1
|
Hussen BM, Najmadden ZB, Abdullah SR, Rasul MF, Mustafa SA, Ghafouri-Fard S, Taheri M. CRISPR/Cas9 gene editing: a novel strategy for fighting drug resistance in respiratory disorders. Cell Commun Signal 2024; 22:329. [PMID: 38877530 PMCID: PMC11179281 DOI: 10.1186/s12964-024-01713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/12/2024] [Indexed: 06/16/2024] Open
Abstract
Respiratory disorders are among the conditions that affect the respiratory system. The healthcare sector faces challenges due to the emergence of drug resistance to prescribed medications for these illnesses. However, there is a technology called CRISPR/Cas9, which uses RNA to guide DNA targeting. This technology has revolutionized our ability to manipulate and visualize the genome, leading to advancements in research and treatment development. It can effectively reverse epigenetic alterations that contribute to drug resistance. Some studies focused on health have shown that targeting genes using CRISPR/Cas9 can be challenging when it comes to reducing drug resistance in patients with respiratory disorders. Nevertheless, it is important to acknowledge the limitations of this technology, such as off-target effects, immune system reactions to Cas9, and challenges associated with delivery methods. Despite these limitations, this review aims to provide knowledge about CRISPR/Cas9 genome editing tools and explore how they can help overcome resistance in patients with respiratory disorders. Additionally, this study discusses concerns related to applications of CRISPR and provides an overview of successful clinical trial studies.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, 44001, Kurdistan Region, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Zana Baqi Najmadden
- Research Center, University of Halabja, Halabja, 46018, Kurdistan region, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Tishk International University, Kurdistan Region, Iraq
| | - Suhad A Mustafa
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
2
|
Chiarella SE, Barnes PJ. Endogenous inhibitory mechanisms in asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100135. [PMID: 37781649 PMCID: PMC10509980 DOI: 10.1016/j.jacig.2023.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 10/03/2023]
Abstract
Endogenous inhibitory mechanisms promote resolution of inflammation, enhance tissue repair and integrity, and promote homeostasis in the lung. These mechanisms include steroid hormones, regulatory T cells, IL-10, prostaglandin E2, prostaglandin I2, lipoxins, resolvins, protectins, maresins, glucagon-like peptide-1 receptor, adrenomedullin, nitric oxide, and carbon monoxide. Here we review the most recent literature regarding these endogenous inhibitory mechanisms in asthma, which remain a promising target for the prevention and treatment of asthma.
Collapse
|
3
|
Benamar M, Chen Q, Martinez-Blanco M, Chatila TA. Regulatory T cells in allergic inflammation. Semin Immunol 2023; 70:101847. [PMID: 37837939 PMCID: PMC10842049 DOI: 10.1016/j.smim.2023.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
Regulatory T (Treg) cells maintain immune tolerance to allergens at the environmental interfaces in the airways, skin and gut, marshalling in the process distinct immune regulatory circuits operative in the respective tissues. Treg cells are coordinately mobilized with allergic effector mechanisms in the context of a tissue-protective allergic inflammatory response against parasites, toxins and potentially harmful allergens, serving to both limit the inflammation and promote local tissue repair. Allergic diseases are associated with subverted Treg cell responses whereby a chronic allergic inflammatory environment can skew Treg cells toward pathogenic phenotypes that both perpetuate and aggravate disease. Interruption of Treg cell subversion in chronic allergic inflammatory conditions may thus provide novel therapeutic strategies by re-establishing effective immune regulation.
Collapse
Affiliation(s)
- Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Qian Chen
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Monica Martinez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Lead Contact, USA.
| |
Collapse
|
4
|
Khalil BA, Sharif-Askari NS, Halwani R. Role of inflammasome in severe, steroid-resistant asthma. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100061. [PMID: 37304814 PMCID: PMC10250931 DOI: 10.1016/j.crimmu.2023.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 06/13/2023] Open
Abstract
Purpose of review Asthma is a common heterogeneous group of chronic inflammatory diseases with different pathological phenotypes classified based on the various clinical, physiological and immunobiological profiles of patients. Despite similar clinical symptoms, asthmatic patients may respond differently to treatment. Hence, asthma research is becoming more focused on deciphering the molecular and cellular pathways driving the different asthma endotypes. This review focuses on the role of inflammasome activation as one important mechanism reported in the pathogenesis of severe steroid resistant asthma (SSRA), a Th2-low asthma endotype. Although SSRA represents around 5-10% of asthmatic patients, it is responsible for the majority of asthma morbidity and more than 50% of asthma associated healthcare costs with clear unmet need. Therefore, deciphering the role of the inflammasome in SSRA pathogenesis, particularly in relation to neutrophil chemotaxis to the lungs, provides a novel target for therapy. Recent findings The literature highlighted several activators of inflammasomes that are elevated during SSRA and result in the release of proinflammatory mediators, mainly IL-1β and IL-18, through different signaling pathways. Consequently, the expression of NLRP3 and IL-1β is shown to be positively correlated with neutrophil recruitment and negatively correlated with airflow obstruction. Furthermore, exaggerated NLRP3 inflammasome/IL-1β activation is reported to be associated with glucocorticoid resistance. Summary In this review, we summarized the reported literature on the activators of the inflammasome during SSRA, the role of IL-1β and IL-18 in SSRA pathogenesis, and the pathways by which inflammasome activation contributes to steroid resistance. Finally, our review shed light on the different levels to target inflammasome involvement in an attempt to ameliorate the serious outcomes of SSRA.
Collapse
Affiliation(s)
- Bariaa A. Khalil
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Rabih Halwani
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Saudi Arabia
| |
Collapse
|
5
|
Kanannejad Z, Soleimanian S, Ghahramani Z, Sepahi N, Mohkam M, Alyasin S, Kheshtchin N. Immune checkpoint molecules in prevention and development of asthma. Front Immunol 2023; 14:1070779. [PMID: 36865540 PMCID: PMC9972681 DOI: 10.3389/fimmu.2023.1070779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Allergic asthma is a respiratory disease initiated by type-2 immune responses characterized by secretion of alarmins, interleukin-4 (IL-4), IL-5, and IL-13, eosinophilic inflammation, and airway hyperresponsiveness (AHR). Immune checkpoints (ICPs) are inhibitory or stimulatory molecules expressed on different immune cells, tumor cells, or other cell types that regulate immune system activation and maintain immune homeostasis. Compelling evidence indicates a key role for ICPs in both the progression and prevention of asthma. There is also evidence of asthma development or exacerbation in some cancer patients receiving ICP therapy. The aim of this review is to provide an updated overview of ICPs and their roles in asthma pathogenesis, and to assess their implications as therapeutic targets in asthma.
Collapse
Affiliation(s)
- Zahra Kanannejad
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ghahramani
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Sepahi
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Mohkam
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Alyasin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Kheshtchin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Ashique S, De Rubis G, Sirohi E, Mishra N, Rihan M, Garg A, Reyes RJ, Manandhar B, Bhatt S, Jha NK, Singh TG, Gupta G, Singh SK, Chellappan DK, Paudel KR, Hansbro PM, Oliver BG, Dua K. Short Chain Fatty Acids: Fundamental mediators of the gut-lung axis and their involvement in pulmonary diseases. Chem Biol Interact 2022; 368:110231. [DOI: 10.1016/j.cbi.2022.110231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 11/24/2022]
|
7
|
Deng N, Zuo X, lin Q, Wang T, Li Y, Zhong J, Ni H, Chen Q, Ding X, Yu H, Nie H. Low-dose 5-fluorouracil ameliorates Th2 responses through the induction of apoptotic cell death of lung monocyte-derived dendritic cells in asthma. Biomed Pharmacother 2022; 156:113875. [DOI: 10.1016/j.biopha.2022.113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/26/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
|
8
|
Alexandrova Y, Costiniuk CT, Jenabian MA. Pulmonary Immune Dysregulation and Viral Persistence During HIV Infection. Front Immunol 2022; 12:808722. [PMID: 35058937 PMCID: PMC8764194 DOI: 10.3389/fimmu.2021.808722] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the success of antiretroviral therapy (ART), people living with HIV continue to suffer from high burdens of respiratory infections, lung cancers and chronic lung disease at a higher rate than the general population. The lung mucosa, a previously neglected HIV reservoir site, is of particular importance in this phenomenon. Because ART does not eliminate the virus, residual levels of HIV that remain in deep tissues lead to chronic immune activation and pulmonary inflammatory pathologies. In turn, continuous pulmonary and systemic inflammation cause immune cell exhaustion and pulmonary immune dysregulation, creating a pro-inflammatory environment ideal for HIV reservoir persistence. Moreover, smoking, gut and lung dysbiosis and co-infections further fuel the vicious cycle of residual viral replication which, in turn, contributes to inflammation and immune cell proliferation, further maintaining the HIV reservoir. Herein, we discuss the recent evidence supporting the notion that the lungs serve as an HIV viral reservoir. We will explore how smoking, changes in the microbiome, and common co-infections seen in PLWH contribute to HIV persistence, pulmonary immune dysregulation, and high rates of infectious and non-infectious lung disease among these individuals.
Collapse
Affiliation(s)
- Yulia Alexandrova
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC, Canada
| | - Cecilia T. Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC, Canada
| |
Collapse
|
9
|
Witkowski JM. Immune system aging and the aging-related diseases in the COVIID-19 era. Immunol Lett 2022; 243:19-27. [PMID: 35108570 PMCID: PMC8801734 DOI: 10.1016/j.imlet.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 12/13/2022]
Abstract
The interest in the process of aging, and specifically in how aging affects the working of our immune system, has recently enormously grown among both specialists (immunologists and gerontologists) and representatives of other disciplines of health sciences. An obvious reason for this interest is the current pandemics of COVID-19, known to affect the elderly more than younger people. In this paper current knowledge about mechanisms and complex facets of human immune system aging is presented, stemming from the knowledge about the working of various parts of the immune system, and leading to understanding of immunological mechanisms of chronic, inflammatory, aging-related diseases and of COVID-19.
Collapse
Affiliation(s)
- Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| |
Collapse
|
10
|
Martins Costa Gomes G, Karmaus W, Murphy VE, Gibson PG, Percival E, Hansbro PM, Starkey MR, Mattes J, Collison AM. Environmental Air Pollutants Inhaled during Pregnancy Are Associated with Altered Cord Blood Immune Cell Profiles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147431. [PMID: 34299892 PMCID: PMC8303567 DOI: 10.3390/ijerph18147431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
Air pollution exposure during pregnancy may be a risk factor for altered immune maturation in the offspring. We investigated the association between ambient air pollutants during pregnancy and cell populations in cord blood from babies born to mothers with asthma enrolled in the Breathing for Life Trial. For each patient (n = 91), daily mean ambient air pollutant levels were extracted during their entire pregnancy for sulfur dioxide (SO2), nitric oxide, nitrogen dioxide, carbon monoxide, ozone, particulate matter <10 μm (PM10) or <2.5 μm (PM2.5), humidity, and temperature. Ninety-one cord blood samples were collected, stained, and assessed using fluorescence-activated cell sorting (FACS). Principal Component (PC) analyses of both air pollutants and cell types with linear regression were employed to define associations. Considering risk factors and correlations between PCs, only one PC from air pollutants and two from cell types were statistically significant. PCs from air pollutants were characterized by higher PM2.5 and lower SO2 levels. PCs from cell types were characterized by high numbers of CD8 T cells, low numbers of CD4 T cells, and by high numbers of plasmacytoid dendritic cells (pDC) and low numbers of myeloid DCs (mDCs). PM2.5 levels during pregnancy were significantly associated with high numbers of pDCs (p = 0.006), and SO2 with high numbers of CD8 T cells (p = 0.002) and low numbers of CD4 T cells (p = 0.011) and mDCs (p = 4.43 × 10−6) in cord blood. These data suggest that ambient SO2 and PM2.5 exposure are associated with shifts in cord blood cell types that are known to play significant roles in inflammatory respiratory disease in childhood.
Collapse
Affiliation(s)
- Gabriela Martins Costa Gomes
- Priority Research Centre GrowUpWell®, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2308, Australia; (G.M.C.G.); (V.E.M.); (E.P.); (J.M.)
| | - Wilfried Karmaus
- School of Public Health, University of Memphis, Memphis, TN 38152, USA;
| | - Vanessa E. Murphy
- Priority Research Centre GrowUpWell®, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2308, Australia; (G.M.C.G.); (V.E.M.); (E.P.); (J.M.)
| | - Peter G. Gibson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2308, Australia; (P.G.G.); (P.M.H.)
