1
|
Cheng HP, Jiang SH, Cai J, Luo ZQ, Li XH, