medicine, Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania (UPenn), Philadelphia, Pennsylvania, USA
| | - Amy L. Ryan
- Hastings Center for Pulmonary Research; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine; and
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Koc-Gunel S, Liu EC, Gautam LK, Calvert BA, Murthy S, Harriott NC, Nawroth JC, Zhou B, Krymskaya VP, Ryan AL. Targeting Fibroblast-Endothelial Interactions in LAM Pathogenesis: 3D Spheroid and Spatial Transcriptomic Insights for Therapeutic Innovation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.12.544372. [PMID: 37398026 PMCID: PMC10312665 DOI: 10.1101/2023.06.12.544372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Lymphangioleiomyomatosis (LAM) is a progressive lung disease with limited treatments, largely due to an incomplete understanding of its pathogenesis. Lymphatic endothelial cells (LECs) invade LAM cell clusters, which include HMB-45-positive epithelioid cells and smooth muscle α-actin-expressing LAM-associated fibroblasts (LAMFs). Recent evidence shows that LAMFs resemble cancer-associated fibroblasts, with LAMF-LEC interactions contributing to disease progression. To explore these mechanisms, we used spatial transcriptomics on LAM lung tissues and identified a gene cluster enriched in kinase signaling pathways linked to myofibroblasts and co-expressed with LEC markers. Kinase arrays revealed elevated PDGFR and FGFR in LAMFs. Using a 3D co-culture spheroid model of primary LAMFs and LECs, we observed increased invasion in LAMF-LEC spheroids compared to non-LAM fibroblasts. Treatment with sorafenib, a multikinase inhibitor, significantly reduced invasion, outperforming Rapamycin. We also confirmed TSC2-null AML cells as key VEGF-A secretors, which was suppressed by sorafenib in both AML cells and LAMFs. These findings highlight VEGF-A and bFGF as potential therapeutic targets and suggest multikinase inhibition as a promising strategy for LAM.
Collapse
Affiliation(s)
- Sinem Koc-Gunel
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California; Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California; Los Angeles, CA, USA
- Department of Internal Medicine II, Infectious Diseases, University Hospital Frankfurt; Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Emily C. Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa; Iowa City, IA, USA
| | - Lalit K. Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa; Iowa City, IA, USA
| | - Ben A. Calvert
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California; Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California; Los Angeles, CA, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa; Iowa City, IA, USA
| | - Shubha Murthy
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa; Iowa City, IA, USA
| | - Noa C. Harriott
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California; Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California; Los Angeles, CA, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa; Iowa City, IA, USA
| | - Janna C. Nawroth
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California; Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California; Los Angeles, CA, USA
- Helmholtz Pioneer Campus and Institute of Biological and Medical Imaging; Helmholtz Zentrum München, Neuherberg, Germany
| | - Beiyun Zhou
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California; Los Angeles, CA, USA
| | - Vera P. Krymskaya
- Division of Pulmonary and Critical Care Medicine, Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Amy L. Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California; Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California; Los Angeles, CA, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa; Iowa City, IA, USA
| |
Collapse
|
3
|
Yanagisawa A, Takimoto T, Kurahara Y, Tsuyuguchi K, Yoshida S, Hirose M, Inoue Y, Arai T. Lymphangioleiomyomatosis Showing the Development of Mycobacterium abscessus subsp. massiliense Infection during Sirolimus Therapy. Intern Med 2024; 63:2043-2047. [PMID: 38008448 PMCID: PMC11309859 DOI: 10.2169/internalmedicine.2847-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 11/28/2023] Open
Abstract
Among nontuberculous mycobacterial pulmonary diseases (NTM-PDs), Mycobacterium abscessus species pulmonary disease (MABS-PD) is one of the most severe and intractable infections. We herein report a 45-year-old woman with advanced lymphangioleiomyomatosis (LAM) who developed MABS-PD while undergoing sirolimus therapy. MABS-PD was immediately controlled using antibiotic therapy, although the patient's lung transplant registration was significantly delayed. To our knowledge, this is the first case report on the development of NTM-PD in a patient with LAM before lung transplantation. This case suggests that the early diagnosis and optimal treatment of NTM-PD are crucial in patients with advanced LAM.
Collapse
Affiliation(s)
- Atsushi Yanagisawa
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | - Takayuki Takimoto
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | - Yu Kurahara
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | - Kazunari Tsuyuguchi
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | - Shiomi Yoshida
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | - Masaki Hirose
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
- Department of Internal Medicine, Osaka Anti-Tuberculosis Association Osaka Fukujuji Hospital, Japan
| | - Toru Arai
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| |
Collapse
|
4
|
Warrior K, Dilling DF. Lung transplantation for lymphangioleiomyomatosis. J Heart Lung Transplant 2023; 42:40-52. [PMID: 36334961 DOI: 10.1016/j.healun.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 12/23/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare cystic lung disease, associated with respiratory symptoms of dyspnea and spontaneous pneumothorax, along with various extra-thoracic manifestations. Often a progressive disease, albeit slowly, patients can develop chronic and severe respiratory failure and require supplemental oxygen. Lung transplantation (LTX) can offer improved duration and quality of life for patients with end-stage lung disease due to LAM. There are several unique considerations for LTX in LAM patients, and disease-specific complications of LAM prior to LTX can affect management decisions. Furthermore, there are several possible post-transplant issues specific to LAM. In this review, we discuss evaluation and management, disease-specific complications (both pre- and post-transplant), and outcomes for LAM patients undergoing lung transplantation.
Collapse
Affiliation(s)
- Krishnan Warrior
- Division of Pulmonary and Critical Care, Loyola University Chicago, Stritch School of Medicine, Maywood, IL
| | - Daniel F Dilling
- Division of Pulmonary and Critical Care, Loyola University Chicago, Stritch School of Medicine, Maywood, IL.
| |
Collapse
|
5
|
Liu X, Xu Y, Wu X, Liu Y, Wu Q, Wu J, Zhang H, Zhou M, Qu J. Soluble Immune-Related Proteins as New Candidate Serum Biomarkers for the Diagnosis and Progression of Lymphangioleiomyomatosis. Front Immunol 2022; 13:844914. [PMID: 35300340 PMCID: PMC8923288 DOI: 10.3389/fimmu.2022.844914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background The goal of this study was to analyze serum from lymphangioleiomyomatosis (LAM) patients and healthy controls to identify novel biomarkers that could shed light on disease diagnosis and pathogenesis. Methods From April 2017 to October 2019, qualified serum samples were obtained to explore differences in 59 immune proteins between 67 LAM patients and 49 healthy controls by the Luminex method. Results We characterized 22 serum immune proteins that were differentially expressed in LAM patients compared with healthy people. Fifty-nine proteins were then classified into eight categories according to their biological function, and the results showed that LAM patients displayed significantly higher levels of growth factors (p = 0.006) and lower levels of costimulatory molecules (p = 0.008). LAG-3 was not only likely to have better predictive value than VEGF-D but also showed a significant difference between patients without elevated VEGF-D and healthy people. IL-18 was positively correlated with lung function and six-minute walk test (6MWT) distance and negatively correlated with St. George’s Respiratory Questionnaire (SGRQ) score and pulmonary artery systolic pressure (PASP), which suggested that IL-18 was related to disease severity. PD-1 was significantly different between patients with pneumothorax and/or chylothorax and those without complications. Conclusion We performed a large-scale serum immune factor analysis of LAM. Our study provides evidence that LAG-3 may be a novel candidate serum biomarker for the diagnosis of LAM. Future independent validation in prospective studies is warranted.
Collapse
Affiliation(s)
- Xuefei Liu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Xu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueying Wu
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Ninth School of Clinical Medicine, Peking University, Beijing, China.,School of Oncology, Capital Medical University, Beijing, China
| | - Yanpu Liu
- Department of Respiration, Xiangshan Traditional Chinese Medicine Hospital, Shanghai, China
| | - Qiang Wu
- Department of Respiration, Xiangshan Traditional Chinese Medicine Hospital, Shanghai, China
| | - Jialiang Wu
- Department of Respiration, Xiangshan Traditional Chinese Medicine Hospital, Shanghai, China
| | - Henghui Zhang
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Ninth School of Clinical Medicine, Peking University, Beijing, China.,School of Oncology, Capital Medical University, Beijing, China
| | - Min Zhou
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Pacheco-Rodriguez G, Glasgow CG, Ikeda Y, Steagall WK, Yu ZX, Tsukada K, Beasley BW, Gochuico BR, Erdag G, Lurain K, Sampaio De Melo M, Ramaswami R, Darling TN, Filie A, Moss J. A Mixed Blood-Lymphatic Endothelial Cell Phenotype in LAM and IPF but not in Kaposi's Sarcoma or TSC. Am J Respir Cell Mol Biol 2022; 66:337-340. [PMID: 35102814 DOI: 10.1165/rcmb.2021-0293le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Gustavo Pacheco-Rodriguez
- National Institutes of Health, Pulmonary-Critical Care Medicine Branch, Bethesda, Maryland, United States
| | - Connie G Glasgow
- National Heart Lung and Blood Institute, 35035, Pulmonary Branch, Bethesda, Maryland, United States
| | - Yoshihiko Ikeda
- NHLBI, 35035, Pulmonary Branch, Bethesda, Maryland, United States
| | | | - Zu-Xi Yu
- NHLBI, 35035, Pathology Core Facility, Bethesda, Maryland, United States
| | - Katsuya Tsukada
- National Heart Lung and Blood Institute, 35035, Pulmonary Branch, Bethesda, Maryland, United States
| | | | | | - Gulsun Erdag
- Center for Cancer Research, 272101, Laboratory of Pathology, Bethesda, Maryland, United States
| | - Kathryn Lurain
- Center for Cancer Research, 272101, HIV & AIDS Malignancy Branch, Bethesda, Maryland, United States
| | | | - Ramya Ramaswami
- Center for Cancer Research, 272101, HIV & AIDS Malignancy Branch, Bethesda, Maryland, United States
| | - Thomas N Darling
- Uniformed Services University of the Health Sciences, 1685, Department of Dermatology, Bethesda, Maryland, United States
| | - Armando Filie
- National Institutes of Health, Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland, United States
| | | |
Collapse
|
7
|
Goldklang M. Raising the Flag for Mast Cells as a Novel Target in Lymphangioleiomyomatosis. Am J Respir Crit Care Med 2021; 204:387-389. [PMID: 33951405 PMCID: PMC8480237 DOI: 10.1164/rccm.202104-0872ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Krymskaya VP, Courtwright AM, Fleck V, Dorgan D, Kotloff R, McCormack FX, Kreider M. A phase II clinical trial of the Safety Of Simvastatin (SOS) in patients with pulmonary lymphangioleiomyomatosis and with tuberous sclerosis complex. Respir Med 2020; 163:105898. [PMID: 32125970 DOI: 10.1016/j.rmed.2020.105898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 01/20/2023]
Abstract
INRODUCTION The mechanistic target of rapamycin inhibitors (mTORi) sirolimus and everolimus stabilize lung function in patients with pulmonary lymphangioleiomyomatosis (LAM) but do not induce remission. Pre-clinical studies suggest that simvastatin in combination with sirolimus induces LAM cell death. The objective of this study was to assess the safety of simvastatin with either sirolimus or everolimus in LAM patients. METHODS This was a phase II single arm trial evaluating the safety of escalating daily simvastatin (20-40 mg) in LAM patients already treated with sirolimus or everolimus. Adverse events and changes in lipid panel profile, pulmonary function tests, and VEGF-D were assessed. RESULTS Ten LAM patients on a stable dose of mTORi for >3 months were treated with 20 mg simvastatin for two months followed by 40 mg for two months. The most common adverse events were peripheral edema (30%), cough (30%), and diarrhea (30%). No patients withdrew or had a reduction in simvastatin dose because of adverse events. Two patients required sirolumus dose reduction for supratherapeutic trough levels following simvastatin initiation. Total cholesterol and low density lipoproteins declined over the study period (-46.0 mg/dL±20.8, p = 0.008; -41.9 mg/dL±22.0, p = 0.01, respectively). There was also a decline in FEV1 (-82.0 mL±86.4, p = 0.02) but no significant change in FVC, DLCO, or VEGF-D. CONCLUSIONS The combination of simvastatin with mTORi in LAM patients is safe and well-tolerated from an adverse events perspective. The addition of simvastatin, however, was associated with decline in FEV1 and the efficacy of this combination should be explored in larger trials.