- Sleep Medicine Department, John Hunter Hospital, Newcastle, NSW 2305, Australia
| | - Elizabeth Percival
- Priority Research Centre GrowUpWell®, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2308, Australia; (G.M.C.G.); (V.E.M.); (E.P.); (J.M.)
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2308, Australia; (P.G.G.); (P.M.H.)
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia
| | - Malcolm R. Starkey
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia;
| | - Joerg Mattes
- Priority Research Centre GrowUpWell®, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2308, Australia; (G.M.C.G.); (V.E.M.); (E.P.); (J.M.)
- Paediatric Respiratory & Sleep Medicine Department, John Hunter Children’s Hospital, Newcastle, NSW 2305, Australia
| | - Adam M. Collison
- Priority Research Centre GrowUpWell®, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2308, Australia; (G.M.C.G.); (V.E.M.); (E.P.); (J.M.)
- Correspondence: ; Tel.: +61-2-4042-0219
| |
Collapse
|
11
|
Cui J, Zhang Y, Zhao H, Sun X, Chen Z, Zhang Q, Yan C, Xue G, Li S, Feng Y, Liu H, Xie X, Yuan J. The Relationship Between Lower Respiratory Tract Microbiome and Allergic Respiratory Tract Diseases in Children. Front Microbiol 2021; 12:630345. [PMID: 34054744 PMCID: PMC8160472 DOI: 10.3389/fmicb.2021.630345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Similar to those in the upper respiratory tract, there are microbes present in the healthy human lower respiratory tract (LRT), including the lungs and bronchus. To evaluate the relationship between LRT microbiome and allergic respiratory diseases in children, we enrolled 68 children who underwent bronchoscopy from January 2018 to December 2018 in the affiliated hospital of the Capital Institute of Pediatrics. Using the total IgE (TIgE) values, children were divided into two groups: allergy sensitivity (AS) group and non-allergy sensitivity (NAS) group. Nucleic acid was extracted from samples of bronchoalveolar lavage fluid (BALF) from the two groups of children taken during bronchoscopy treatment and the 16S rDNA gene was sequenced and analyzed. The results showed that Haemophilus, Moraxella, Streptococcus, Prevotella, Neisseria, and Rothia were detected in all patients. There was a statistically significant difference in the composition and distribution of microbiota between the AS and NAS groups (p < 0.01). Analysis of the correlation of clinical indices and microbiome showed that TIgE was positively correlated with Bacteroidetes and negatively correlated with Streptococcus. Absolute lymphocyte count showed a relationship with Streptococcus, and the absolute neutrophil count or percentage of neutrophils showed a relationship with Cardiobacterium. The LRT microbiome functioned similarly to the intestinal microbiome. That is, the decrease in microbial diversity and the change in composition could lead to an increase in allergic symptoms. The microbiome of the LRT in children, especially that of Bacteriodetes and Streptococcus, showed a correlation with respiratory allergic diseases.
Collapse
Affiliation(s)
- Jinghua Cui
- Capital Institute of Pediatrics, Beijing, China
| | - Yuanyuan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | | | - Xuemei Sun
- Dongfeng Traditional Chinese Medicine Hospital, Jilin, China
| | - Zhen Chen
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qun Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chao Yan
- Capital Institute of Pediatrics, Beijing, China
| | - Guanhua Xue
- Capital Institute of Pediatrics, Beijing, China
| | - Shaoli Li
- Capital Institute of Pediatrics, Beijing, China
| | | | - Han Liu
- Baicheng Medical College, Jilin, China
| | | | - Jing Yuan
- Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
12
|
Leukotriene B 4 Receptors Are Necessary for the Stimulation of NLRP3 Inflammasome and IL-1β Synthesis in Neutrophil-Dominant Asthmatic Airway Inflammation. Biomedicines 2021; 9:biomedicines9050535. [PMID: 34064821 PMCID: PMC8151312 DOI: 10.3390/biomedicines9050535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022] Open
Abstract
The stimulation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and IL-1β synthesis are associated with chronic respiratory diseases such as neutrophil-dominant severe asthma. Leukotriene B4 (LTB4) is a principal chemoattractant molecule for neutrophil recruitment, and its receptors BLT1 and BLT2 have been suggested to contribute to neutrophil-dominant asthmatic airway inflammation. However, the relationship between BLT1/2 and NLRP3 in neutrophil-dominant asthmatic airway inflammation has not been previously studied. In the present study, we investigated whether BLT1/2 play any roles in stimulating the NLRP3 inflammasome and IL-1βsynthesis. The blockade of BLT1 or BLT2 clearly suppressed the stimulation of the NLRP3 inflammasome and IL-1β synthesis in house dust mite (HDM)/lipopolysaccharide (LPS)-induced neutrophilic airway inflammation. The enzymes 5-lipoxygenase and 12-lipoxygenase, which catalyze the synthesis of BLT1/2 ligands [LTB4, 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE), and 12-hydroxyheptadecatreinoic acid (12-HHT)], were also critically associated with the stimulation of NLRP3 and IL-1β synthesis. Together, our results suggest that the 5-/12-LOX-BLT1/2-linked cascade are necessary for the simulation of the NLRP3 inflammasome and IL-1β synthesis, thus contributing to HDM/LPS-induced neutrophil-dominant airway inflammation.
Collapse
|
13
|
Liu JX, Zhang Y, Yuan HY, Liang J. The treatment of asthma using the Chinese Materia Medica. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113558. [PMID: 33186702 DOI: 10.1016/j.jep.2020.113558] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/12/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is a costly global health problem that negatively influences the quality of life of patients. The Chinese Materia Medica (CMM) contains remedies that have been used for the treatment of asthma for millennia. This article strives to systematically summarize the current research progress so that more comprehensive examinations of various databases related to CMM anti-asthma drugs, can be performed, so as to sequentially provide effective basic data for development and application of anti-asthma drugs based on the CMM. MATERIALS AND METHODS The research data published over the past 20 years for asthma treatment based on traditional CMM remedies were retrieved and collected from libraries and online databases (PubMed, ScienceDirect, Elsevier, Spring Link, Web of Science, PubChem Compound, Wan Fang, CNKI, Baidu, and Google Scholar). Information was also added from classic CMM, literature, conference papers on classic herbal formulae, and dissertations (PhD or Masters) based on traditional Chinese medicine. RESULTS This review systematically summarizes the experimental studies on the treatment of asthma with CMM, covering the effective chemical components, typical asthma models, important mechanisms and traditional anti-asthma CMM formulae. The therapy value of the CMM for anti-asthma is clarified, and the original data and theoretical research foundation are provided for the development of new anti-asthmatic data and research for the CMM. CONCLUSIONS Substantial progress against asthma has been made through relevant experimental research based on the CMM. These advances improved the theoretical basis of anti-asthma drugs for CMM and provided a theoretical basis for the application of a asthma treatment that is unique. By compiling these data, it is expected that the CMM will now contain a clearer mechanism of action and a greater amount of practical data that can be used for future anti-asthma drug research.
Collapse
Affiliation(s)
- Jun-Xi Liu
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China; Department of Pharmacy, Heilongjiang Nursing College, 209 Academy Road, Harbin, 150086, PR China
| | - Yang Zhang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Hong-Yu Yuan
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Jun Liang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China.
| |
Collapse
|
14
|
Oliveria JP, Agayby R, Gauvreau GM. Regulatory and IgE + B Cells in Allergic Asthma. Methods Mol Biol 2021; 2270:375-418. [PMID: 33479910 DOI: 10.1007/978-1-0716-1237-8_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Allergic asthma is triggered by inhalation of environmental allergens resulting in bronchial constriction and inflammation, which leads to clinical symptoms such as wheezing, coughing, and difficulty breathing. Asthmatic airway inflammation is initiated by inflammatory mediators released by granulocytic cells. However, the immunoglobulin E (IgE) antibody is necessary for the initiation of the allergic cascade, and IgE is produced and released exclusively by memory B cells and plasma cells. Acute allergen exposure has also been shown to increase IgE levels in the airways of patients diagnosed with allergic asthma; however, more studies are needed to understand local airway inflammation. Additionally, regulatory B cells (Bregs) have been shown to modulate IgE-mediated inflammatory processes in allergic asthma pathogenesis, particularly in mouse models of allergic airway disease. However, the levels and function of these IgE+ B cells and Bregs remain to be elucidated in human models of asthma. The overall objective for this chapter is to provide detailed methodological, and insightful technological advances to study the biology of B cells in allergic asthma pathogenesis. Specifically, we will describe how to investigate the frequency and function of IgE+ B cells and Bregs in allergic asthma, and the kinetics of these cells after allergen exposure in a human asthma model.
Collapse
Affiliation(s)
- John Paul Oliveria
- School of Medicine, Department of Pathology, Stanford University, Stanford, CA, USA.,Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Rita Agayby
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Gail M Gauvreau
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
15
|
Anvari S, Schuster K, Grimbergen A, Davis CM, Makedonas G. Attenuation of GARP expression on regulatory T cells by protein transport inhibitors. J Immunol Methods 2021; 492:112998. [PMID: 33600819 DOI: 10.1016/j.jim.2021.112998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/02/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
An integrated understanding of the functional capacities of cells in the context of their physical parameters and molecular markers is increasingly demanded in immunologic studies. Regulatory T cells (Tregs) are a subpopulation of T cells involved in immune response modulation and mediating tolerance to self-antigen with their absence leading to a loss of tolerance. Glycoprotein repetitions A predominant (GARP) is a key marker for activated Tregs, but its detection may also be useful in determining the functional capacities of the cell. This study aims to deduce the optimal stimulation period and the impact of protein transport inhibitors (PTIs), commonly used in the detection of intracellular cytokines, on GARP detection. Through flow cytometric analysis we analyzed different cell culture conditions for optimal GARP expression on activated Tregs. Healthy donor PBMCs were stimulated with either Staphylococcal Enterotoxin B (SEB) or PMA/Ionomycin (PMA/Iono), in the presence and absence of PTIs monensin and/or brefeldin A (BFA) and GARP expression was assessed on CD4+ CD25+ FOXP3+ Tregs. The optimal stimulation period for the detection of GARP was highest at 24-h. Furthermore, we determined that GARP expression on Tregs is significantly reduced when cells are treated with the PTIs monensin and/or BFA following PMA/Iono stimulation. This effect was not seen following SEB stimulation. Therefore, due to the effects of PTIs, alternative methods should be considered when performing simultaneous analysis for cytokine expression and GARP expression on Tregs.
Collapse
Affiliation(s)
- Sara Anvari
- Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Immunology, Allergy, and Retrovirology, William T. Shearer Center for Human Immunobiology, 1102 Bates Avenue, Ste. 330, Houston, TX, USA.
| | - Kimberly Schuster
- Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Immunology, Allergy, and Retrovirology, William T. Shearer Center for Human Immunobiology, 1102 Bates Avenue, Ste. 330, Houston, TX, USA.
| | - Andrea Grimbergen
- Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Immunology, Allergy, and Retrovirology, William T. Shearer Center for Human Immunobiology, 1102 Bates Avenue, Ste. 330, Houston, TX, USA.
| | - Carla M Davis
- Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Immunology, Allergy, and Retrovirology, William T. Shearer Center for Human Immunobiology, 1102 Bates Avenue, Ste. 330, Houston, TX, USA.
| | - George Makedonas
- Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Immunology, Allergy, and Retrovirology, William T. Shearer Center for Human Immunobiology, 1102 Bates Avenue, Ste. 330, Houston, TX, USA.
| |
Collapse
|
16
|
Khan MA. Regulatory T cells mediated immunomodulation during asthma: a therapeutic standpoint. J Transl Med 2020; 18:456. [PMID: 33267824 PMCID: PMC7713035 DOI: 10.1186/s12967-020-02632-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
Asthma is an inflammatory disease of the lung airway network, which is initiated and perpetuated by allergen-specific CD4+ T cells, IgE antibodies, and a massive release of Th2 cytokines. The most common clinical manifestations of asthma progression include airway inflammation, pathological airway tissue and microvascular remodeling, which leads to airway hyperresponsiveness (AHR), and reversible airway obstruction. In addition to inflammatory cells, a tiny population of Regulatory T cells (Tregs) control immune homeostasis, suppress allergic responses, and participate in the resolution of inflammation-associated tissue injuries. Preclinical and clinical studies have demonstrated a tremendous therapeutic potential of Tregs in allergic airway disease, which plays a crucial role in immunosuppression, and rejuvenation of inflamed airways. These findings supported to harness the immunotherapeutic potential of Tregs to suppress airway inflammation and airway microvascular reestablishment during the progression of the asthma disease. This review addresses the therapeutic impact of Tregs and how Treg mediated immunomodulation plays a vital role in subduing the development of airway inflammation, and associated airway remodeling during the onset of disease.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Organ Transplant Research Section, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| |
Collapse
|
17
|
Pinkerton JW, Kim RY, Koeninger L, Armbruster NS, Hansbro NG, Brown AC, Jayaraman R, Shen S, Malek N, Cooper MA, Nordkild P, Horvat JC, Jensen BAH, Wehkamp J, Hansbro PM. Human β-defensin-2 suppresses key features of asthma in murine models of allergic airways disease. Clin Exp Allergy 2020; 51:120-131. [PMID: 33098152 DOI: 10.1111/cea.13766] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/23/2020] [Accepted: 10/03/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Asthma is an airway inflammatory disease and a major health problem worldwide. Anti-inflammatory steroids and bronchodilators are the gold-standard therapy for asthma. However, they do not prevent the development of the disease, and critically, a subset of asthmatics are resistant to steroid therapy. OBJECTIVE To elucidate the therapeutic potential of human β-defensins (hBD), such as hBD2 mild to moderate and severe asthma. METHODS We investigated the role of hBD2 in a steroid-sensitive, house dust mite-induced allergic airways disease (AAD) model and a steroid-insensitive model combining ovalbumin-induced AAD with C muridarum (Cmu) respiratory infection. RESULTS In both models, we demonstrated that therapeutic intranasal application of hBD2 significantly reduced the influx of inflammatory cells into the bronchoalveolar lavage fluid. Furthermore, key type 2 asthma-related cytokines IL-9 and IL-13, as well as additional immunomodulating cytokines, were significantly decreased after administration of hBD2 in the steroid-sensitive model. The suppression of inflammation was associated with improvements in airway physiology and treatment also suppressed airway hyper-responsiveness (AHR) in terms of airway resistance and compliance to methacholine challenge. CONCLUSIONS AND CLINICAL RELEVANCE These data indicate that hBD2 reduces the hallmark features and has potential as a new therapeutic agent in allergic and especially steroid-resistant asthma.
Collapse
Affiliation(s)
- James W Pinkerton
- Priority Research Centre for Healthy Lungs, University of Newcastle, & Hunter Medical Research Institute, Newcastle, NSW, Australia.,National Heart & Lung Institute, Imperial College London, London, UK
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, University of Newcastle, & Hunter Medical Research Institute, Newcastle, NSW, Australia.,Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Louis Koeninger
- Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | | | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, University of Newcastle, & Hunter Medical Research Institute, Newcastle, NSW, Australia.,Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Alexandra C Brown
- Priority Research Centre for Healthy Lungs, University of Newcastle, & Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ranjith Jayaraman
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Sijie Shen
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Nisar Malek
- Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - Matthew A Cooper
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld, Australia
| | - Peter Nordkild
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, University of Newcastle, & Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Benjamin A H Jensen
- Section for Human Genomics and Metagenomics in Metabolism, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Wehkamp
- Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, University of Newcastle, & Hunter Medical Research Institute, Newcastle, NSW, Australia.,Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Gosens R, Hiemstra PS, Adcock IM, Bracke KR, Dickson RP, Hansbro PM, Krauss-Etschmann S, Smits HH, Stassen FRM, Bartel S. Host-microbe cross-talk in the lung microenvironment: implications for understanding and treating chronic lung disease. Eur Respir J 2020; 56:13993003.02320-2019. [PMID: 32430415 PMCID: PMC7439216 DOI: 10.1183/13993003.02320-2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
Chronic respiratory diseases are highly prevalent worldwide and will continue to rise in the foreseeable future. Despite intensive efforts over recent decades, the development of novel and effective therapeutic approaches has been slow. However, there is new and increasing evidence that communities of micro-organisms in our body, the human microbiome, are crucially involved in the development and progression of chronic respiratory diseases. Understanding the detailed mechanisms underlying this cross-talk between host and microbiota is critical for development of microbiome- or host-targeted therapeutics and prevention strategies. Here we review and discuss the most recent knowledge on the continuous reciprocal interaction between the host and microbes in health and respiratory disease. Furthermore, we highlight promising developments in microbiome-based therapies and discuss the need to employ more holistic approaches of restoring both the pulmonary niche and the microbial community. The reciprocal interaction between microbes and host in the lung is increasingly recognised as an important determinant of health. The complexity of this cross-talk needs to be taken into account when studying diseases and developing future new therapies.https://bit.ly/2VKYUfT
Collapse
Affiliation(s)
- Reinoud Gosens
- University of Groningen, Dept of Molecular Pharmacology, GRIAC Research Institute, Groningen, The Netherlands
| | - Pieter S Hiemstra
- Dept of Pulmonology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ian M Adcock
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Ken R Bracke
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Michigan Center for Integrative Research in Critical Care, Ann Arbor, MI, USA
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and the University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
| | - Susanne Krauss-Etschmann
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute for Experimental Medicine, Christian-Albrechts-Universitaet zu Kiel, Kiel, Germany
| | - Hermelijn H Smits
- Dept of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank R M Stassen
- Dept of Medical Microbiology, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sabine Bartel
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, Member of the German Center for Lung Research (DZL), Borstel, Germany .,University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, GRIAC Research Institute, Groningen, The Netherlands
| |
Collapse
|
19
|
Li C, Dai J, Dong G, Ma Q, Li Z, Zhang H, Yan F, Zhang J, Wang B, Shi H, Zhu Y, Yao X, Si C, Xiong H. Interleukin-16 aggravates ovalbumin-induced allergic inflammation by enhancing Th2 and Th17 cytokine production in a mouse model. Immunology 2019; 157:257-267. [PMID: 31120548 DOI: 10.1111/imm.13068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/26/2019] [Accepted: 05/12/2019] [Indexed: 01/12/2023] Open
Abstract
Asthma is a chronic inflammatory disease that involves a variety of cytokines and cells. Interleukin-16 (IL-16) is highly expressed during allergic airway inflammation and is involved in its development. However, its specific mechanism of action remains unclear. In the present study, we used an animal model of ovalbumin (OVA)-induced allergic asthma with mice harboring an IL-16 gene deletion to investigate the role of this cytokine in asthma, in addition to its underlying mechanism. Increased IL-16 expression was observed during OVA-induced asthma in C57BL/6J mice. However, when OVA was used to induce asthma in IL-16-/- mice, a diminished inflammatory reaction, decreased bronchoalveolar lavage fluid (BALF) eosinophil numbers, and the suppression of OVA-specific IgE levels in the serum and BALF were observed. The results also demonstrated decreased levels of T helper type 2 (Th2) and Th17 cytokines upon OVA-induced asthma in IL-16-/- mice. Hence, we confirmed that IL-16 enhances the lung allergic inflammatory response and suggest a mechanism possibly associated with the up-regulation of IgE and the promotion of Th2 and Th17 cytokine production. This work explored the mechanism underlying the regulation of IL-16 in asthma and provides a new target for the clinical treatment of asthma.
Collapse
Affiliation(s)
- Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Qun Ma
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Zhihua Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Bo Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Hui Shi
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Yuzhen Zhu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Xiaoying Yao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Chuanping Si
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Huabao Xiong
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
20
|
Hong SW, O E, Lee JY, Yi J, Cho K, Kim J, Kim D, Surh CD, Kim KS. Interleukin-2/antibody complex expanding Foxp3 + regulatory T cells exacerbates Th2-mediated allergic airway inflammation. BMB Rep 2019. [PMID: 30885291 PMCID: PMC6507850 DOI: 10.5483/bmbrep.2019.52.4.271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Foxp3+ regulatory CD4+ T (Treg) cells play an essential role in preventing overt immune responses against self and innocuous foreign antigens. Selective expansion of endogenous Treg cells in response to the administration of interleukin (IL)-2/antibody complex, such as the IL-2/JES6-1 complex (IL-2C) in mice, is considered an attractive therapeutic approach to various immune disorders. Here, we investigated the therapeutic potential of IL-2C in allergic airway inflammation models. IL-2C treatment ameliorated Th17-mediated airway inflammation; however, unexpectedly, IL-2C treatment exacerbated Th2-mediated allergic airway inflammation by inducing the selective expansion of Th2 cells and type-2 innate lymphoid cells. We also found that IL-2 signaling is required for the expansion of Th2 cells in lymphoproliferative disease caused by Treg cell depletion. Our data suggest that IL-2C is selectively applicable to the treatment of allergic airway diseases depending on the characteristics of airway inflammation.
Collapse
Affiliation(s)
- Sung-Wook Hong
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673, Korea
| | - Eunju O
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673, Korea; Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Jun Young Lee
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673, Korea; Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Jaeu Yi
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673, Korea; Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Kyungjin Cho
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673, Korea; Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Juhee Kim
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673, Korea; Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Daeun Kim
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673, Korea; Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Charles D Surh
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673, Korea; Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Kwang Soon Kim
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673, Korea; Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| |
Collapse
|
21
|
New therapeutic targets for the prevention of infectious acute exacerbations of COPD: role of epithelial adhesion molecules and inflammatory pathways. Clin Sci (Lond) 2019; 133:1663-1703. [PMID: 31346069 DOI: 10.1042/cs20181009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022]
Abstract
Chronic respiratory diseases are among the leading causes of mortality worldwide, with the major contributor, chronic obstructive pulmonary disease (COPD) accounting for approximately 3 million deaths annually. Frequent acute exacerbations (AEs) of COPD (AECOPD) drive clinical and functional decline in COPD and are associated with accelerated loss of lung function, increased mortality, decreased health-related quality of life and significant economic costs. Infections with a small subgroup of pathogens precipitate the majority of AEs and consequently constitute a significant comorbidity in COPD. However, current pharmacological interventions are ineffective in preventing infectious exacerbations and their treatment is compromised by the rapid development of antibiotic resistance. Thus, alternative preventative therapies need to be considered. Pathogen adherence to the pulmonary epithelium through host receptors is the prerequisite step for invasion and subsequent infection of surrounding structures. Thus, disruption of bacterial-host cell interactions with receptor antagonists or modulation of the ensuing inflammatory profile present attractive avenues for therapeutic development. This review explores key mediators of pathogen-host interactions that may offer new therapeutic targets with the potential to prevent viral/bacterial-mediated AECOPD. There are several conceptual and methodological hurdles hampering the development of new therapies that require further research and resolution.