Collapse
Affiliation(s)
- Vera P Krymskaya
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrew M Courtwright
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA, USA
| | - Victoria Fleck
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel Dorgan
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA, USA
| | - Robert Kotloff
- Department of Pulmonary Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Francis X McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Maryl Kreider
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
9
|
The 10,000-Piece Puzzle of Lymphangioleiomyomatosis. Chest 2019; 153:298-299. [PMID: 29406212 DOI: 10.1016/j.chest.2017.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 11/21/2022] Open
|
10
|
Chebib N, Archer F, Bobet-Erny A, Leroux C, Cottin V. Dysregulation of the endothelin pathway in lymphangioleiomyomatosis with no direct effect on cell proliferation and migration. Sci Rep 2018; 8:14698. [PMID: 30279475 PMCID: PMC6168484 DOI: 10.1038/s41598-018-32795-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/12/2018] [Indexed: 11/16/2022] Open
Abstract
LAM is a rare low-grade metastasizing lung neoplasm. Inhibitors of mTOR improve clinical outcome of LAM patients by preventing loss of lung function. Nevertheless, other cell targets may be of interest for drug development. Therefore, we explored the potential role of EDN1 (endothelin) in LAM. We report an increased endothelin blood level in LAM patients as well as EDN1 overexpression and EDN1 receptor downregulation in LAM-derived primary cells and in TSC2NEG cells mutated in TSC2. We evidenced EDN pathway dysregulation based on EDN1, EDNRA, EDNRB and ARRB1 mRNA expression in LAM-derived primary cells. We showed overexpression of EDN1 and ARRB1 mRNAs in TSC2NEG cells; these cells lost their ability to respond to stimulation by endothelin. We analyzed the effects of endothelin receptor antagonists alone or in combination with rapamycin, an mTOR inhibitor, on proliferation and migration of LAM cells. Rapamycin treatment of TSC2NEG cells significantly reduced cell proliferation or migration, while none of the tested inhibitors of EDN receptors impaired these functions. We showed that TSC2NEG cells have acquired a transformed phenotype as showed by their ability to grow as spheroids in semi-solid medium and that unlike endothelin receptors antagonists, rapamycin reduced anchorage-independent cell growth and prevented expansion of TSC2NEG spheroids.
Collapse
Affiliation(s)
- Nader Chebib
- Université de Lyon, Université Claude Bernard Lyon 1, INRA, EPHE, IVPC, Viral Infections and Comparative Pathology, UMR754, F69007, Lyon, France.,Hospices Civils de Lyon, Groupement Hospitalier Est, Department of Respiratory Diseases, National Reference Center for Rare Pulmonary Diseases, Lyon, France
| | - Fabienne Archer
- Université de Lyon, Université Claude Bernard Lyon 1, INRA, EPHE, IVPC, Viral Infections and Comparative Pathology, UMR754, F69007, Lyon, France
| | - Alexandra Bobet-Erny
- Université de Lyon, Université Claude Bernard Lyon 1, INRA, EPHE, IVPC, Viral Infections and Comparative Pathology, UMR754, F69007, Lyon, France
| | - Caroline Leroux
- Université de Lyon, Université Claude Bernard Lyon 1, INRA, EPHE, IVPC, Viral Infections and Comparative Pathology, UMR754, F69007, Lyon, France.
| | - Vincent Cottin
- Université de Lyon, Université Claude Bernard Lyon 1, INRA, EPHE, IVPC, Viral Infections and Comparative Pathology, UMR754, F69007, Lyon, France.,Hospices Civils de Lyon, Groupement Hospitalier Est, Department of Respiratory Diseases, National Reference Center for Rare Pulmonary Diseases, Lyon, France
| |
Collapse
|
11
|
Steagall WK, Pacheco-Rodriguez G, Darling TN, Torre O, Harari S, Moss J. The Lymphangioleiomyomatosis Lung Cell and Its Human Cell Models. Am J Respir Cell Mol Biol 2018; 58:678-683. [PMID: 29406787 PMCID: PMC6002654 DOI: 10.1165/rcmb.2017-0403tr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/05/2018] [Indexed: 01/11/2023] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a multisystem disease of women, affecting lungs, kidneys, and lymphatics. It is caused by the proliferation of abnormal smooth muscle-like LAM cells, with mutations and loss of heterozygosity in the TSC1 or, more frequently, TSC2 genes. Isolated pulmonary LAM cells have been difficult to maintain in culture, and most studies of LAM lung cells involve mixtures of TSC2 wild-type and TSC2-null cells. A clonal population of LAM lung cells has not been established, making analysis of the cells challenging. Cell lines have been established from angiomyolipomas, a common manifestation of LAM, and from tumors from patients with TSC. Circulating LAM cells have also been isolated from blood and other body fluids. LAM cells may also be identified in clusters apparently derived from lymphatic vessels. Genetics, patterns of antigen expression, and signaling pathways have been studied in LAM lung tissue and in LAM cell models, although rarely all in the same study. We show here that LAM cells manifest differences in these characteristics, depending on the source investigated, suggesting further studies.
Collapse
Affiliation(s)
- Wendy K. Steagall
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Gustavo Pacheco-Rodriguez
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Thomas N. Darling
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and
| | - Olga Torre
- Unità Operativa di Pneumologia e Terapia Semi-Intensiva Respiratoria, Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe, MultiMedica Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Sergio Harari
- Unità Operativa di Pneumologia e Terapia Semi-Intensiva Respiratoria, Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe, MultiMedica Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
12
|
Kanaan R, Strange C. Use of multitarget tyrosine kinase inhibitors to attenuate platelet-derived growth factor signalling in lung disease. Eur Respir Rev 2017; 26:26/146/170061. [PMID: 29070579 PMCID: PMC9488848 DOI: 10.1183/16000617.0061-2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/05/2017] [Indexed: 02/07/2023] Open
Abstract
Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) play a fundamental role in the embryonic development of the lung. Aberrant PDGF signalling has been documented convincingly in a large variety of pulmonary diseases, including idiopathic pulmonary arterial hypertension, lung cancer and lung fibrosis. Targeting PDGF signalling has been proven to be effective in these diseases. In clinical practice, the most effective way to block PDGF signalling is to inhibit the activity of the intracellular PDGFR kinases. Although the mechanism of action of such drugs is not specific for PDGF signalling, the medications have a broad therapeutic index that allows clinical use. The safety profile and therapeutic opportunities of these and future medications that target PDGFs and PDGFRs are reviewed. An increasing role for PDGF signalling inhibitors in clinical trials for the treatment of various pulmonary diseaseshttp://ow.ly/buaI30f9HcN
Collapse
Affiliation(s)
- Rana Kanaan
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Dept of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Charlie Strange
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Dept of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
13
|
Stepanova V, Dergilev KV, Holman KR, Parfyonova YV, Tsokolaeva ZI, Teter M, Atochina-Vasserman EN, Volgina A, Zaitsev SV, Lewis SP, Zabozlaev FG, Obraztsova K, Krymskaya VP, Cines DB. Urokinase-type plasminogen activator (uPA) is critical for progression of tuberous sclerosis complex 2 (TSC2)-deficient tumors. J Biol Chem 2017; 292:20528-20543. [PMID: 28972182 DOI: 10.1074/jbc.m117.799593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/20/2017] [Indexed: 12/20/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a fatal lung disease associated with germline or somatic inactivating mutations in tuberous sclerosis complex genes (TSC1 or TSC2). LAM is characterized by neoplastic growth of smooth muscle-α-actin-positive cells that destroy lung parenchyma and by the formation of benign renal neoplasms called angiolipomas. The mammalian target of rapamycin complex 1 (mTORC1) inhibitor rapamycin slows progression of these diseases but is not curative and associated with notable toxicity at clinically effective doses, highlighting the need for better understanding LAM's molecular etiology. We report here that LAM lesions and angiomyolipomas overexpress urokinase-type plasminogen activator (uPA). Tsc1-/- and Tsc2-/- mouse embryonic fibroblasts expressed higher uPA levels than their WT counterparts, resulting from the TSC inactivation. Inhibition of uPA expression in Tsc2-null cells reduced the growth and invasiveness and increased susceptibility to apoptosis. However, rapamycin further increased uPA expression in TSC2-null tumor cells and immortalized TSC2-null angiomyolipoma cells, but not in cells with intact TSC. Induction of glucocorticoid receptor signaling or forkhead box (FOXO) 1/3 inhibition abolished the rapamycin-induced uPA expression in TSC-compromised cells. Moreover, rapamycin-enhanced migration of TSC2-null cells was inhibited by the uPA inhibitor UK122, dexamethasone, and a FOXO inhibitor. uPA-knock-out mice developed fewer and smaller TSC2-null lung tumors, and introduction of uPA shRNA in tumor cells or amiloride-induced uPA inhibition reduced tumorigenesis in vivo These findings suggest that interference with the uPA-dependent pathway, when used along with rapamycin, might attenuate LAM progression and potentially other TSC-related disorders.