Collapse
|
22
|
Zheng M, Guo X, Pan R, Gao J, Zang B, Jin M. Hydroxysafflor Yellow A Alleviates Ovalbumin-Induced Asthma in a Guinea Pig Model by Attenuateing the Expression of Inflammatory Cytokines and Signal Transduction. Front Pharmacol 2019; 10:328. [PMID: 31024302 PMCID: PMC6459898 DOI: 10.3389/fphar.2019.00328] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 03/19/2019] [Indexed: 12/26/2022] Open
Abstract
Hydroxysafflor yellow A (HSYA) is an effective ingredient of the Chinese herb Carthamus tinctorius L. In this study, we aimed to evaluate the effects of HSYA on ovalbumin (OVA)-induced asthma in guinea pigs, and to elucidate the underlying mechanisms. We established a guinea pig asthma model by intraperitoneal injection and atomized administration OVA. Guinea pigs were injected intraperitoneally with HSYA (50, 75, 112.5 mg/kg) once daily from days 2 to 22 before OVA administration. We examined biomarkers including lung function, pulmonary histopathology, immunoglobulin E (IgE), Th1/Th2 relative inflammatory mediators, and related pathways. Pathological changes in lung tissues were detected by hematoxylin and eosin and periodic acid-Schiff staining. Phosphorylation levels of JNK mitogen-activated protein kinase (MAPK), p38 MAPK, ERK MAPK, and inhibitor of nuclear factor κBα (IκBα) were detected by western blot. plasma levels of total IgE, platelet-activating factor (PAF), and interleukin (IL)-3 were detected by enzyme-linked immunosorbent assay (ELISA). Expression levels of tumor necrosis factor (TNF)-α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-13, and interferon (IFN)-γ were detected by ELISA and real-time quantitative polymerase chain reaction. HSYA significantly reduced airway resistance, improved dynamic lung compliance, and attenuated the pathologic changes. HSYA also inhibited the phosphorylation of JNK MAPK, p38 MAPK, ERK MAPK, and IκBα, and inhibited the OVA-induced elevations of IgE, PAF, IL-1β, IL-6, IL-4, IL-5, and IL-13 and the decreases in TNF-α, IFN-γ, IL-2, and IL-3. These findings suggest that HSYA has a protective effect on OVA-induced asthma through inhibiting the Th1/Th2 cell imbalance and inhibiting activation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Xinjing Guo
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Ruiyan Pan
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Jianwei Gao
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Baoxia Zang
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Ming Jin
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
23
|
Chen Q, Guo X, Deng N, Liu L, Chen S, Wang A, Li R, Huang Y, Ding X, Yu H, Hu S, Nie H. α-Galactosylceramide treatment before allergen sensitization promotes iNKT cell-mediated induction of Treg cells, preventing Th2 cell responses in murine asthma. J Biol Chem 2019; 294:5438-5455. [PMID: 30745361 DOI: 10.1074/jbc.ra118.005418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/18/2019] [Indexed: 12/31/2022] Open
Abstract
Asthma is a common inflammatory pulmonary disorder involving a diverse array of immune cells such as proinflammatory T helper 2 (Th2) cells. We recently reported that intraperitoneal injection of α-galactosylceramide (α-GalCer) can stimulate the lung invariant natural killer T (iNKT) cells and does not lead to airway inflammation in WT mice. Other studies indicate that iNKT cells play an important role in inducing regulatory T cells (Treg cells) and peripheral tolerance. Using iNKT cell- knockout mice, functional inactivation of Treg cells, and co-culture experiments in murine asthma models, we investigated the immunoregulatory effects of α-GalCer treatment before allergen sensitization on Th2 cell responses. We also studied whether α-GalCer's effects require lung Treg cells induced by activated iNKT cells. Our results disclosed that intraperitoneal administration of α-GalCer before allergen sensitization could promote the expansion and suppressive activity of lung CD4+FoxP3+ Treg cells. These effects were accompanied by down-regulated Th2 cell responses and decreased immunogenic maturation of lung dendritic cells in WT mice. However, these changes were absent in CD1d-/- mice immunized and challenged with ovalbumin or house dust mites, indicating that the effects of α-GalCer on Treg cells mainly require iNKT cells. Moreover, functional inactivation of Treg cells could reverse the inhibitory ability of this α-GalCer therapy on Th2 cell responses in a murine asthma model. Our findings indicate that intraperitoneal administration of α-GalCer before the development of asthma symptoms induces the generation of lung Treg cells via iNKT cells and may provide a potential therapeutic strategy to prevent allergic asthma.
Collapse
Affiliation(s)
- Qianhui Chen
- From the Department of Respiratory and Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060 and
| | - Xuxue Guo
- From the Department of Respiratory and Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060 and
| | - Nishan Deng
- From the Department of Respiratory and Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060 and
| | - Linlin Liu
- From the Department of Respiratory and Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060 and
| | - Shuo Chen
- From the Department of Respiratory and Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060 and
| | - Ailing Wang
- the Nursing Department, Wuhan University School of Health Sciences, Wuhan 430060, China
| | - Ruiyun Li
- From the Department of Respiratory and Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060 and
| | - Yi Huang
- From the Department of Respiratory and Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060 and
| | - Xuhong Ding
- From the Department of Respiratory and Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060 and
| | - Hongying Yu
- From the Department of Respiratory and Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060 and
| | - Suping Hu
- From the Department of Respiratory and Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060 and
| | - Hanxiang Nie
- From the Department of Respiratory and Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060 and
| |
Collapse
|
24
|
Chen Q, Guo X, Deng N, Liu L, Chen S, Wang A, Li R, Huang Y, Ding X, Yu H, Hu S, Nie H. α-galactosylceramide generates lung regulatory T cells through the activated natural killer T cells in mice. J Cell Mol Med 2018; 23:1072-1085. [PMID: 30421497 PMCID: PMC6349240 DOI: 10.1111/jcmm.14008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022] Open
Abstract
Our previous study showed that intraperitoneal injection of α-galactosylceramide (α-GalCer) has the ability to activate lung iNKT cells, but α-GalCer-activated iNKT cells do not result in airway inflammation in wild-type (WT) mice. Many studies showed that iNKT cells had the capacity to induce Treg cells, which gave rise to peripheral tolerance. Therefore, we examined the influence of intraperitoneal administration of α-GalCer on the expansion and suppressive activity of lung Treg cells using iNKT cell-knockout mice and co-culture experiments in vitro. We also compared airway inflammation and airway hyperresponsiveness (AHR) after α-GalCer administration in specific anti-CD25 mAb-treated mice. Our data showed that intraperitoneal injection of α-GalCer could promote the expansion of lung Treg cells in WT mice, but not in iNKT cell-knockout mice. However, α-GalCer administration could not boost suppressive activity of Treg cells in WT mice and iNKT cell-knockout mice. Interestingly, functional inactivation of Treg cells could induce airway inflammation and AHR in WT mice treated with α-GalCer. Furthermore, α-GalCer administration could enhance iNKT cells to secrete IL-2, and neutralization of IL-2 reduced the expansion of Treg cells in vivo and in vitro. Thus, intraperitoneal administration of α-GalCer can induce the generation of lung Treg cells in mice through the release of IL-2 by the activated iNKT cells.
Collapse
Affiliation(s)
- Qianhui Chen
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuxue Guo
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Nishan Deng
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linlin Liu
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuo Chen
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ailing Wang
- Nursing Department, Wuhan University School of Health Sciences, Wuhan, China
| | - Ruiyun Li
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Huang
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuhong Ding
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongying Yu
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Suping Hu
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hanxiang Nie
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Cohen RI, Ye X, Ramdeo R, Liu SF. The number and function of T regulatory cells in obese atopic female asthmatics. J Asthma 2018; 56:303-310. [PMID: 29641274 DOI: 10.1080/02770903.2018.1452935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Mechanisms underlying the association between asthma and obesity remain poorly understood. Obesity appears to be a risk factor for asthma, and obese asthmatics fare poorly compared to lean asthmatics. OBJECTIVES To explore the possibility that reduced regulatory T cell (Treg) number and function contribute to the obesity-asthma association. We concentrated on obese females with childhood-onset asthma, since Treg may be involved in this phenotype. METHODS We recruited 64 women (ages 18-50) into four groups: lean (BMI 18-25 kg/m2) controls (n = 17) and asthmatics (n = 13), and obese (BMI ≥ 35 kg/m2) controls (n = 17) and asthmatics (n = 17). Asthmatics had atopy and childhood-diagnosed asthma. We assessed lung function, asthma control and quality of life. Peripheral blood CD4+/CD25+/FoxP3+ Treg cells were identified and counted by flow cytometry and expressed as % total CD4+ T cells. We assessed Treg cell function by the ability of CD4+/CD25+ Treg cells to suppress autologous CD4+/CD25- responder T cell (Tresp) proliferation and measured as % suppression of Tresp cell proliferation. RESULTS Obese asthmatics had worse lung function, asthma control, and quality of life compared to lean asthmatics. Compared to lean or obese control groups, the number of Treg cells in the obese asthmatics was approximately 1.58- or 1.73-fold higher. The ability of Treg cells from obese-asthmatics to suppress Tresp cell proliferation was reduced. CONCLUSIONS Obese, atopic women with childhood diagnosed asthma demonstrate increased Treg cell number and mildly decreased Treg cell function. Our data do not support the view that reduced Treg cell number contributes to this obese-asthma phenotype.
Collapse
Affiliation(s)
- Rubin I Cohen
- a Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine , Hofstra Northwell School of Medicine , New Hyde Park , NY , USA
| | - Xiobing Ye
- a Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine , Hofstra Northwell School of Medicine , New Hyde Park , NY , USA.,b Feinstein Institute for Medical Research, Pulmonary Research Laboratory, Northwell Health , Manhasset , NY , USA
| | - Ramona Ramdeo
- a Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine , Hofstra Northwell School of Medicine , New Hyde Park , NY , USA
| | - Shu Fang Liu
- a Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine , Hofstra Northwell School of Medicine , New Hyde Park , NY , USA.,b Feinstein Institute for Medical Research, Pulmonary Research Laboratory, Northwell Health , Manhasset , NY , USA
| |
Collapse
|
26
|
Hansbro PM, Kim RY, Starkey MR, Donovan C, Dua K, Mayall JR, Liu G, Hansbro NG, Simpson JL, Wood LG, Hirota JA, Knight DA, Foster PS, Horvat JC. Mechanisms and treatments for severe, steroid-resistant allergic airway disease and asthma. Immunol Rev 2018; 278:41-62. [PMID: 28658552 DOI: 10.1111/imr.12543] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Severe, steroid-resistant asthma is clinically and economically important since affected individuals do not respond to mainstay corticosteroid treatments for asthma. Patients with this disease experience more frequent exacerbations of asthma, are more likely to be hospitalized, and have a poorer quality of life. Effective therapies are urgently required, however, their development has been hampered by a lack of understanding of the pathological processes that underpin disease. A major obstacle to understanding the processes that drive severe, steroid-resistant asthma is that the several endotypes of the disease have been described that are characterized by different inflammatory and immunological phenotypes. This heterogeneity makes pinpointing processes that drive disease difficult in humans. Clinical studies strongly associate specific respiratory infections with severe, steroid-resistant asthma. In this review, we discuss key findings from our studies where we describe the development of representative experimental models to improve our understanding of the links between infection and severe, steroid-resistant forms of this disease. We also discuss their use in elucidating the mechanisms, and their potential for developing effective therapeutic strategies, for severe, steroid-resistant asthma. Finally, we highlight how the immune mechanisms and therapeutic targets we have identified may be applicable to obesity-or pollution-associated asthma.
Collapse
Affiliation(s)
- Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Kamal Dua
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jemma R Mayall
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Gang Liu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jeremy A Hirota
- James Hogg Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
27
|
The Role of Regulatory T Cell in Nontypeable Haemophilus influenzae-Induced Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Mediators Inflamm 2018; 2018:8387150. [PMID: 29725272 PMCID: PMC5872612 DOI: 10.1155/2018/8387150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/08/2018] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with irreversible persistent airflow limitation and enhanced inflammation. The episodes of acute exacerbation (AECOPD) largely depend on the colonized pathogens such as nontypeable Haemophilus influenzae (NTHi), one of the most commonly isolated bacteria. Regulatory T cells (Tregs) are critical in controlling inflammatory immune responses and maintaining tolerance; however, their role in AECOPD is poorly understood. In this study, we hypothesized a regulatory role of Tregs, as NTHi participated in the progress of COPD. Immunological pathogenesis was investigated in a murine COPD model induced by cigarette smoke (CS). NTHi was administrated through intratracheal instillation for an acute exacerbation. Weight loss and lung function decline were observed in smoke-exposed mice. Mice in experimental groups exhibited serious inflammatory responses via histological and cytokine assessment. Expression levels of Tregs and Th17 cells with specific cytokines TGF-β1 and IL-17 were detected to assess the balance of pro-/anti-inflammatory influence partially. Our findings suggested an anti-inflammatory activity of Tregs in CS-induced model. But this activity was suppressed after NTHi administration. Collectively, these data suggested that NTHi might play a necessary role in downregulating Foxp3 to impair the function of Tregs, helping development into AECOPD.
Collapse
|
28
|
Caruso M, Morjaria J, Emma R, Amaradio MD, Polosa R. Biologic agents for severe asthma patients: clinical perspectives and implications. Intern Emerg Med 2018; 13:155-176. [PMID: 29238905 DOI: 10.1007/s11739-017-1773-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 12/01/2017] [Indexed: 12/20/2022]
Abstract
Asthma is a chronic inflammatory multifactorial disorder of the airways characterized by the involvement of immune cells and mediators in its onset and maintenance. Traditional therapeutic strategies have been unsatisfactory in controlling the underlying pathology, especially in the more severe states. Hence in the last couple of decades, new biological approaches targeting molecular mediators have been developed. In this narrative review we examine biological agents currently available for the management of severe asthma, focusing our attention on their clinical application, pros and cons, and in particular on gaps regarding the use of these agents. The most well-known and used biologic agent in clinical practice is omalizumab, though there is emerging evidence for mepolizumab too. The future of these biological therapies is to broaden our knowledge of their practical use and ascertain predictive biomarkers, or define an algorithm, useful in the optimal application of these 'biological weapons'.
Collapse
MESH Headings
- Anti-Asthmatic Agents/pharmacokinetics
- Anti-Asthmatic Agents/pharmacology
- Anti-Asthmatic Agents/therapeutic use
- Antibodies, Anti-Idiotypic/pharmacology
- Antibodies, Anti-Idiotypic/therapeutic use
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Asthma/drug therapy
- Biological Factors/pharmacokinetics
- Biological Factors/pharmacology
- Biological Factors/therapeutic use
- Humans
- Interleukin-5/antagonists & inhibitors
- Interleukin-5/pharmacology
- Interleukin-5/therapeutic use
- Omalizumab/pharmacokinetics
- Omalizumab/pharmacology
- Omalizumab/therapeutic use
Collapse
Affiliation(s)
- Massimo Caruso
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico - Vittorio Emanuele, Università degli Studi di Catania, Via S. Sofia, 78, 95123, Catania, Italy.
| | | | - Rosalia Emma
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico - Vittorio Emanuele, Università degli Studi di Catania, Via S. Sofia, 78, 95123, Catania, Italy
| | - Maria Domenica Amaradio
- Department of Internal and Emergency Medicine, AOU "Policlinico - Vittorio Emanuele", Catania, Italy
| | - Riccardo Polosa
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico - Vittorio Emanuele, Università degli Studi di Catania, Via S. Sofia, 78, 95123, Catania, Italy
- Department of Internal and Emergency Medicine, AOU "Policlinico - Vittorio Emanuele", Catania, Italy
| |
Collapse
|
29
|
Huai Qi Huang corrects the balance of Th1/Th2 and Treg/Th17 in an ovalbumin-induced asthma mouse model. Biosci Rep 2017; 37:BSR20171071. [PMID: 29162668 PMCID: PMC5741832 DOI: 10.1042/bsr20171071] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 01/08/2023] Open
Abstract
The present study is designed to determine whether Huai Qi Huang has immunoregulatory effects on the (helper T (Th)) Th1/Th2 and regulatory T cell (Treg)/Th17 balance in ovalbumin (OVA)-induced asthma model mice. Asthma model mice were constructed by OVA treatment and Huai Qi Huang was administered. The amount of migrated inflammatory cells in the bronchoalveolar lavage fluid (BALF) from the OVA mice was counted. The total IgE in the sera was detected by the IgE ELISA kit. Cell suspensions from the lung were stained with antibodies specific for CD4 and the master transcription factors for Th1 (T-box expressed in T cells (T-bet)), Th2 (GATA-binding protein 3 (Gata-3)), Th17 (retinoic acid related orphan receptor γt (RORγt)), and Treg (forkhead box p3 (Foxp3)). The left lobe of the lung was used to prepare a single-cell suspension for flow cytometry to determine whether Huai Qi Huang influenced CD4+ T-cell subsets. Histological analyses were performed by using Hematoxylin and Eosin staining. The mRNA expression levels of the transcription factors were detected by using qRT-PCR. Huai Qi Huang inhibited infiltration of inflammatory cells into the lung, reduced influx of eosinophils (EOSs), lymphocytes (LYMs), neutrophils (NEUs), and macrophages (MACs) in the BALF, and decreased IgE in the serum in OVA-treated mice. Huai Qi Huang could regulate Th1/Th2 and Treg/Th17 via the re-balance of cytokine profiles and change the mRNA expression levels of the transcription factors, T-bet/Gata-3 and Foxp3/RORγt in OVA-treated mice. Our results showed that Huai Qi Huang could correct the imbalance of Th1/Th2 and Treg/Th17 in OVA-induced asthma model mice, indicating its effects on inhibiting the development and severity of asthma.
Collapse
|
30
|
Chotirmall SH, Gellatly SL, Budden KF, Mac Aogain M, Shukla SD, Wood DLA, Hugenholtz P, Pethe K, Hansbro PM. Microbiomes in respiratory health and disease: An Asia-Pacific perspective. Respirology 2017; 22:240-250. [PMID: 28102970 DOI: 10.1111/resp.12971] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/30/2016] [Accepted: 11/17/2016] [Indexed: 02/06/2023]
Abstract
There is currently enormous interest in studying the role of the microbiome in health and disease. Microbiome's role is increasingly being applied to respiratory diseases, in particular COPD, asthma, cystic fibrosis and bronchiectasis. The changes in respiratory microbiomes that occur in these diseases and how they are modified by environmental challenges such as cigarette smoke, air pollution and infection are being elucidated. There is also emerging evidence that gut microbiomes play a role in lung diseases through the modulation of systemic immune responses and can be modified by diet and antibiotic treatment. There are issues that are particular to the Asia-Pacific region involving diet and prevalence of specific respiratory diseases. Each of these issues is further complicated by the effects of ageing. The challenges now are to elucidate the cause and effect relationships between changes in microbiomes and respiratory diseases and how to translate these into new treatments and clinical care. Here we review the current understanding and progression in these areas.
Collapse
Affiliation(s)
- Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Shaan L Gellatly
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Kurtis F Budden
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Micheál Mac Aogain
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - David L A Wood
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| |
Collapse
|
31
|
Kim RY, Pinkerton JW, Essilfie AT, Robertson AAB, Baines KJ, Brown AC, Mayall JR, Ali MK, Starkey MR, Hansbro NG, Hirota JA, Wood LG, Simpson JL, Knight DA, Wark PA, Gibson PG, O'Neill LAJ, Cooper MA, Horvat JC, Hansbro PM. Role for NLRP3 Inflammasome-mediated, IL-1β-Dependent Responses in Severe, Steroid-Resistant Asthma. Am J Respir Crit Care Med 2017; 196:283-297. [PMID: 28252317 DOI: 10.1164/rccm.201609-1830oc] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RATIONALE Severe, steroid-resistant asthma is the major unmet need in asthma therapy. Disease heterogeneity and poor understanding of pathogenic mechanisms hampers the identification of therapeutic targets. Excessive nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome and concomitant IL-1β responses occur in chronic obstructive pulmonary disease, respiratory infections, and neutrophilic asthma. However, the direct contributions to pathogenesis, mechanisms involved, and potential for therapeutic targeting remain poorly understood, and are unknown in severe, steroid-resistant asthma. OBJECTIVES To investigate the roles and therapeutic targeting of the NLRP3 inflammasome and IL-1β in severe, steroid-resistant asthma. METHODS We developed mouse models of Chlamydia and Haemophilus respiratory infection-mediated, ovalbumin-induced severe, steroid-resistant allergic airway disease. These models share the hallmark features of human disease, including elevated airway neutrophils, and NLRP3 inflammasome and IL-1β responses. The roles and potential for targeting of NLRP3 inflammasome, caspase-1, and IL-1β responses in experimental severe, steroid-resistant asthma were examined using a highly selective NLRP3 inhibitor, MCC950; the specific caspase-1 inhibitor Ac-YVAD-cho; and neutralizing anti-IL-1β antibody. Roles for IL-1β-induced neutrophilic inflammation were examined using IL-1β and anti-Ly6G. MEASUREMENTS AND MAIN RESULTS Chlamydia and Haemophilus infections increase NLRP3, caspase-1, IL-1β responses that drive steroid-resistant neutrophilic inflammation and airway hyperresponsiveness. Neutrophilic airway inflammation, disease severity, and steroid resistance in human asthma correlate with NLRP3 and IL-1β expression. Treatment with anti-IL-1β, Ac-YVAD-cho, and MCC950 suppressed IL-1β responses and the important steroid-resistant features of disease in mice, whereas IL-1β administration recapitulated these features. Neutrophil depletion suppressed IL-1β-induced steroid-resistant airway hyperresponsiveness. CONCLUSIONS NLRP3 inflammasome responses drive experimental severe, steroid-resistant asthma and are potential therapeutic targets in this disease.
Collapse
Affiliation(s)
- Richard Y Kim
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - James W Pinkerton
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Ama T Essilfie
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Avril A B Robertson
- 2 Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Katherine J Baines
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Alexandra C Brown
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jemma R Mayall
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - M Khadem Ali
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Malcolm R Starkey
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Nicole G Hansbro
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jeremy A Hirota
- 3 James Hogg Research Centre, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Lisa G Wood
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jodie L Simpson
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Darryl A Knight
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter A Wark
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter G Gibson
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Luke A J O'Neill
- 4 School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Matthew A Cooper
- 2 Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Jay C Horvat
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
32
|
Al-Kouba J, Wilkinson AN, Starkey MR, Rudraraju R, Werder RB, Liu X, Law SC, Horvat JC, Brooks JF, Hill GR, Davies JM, Phipps S, Hansbro PM, Steptoe RJ. Allergen-encoding bone marrow transfer inactivates allergic T cell responses, alleviating airway inflammation. JCI Insight 2017; 2:85742. [PMID: 28570267 DOI: 10.1172/jci.insight.85742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/25/2017] [Indexed: 01/09/2023] Open
Abstract
Memory Th2 cell responses underlie the development and perpetuation of allergic diseases. Because these states result from immune dysregulation, established Th2 cell responses represent a significant challenge for conventional immunotherapies. New approaches that overcome the detrimental effects of immune dysregulation are required. We tested whether memory Th2 cell responses were silenced using a therapeutic approach where allergen expression in DCs is transferred to sensitized recipients using BM cells as a vector for therapeutic gene transfer. Development of allergen-specific Th2 responses and allergen-induced airway inflammation was blocked by expression of allergen in DCs. Adoptive transfer studies showed that Th2 responses were inactivated by a combination of deletion and induction of T cell unresponsiveness. Transfer of BM encoding allergen expression targeted to DCs terminated, in an allergen-specific manner, Th2 responses in sensitized recipients. Importantly, when preexisting airway inflammation was present, there was effective silencing of Th2 cell responses, airway inflammation was alleviated, and airway hyperreactivity was reversed. The effectiveness of DC-targeted allergen expression to terminate established Th2 responses in sensitized animals indicates that exploiting cell-intrinsic T cell tolerance pathways could lead to development of highly effective immunotherapies.
Collapse
Affiliation(s)
- Jane Al-Kouba
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Andrew N Wilkinson
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Malcolm R Starkey
- Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Rajeev Rudraraju
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Rhiannon B Werder
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Xiao Liu
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Soi-Cheng Law
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Jay C Horvat
- Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Jeremy F Brooks
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Janet M Davies
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Simon Phipps
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Philip M Hansbro
- Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Raymond J Steptoe
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| |
Collapse
|
33
|
Li P, Yang QZ, Wang W, Zhang GQ, Yang J. Increased IL-4- and IL-17-producing CD8 + cells are related to decreased CD39 +CD4 +Foxp3 + cells in allergic asthma. J Asthma 2017; 55:8-14. [PMID: 28346024 DOI: 10.1080/02770903.2017.1310225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE In allergic asthma, regulatory T cell (Treg) number and function are decreased. Antigen-primed CD8+ T cells play an indispensable role in the full development of airway inflammation and airway hyper-responsiveness (AHR) occurring in asthma. In this study, we investigated the relationship between subpopulations of CD8+ T cells and CD39+ Tregs. METHODS Female C57BL/6 mice were used to develop the model of allergic asthma. Experimental mice were immunized with ovalbumin (OVA) by intra-peritoneal (i.p) injection and then challenged with OVA by intra-tracheal administration. Control mice were immunized with vehicle by i.p injection and challenged with OVA. Airway inflammation was determined by histology and AHR was measured by an invasive method. Levels of interferon (IFN)-γ, IL-4, and IL-17 in bronchoalveolar lavage fluid (BALF) were determined by enzyme-linked immunosorbent assay. The frequencies of CD8+IFN-γ+ cells (Tc1), CD8+IL-4+ cells (Tc2), CD8+IL-17+cells (Tc17), and CD39+Tregs were measured by flow cytometry. The correlation between CD39+Tregs and Tc subsets was analyzed by Pearson's test. RESULTS Experimental mice displayed phenotypes of allergic asthma, including inflammatory cell infiltration into the lungs, goblet cell hyperplasia, increased airway resistance, and increased IL-4 and IL-17 in BALF. Compared to control mice, experimental mice displayed lower CD39+Tregs and Tc1 but higher Tc2 and Tc17. There was a negative correlation between CD39+Tregs and Tc2 or Tc17. CONCLUSION In allergic asthma, increased Tc2 and Tc17 are possibly related to insufficient CD39+Tregs.