Collapse
Affiliation(s)
| | - Konstantin V Dergilev
- the Angiogenesis Laboratory, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, Moscow 121552, Russia
| | - Kelci R Holman
- the College of Arts and Sciences, Drexel University, Philadelphia, Pennsylvania 19104, and
| | - Yelena V Parfyonova
- the Angiogenesis Laboratory, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, Moscow 121552, Russia
| | - Zoya I Tsokolaeva
- the Angiogenesis Laboratory, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, Moscow 121552, Russia
| | - Mimi Teter
- the College of Arts and Sciences, Drexel University, Philadelphia, Pennsylvania 19104, and
| | - Elena N Atochina-Vasserman
- Penn Center for Pulmonary Biology, Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Alla Volgina
- Penn Center for Pulmonary Biology, Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | | | - Shane P Lewis
- the College of Arts and Sciences, Drexel University, Philadelphia, Pennsylvania 19104, and
| | - Fedor G Zabozlaev
- the Department of Pathology, Federal Research Clinical Center Federal Medical and Biological Agency of Russia, Moscow 115682, Russia
| | - Kseniya Obraztsova
- Penn Center for Pulmonary Biology, Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Vera P Krymskaya
- Penn Center for Pulmonary Biology, Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Douglas B Cines
- From the Department of Pathology and Laboratory Medicine and
| |
Collapse
|
14
|
Glasgow CG, Pacheco-Rodriguez G, Steagall WK, Haughey ME, Julien-Williams PA, Stylianou MP, Gochuico BR, Moss J. CA-125 in Disease Progression and Treatment of Lymphangioleiomyomatosis. Chest 2017; 153:339-348. [PMID: 28576630 DOI: 10.1016/j.chest.2017.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/24/2017] [Accepted: 05/16/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lymphangioleiomyomatosis (LAM) is a destructive lung disease of women caused by proliferation of neoplastic-like LAM cells, with mutations in the TSC1/2 tumor suppressor genes. Based on case reports, levels of cancer antigen 125 (CA-125), an ovarian cancer biomarker, can be elevated in patients with LAM. We hypothesized that elevated serum CA-125 levels seen in some patients with LAM were due to LAM, not other malignancies, and might respond to sirolimus treatment. METHODS Serum CA-125 levels were measured for 241 patients at each visit. Medical records were reviewed for co-morbidities, disease progression, and response to sirolimus treatment. CA-125 expression in LAM cells was determined by using immunohistochemical analysis. RESULTS Almost 25% of patients with LAM had at least one elevated serum CA-125 measurement. Higher serum CA-125 levels correlated with lower FEV1, premenopausal status, and pleural effusion in a multivariate model (each P < .001). Serum CA-125 levels decreased following sirolimus treatment (P = .002). CA-125 and α-smooth muscle actin were co-expressed in LAM lung nodules. CONCLUSIONS Higher serum CA-125 levels were associated with pleural effusions and reduced pulmonary function and were decreased with sirolimus therapy. LAM cells express CA-125. Some elevated serum CA-125 levels may reflect serosal membrane involvement.
Collapse
Affiliation(s)
- Connie G Glasgow
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Gustavo Pacheco-Rodriguez
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Wendy K Steagall
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Mary E Haughey
- Office of the Clinical Director, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Patricia A Julien-Williams
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Mario P Stylianou
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
15
|
Ando K, Fujino N, Mitani K, Ota C, Okada Y, Kondo T, Mizobuchi T, Kurihara M, Suzuki K, Hoshika Y, Ebana H, Kobayashi E, Takahashi K, Kubo H, Seyama K. Isolation of individual cellular components from lung tissues of patients with lymphangioleiomyomatosis. Am J Physiol Lung Cell Mol Physiol 2016; 310:L899-908. [PMID: 27016587 DOI: 10.1152/ajplung.00365.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/19/2016] [Indexed: 01/30/2023] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare neoplastic disease entailing cystic destruction of the lungs and progressive respiratory failure. LAM lungs are histologically characterized by the proliferation of smooth muscle-like cells (LAM cells) and an abundance of lymphatic vessels. To elucidate the pathophysiological processes of LAM, cell-type-specific analyses are required. However, no method exists for isolating the individual types of cells in LAM lesions. Therefore, we established a fluorescence-activated cell sorting (FACS)-based method for the direct isolation of LAM cells and other various cellular components from LAM-affected lung tissue. We obtained LAM-affected lung tissue from resections or transplant recipients and prepared single-cell suspensions. FACS, immunohistochemical, and molecular analysis were used cooperatively to isolate HMB45-positive LAM cells with tuberous sclerosis complex (TSC) 2 loss of heterozygosity (LOH). Using a combination of antibodies against an epithelial cell adhesion molecule (EpCAM) and podoplanin, we fractionated CD45-negative lung cells into three groups: lymphatic endothelial cells (LEC) (EpCAM(-)/podoplanin(hi) subset), alveolar type II cells (EpCAM(hi)/podoplanin(-) subset), and mesenchymal cells (EpCAM(-)/podoplanin(-/low) subset). During subsequent analysis of HMB45 expression, as a LAM-specific marker, we clearly identified LAM cells in the mesenchymal cell population. We then discovered that CD90(+)/CD34(-) cells in the mesenchymal cell population are not only positive for HBM45 but also had TSC2 LOH. These isolated cells were viable and subsequently amenable to cell culture. This method enables us to isolate LAM cells and other cellular components, including LAM-associated LEC, from LAM-affected lung tissues, providing new research opportunities in this field.
Collapse
Affiliation(s)
- Katsutoshi Ando
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan;
| | - Naoya Fujino
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiko Mitani
- Division of Human Pathology, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Chiharu Ota
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging, and Cancer, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Takashi Kondo
- Department of Thoracic Surgery, Institute of Development, Aging, and Cancer, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Teruaki Mizobuchi
- Pneumothorax Research Center and Division of Thoracic Surgery, Nissan Tamagawa Hospital, Tokyo, Japan; and
| | - Masatoshi Kurihara
- Pneumothorax Research Center and Division of Thoracic Surgery, Nissan Tamagawa Hospital, Tokyo, Japan; and
| | - Kenji Suzuki
- Division of Thoracic Surgery, Juntendo University Faculty of Medicine and Graduate School of Medicine, Bunkyo-Ku, Tokyo, Japan
| | - Yoshito Hoshika
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Hiroki Ebana
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Etsuko Kobayashi
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Kazuhisa Takahashi
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Kubo
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kuniaki Seyama
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Alayev A, Salamon RS, Sun Y, Schwartz NS, Li C, Yu JJ, Holz MK. Effects of combining rapamycin and resveratrol on apoptosis and growth of TSC2-deficient xenograft tumors. Am J Respir Cell Mol Biol 2016; 53:637-46. [PMID: 25844891 DOI: 10.1165/rcmb.2015-0022oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare neoplastic metastatic disease affecting women of childbearing age. LAM is caused by hyperactivation of the mechanistic target of rapamycin complex 1 (mTORC1) as a consequence of tuberous sclerosis complex (TSC) 1/2 inactivation. Clinically, LAM results in cystic lung destruction. mTORC1 inhibition using rapamycin analogs (rapalogs) is partially effective in reducing disease progression and improving lung function. However, cessation of treatment results in continued progression of the disease. In the present study, we investigated the effectiveness of the combination of rapamycin treatment with resveratrol, an autophagy inhibitor, in the TSC2-null xenograft tumor model. We determined that this combination inhibits phosphatidylinositol-4,5-bisphosphate 3-kinase PI3K/Akt/mTORC1 signaling and activates apoptosis. Therefore, the combination of rapamycin and resveratrol may be an effective clinical strategy for treatment of LAM and other diseases with mTORC1 hyperactivation.
Collapse
Affiliation(s)
- Anya Alayev
- 1 Department of Biology, Stern College for Women of Yeshiva University, New York, New York
| | - Rachel S Salamon
- 1 Department of Biology, Stern College for Women of Yeshiva University, New York, New York
| | - Yang Sun
- 2 Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Naomi S Schwartz
- 1 Department of Biology, Stern College for Women of Yeshiva University, New York, New York
| | - Chenggang Li
- 2 Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jane J Yu
- 2 Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marina K Holz
- 3 Department of Biology, Yeshiva University, New York, New York; and.,4 Department of Molecular Pharmacology and the Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
17
|
Abstract
Lymphangioleiomyomatosis (LAM) is a rare neoplastic disease affecting predominantly young women. Clinical symptoms of this progressive disease include dyspnoea, cough, recurrent pneumothorax, hemoptysis and chylothorax. LAM is generally aggressive in nature and ultimately results in respiratory failure. Important hallmark features of this metastatic disease include the formation of lesions of abnormal smooth muscle cells, cystic destruction of the lung tissue and lymphangiogenesis affecting the lungs, abdomen and lymphatics. Research over the last 10-15 years has significantly enhanced our understanding of the molecular and cellular processes associated with LAM. These processes include mutational inactivation of the tuberous sclerosis complex genes, TSC1 and TSC2, activation of the mammalian target of rapamycin (mTOR) pathway, enhanced cell proliferation and migration, lymphangiogenesis, metastatic spread through the blood and lymphatic circulations, sex steroid sensitivity and dysregulated autophagy. Despite this increased knowledge there is currently no cure for LAM and treatment options remain limited. Whilst the mTOR inhibitor rapamycin has shown some benefit in patients with LAM, with stabilisation of lung function and improved quality of life, cessation of treatment results in recurrence of the disease progression. This highlights the urgent need to identify novel targets and new treatment regimens. The focus of this review is to summarise our current understanding of the cellular and molecular processes associated with LAM and highlight emerging treatments.
Collapse
Affiliation(s)
- Lyn M Moir
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; Discipline of Pharmacology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
18
|
Ng HY, Oliver BGG, Burgess JK, Krymskaya VP, Black JL, Moir LM. Doxycycline reduces the migration of tuberous sclerosis complex-2 null cells - effects on RhoA-GTPase and focal adhesion kinase. J Cell Mol Med 2015; 19:2633-46. [PMID: 26282580 PMCID: PMC4627568 DOI: 10.1111/jcmm.12593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/16/2015] [Indexed: 01/22/2023] Open
Abstract
Lymphangioleiomyomatosis (LAM) is associated with dysfunction of the tuberous sclerosis complex (TSC) leading to enhanced cell proliferation and migration. This study aims to examine whether doxycycline, a tetracycline antibiotic, can inhibit the enhanced migration of TSC2-deficient cells, identify signalling pathways through which doxycycline works and to assess the effectiveness of combining doxycycline with rapamycin (mammalian target of rapamycin complex 1 inhibitor) in controlling cell migration, proliferation and wound closure. TSC2-positive and TSC2-negative mouse embryonic fibroblasts (MEF), 323-TSC2-positive and 323-TSC2-null MEF and Eker rat uterine leiomyoma (ELT3) cells were treated with doxycycline or rapamycin alone, or in combination. Migration, wound closure and proliferation were assessed using a transwell migration assay, time-lapse microscopy and manual cell counts respectively. RhoA-GTPase activity, phosphorylation of p70S6 kinase (p70S6K) and focal adhesion kinase (FAK) in TSC2-negative MEF treated with doxycycline were examined using ELISA and immunoblotting techniques. The enhanced migration of TSC2-null cells was reduced by doxycycline at concentrations as low as 20 pM, while the rate of wound closure was reduced at 2–59 μM. Doxycycline decreased RhoA-GTPase activity and phosphorylation of FAK in these cells but had no effect on the phosphorylation of p70S6K, ERK1/2 or AKT. Combining doxycycline with rapamycin significantly reduced the rate of wound closure at lower concentrations than achieved with either drug alone. This study shows that doxycycline inhibits TSC2-null cell migration. Thus doxycycline has potential as an anti-migratory agent in the treatment of diseases with TSC2 dysfunction.
Collapse
Affiliation(s)
- Ho Yin Ng
- Sydney Medical School, Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia.,Cell Biology Group, Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Brian Gregory George Oliver
- Sydney Medical School, Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia.,Cell Biology Group, Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Janette Kay Burgess
- Sydney Medical School, Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia.,Cell Biology Group, Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Vera P Krymskaya
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Judith Lee Black
- Sydney Medical School, Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia.,Cell Biology Group, Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Lyn M Moir
- Sydney Medical School, Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia.,Cell Biology Group, Woolcock Institute of Medical Research, Sydney, NSW, Australia
| |
Collapse
|
19
|
Abstract
INTRODUCTION Pulmonary lymphangioleiomyomatosis (LAM) is a rare progressive lung disease affecting almost exclusively women. Neoplastic growth of atypical smooth muscle-like cells in the lung induces destruction of lung parenchyma leading to the formation of lung cysts, rupture of which results in spontaneous pneumothorax. LAM occurs sporadically or in association with inherited hamartoma syndrome tuberous sclerosis complex (TSC). Progression of LAM often results in loss of pulmonary function and death. Increasing understanding of neoplastic LAM cell growth is driving the development of therapeutic approaches targeting the disease progression. AREAS COVERED This review provides background to understand the rationale for current treatments used in patients with LAM, to critically appraise the evidence for these treatments, and to discuss future treatment approaches. The literature review includes publications from PubMed and clinicaltrials.gov/. EXPERT OPINION Targeting mTOR activation with rapamycin analogs sirolimus and everolimus are awaiting approval by the FDA for treatment of LAM. A number of other treatment options have been investigated and are currently tested in clinical trials to target LAM cell survival and metastasis. Key remaining and poorly understood areas for development and validation of therapeutic targeting in LAM are destruction of lungs, pathological lymphangiogenesis, and hormonal regulation. Future will reveal whether they could be targeted therapeutically.
Collapse
Affiliation(s)
- Vera P Krymskaya
- Airway Biology Initiative, Pulmonary, Allergy & Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Tyryshkin A, Bhattacharya A, Eissa NT. SRC kinase is a novel therapeutic target in lymphangioleiomyomatosis. Cancer Res 2014; 74:1996-2005. [PMID: 24691995 DOI: 10.1158/0008-5472.can-13-1256] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Lymphangioleiomyomatosis (LAM) is a progressive cystic lung disease affecting some women with tuberous sclerosis complex (TSC). Sporadic LAM can develop in women without TSC, owing to somatic mutations in the TSC2 gene. Accumulating evidence supports the view of LAM as a low-grade, destructive, metastasizing neoplasm. The mechanisms underlying the metastatic capability of LAM cells remain poorly understood. The observed behavior of LAM cells with respect to their infiltrative growth pattern, metastatic potential, and altered cell differentiation bears similarity to cells undergoing epithelial-mesenchymal transition. Here, we report increased levels of active Src kinase in LAM lungs and in TSC2(-/-) cells, caused by a reduction of autophagy. Furthermore, increased Src kinase activation promoted migration, invasion, and inhibition of E-cadherin expression in TSC2(-/-) cells by upregulating the transcription factor Snail. Notably, Src kinase inhibitors reduced migration and invasion properties of TSC2(-/-) cells and attenuated lung colonization of intravenously injected TSC2(-/-) cells in vivo to a greater extent than control TSC2(+/+) cells. Our results reveal mechanistic basis for the pathogenicity of LAM cells and they rationalize Src kinase as a novel therapeutic target for treatment of LAM and TSC.
Collapse
Affiliation(s)
- Alexey Tyryshkin
- Authors' Affiliation: Department of Medicine, Baylor College of Medicine, Houston, Texas
| | | | | |
Collapse
|
21
|
Weckmann M, Moir LM, Heckman CA, Black JL, Oliver BG, Burgess JK. Lamstatin--a novel inhibitor of lymphangiogenesis derived from collagen IV. J Cell Mol Med 2014; 16:3062-73. [PMID: 22998238 PMCID: PMC4393734 DOI: 10.1111/j.1582-4934.2012.01648.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 09/12/2012] [Indexed: 12/31/2022] Open
Abstract
The lymphatic system is essential for the maintenance of tissue homeostasis and immunity. Its dysfunction in disease (such as lymphangioleiomyomatosis) can lead to chylous effusions, oedema or dissemination of malignant cells. Collagen IV has six α chains, of which some of the non-collagenous-1 domains have endogenous anti-angiogenic properties, however, little is known about specific endogenous anti-lymphangiogenic characteristics. In this study we sought to investigate the expression levels of collagen IV non-collagenous-1 domains in lung tissue of patients with and without lymphangioleiomyomatosis to explore the hypothesis that a member of the collagen IV family, specifically the non-collagenous domain-1 of α5, which we named lamstatin, has anti-lymphangiogenic properties. Levels of lamstatin detected by immunohistochemistry were decreased in lungs of lymphangioleiomyomatosis patients. We produced recombinant lamstatin in an E.coli expression system and synthesized a 17-amino acid peptide from a theoretically identified, active region (CP17) and tested their effects in vitro and in vivo. Recombinant lamstatin and CP17 inhibited proliferation, migration and cord formation of human microvascular lung lymphatic endothelial cells, in vitro. Furthermore, lamstatin and CP17 decreased complexity and dysplasia of the tumour-associated lymphatic network in a lung adenocarcinoma xenograft mouse model. In this study we identified a novel, direct inhibitor of lymphangiogenesis, derived from collagen IV. This may prove useful for exploring new avenues of treatment for lymphangioleiomyomatosis and metastasis via the lymphatic system in general.
Collapse
Affiliation(s)
- Markus Weckmann
- Woolcock Institute of Medical Research, Glebe, NSW, Australia
| | | | | | | | | | | |
Collapse
|
22
|
Black JL, Yin Ng H, Moir LM. Therapeutic strategies in lymphangioleiomyomatosis (LAM). Respir Investig 2014; 52:3-4. [PMID: 24388364 DOI: 10.1016/j.resinv.2013.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Judith L Black
- Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, NSW, Australia
| | - Ho Yin Ng
- Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, NSW, Australia
| | - Lyn M Moir
- Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, NSW, Australia
| |
Collapse
|
23
|
Atochina-Vasserman EN, Goncharov DA, Volgina AV, Milavec M, James ML, Krymskaya VP. Statins in lymphangioleiomyomatosis. Simvastatin and atorvastatin induce differential effects on tuberous sclerosis complex 2-null cell growth and signaling. Am J Respir Cell Mol Biol 2013; 49:704-9. [PMID: 23947572 DOI: 10.1165/rcmb.2013-0203rc] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations of the tumor suppressor genes tuberous sclerosis complex (TSC)1 and TSC2 cause pulmonary lymphangioleiomyomatosis (LAM) and tuberous sclerosis (TS). Current rapamycin-based therapies for TS and LAM have a predominantly cytostatic effect, and disease progression resumes with therapy cessation. Evidence of RhoA GTPase activation in LAM-derived and human TSC2-null cells suggests that 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor statins can be used as potential adjuvant agents. The goal of this study was to determine which statin (simvastatin or atorvastatin) is more effective in suppressing TSC2-null cell growth and signaling. Simvastatin, but not atorvastatin, showed a concentration-dependent (0.5-10 μM) inhibitory effect on mouse TSC2-null and human LAM-derived cell growth. Treatment with 10 μM simvastatin induced dramatic disruption of TSC2-null cell monolayer and cell rounding; in contrast, few changes were observed in cells treated with the same concentration of atorvastatin. Combined treatment of rapamycin with simvastatin but not with atorvastatin showed a synergistic growth-inhibitory effect on TSC2-null cells. Simvastatin, but not atorvastatin, inhibited the activity of prosurvival serine-threonine kinase Akt and induced marked up-regulation of cleaved caspase-3, a marker of cell apoptosis. Simvastatin, but not atorvastatin, also induced concentration-dependent inhibition of p42/p44 Erk and mTORC1. Thus, our data show growth-inhibitory and proapoptotic effects of simvastatin on TSC2-null cells compared with atorvastatin. These findings have translational significance for combinatorial therapeutic strategies of simvastatin to inhibit TSC2-null cell survival in TS and LAM.
Collapse
Affiliation(s)
- Elena N Atochina-Vasserman
- 1 Airway Biology Initiative, Pulmonary, Allergy & Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|
24
|
Alayev A, Sun Y, Snyder RB, Berger SM, Yu JJ, Holz MK. Resveratrol prevents rapamycin-induced upregulation of autophagy and selectively induces apoptosis in TSC2-deficient cells. Cell Cycle 2013; 13:371-82. [PMID: 24304514 DOI: 10.4161/cc.27355] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway is hyperactivated in a variety of cancers and disorders, including lymphangioleiomyomatosis (LAM) and tuberous sclerosis complex (TSC), which are characterized by mutations in tumor suppressors TSC1 or TSC2. The concern with the use of mTORC1 inhibitors, such as rapamycin or its analogs (rapalogs), is that they cause upregulation of autophagy and suppress the negative feedback loop to Akt, which promotes cell survival, causing the therapy to be only partially effective, and relapse occurs upon cessation of treatment. In this study, we investigate the use of rapamycin in combination with resveratrol, a naturally occurring polyphenol, in TSC2-deficient cells. We tested whether such combination would prevent rapamycin-induced upregulation of autophagy and shift the cell fate toward apoptosis. We found that this combination treatment blocked rapamycin-induced upregulation of autophagy and restored inhibition of Akt. Interestingly, the combination of rapamycin and resveratrol selectively promoted apoptosis of TSC2-deficient cells. Thus, the addition of resveratrol to rapamycin treatment may be a promising option for selective and targeted therapy for diseases with TSC loss and mTORC1 hyperactivation.