Collapse
Affiliation(s)
- Ping Li
- a Department of Pulmonology , Affiliated Xiangyang Hospital of Hubei University of Medicine , Xiangyang , China
| | - Qun-Zhen Yang
- a Department of Pulmonology , Affiliated Xiangyang Hospital of Hubei University of Medicine , Xiangyang , China
| | - Wei Wang
- b Department of Pulmonology , Affiliated Zhongnan Hospital of Wuhan University , Wuhan , China
| | - Gu-Qin Zhang
- b Department of Pulmonology , Affiliated Zhongnan Hospital of Wuhan University , Wuhan , China
| | - Jiong Yang
- b Department of Pulmonology , Affiliated Zhongnan Hospital of Wuhan University , Wuhan , China
| |
Collapse
|
34
|
Bazett M, Biala A, Huff RD, Zeglinksi MR, Hansbro PM, Bosiljcic M, Gunn H, Kalyan S, Hirota JA. Attenuating immune pathology using a microbial-based intervention in a mouse model of cigarette smoke-induced lung inflammation. Respir Res 2017; 18:92. [PMID: 28506308 PMCID: PMC5433159 DOI: 10.1186/s12931-017-0577-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
Background Cigarette smoke exposure is the major risk factor for developing COPD. Presently, available COPD treatments focus on suppressing inflammation and providing bronchodilation. However, these options have varying efficacy in controlling symptoms and do not reverse or limit the progression of COPD. Treatments strategies using bacterial-derived products have shown promise in diseases characterized by inflammation and immune dysfunction. This study investigated for the first time whether a novel immunotherapy produced from inactivated Klebsiella (hereafter referred to as KB) containing all the major Klebsiella macromolecules, could attenuate cigarette smoke exposure-induced immune responses. We hypothesized that KB, by re-directing damaging immune responses, would attenuate cigarette smoke-induced lung inflammation and bronchoalveolar (BAL) cytokine and chemokine production. Methods KB was administered via a subcutaneous injection prophylactically before initiating a 3-week acute nose-only cigarette smoke exposure protocol. Control mice received placebo injection and room air. Total BAL and differential cell numbers were enumerated. BAL and serum were analysed for 31 cytokines, chemokines, and growth factors. Lung tissue and blood were analysed for Ly6CHI monocytes/macrophages and neutrophils. Body weight and clinical scores were recorded throughout the experiment. Results We demonstrate that KB treatment attenuated cigarette smoke-induced lung inflammation as shown by reductions in levels of BAL IFNγ, CXCL9, CXCL10, CCL5, IL-6, G-CSF, and IL-17. KB additionally attenuated the quantity of BAL lymphocytes and macrophages. In parallel to the attenuation of lung inflammation, KB induced a systemic immune activation with increases in Ly6CHI monocytes/macrophages and neutrophils. Conclusions This is the first demonstration that subcutaneous administration of a microbial-based immunotherapy can attenuate cigarette smoke-induced lung inflammation, and modulate BAL lymphocyte and macrophage levels, while inducing a systemic immune activation and mobilization. These data provide a foundation for future studies exploring how KB may be used to either reverse or prevent progression of established emphysema and small airways disease associated with chronic cigarette smoke exposure. The data suggest the intriguing possibility that KB, which stimulates rather than suppresses systemic immune responses, might be a novel means by which the course of COPD pathogenesis may be altered. Electronic supplementary material The online version of this article (doi:10.1186/s12931-017-0577-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mark Bazett
- Qu Biologics Inc., Vancouver, BC, Canada, V5T 4T5
| | - Agnieszka Biala
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada, V6H 3Z6
| | - Ryan D Huff
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada, V6H 3Z6
| | - Matthew R Zeglinksi
- iCORD Research Centre, University of British Columbia, Vancouver, BC, Canada, V5Z 1M5
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | | | - Hal Gunn
- Qu Biologics Inc., Vancouver, BC, Canada, V5T 4T5
| | - Shirin Kalyan
- Qu Biologics Inc., Vancouver, BC, Canada, V5T 4T5.,Department of Medicine, Division of Endocrinology, CeMCOR, University of British Columbia, Vancouver, BC, Canada, V5Z 1M9
| | - Jeremy A Hirota
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada, V6H 3Z6. .,Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada, L8N 4A6.
| |
Collapse
|
35
|
Gray LEK, O'Hely M, Ranganathan S, Sly PD, Vuillermin P. The Maternal Diet, Gut Bacteria, and Bacterial Metabolites during Pregnancy Influence Offspring Asthma. Front Immunol 2017; 8:365. [PMID: 28408909 PMCID: PMC5374203 DOI: 10.3389/fimmu.2017.00365] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/14/2017] [Indexed: 01/04/2023] Open
Abstract
This review focuses on the current evidence that maternal dietary and gut bacterial exposures during pregnancy influence the developing fetal immune system and subsequent offspring asthma. Part 1 addresses exposure to a farm environment, antibiotics, and prebiotic and probiotic supplementation that together indicate the importance of bacterial experience in immune programming and offspring asthma. Part 2 outlines proposed mechanisms to explain these associations including bacterial exposure of the fetoplacental unit; immunoglobulin-related transplacental transport of gut bacterial components; cytokine signaling producing fetomaternal immune alignment; and immune programming via metabolites produced by gut bacteria. Part 3 focuses on the interplay between diet, gut bacteria, and bacterial metabolites. Maternal diet influences fecal bacterial composition, with dietary microbiota-accessible carbohydrates (MACs) selecting short-chain fatty acid (SCFA)-producing bacteria. Current evidence from mouse models indicates an association between increased maternal dietary MACs, SCFA exposure during pregnancy, and reduced offspring asthma that is, at least in part, mediated by the induction of regulatory T lymphocytes in the fetal lung. Part 4 discusses considerations for future studies investigating maternal diet-by-microbiome determinants of offspring asthma including the challenge of measuring dietary MAC intake; limitations of the existing measures of the gut microbiome composition and metabolic activity; measures of SCFA exposure; and the complexities of childhood respiratory health assessment.
Collapse
Affiliation(s)
- Lawrence E K Gray
- Barwon Infant Study, School of Medicine, Deakin University, Geelong, VIC, Australia.,Child Health Research Unit, Barwon Health, Geelong, VIC, Australia
| | - Martin O'Hely
- Barwon Infant Study, School of Medicine, Deakin University, Geelong, VIC, Australia.,Respiratory Diseases, Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Sarath Ranganathan
- Respiratory Diseases, Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Peter David Sly
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Peter Vuillermin
- Barwon Infant Study, School of Medicine, Deakin University, Geelong, VIC, Australia.,Child Health Research Unit, Barwon Health, Geelong, VIC, Australia
| |
Collapse
|
36
|
Shukla SD, Budden KF, Neal R, Hansbro PM. Microbiome effects on immunity, health and disease in the lung. Clin Transl Immunology 2017; 6:e133. [PMID: 28435675 PMCID: PMC5382435 DOI: 10.1038/cti.2017.6] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 12/14/2022] Open
Abstract
Chronic respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF), are among the leading causes of mortality and morbidity worldwide. In the past decade, the interest in the role of microbiome in maintaining lung health and in respiratory diseases has grown exponentially. The advent of sophisticated multiomics techniques has enabled the identification and characterisation of microbiota and their roles in respiratory health and disease. Furthermore, associations between the microbiome of the lung and gut, as well as the immune cells and mediators that may link these two mucosal sites, appear to be important in the pathogenesis of lung conditions. Here we review the recent evidence of the role of normal gastrointestinal and respiratory microbiome in health and how dysbiosis affects chronic pulmonary diseases. The potential implications of host and environmental factors such as age, gender, diet and use of antibiotics on the composition and overall functionality of microbiome are also discussed. We summarise how microbiota may mediate the dynamic process of immune development and/or regulation focusing on recent data from both clinical human studies and translational animal studies. This furthers the understanding of the pathogenesis of chronic pulmonary diseases and may yield novel avenues for the utilisation of microbiota as potential therapeutic interventions.
Collapse
Affiliation(s)
- Shakti D Shukla
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Kurtis F Budden
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Rachael Neal
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
37
|
Martín-Orozco E, Norte-Muñoz M, Martínez-García J. Regulatory T Cells in Allergy and Asthma. Front Pediatr 2017; 5:117. [PMID: 28589115 PMCID: PMC5440567 DOI: 10.3389/fped.2017.00117] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/03/2017] [Indexed: 12/12/2022] Open
Abstract
The immune system's correct functioning requires a sophisticated balance between responses to continuous microbial challenges and tolerance to harmless antigens, such as self-antigens, food antigens, commensal microbes, allergens, etc. When this equilibrium is altered, it can lead to inflammatory pathologies, tumor growth, autoimmune disorders, and allergy/asthma. The objective of this review is to show the existing data on the importance of regulatory T cells (Tregs) on this balance and to underline how intrauterine and postnatal environmental exposures influence the maturation of the immune system in humans. Genetic and environmental factors during embryo development and/or early life will result in a proper or, conversely, inadequate immune maturation with either beneficial or deleterious effects on health. We have focused herein on Tregs as a reflection of the maturity of the immune system. We explain the types, origins, and the mechanisms of action of these cells, discussing their role in allergy and asthma predisposition. Understanding the importance of Tregs in counteracting dysregulated immunity would provide approaches to diminish asthma and other related diseases in infants.
Collapse
Affiliation(s)
- Elena Martín-Orozco
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, Murcia Biohealth Research Institute-University of Murcia (IMIB-UMU), Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - María Norte-Muñoz
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, Murcia Biohealth Research Institute-University of Murcia (IMIB-UMU), Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Javier Martínez-García
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, Murcia Biohealth Research Institute-University of Murcia (IMIB-UMU), Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| |
Collapse
|
38
|
Budden KF, Gellatly SL, Wood DLA, Cooper MA, Morrison M, Hugenholtz P, Hansbro PM. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol 2016; 15:55-63. [PMID: 27694885 DOI: 10.1038/nrmicro.2016.142] [Citation(s) in RCA: 978] [Impact Index Per Article: 108.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The microbiota is vital for the development of the immune system and homeostasis. Changes in microbial composition and function, termed dysbiosis, in the respiratory tract and the gut have recently been linked to alterations in immune responses and to disease development in the lungs. In this Opinion article, we review the microbial species that are usually found in healthy gastrointestinal and respiratory tracts, their dysbiosis in disease and interactions with the gut-lung axis. Although the gut-lung axis is only beginning to be understood, emerging evidence indicates that there is potential for manipulation of the gut microbiota in the treatment of lung diseases.
Collapse
Affiliation(s)
- Kurtis F Budden
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales 2305, Australia
| | - Shaan L Gellatly
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales 2305, Australia
| | - David L A Wood
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark Morrison
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4072, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, and the Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia; and The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales 2305, Australia
| |
Collapse
|
39
|
Kim RY, Rae B, Neal R, Donovan C, Pinkerton J, Balachandran L, Starkey MR, Knight DA, Horvat JC, Hansbro PM. Elucidating novel disease mechanisms in severe asthma. Clin Transl Immunology 2016; 5:e91. [PMID: 27525064 PMCID: PMC4973321 DOI: 10.1038/cti.2016.37] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 02/06/2023] Open
Abstract
Corticosteroids are broadly active and potent anti-inflammatory agents that, despite the introduction of biologics, remain as the mainstay therapy for many chronic inflammatory diseases, including inflammatory bowel diseases, nephrotic syndrome, rheumatoid arthritis, chronic obstructive pulmonary disease and asthma. Significantly, there are cohorts of these patients with poor sensitivity to steroid treatment even with high doses, which can lead to many iatrogenic side effects. The dose-limiting toxicity of corticosteroids, and the lack of effective therapeutic alternatives, leads to substantial excess morbidity and healthcare expenditure. We have developed novel murine models of respiratory infection-induced, severe, steroid-resistant asthma that recapitulate the hallmark features of the human disease. These models can be used to elucidate novel disease mechanisms and identify new therapeutic targets in severe asthma. Hypothesis-driven studies can elucidate the roles of specific factors and pathways. Alternatively, 'Omics approaches can be used to rapidly generate new targets. Similar approaches can be used in other diseases.