Collapse
Affiliation(s)
- Anya Alayev
- Department of Biology; Stern College for Women of Yeshiva University; New York, NY USA
| | - Yang Sun
- Brigham and Women's Hospital and Harvard Medical School; Boston, MA USA
| | - Rose B Snyder
- Department of Biology; Stern College for Women of Yeshiva University; New York, NY USA
| | - Sara Malka Berger
- Department of Biology; Stern College for Women of Yeshiva University; New York, NY USA
| | - Jane J Yu
- Brigham and Women's Hospital and Harvard Medical School; Boston, MA USA
| | - Marina K Holz
- Department of Biology; Stern College for Women of Yeshiva University; New York, NY USA; Department of Molecular Pharmacology; Stern College for Women of Yeshiva University; New York, NY USA; Albert Einstein Cancer Center; Albert Einstein College of Medicine; Bronx, NY USA
| |
Collapse
|
25
|
Trindade AJ, Medvetz DA, Neuman NA, Myachina F, Yu J, Priolo C, Henske EP. MicroRNA-21 is induced by rapamycin in a model of tuberous sclerosis (TSC) and lymphangioleiomyomatosis (LAM). PLoS One 2013; 8:e60014. [PMID: 23555865 PMCID: PMC3612076 DOI: 10.1371/journal.pone.0060014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 02/20/2013] [Indexed: 01/04/2023] Open
Abstract
Lymphangioleiomyomatosis (LAM), a multisystem disease of women, is manifest by the proliferation of smooth muscle-like cells in the lung resulting in cystic lung destruction. Women with LAM can also develop renal angiomyolipomas. LAM is caused by mutations in the tuberous sclerosis complex genes (TSC1 or TSC2), resulting in hyperactive mammalian Target of Rapamycin (mTOR) signaling. The mTOR inhibitor, Rapamycin, stabilizes lung function in LAM and decreases the volume of renal angiomyolipomas, but lung function declines and angiomyolipomas regrow when treatment is discontinued, suggesting that factors induced by mTORC1 inhibition may promote the survival of TSC2-deficient cells. Whether microRNA (miRNA, miR) signaling is involved in the response of LAM to mTORC1 inhibition is unknown. We identified Rapamycin-dependent miRNA in LAM patient angiomyolipoma-derived cells using two separate screens. First, we assayed 132 miRNA of known significance to tumor biology. Using a cut-off of >1.5-fold change, 48 microRNA were Rapamycin-induced, while 4 miRs were downregulated. In a second screen encompassing 946 miRNA, 18 miRs were upregulated by Rapamycin, while eight were downregulated. Dysregulation of miRs 29b, 21, 24, 221, 106a and 199a were common to both platforms and were classified as candidate “RapamiRs.” Validation by qRT-PCR confirmed that these microRNA were increased. miR-21, a pro-survival miR, was the most significantly increased by mTOR-inhibition (p<0.01). The regulation of miR-21 by Rapamycin is cell type independent. mTOR inhibition promotes the processing of the miR-21 transcript (pri-miR-21) to a premature form (pre-miR-21). In conclusion, our findings demonstrate that Rapamycin upregulates multiple miRs, including pro-survival miRs, in TSC2-deficient patient-derived cells. The induction of miRs may contribute to the response of LAM and TSC patients to Rapamycin therapy.
Collapse
Affiliation(s)
- Anil J. Trindade
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Douglas A. Medvetz
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nicole A. Neuman
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Faina Myachina
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jane Yu
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carmen Priolo
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizabeth P. Henske
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
26
|
Goncharova EA, Goncharov DA, Fehrenbach M, Khavin I, Ducka B, Hino O, Colby TV, Merrilees MJ, Haczku A, Albelda SM, Krymskaya VP. Prevention of alveolar destruction and airspace enlargement in a mouse model of pulmonary lymphangioleiomyomatosis (LAM). Sci Transl Med 2013; 4:154ra134. [PMID: 23035046 DOI: 10.1126/scitranslmed.3003840] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pulmonary lymphangioleiomyomatosis (LAM) is a rare genetic disease characterized by neoplastic growth of atypical smooth muscle-like LAM cells, destruction of lung parenchyma, obstruction of lymphatics, and formation of lung cysts, leading to spontaneous pneumothoraces (lung rupture and collapse) and progressive loss of pulmonary function. The disease is caused by mutational inactivation of the tumor suppressor gene tuberous sclerosis complex 1 (TSC1) or TSC2. By injecting TSC2-null cells into nude mice, we have developed a mouse model of LAM that is characterized by multiple random TSC2-null lung lesions, vascular endothelial growth factor-D expression, lymphangiogenesis, destruction of lung parenchyma, and decreased survival, similar to human LAM. The mice show enlargement of alveolar airspaces that is associated with progressive growth of TSC2-null lesions in the lung, up-regulation of proinflammatory cytokines and matrix metalloproteinases (MMPs) that degrade extracellular matrix, and destruction of elastic fibers. TSC2-null lesions and alveolar destruction were differentially inhibited by the macrolide antibiotic rapamycin (which inhibits TSC2-null lesion growth by a cytostatic mechanism) and a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, simvastatin (which inhibits growth of TSC2-null lesions by a predominantly proapoptotic mechanism). Treatment with simvastatin markedly inhibited MMP-2, MMP-3, and MMP-9 levels in lung and prevented alveolar destruction. The combination of rapamycin and simvastatin prevented both growth of TSC2-null lesions and lung destruction by inhibiting MMP-2, MMP-3, and MMP-9. Our findings demonstrate a mechanistic link between loss of TSC2 and alveolar destruction and suggest that treatment with rapamycin and simvastatin together could benefit patients with LAM by targeting cells with TSC2 dysfunction and preventing airspace enlargement.
Collapse
Affiliation(s)
- Elena A Goncharova
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hammes SR, Krymskaya VP. Targeted approaches toward understanding and treating pulmonary lymphangioleiomyomatosis (LAM). Discov Oncol 2012. [PMID: 23184699 DOI: 10.1007/s12672-012-0128-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pulmonary lymphangioleiomyomatosis (LAM) is a rare disease found almost exclusively in women that is characterized by neoplastic growth of atypical smooth muscle-like cells in the lung, destruction of lung parenchyma, and obstruction of lymphatics. These processes lead to the formation of lung cysts, rupture of which results in spontaneous pneumothorax. Progression of LAM often results in loss of pulmonary function and death. LAM affects predominantly women of childbearing age and is exacerbated by pregnancy. The only proven treatment for LAM is lung transplantation, and even then LAM cells will often return to the transplanted lung. However, methodical and targeted approaches toward understanding LAM pathophysiology have led to the discovery of new potential therapeutic avenues. For example, the mutational inactivation of tumor suppressor complex genes tuberous sclerosis complex 1 or tuberous sclerosis complex 2 has been shown to be present in lung LAM cells. These mutations occur sporadically or in association with inherited hamartoma syndrome tuberous sclerosis (TSC). Since TSC genes function as negative regulators of the mammalian target of rapamycin, a major controller of cell growth, metabolism, and survival, rapamycin analogs have recently been used to treat LAM patients with promising results. Similarly, studies focusing on the importance of estrogen in LAM progression have suggested that anti-estrogen therapy might prove to be an alternative means of treating LAM. This minireview summarizes recent progress in understanding LAM pathophysiology, including the latest preclinical and clinical studies, and insights regarding the role of hormones in LAM.
Collapse
Affiliation(s)
- Stephen R Hammes
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
28
|
Moir LM, Black JL, Krymskaya VP. TSC2 modulates cell adhesion and migration via integrin-α1β1. Am J Physiol Lung Cell Mol Physiol 2012; 303:L703-10. [PMID: 22923640 DOI: 10.1152/ajplung.00414.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent evidence suggests that the rare and progressive lung disease lymphangioleiomyomatosis (LAM) is metastatic in nature. Dysfunction of the tumor suppressor genes tuberous sclerosis complex (TSC), in particular mutational inactivation of TSC2, enhances both cell proliferation and migration. Although substantial progress has been made in understanding the role of TSC2 in abnormal LAM cell proliferation and its pharmacological targeting, the mechanisms underlying the enhanced migratory capacity in LAM are not well understood. In this study, we examined the role of TSC2 in cell attachment, spreading, and migration, processes that contribute to the metastatic phenotype. Here we show that loss of TSC2 increased both the attachment and spreading of mouse embryonic fibroblasts to the extracellular matrix proteins collagen type I and fibronectin and that reexpression of TSC2 reduced these effects. Integrin-α1β1 modulated cell migration with the β1-subunit involved in cell attachment and spreading as shown by using functional blocking antibodies. Loss of TSC2 increased integrin-α1 expression, and inhibition of this integrin subunit reduced cell migration. The enhanced attachment and spreading were independent of the intracellular signaling pathways mammalian target of rapamycin complex 1 and Rho-associated kinase, as pharmacological inhibition with rapamycin or Y27632, respectively, was without effect. Together, these data demonstrate that TSC2 controls cell migration, attachment, and spreading through the α1β1-integrin receptor and thus suggest a potential therapeutic target for the treatment of increased cell invasiveness in LAM.
Collapse
Affiliation(s)
- Lyn M Moir
- Cell Biology, Woolcock Institute of Medical Research, PO Box M77, Missenden Rd., NSW, 2050, Australia.
| | | | | |
Collapse
|
29
|
Krymskaya VP. Treatment option(s) for pulmonary lymphangioleiomyomatosis: progress and current challenges. Am J Respir Cell Mol Biol 2012; 46:563-5. [PMID: 22550272 DOI: 10.1165/rcmb.2011-0381ed] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
30
|
Dilling DF, Gilbert ER, Picken MM, Eby JM, Love RB, Le Poole IC. A current viewpoint of lymphangioleiomyomatosis supporting immunotherapeutic treatment options. Am J Respir Cell Mol Biol 2012; 46:1-5. [PMID: 21940815 DOI: 10.1165/rcmb.2011-0215tr] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) leads to hyperproliferation of abnormal smooth muscle cells in the lungs, associated with diffuse pulmonary parenchymal cyst formation and progressive dyspnea on exertion. The disease targets women of child-bearing age. Complications include pneumothoraces and chylous pleural effusions. Ten-year survival is estimated at 70%, and lung transplantation remains the only validated treatment. It has been observed that LAM cells express markers associated with melanocytic differentiation, including gp100 and MART-1. Other melanocytic markers have also been observed. The same proteins are targeted by T cells infiltrating melanoma tumors as well as by T cells infiltrating autoimmune vitiligo skin, and these antigens are regarded as relatively immunogenic. Consequently, vaccines have been developed for melanoma targeting these and other immunogenic melanocyte differentiation proteins. Preliminary data showing susceptibility of LAM cells to melanoma derived T cells suggest that vaccines targeting melanosomal antigens can be successful in treating LAM.
Collapse
Affiliation(s)
- Daniel F Dilling
- Department of Medicine, Cardinal Bernardin Cancer Center, Loyola University, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
31
|
Moir LM, Ng HY, Poniris MH, Santa T, Burgess JK, Oliver BGG, Krymskaya VP, Black JL. Doxycycline inhibits matrix metalloproteinase-2 secretion from TSC2-null mouse embryonic fibroblasts and lymphangioleiomyomatosis cells. Br J Pharmacol 2012; 164:83-92. [PMID: 21418186 DOI: 10.1111/j.1476-5381.2011.01344.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Lymphangioleiomyomatosis (LAM) is characterized by the abnormal growth of smooth muscle-like cells (LAM cells) and cystic destruction of the lung parenchyma. LAM cell-derived matrix metalloproteinases (MMPs) are thought to play a prominent role in the tissue destruction. The aim of this study was to determine whether doxycycline, a known MMP inhibitor, can inhibit LAM cell proliferation or mitochondrial function and/or modulate MMPs and their tissue inhibitors (TIMPs). EXPERIMENTAL APPROACH Wild-type and tuberous sclerosis complex-2 (TSC2)-null mouse embryonic fibroblasts (MEFs) were cultured in DMEM containing 10% fetal bovine serum (FBS). Human LAM cells were derived from the lungs of LAM patients and airway smooth muscle cells from control subjects. Cells were stimulated with FBS with or without doxycycline for up to 9 days. Proliferation was assessed by manual cell counts and MTT assay, MMP production by zymography and ELISA, and TIMP production using elisa. KEY RESULTS Doxycycline did not change FBS-induced proliferation in MEFs or human cells. However, doxycycline did reduce metabolic activity of both wild-type and TSC2-null MEFs and LAM cells, but had no effect on control cells. Furthermore, doxycycline reduced MMP-2 from MEFs and decreased active-MMP-2 from LAM cells but had no effect on TIMP-1 and TIMP-2 from human LAM cells. CONCLUSIONS AND IMPLICATIONS Doxycycline decreased MMP levels and cell metabolic activity, which raises the possibility of therapeutic efficacy in LAM.
Collapse
Affiliation(s)
- L M Moir
- Woolcock Institute of Medical Research, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Lymphangioleiomyomatosis (LAM) is a rare but devastating disease, leading to chronic respiratory failure. Considerable progress for comprehension of the disease has been made when mutations of the tuberous sclerosis genes TSC1 and TSC2, were discovered in LAM cells. Therapeutic consequences of these studies are important, leading to clinical trials with sirolimus for LAM. RECENT FINDINGS In two studies, angiomyolipoma size decreased by 26-50% after 12 months of sirolimus treatment. In a recent 12 months controlled trial involving 89 patients with pulmonary LAM, sirolimus stopped lung function decline and improved quality of life and performance score. The protective effect of sirolimus was lost after treatment discontinuation, with a parallel lung function decline in both groups, similar to the increase in angiomyolipoma size. Sirolimus is associated with an excess of adverse events. SUMMARY Sirolimus represents an important drug for LAM that should be proposed to patients with a rapid alteration of lung function or with a significant clinical impairment, after individual evaluation of the risk/benefit ratio. Sirolimus seems to have a sharper effect on the reduction of abdominal masses than on lung cysts. Tolerance and safety concerns are serious limits to the long-term treatment of patients with sirolimus.
Collapse
|
33
|
Piha-Paul SA, Hong DS, Kurzrock R. Response of Lymphangioleiomyomatosis to a Mammalian Target of Rapamycin Inhibitor (Temsirolimus) –Based Treatment. J Clin Oncol 2011; 29:e333-5. [DOI: 10.1200/jco.2010.32.5928] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - David S. Hong
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
34
|
Abstract
Mutational inactivation of the tumor suppressor tuberous sclerosis complex 2 (TSC2) constitutively activates mTORC1, increases cell proliferation, and induces the pathological manifestations observed in tuberous sclerosis (TS) and in pulmonary lymphangioleiomyomatosis (LAM). While the role of mTORC1 in TSC2-dependent growth has been extensively characterized, little is known about the role of mTORC2. Our data demonstrate that mTORC2 modulates TSC2-null cell proliferation and survival through RhoA GTPase and Bcl2 proteins. TSC2-null cell proliferation was inhibited not only by reexpression of TSC2 or small interfering RNA (siRNA)-induced downregulation of Rheb, mTOR, or raptor, but also by siRNA for rictor. Increased RhoA GTPase activity and P-Ser473 Akt were inhibited by siRNA for rictor. Importantly, constitutively active V14RhoA reversed growth inhibition induced by siRNA for rictor, siRNA TSC1, reexpression of TSC2, or simvastatin. While siRNA for RhoA had a modest effect on growth inhibition, downregulation of RhoA markedly increased TSC2-null cell apoptosis. Inhibition of RhoA activity downregulated antiapoptotic Bcl2 and upregulated proapoptotic Bim, Bok, and Puma. In vitro and in vivo, simvastatin alone or in combination with rapamycin inhibited cell growth and induced TSC2-null cell apoptosis, abrogated TSC2-null tumor growth, improved animal survival, and prevented tumor recurrence by inhibiting cell growth and promoting apoptosis. Our data demonstrate that mTORC2-dependent activation of RhoA is required for TSC2-null cell growth and survival and suggest that targeting both mTORC2 and mTORC1 by a combination of proapoptotic simvastatin and cytostatic rapamycin shows promise for combinational therapeutic intervention in diseases with TSC2 dysfunction.
Collapse
|
35
|
Neuman NA, Henske EP. Non-canonical functions of the tuberous sclerosis complex-Rheb signalling axis. EMBO Mol Med 2011; 3:189-200. [PMID: 21412983 PMCID: PMC3377068 DOI: 10.1002/emmm.201100131] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/11/2011] [Accepted: 02/16/2011] [Indexed: 01/10/2023] Open
Abstract
The protein products of the tuberous sclerosis complex (TSC) genes, TSC1 and TSC2, form a complex, which inhibits the small G-protein, Ras homolog enriched in brain (Rheb). The vast majority of research regarding these proteins has focused on mammalian Target of Rapamycin (mTOR), a target of Rheb. Here, we propose that there are clinically relevant functions and targets of TSC1, TSC2 and Rheb, which are independent of mTOR. We present evidence that such non-canonical functions of the TSC-Rheb signalling network exist, propose a standard of evidence for these non-canonical functions, and discuss their potential clinical and therapeutic implications for patients with TSC and lymphangioleiomyomatosis (LAM).
Collapse
Affiliation(s)
- Nicole A Neuman
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
36
|
Goncharova EA, Lim PN, Chisolm A, Fogle HW, Taylor JH, Goncharov DA, Eszterhas A, Panettieri RA, Krymskaya VP. Interferons modulate mitogen-induced protein synthesis in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2010; 299:L25-35. [PMID: 20382746 PMCID: PMC2904093 DOI: 10.1152/ajplung.00228.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 04/06/2010] [Indexed: 01/10/2023] Open
Abstract
Severe asthma is characterized by increased airway smooth muscle (ASM) mass due, in part, to ASM cell growth and contractile protein expression associated with increased protein synthesis. Little is known regarding the combined effects of mitogens and interferons on ASM cytosolic protein synthesis. We demonstrate that human ASM mitogens including PDGF, EGF, and thrombin stimulate protein synthesis. Surprisingly, pleiotropic cytokines IFN-beta and IFN-gamma, which inhibit ASM proliferation, also increased cytosolic protein content in ASM cells. Thus IFN-beta alone significantly increased protein synthesis by 1.62 +/- 0.09-fold that was further enhanced by EGF to 2.52 +/- 0.17-fold. IFN-gamma alone also stimulated protein synthesis by 1.91 +/- 0.15-fold; treatment of cells with PDGF, EGF, and thrombin in the presence of IFN-gamma stimulated protein synthesis by 2.24 +/- 0.3-, 1.25 +/- 0.17-, and 2.67 +/- 0.34-fold, respectively, compared with growth factors alone. The mammalian target of rapamycin (mTOR)/S6 kinase 1 (S6K1) inhibition with rapamycin inhibited IFN- and EGF-induced protein synthesis, suggesting that IFN-induced protein synthesis is modulated by mTOR/S6K1 activation. Furthermore, overexpression of tumor suppressor protein tuberous sclerosis complex 2 (TSC2), which is an upstream negative regulator of mTOR/S6K1 signaling, also inhibited mitogen-induced protein synthesis in ASM cells. IFN-beta and IFN-gamma stimulated miR143/145 microRNA expression and increased SM alpha-actin accumulation but had little effect on ASM cell size. In contrast, EGF increased ASM cell size but had little effect on miR143/145 expression. Our data demonstrate that both IFNs and mitogens stimulate protein synthesis but have differential effects on cell size and contractile protein expression and suggest that combined effects of IFNs and mitogens may contribute to ASM cell growth, contractile protein expression, and ASM remodeling in asthma.