Collapse
Affiliation(s)
- Richard Y Kim
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Brittany Rae
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Rachel Neal
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - James Pinkerton
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Lohis Balachandran
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| |
Collapse
|
40
|
Thorburn AN, Tseng HY, Donovan C, Hansbro NG, Jarnicki AG, Foster PS, Gibson PG, Hansbro PM. TLR2, TLR4 AND MyD88 Mediate Allergic Airway Disease (AAD) and Streptococcus pneumoniae-Induced Suppression of AAD. PLoS One 2016; 11:e0156402. [PMID: 27309732 PMCID: PMC4911048 DOI: 10.1371/journal.pone.0156402] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 05/15/2016] [Indexed: 12/25/2022] Open
Abstract
Background Exposure to non-pathogenic Streptococcus pneumoniae and vaccination are inversely associated with asthma. Studies in animal models demonstrate that airway administration of S. pneumoniae (live or killed), or its vaccines or components, suppresses the characteristic features of asthma in mouse models of allergic airway disease (AAD). These components could be developed into immunoregulatory therapies. S. pneumoniae components are recognized by Toll-like receptors (TLR) 2 and TLR4, and both induce inflammatory cell responses through the adaptor protein myeloid differentiation primary response gene 88 (MyD88). The involvement of TLR2, TLR4 and MyD88 in the pathogenesis of AAD and asthma is incompletely understood, and has not been studied in S. pneumoniae-mediated suppression of AAD. We investigated the role of TLR2, TLR4 and MyD88 in the development of AAD and S. pneumoniae-mediated suppression of AAD. Methods and Findings OVA-induced AAD and killed S. pneumoniae-mediated suppression of AAD were assessed in wild-type, TLR2-/-, TLR4-/-, TLR2/4-/- and MyD88-/- BALB/c mice. During OVA-induced AAD, TLR2, TLR4 and MyD88 were variously involved in promoting eosinophil accumulation in bronchoalveolar lavage fluid and blood, and T-helper type (Th)2 cytokine release from mediastinal lymph node T cells and splenocytes. However, all were required for the induction of airways hyperresponsiveness (AHR). In S. pneumoniae-mediated suppression of AAD, TLR2, TLR4 and MyD88 were variously involved in the suppression of eosinophilic and splenocyte Th2 responses but all were required for the reduction in AHR. Conclusions These results highlight important but complex roles for TLR2, TLR4 and MyD88 in promoting the development of OVA-induced AAD, but conversely in the S. pneumoniae-mediated suppression of AAD, with consistent and major contributions in both the induction and suppression of AHR. Thus, TLR signaling is likely required for both the development of asthma and the suppression of asthma by S. pneumoniae, and potentially other immunoregulatory therapies.
Collapse
Affiliation(s)
- Alison N. Thorburn
- The Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Hsin-Yi Tseng
- The Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Chantal Donovan
- The Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Nicole G. Hansbro
- The Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Andrew G. Jarnicki
- The Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Paul S. Foster
- The Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter G. Gibson
- The Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Philip M. Hansbro
- The Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
- * E-mail:
| |
Collapse
|
41
|
Kim RY, Horvat JC, Pinkerton JW, Starkey MR, Essilfie AT, Mayall JR, Nair PM, Hansbro NG, Jones B, Haw TJ, Sunkara KP, Nguyen TH, Jarnicki AG, Keely S, Mattes J, Adcock IM, Foster PS, Hansbro PM. MicroRNA-21 drives severe, steroid-insensitive experimental asthma by amplifying phosphoinositide 3-kinase-mediated suppression of histone deacetylase 2. J Allergy Clin Immunol 2016; 139:519-532. [PMID: 27448447 DOI: 10.1016/j.jaci.2016.04.038] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 04/17/2016] [Accepted: 04/29/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Severe steroid-insensitive asthma is a substantial clinical problem. Effective treatments are urgently required, however, their development is hampered by a lack of understanding of the mechanisms of disease pathogenesis. Steroid-insensitive asthma is associated with respiratory tract infections and noneosinophilic endotypes, including neutrophilic forms of disease. However, steroid-insensitive patients with eosinophil-enriched inflammation have also been described. The mechanisms that underpin infection-induced, severe steroid-insensitive asthma can be elucidated by using mouse models of disease. OBJECTIVE We sought to develop representative mouse models of severe, steroid-insensitive asthma and to use them to identify pathogenic mechanisms and investigate new treatment approaches. METHODS Novel mouse models of Chlamydia, Haemophilus influenzae, influenza, and respiratory syncytial virus respiratory tract infections and ovalbumin-induced, severe, steroid-insensitive allergic airway disease (SSIAAD) in BALB/c mice were developed and interrogated. RESULTS Infection induced increases in the levels of microRNA (miRNA)-21 (miR-21) expression in the lung during SSIAAD, whereas expression of the miR-21 target phosphatase and tensin homolog was reduced. This was associated with an increase in levels of phosphorylated Akt, an indicator of phosphoinositide 3-kinase (PI3K) activity, and decreased nuclear histone deacetylase (HDAC)2 levels. Treatment with an miR-21-specific antagomir (Ant-21) increased phosphatase and tensin homolog levels. Treatment with Ant-21, or the pan-PI3K inhibitor LY294002, reduced PI3K activity and restored HDAC2 levels. This led to suppression of airway hyperresponsiveness and restored steroid sensitivity to allergic airway disease. These observations were replicated with SSIAAD associated with 4 different pathogens. CONCLUSION We identify a previously unrecognized role for an miR-21/PI3K/HDAC2 axis in SSIAAD. Our data highlight miR-21 as a novel therapeutic target for the treatment of this form of asthma.
Collapse
Affiliation(s)
- Richard Y Kim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - James W Pinkerton
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Ama T Essilfie
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Jemma R Mayall
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Prema M Nair
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Bernadette Jones
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Tatt Jhong Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Krishna P Sunkara
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Thi Hiep Nguyen
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Andrew G Jarnicki
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Simon Keely
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Joerg Mattes
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Ian M Adcock
- Airways Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia.
| |
Collapse
|
42
|
Zakeri A, Borji H, Haghparast A. Interaction Between Helminths and Toll-Like Receptors: Possibilities and Potentials for Asthma Therapy. Int Rev Immunol 2016; 35:219-48. [PMID: 27120222 DOI: 10.3109/08830185.2015.1096936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Toll-like receptors (TLRs) are essential components of the innate immune system. They play an important role in the pathogenesis of allergic diseases, especially asthma. Since TLRs significantly orchestrate innate and adaptive immune response, their manipulation has widely been considered as a potential approach to control asthma symptoms. It is well established that helminths have immunoregulatory effects on host immune responses, especially innate immunity. They release bioactive molecules such as excretory-secretory (ES) products manipulating TLRs expression and signaling. Thus, given the promising results derived from preclinical studies, harnessing helminth-derived molecules affecting TLRs can be considered as a potential biological therapy for allergic diseases. Prospectively, the data that are available at present suggest that, in the near future, it is possible that helminth antigens will offer new therapeutic strategies and druggable targets for fighting allergic diseases. This review describes the interactions between helminths and TLRs and discusses the potential possibilities for asthma therapy. In this opinion paper, the authors aimed to review the updated literatures on the interplay between helminths, TLRs, and asthma with a view to proposing helminth-based asthma therapy.
Collapse
Affiliation(s)
- Amin Zakeri
- a Parasitology Section, Department of Pathobiology , Faculty of Veterinary Medicine, Ferdowsi University of Mashhad , Mashhad , Iran.,b Immunology Sections, Department of Pathobiology, Faculty of Veterinary Medicine , Faculty of Veterinary Medicine, Ferdowsi University of Mashhad , Mashhad , Iran
| | - Hassan Borji
- a Parasitology Section, Department of Pathobiology , Faculty of Veterinary Medicine, Ferdowsi University of Mashhad , Mashhad , Iran
| | - Alireza Haghparast
- b Immunology Sections, Department of Pathobiology, Faculty of Veterinary Medicine , Faculty of Veterinary Medicine, Ferdowsi University of Mashhad , Mashhad , Iran.,c Biotechnology Section, Department of Pathobiology , Faculty of Veterinary Medicine, Ferdowsi University of Mashhad , Mashhad , Iran
| |
Collapse
|
43
|
Li P, Gao Y, Cao J, Wang W, Chen Y, Zhang G, Robson SC, Wu Y, Yang J. CD39+ regulatory T cells attenuate allergic airway inflammation. Clin Exp Allergy 2016; 45:1126-37. [PMID: 25728362 DOI: 10.1111/cea.12521] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/25/2014] [Accepted: 01/04/2015] [Indexed: 01/31/2023]
Abstract
BACKGROUND The suppressive mechanism of regulatory T cells (Tregs) has remained incompletely clarified. Recent studies found that CD39 expressed by Tregs may participate in the immunoregulatory role of Tregs. CD39-induced ATP hydrolysis and/or adenosine generation contribute to the suppressive mechanism of Tregs. Previous studies suggested that ATP is involved in allergic airway inflammation by acting on type 2 purinergic (P2) receptors, but the role of CD39 and CD39(+) Tregs in allergic airway inflammation has not been elaborated. OBJECTIVE To investigate the role and underlying mechanism of CD39 expression by Tregs in allergic airway inflammation. METHODS A model of allergic asthma was developed with ovalbumin-alum in female Cd39 wild type (Cd39(+/+) ) and deficient (Cd39(-/-) ) C57BL/6 mice. Foxp3-GFP knock-in Cd39(+/+) and Cd39(-/-) mice were used to sort CD4(+) GFP(+) cells (Tregs) for exploring the role of CD39 expression by Tregs in allergic asthma. The effects of modulating CD39 activity with ARL67156 (inhibitor) or apyrase were also observed. RESULTS ARL67156 greatly worsened airway inflammation including increased lung inflammatory cells infiltration, goblet cell hyperplasia, and higher levels of Th2 and Th17 cytokines in bronchoalveolar lavage fluid (BALF), accompanied by an increment in transcription factor (GATA-3 and RORγt) and P2R (P2Y2, P2Y4 and P2Y6) mRNA expression in lungs. This potentiating effect was rescued by intratracheal injection of apyrase. Airway inflammation was markedly increased in Cd39(-/-) mice compared to Cd39(+/+) mice. In contrast to CD39(-) Tregs, CD39(+) Tregs showed stronger suppressive effects on airway inflammation. In vitro suppression assay suggested that CD39(+) Tregs have more potent suppressive effect on cytokines secretion from CD4(+) CD25(-) responder T cells and the inhibitory effects were reduced by addition of adenosine A2A receptor antagonist. CONCLUSION CD39 expressed on Tregs participates in the regulation of limiting allergic airway inflammation by regulating extracellular ATP and/or adenosine. CD39 may represent a new therapeutic target for asthma.
Collapse
Affiliation(s)
- P Li
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Y Gao
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - J Cao
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - W Wang
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Y Chen
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - G Zhang
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - S C Robson
- Department of Medicine, Transplant Institute and Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Y Wu
- Department of Medicine, Transplant Institute and Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - J Yang
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
44
|
Pandit H, Thakur G, Koippallil Gopalakrishnan AR, Dodagatta-Marri E, Patil A, Kishore U, Madan T. Surfactant protein D induces immune quiescence and apoptosis of mitogen-activated peripheral blood mononuclear cells. Immunobiology 2016; 221:310-22. [DOI: 10.1016/j.imbio.2015.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/13/2015] [Accepted: 10/23/2015] [Indexed: 01/07/2023]
|
45
|
Luo Q, Lin J, Zhang L, Li H, Pan L. The anti-malaria drug artesunate inhibits cigarette smoke and ovalbumin concurrent exposure-induced airway inflammation and might reverse glucocorticoid insensitivity. Int Immunopharmacol 2015; 29:235-245. [PMID: 26590116 DOI: 10.1016/j.intimp.2015.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/03/2015] [Accepted: 11/09/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND The anti-malaria drug artesunate has been shown to attenuate experimental allergic asthma via inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This study was to further determine the effects of artesunate on cigarette smoke and ovalbumin (OVA) concurrent exposure-induced airway inflammation, the related mechanism, and glucocorticoid insensitivity. METHODS AND RESULTS In vivo: Female BALB/c mice concurrently exposed to cigarette smoke and OVA developed mixed eosinophilic and neutrophilic airway inflammation. Airway hyper-responsiveness, total and differential cell counts, and pro-inflammatory cytokine levels (interleukin (IL)-4, IL-8, IL-13 and tumor necrosis factor (TNF)-α) in bronchoalveolar lavage fluid (BALF) were measured. Lung tissue sections were stained for histological analysis, and proteins were extracted for Western blotting. Artesunate reduced methacholine-induced airway hyper-responsiveness, suppressed pulmonary inflammation cell recruitment and IL-4, IL-8, IL-13 and TNF-α levels, selectively inhibited PI3Kδ/Akt pathway, and restored HDAC2 activity. In vitro: BEAS-2B cells were exposed to cigarette smoke extract (CSE) for 6h and then stimulated with TNF-α overnight. Glucocorticoid sensitivity was evaluated by the inhibition of TNF-α-induced IL-8 production by dexamethasone. CSE reduced the effects of dexamethasone on TNF-α-induced IL-8 production in BEAS-2B cells, while artesunate reversed CSE-induced glucocorticoid insensitivity and restored HDAC2 deactivation induced by CSE. CONCLUSION Artesunate ameliorated cigarette smoke and OVA concurrent exposure-induced airway inflammation, inhibited the PI3Kδ/Akt pathway, restored HDAC2 activity, and reversed CSE-induced glucocorticoid insensitivity in BEAS-2B cells. These findings indicate that artesunate might play a protective role in asthma induced by cigarette smoke and glucocorticoid insensitivity.