Collapse
Affiliation(s)
- Elena A Goncharova
- Pulmonary, Allergy, and Critical Care Division, Airway Biology Initiative, Department of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mammalian target of rapamycin signaling and autophagy: roles in lymphangioleiomyomatosis therapy. Ann Am Thorac Soc 2010; 7:48-53. [PMID: 20160148 DOI: 10.1513/pats.200909-104js] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The pace of progress in lymphangioleiomyomatosis (LAM) is remarkable. In the year 2000, TSC2 gene mutations were found in LAM cells; in 2001 the tuberous sclerosis complex (TSC) genes were discovered to regulate cell size in Drosophila via the kinase TOR (target of rapamycin); and in 2008 the results were published of a clinical trial of rapamycin, a specific inhibitor of TOR, in patients with TSC and LAM with renal angiomyolipomas. This interval of just 8 years between a genetic discovery for which the relevant signaling pathway was as yet unknown, to the initiation, completion, and publication of a clinical trial, is an almost unparalleled accomplishment in modern biomedical research. This robust foundation of basic, translational, and clinical research in TOR, TSC, and LAM is now poised to optimize and validate effective therapeutic strategies for LAM. An immediate challenge is to deduce the mechanisms underlying the partial response of renal angiomyolipomas to rapamycin, and thereby guide the design of combinatorial approaches. TOR complex 1 (TORC1), which is known to be active in LAM cells, is a key inhibitor of autophagy. One hypothesis, which will be explored here, is that low levels of autophagy in TSC2-null LAM cells limits their survival under conditions of bioenergetic stress. A corollary of this hypothesis is that rapamycin, by inducing autophagy, promotes the survival of LAM cells, while simultaneously arresting their growth. If this hypothesis proves to be correct, then combining TORC1 inhibition with autophagy inhibition may represent an effective clinical strategy for LAM.
Collapse
|
38
|
Seyama K, Mitani K, Kumasaka T, Gupta SK, Oommen S, Liu G, Ryu JH, Vlahakis NE. Lymphangioleiomyoma cells and lymphatic endothelial cells: expression of VEGFR-3 in lymphangioleiomyoma cell clusters. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2051-2; author reply 2052-4. [PMID: 20203284 DOI: 10.2353/ajpath.2010.091239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Goncharova EA, Goncharov DA, Damera G, Tliba O, Amrani Y, Panettieri RA, Krymskaya VP. Signal transducer and activator of transcription 3 is required for abnormal proliferation and survival of TSC2-deficient cells: relevance to pulmonary lymphangioleiomyomatosis. Mol Pharmacol 2009; 76:766-77. [PMID: 19596836 PMCID: PMC2769052 DOI: 10.1124/mol.109.057042] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 07/13/2009] [Indexed: 12/23/2022] Open
Abstract
Tumor suppressor complex TSC1/TSC2 represents a key negative regulator of mammalian target of rapamycin (mTOR)-S6 kinase 1 signaling. Mutational inactivation of TSC1 or TSC2, linked to a rare lung disease, lymphangioleiomyomatosis (LAM), manifests as neoplastic growth of smooth-muscle (SM)-like cells and cystic destruction of the lungs that induces loss of pulmonary function. However, the precise mechanisms of abnormal cell growth in LAM remain uncertain. Here, we demonstrate increased signal transducer and activator of transcription (STAT) 3 expression, phosphorylation, and nuclear localization in SM-like cells in LAM lungs and in TSC2-null xenographic tumors. Treatment of TSC2-null tumors with mTOR inhibitor rapamycin attenuated STAT3 expression and phosphorylation. Increased STAT3 level and activation were also observed in LAM-dissociated (LAMD) cell cultures compared with normal human bronchus fibroblasts (HBFs) from LAM patients. Although interferon (IFN)-gamma inhibited proliferation of HBFs, IFN-gamma treatment had little effect on proliferation of LAMD and TSC2-null cells. Re-expression of TSC2 or treatment with rapamycin inhibited IFN-gamma-induced STAT3 phosphorylation and synergized with IFN-gamma in inhibiting TSC2-null and LAMD cell proliferation. Reduction of STAT3 protein levels or activity using specific small interfering RNA or inhibitory peptide, respectively, decreased proliferation and induced apoptosis in TSC2-null and LAMD cells and sensitized cells to growth-inhibitory and proapoptotic effects of IFN-gamma. Collectively, our data demonstrate that STAT3 activation is required for proliferation and survival of cells with TSC2 dysfunction, that STAT3 impedes growth-inhibitory and proapoptotic effects of IFN-gamma, and that TSC2- and rapamycin-dependent inhibition of STAT3 restores antiproliferative effects of IFN-gamma. Thus, STAT3 may provide a novel therapeutic target for diseases associated with TSC1/TSC2 dysfunction.
Collapse
Affiliation(s)
- Elena A Goncharova
- Pulmonary, Allergy, and Critical Care Division, Airways Biology Initiative, Department of Medicine, University of Pennsylvania, TRL, Room 1214, 125 South 31st St., Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Camoretti-Mercado B. Targeting the airway smooth muscle for asthma treatment. Transl Res 2009; 154:165-74. [PMID: 19766960 PMCID: PMC2764304 DOI: 10.1016/j.trsl.2009.06.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 06/18/2009] [Accepted: 06/20/2009] [Indexed: 02/06/2023]
Abstract
Asthma is a complex respiratory disease whose incidence has increased worldwide in the last decade. Currently there is no cure for asthma. Although bronchodilator and anti-inflammatory medications are effective medicines in some asthmatic patients, it is clear that an unmet therapeutic need persists for a subpopulation of individuals with severe asthma. This chronic lung disease is characterized by airflow limitation, lung inflammation, and remodeling that includes increased airway smooth muscle (ASM) mass. In addition to its contractile properties, the ASM also contributes to the inflammatory process by producing active mediators, which modify the extracellular matrix composition and interact with inflammatory cells. These undesirable functions make interventions aimed at reducing ASM abundance an attractive strategy for novel asthma therapies. The following three mechanisms could limit the accumulation of smooth muscle: decreased cell proliferation, augmented cell apoptosis, and reduced cell migration into the smooth muscle layer. Inhibitors of the mevalonate pathway or statins hold promise for asthma treatment, because they exhibit anti-inflammatory, antimigratory, and antiproliferative effects in preclinical and clinical studies, and they can target the smooth muscle. This review will discuss current knowledge of ASM biology and identify gaps in the field to stimulate future investigations of the cellular mechanisms that control ASM overabundance in asthma. Targeting ASM has the potential to be an innovative venue of treatment for patients with asthma.
Collapse
Affiliation(s)
- Blanca Camoretti-Mercado
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
41
|
Issaka RB, Oommen S, Gupta SK, Liu G, Myers JL, Ryu JH, Vlahakis NE. Vascular endothelial growth factors C and D induces proliferation of lymphangioleiomyomatosis cells through autocrine crosstalk with endothelium. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1410-20. [PMID: 19717640 DOI: 10.2353/ajpath.2009.080830] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lymphangioleiomyomatosis (LAM) is a potentially fatal lung disease characterized by nodules of proliferative smooth muscle-like cells. The exact nature of these LAM cells and their proliferative stimuli are poorly characterized. Herein we report the novel findings that the lymphangiogenic vascular endothelial growth factors (VEGF) C and D induce LAM cell proliferation through activation of their cognate receptor VEGF-R3 and activation of the signaling intermediates Akt/mTOR/S6. Furthermore, we identify expression of the proteoglycan NG2, a marker of immature smooth muscle cells, as a characteristic of LAM cells both in vitro and in human lung tissue. VEGF-C-induced LAM cell proliferation was in part a result of autocrine stimulation that resulted from cross talk with lymphatic endothelial cells. Ultimately, these findings identify the lymphangiogenic VEGF proteins as pathogenic growth factors in LAM disease and at the same time provide a novel pharmacotherapeutic target for a lung disease that to date has no known effective treatment.
Collapse
Affiliation(s)
- Rachel B Issaka
- Thoracic Disease Research Unit, Division of Pulmonary, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Dysregulated activity of phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin complex 1 (mTORC1) is characteristic feature of hamartoma syndromes. Hamartoma syndromes, dominantly inherited cancer predisposition disorders, affect multiple organs and are manifested by benign tumors consisting of various cell types native to the tissues in which they arise. In the past few years, three inherited hamartoma syndromes, Cowden syndrome (CS), tuberous sclerosis complex (TSC) syndrome, and Peutz-Jeghens syndrome (PJS), have all been linked to a common biochemical pathway: the hyperactivation of PI3K/mTORC1 intracellular signaling. Three tumor suppressors, PTEN (phosphatases and tensin homolog), tuberous sclerosis complex TSC1/TSC2, and LKB1, are negative regulators of PI3K/mTORC1 signaling; disease-related inactivation of these tumor suppressors results in the development of PTEN-associated hamartoma syndromes, TSC and PJS, respectively. The goal of this review is to provide a roadmap for navigating the inherently complex regulation of PI3K/mTORC1 signaling while highlighting the progress that has been made in elucidating the cellular and molecular mechanisms of hamartoma syndromes and identificating potential therapeutic targets for their treatment. Importantly, because the PI3K/mTORC1 pathway is activated in the majority of common human cancers, the identification of novel molecular target(s) for the treatment of hamartoma syndromes may have a broader translational potential, and is critically important not only for therapeutic intervention in hamartoma disorders, but also for the treatment of cancers.
Collapse
Affiliation(s)
- Vera P Krymskaya
- Department of Medicine, and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104-3403, USA.
| | | |
Collapse
|
43
|
Sirolimus treatment for recurrent lymphangioleiomyomatosis after lung transplantation. Ann Thorac Surg 2009; 87:e6-7. [PMID: 19101258 DOI: 10.1016/j.athoracsur.2008.07.107] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Revised: 07/28/2008] [Accepted: 07/29/2008] [Indexed: 11/20/2022]
Abstract
Pulmonary lymphangioleiomyomatosis is a rare disease that generally progresses to respiratory failure. We experienced a patient who had recurring lymphangioleiomyomatosis in the transplanted lungs. A chest computed tomographic scan showed a progressing emphysematous change. The patient had a subclinical extent of pan-circumferential stricture at the distal site of the left bronchial anastomosis. We treated the patient with sirolimus for three years. Chest computed tomography showed no sign of exacerbation during the late 3 years, whereas pulmonary function test revealed a slight increase after the use of sirolimus. Bronchial stricture also disappeared almost completely. This is the first reported case with sirolimus treatment for post-transplant recurrent lymphangioleiomyomatosis.
Collapse
|
44
|
Sirolimus Ameliorated Post Lung Transplant Chylothorax in Lymphangioleiomyomatosis. Ann Thorac Surg 2008; 86:e7-8. [DOI: 10.1016/j.athoracsur.2008.07.062] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 06/30/2008] [Accepted: 07/09/2008] [Indexed: 11/19/2022]
|
45
|
Sirolimus amelioration of clinical symptoms of recurrent lymphangioleiomyomatosis after living-donor lobar lung transplantation. J Heart Lung Transplant 2008; 27:921-4. [PMID: 18656809 DOI: 10.1016/j.healun.2008.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 05/08/2008] [Accepted: 05/19/2008] [Indexed: 01/04/2023] Open
Abstract
In this study we report the case of a 28-year-old female patient with recurrent lymphangioleiomyomatosis (LAM) in the allografts after bilateral living-donor lobar lung transplantation. Although her post-operative course under immunosuppression with tacrolimus and prednisolone had been uneventful without rejection episodes, she had developed shortness of breath and a progressive chylous effusion with diffuse cystic changes in both lungs 5 years after transplantation. In spite of a diagnosis of having a recurrence of LAM based on radiologic findings and deteriorating pulmonary function, her clinical symptoms, which included dyspnea and chylothorax, were significantly improved after treatment with sirolimus. Although a beneficial effect of sirolimus in the treatment of LAM has not been definitively determined, this report may provide useful information for management of recurrent LAM after lung transplantation.
Collapse
|
46
|
Goncharova EA, Krymskaya VP. Pulmonary lymphangioleiomyomatosis (LAM): progress and current challenges. J Cell Biochem 2008; 103:369-82. [PMID: 17541983 DOI: 10.1002/jcb.21419] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lymphangioleiomyomatosis (LAM), a rare lung disease, is characterized by the progressive proliferation, migration, and differentiation of smooth muscle (SM)-like LAM cells, which lead to the cystic destruction of the lung parenchyma, obstruction of airways and lymphatics, and loss of pulmonary function. LAM is a disease predominantly affecting women and is exacerbated by pregnancy; only a lung transplant can save the life of a patient. It has been discovered that in LAM, somatic or genetic mutations of tumor suppressor genes tuberous sclerosis complex 1 (TSC1) or TSC2 occur and the TSC1/TSC2 protein complex functions as a negative regulator of the mTOR/S6K1 signaling pathway. These two pivotal observations paved the way for the first rapamycin clinical trial for LAM. The recent discoveries that TSC1/TSC2 complex functions as an integrator of signaling networks regulated by growth factors, insulin, nutrients, and energy heightened the interest regarding this rare disease because the elucidation of disease-relevant mechanisms of LAM will promote a better understanding of other metabolic diseases such as diabetes, cancer, and cardiovascular diseases. In this review, we will summarize the progress made in our understanding of TSC1/TSC2 cellular signaling and the molecular mechanisms of LAM; we will also highlight some of the lesser explored directions and challenges in LAM research.
Collapse
|
47
|
Chorianopoulos D, Stratakos G. Lymphangioleiomyomatosis and tuberous sclerosis complex. Lung 2008; 186:197-207. [PMID: 18408969 DOI: 10.1007/s00408-008-9087-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 03/13/2008] [Indexed: 02/05/2023]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare multisystemic disease of women of child-bearing age and affects mainly the lungs, promoting cystic destruction of lung parenchyma or leading to abdominal tumor formation (e.g., angiomyolipomas, lymphangioleiomyomas). LAM can arise sporadically or in association with tuberous sclerosis complex (TSC), an autosomal inherited syndrome characterized by hamartoma-like tumor growth and pathologic features that are distinct from manifestations of pulmonary LAM. A substantial body of evidence has now been gathered suggesting that the two diseases share a common genetic origin. TSC is caused by mutations in two genes, TSC1 on chromosome 9q34 and TSC2 on 16p13. Both of these genes are tumor suppressor genes encoding hamartin (TSC1) and tuberin (TSC2). Sporadic LAM is correlated with a mutation in the TSC2 gene and tuberin appears to play a central role in the pathogenesis of the disease. A TSC2 loss or mutation leads to disruption of the tuberin-hamartin heteromer and dysregulation of S6K1 activation leading to aberrant cell proliferation seen in LAM disease. The extremely diverse clinical and radiologic features of the disease and the complex therapeutic approach are reviewed in detail. Although new therapeutic agents have been tested, to date no effective treatment has been proposed and the prognosis of patients with LAM remains poor. As long as newer therapeutic agents do not change this picture, lung transplantation remains the last hope for patients with respiratory failure at the advanced stage of the disease.
Collapse
Affiliation(s)
- Dimitrios Chorianopoulos
- 1st Department of Respiratory Medicine, University of Athens Medical School, "Sotiria" General Hospital, Athens, Greece. .,5th Department of Internal Medicine, "Evaggelismos" Hospital, Athens, Greece. .,, 23rd November str., Ilion, Athens, 13121, Greece.
| | - Grigoris Stratakos
- Critical Care and Pulmonary Services Unit, University of Athens Medical School, "Evaggelismos" Hospital, Athens, Greece
| |
Collapse
|
48
|
Goncharova EA, Goncharov DA, Chisolm A, Spaits MS, Lim PN, Cesarone G, Khavin I, Tliba O, Amrani Y, Panettieri RA, Krymskaya VP. Interferon beta augments tuberous sclerosis complex 2 (TSC2)-dependent inhibition of TSC2-null ELT3 and human lymphangioleiomyomatosis-derived cell proliferation. Mol Pharmacol 2008; 73:778-88. [PMID: 18094073 DOI: 10.1124/mol.107.040824] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM), a rare pulmonary disorder, manifests as an abnormal neoplastic growth of smooth muscle-like cells within the lungs. Mutational inactivation of tumor suppressor tuberous sclerosis complex 2 (TSC2) in LAM constitutively activates the mammalian target of rapamycin (mTOR)/p70 S6 kinase 1 (S6K1) signaling pathway and promotes neoplastic growth of LAM cells. In many cell types, type I interferon beta (IFNbeta) inhibits proliferation and induces apoptosis through signal transducers and activators of transcription (STAT)-dependent and STAT-independent signaling pathways, one of which is the mTOR/S6K1 signaling pathway. Our study shows that IFNbeta is expressed in LAM tissues and LAM-derived cell cultures; however, IFNbeta attenuates LAM-derived cell proliferation only at high concentrations, 100 and 1000 U/ml (IC(50) value for IFNbeta is 20 U/ml compared with 1 U/ml for normal human mesenchymal cells, human bronchus fibroblasts and human airway smooth muscle cells). Likewise, IFNbeta only attenuates proliferation of smooth muscle TSC2-null ELT3 cells. Analysis of IFNbeta signaling in LAM cells showed expression of IFNbeta receptor alpha (IFNbetaRalpha) and IFNbetaRbeta, activation and nuclear translocation of STAT1, and phosphorylation of STAT3 and p38 mitogen-activated protein kinase (MAPK), but IFNbeta had little effect on S6K1 activity. However, the re-expression of TSC2 or inhibition of mTOR/S6K1 with rapamycin (sirolimus) augmented antiproliferative effects of IFNbeta in LAM and TSC2-null ELT3 cells. Our study demonstrates that IFNbeta-dependent activation of STATs and p38 MAPK is not sufficient to fully inhibit proliferation of cells with TSC2 dysfunction and that TSC2-dependent inhibition of mTOR/S6K1 cooperates with IFNbeta in inhibiting human LAM and TSC2-null ELT3 cell proliferation.
Collapse
Affiliation(s)
- Elena A Goncharova
- Department of Medicine, University of Pennsylvania, TRL Suite 1200, 125 South 31st Street, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The two-hit hypothesis presented by Knudson in 1971 explains the development of tumours deficient in anti-oncogenes. Hamartomas in patients with tuberous sclerosis usually fit into this model, the first hit is a congenital lesion of either of the tuberous sclerosis genes (TSC1 or TSC2), and the second hit is loss of heterozygosity of this gene. Although this mechanism is true for most tumours associated with tuberous sclerosis, only 30-60% of brain and cardiac tumours show loss of heterozygosity--the remaining tumours develop despite the presence of an intact allele. Tumours in which loss of heterozygosity is rare, such as subependymal giant-cell astrocytoma, might all share a common feature that mimics loss of heterozygosity either by inactivation of the TSC complex or by direct activation of mammalian target of rapamycin (mTOR) or its downstream targets. Because phosphorylation of the TSC complex can inactivate it, expression and activation patterns of protein kinase B (AKT) and extracellular signal-regulated kinase (ERK), two potent protein kinases that are activators of the mTOR pathway, have been implicated. AKT activation is detected only in few samples, whereas ERK is hyperactive in all subependymal giant-cell astrocytomas. We postulate that ERK activation consistently detected in different tuberous-sclerosis-associated tumours is a molecular trigger for the development of these neoplasms.
Collapse
Affiliation(s)
- Jaroslaw Jozwiak
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Warsaw, Poland.
| | | | | |
Collapse
|
50
|
McMillan TR, Moore BB, Weinberg JB, Vannella KM, Fields WB, Christensen PJ, van Dyk LF, Toews GB. Exacerbation of established pulmonary fibrosis in a murine model by gammaherpesvirus. Am J Respir Crit Care Med 2008; 177:771-80. [PMID: 18187693 DOI: 10.1164/rccm.200708-1184oc] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Idiopathic pulmonary fibrosis is a progressive disease with high mortality. Although most patients have a slow, progressive course, some patients will have an acute deterioration in function or acute exacerbation, which carries a poor prognosis. In some cases, acute deterioration is associated with infection. Herpesviruses have been associated with this disease. Fibrocytes have also been shown to be important in the pathogenesis of pulmonary fibrosis. OBJECTIVES To develop a murine model for infectious exacerbation of preexisting fibrosis, and provide mechanistic insight into the role of herpesviruses in fibrotic disease. METHODS We used a model of fluorescein isothiocyanate-induced pulmonary fibrosis in mice. Infection with a murine gammaherpesvirus was given at time of established lung fibrosis. Measurements were made at the time of peak lytic viral replication. MEASUREMENTS AND MAIN RESULTS We demonstrate that infection with gammaherpesvirus can exacerbate established fluorescein isothiocyanate-induced fibrosis evidenced by increased total lung collagen, histologic changes of acute lung injury, and diminished lung function. Gammaherpesvirus can exacerbate preexisting fibrosis in a Th1 cytokine environment and in the absence of Th2 cytokines. Gammaherpesvirus increases fibrocyte recruitment to the lung in wild-type, but not CCR2(-/-) mice, in part because viral infection up-regulates production of CCL2 and CCL12, chemokines important for fibrocyte recruitment. In contrast, mouse adenovirus infection did not exacerbate collagen deposition. CONCLUSIONS These data provide a new model for gammaherpesvirus exacerbation of established pulmonary fibrosis. The up-regulation of chemokines during viral infection and subsequent recruitment of fibrocytes to the lung likely contribute to augmentation of pulmonary fibrosis.
Collapse
Affiliation(s)
- Tracy R McMillan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | |
Collapse
|