Collapse
Affiliation(s)
- Qiongzhen Luo
- Department of Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiangtao Lin
- Department of Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Lu Zhang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Li
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Lin Pan
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
46
|
Baatjes AJ, Smith SG, Dua B, Watson R, Gauvreau GM, O'Byrne PM. Treatment with anti-OX40L or anti-TSLP does not alter the frequency of T regulatory cells in allergic asthmatics. Allergy 2015. [PMID: 26213896 DOI: 10.1111/all.12708] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OX40-OX40L interactions and thymic stromal lymphopoietin (TSLP) are important in the induction and maintenance of Th2 responses in allergic disease, whereas T regulatory cells (Treg) have been shown to suppress pro-inflammatory Th2 responses. Both OX40L and TSLP have been implicated in the negative regulation of Treg. The effect of anti-asthma therapies on Treg is not well known. Our aim was to assess the effects of two monoclonal antibody therapies (anti-OX40L and anti-TSLP) on Treg frequency using a human model of allergic asthma. We hypothesized that the anti-inflammatory effects of these therapies would result in an increase in circulating Treg (CD4(+) CD25(+) CD127(low) Foxp3(+) cells) frequency. We measured Treg using flow cytometry, and our results showed that neither allergen challenge nor monoclonal antibody therapy altered circulating Treg frequency. These data highlight the need for assessment of airway Treg and for a more complete understanding of Treg biology so as to develop pharmacologics/biologics that modulate Treg for asthma therapy.
Collapse
Affiliation(s)
- A. J. Baatjes
- Department of Medicine; Michael G DeGroote School of Medicine; McMaster University; Hamilton ON Canada
| | - S. G. Smith
- Department of Medicine; Michael G DeGroote School of Medicine; McMaster University; Hamilton ON Canada
| | - B. Dua
- Department of Medicine; Michael G DeGroote School of Medicine; McMaster University; Hamilton ON Canada
| | - R. Watson
- Department of Medicine; Michael G DeGroote School of Medicine; McMaster University; Hamilton ON Canada
| | - G. M. Gauvreau
- Department of Medicine; Michael G DeGroote School of Medicine; McMaster University; Hamilton ON Canada
| | - P. M. O'Byrne
- Department of Medicine; Michael G DeGroote School of Medicine; McMaster University; Hamilton ON Canada
- Firestone Institute of Respiratory Health; Michael G DeGroote School of Medicine; McMaster University; Hamilton ON Canada
| |
Collapse
|
47
|
Pulmonary immunity during respiratory infections in early life and the development of severe asthma. Ann Am Thorac Soc 2015; 11 Suppl 5:S297-302. [PMID: 25525736 DOI: 10.1513/annalsats.201402-086aw] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Asthma affects 10% of the population in Westernized countries, being most common in children. It is a heterogeneous condition characterized by chronic allergic airway inflammation, mucus hypersecretion, and airway hyperresponsiveness (AHR) to normally innocuous antigens. Combination therapies with inhaled corticosteroids and bronchodilators effectively manage mild to moderate asthma, but there are no cures, and patients with severe asthma do not respond to these treatments. The inception of asthma is linked to respiratory viral (respiratory syncytial virus, rhinovirus) and bacterial (Chlamydia, Mycoplasma) infections. The examination of mouse models of early-life infections and allergic airway disease (AAD) provides valuable insights into the mechanisms of disease inception that may lead to the development of more effective therapeutics. For example, early-life, but not adult, Chlamydia respiratory infections in mice permanently modify immunity and lung physiology. This increases the severity of AAD by promoting IL-13 expression, mucus hypersecretion, and AHR. We have identified novel roles for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and IL-13 in promoting infection-induced pathology in early life and subsequent chronic lung disease. Genetic deletion of TRAIL or IL-13 variously protected against neonatal infection-induced inflammation, mucus hypersecretion, altered lung structure, AHR, and impaired lung function. Therapeutic neutralization of these factors prevented infection-induced severe AAD. Other novel mechanisms and avenues for intervention are also being explored. Such studies indicate the immunological mechanisms that may underpin the association between early-life respiratory infections and the development of more severe asthma and may facilitate the development of tailored preventions and treatments.
Collapse
|
48
|
Liravi B, Piedrafita D, Nguyen G, Bischof RJ. Dynamics of IL-4 and IL-13 expression in the airways of sheep following allergen challenge. BMC Pulm Med 2015; 15:101. [PMID: 26362930 PMCID: PMC4566292 DOI: 10.1186/s12890-015-0097-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/01/2015] [Indexed: 01/03/2023] Open
Abstract
Background IL-4 and IL-13 play a critical yet poorly understood role in orchestrating the recruitment and activation of effector cells of the asthmatic response and driving the pathophysiology of allergic asthma. The house dust mite (HDM) sheep asthma model displays many features of the human condition and is an ideal model to further elucidate the involvement of these critical Th2 cytokines. We hypothesized that airway exposure to HDM allergen would induce or elevate the expression profile of IL-4 and IL-13 during the allergic airway response in this large animal model of asthma. Methods Bronchoalveolar lavage (BAL) samples were collected from saline- and house dust mite (HDM)- challenged lung lobes of sensitized sheep from 0 to 48 h post-challenge. BAL cytokines (IL-4, IL-13, IL-6, IL-10, TNF-α) were each measured by ELISA. IL-4 and IL-13 expression was assessed in BAL leukocytes by flow cytometry and in airway tissue sections by immunohistology. Results IL-4 and IL-13 were increased in BAL samples following airway allergen challenge. HDM challenge resulted in a significant increase in BAL IL-4 levels at 4 h compared to saline-challenged airways, while BAL IL-13 levels were elevated at all time-points after allergen challenge. IL-6 levels were maintained following HDM challenge but declined after saline challenge, while HDM administration resulted in an acute elevation in IL-10 at 4 h but no change in TNF-α levels over time. Lymphocytes were the main early source of IL-4, with IL-4 release by alveolar macrophages (AMs) prominent from 24 h post-allergen challenge. IL-13 producing AMs were increased at 4 and 24 h following HDM compared to saline challenge, and tissue staining provided evidence of IL-13 expression in airway epithelium as well as immune cells in airway tissue. Conclusion In a sheep model of allergic asthma, airway inflammation is accompanied by the temporal release of key cytokines following allergen exposure that primarily reflects the Th2-driven nature of the immune response in asthma. The present study demonstrates for the first time the involvement of IL-4 and IL-13 in a relevant large animal model of allergic airways disease.
Collapse
Affiliation(s)
- Bahar Liravi
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, 3800, VIC, Australia.
| | - David Piedrafita
- School of Applied and Biomedical Sciences, Federation University, Churchill, 3842, VIC, Australia.
| | - Gary Nguyen
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, 3800, VIC, Australia.
| | - Robert J Bischof
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, 3800, VIC, Australia. .,The Ritchie Centre, Hudson Institute of Medical Research, Clayton, 3168, VIC, Australia.
| |
Collapse
|
49
|
Nurwati I, Purwanto B, Mudigdo A, Saputra K, Sutrisno TC. Reduction of Interleukin-17 Level by Acupuncture at Feishu (Bl 13) Is Strengthened by Acupuncture at Zusanli (ST 36) in a Mouse Model of Chronic Asthma: An Experimental Study. Med Acupunct 2015. [DOI: 10.1089/acu.2015.1111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ida Nurwati
- Doctoral Program of Medical Sciences, Faculty of Medicine, Sebelas Maret University, Surakarta, Central Java, Indonesia
| | - Bambang Purwanto
- Doctoral Program of Medical Sciences, Faculty of Medicine, Sebelas Maret University, Surakarta, Central Java, Indonesia
| | - Ambar Mudigdo
- Doctoral Program of Medical Sciences, Faculty of Medicine, Sebelas Maret University, Surakarta, Central Java, Indonesia
| | - Koosnadi Saputra
- Acupuncture Research Laboratory in Health Services, Ministry of Health of the Republic of Indonesia, Surabaya, East Java, Indonesia
- Academy Acupuncture of Surabaya, Surabaya, East Java, Indonesia
| | | |
Collapse
|
50
|
Chevalier N, Thorburn AN, Macia L, Tan J, Juglair L, Yagita H, Yu D, Hansbro PM, Mackay CR. Inflammation and lymphopenia trigger autoimmunity by suppression of IL-2-controlled regulatory T cell and increase of IL-21-mediated effector T cell expansion. THE JOURNAL OF IMMUNOLOGY 2014; 193:4845-58. [PMID: 25339665 DOI: 10.4049/jimmunol.1302966] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The dynamic interplay between regulatory T cells (T(regs)) and effector T cells (T(effs)) governs the balance between tolerance and effector immune responses. Perturbations of T(reg) frequency and function or imbalances in T(reg)/T(eff) levels are associated with the development of autoimmunity. The factors that mediate these changes remain poorly understood and were investigated in this study in murine autoimmune arthritis. T(regs) displayed a stable phenotype in arthritic mice and were fully functional in in vitro suppression assays. However, their expansion was delayed relative to T(effs) (T follicular helper cells and Th17 cells) during the early stages of autoimmune reactivity. This imbalance is likely to have led to insufficient T(reg) control of T(effs) and induced autoimmunity. Moreover, a counterregulatory and probably IL-7-driven increase in thymic T(reg) production and recruitment to inflamed tissues was too slow for disease prevention. Increased T(eff) over T(reg) expansion was further aggravated by inflammation and lymphopenia. Both these conditions contribute to autoimmune pathogenesis and were accompanied by decreases in the availability of IL-2 and increases in levels of IL-21. IL-2 neutralization or supplementation was used to show that T(reg) expansion mainly depended on this cytokine. IL-21R(-/-) cells were used to demonstrate that IL-21 promoted the maintenance of T(effs). Thus, at inflammatory sites in experimental arthritis, a deficit in IL-2 hampers T(reg) proliferation, whereas exaggerated IL-21 levels overwhelm T(reg) control by supporting T(eff) expansion. This identifies IL-2 and IL-21 as targets for manipulation in therapies for autoimmunity.
Collapse
Affiliation(s)
- Nina Chevalier
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, 79106 Freiburg, Germany; Center for Immunology and Inflammation, Monash University Clayton, Melbourne, Victoria 3088, Australia; Immunology Department, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia;
| | - Alison N Thorburn
- Center for Immunology and Inflammation, Monash University Clayton, Melbourne, Victoria 3088, Australia
| | - Laurence Macia
- Center for Immunology and Inflammation, Monash University Clayton, Melbourne, Victoria 3088, Australia
| | - Jian Tan
- Center for Immunology and Inflammation, Monash University Clayton, Melbourne, Victoria 3088, Australia
| | - Laurent Juglair
- Center for Immunology and Inflammation, Monash University Clayton, Melbourne, Victoria 3088, Australia
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, 113-8421 Tokyo, Japan; and
| | - Di Yu
- Center for Immunology and Inflammation, Monash University Clayton, Melbourne, Victoria 3088, Australia
| | - Philip M Hansbro
- Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales 2300, Australia
| | - Charles R Mackay
- Center for Immunology and Inflammation, Monash University Clayton, Melbourne, Victoria 3088, Australia
| |
Collapse
|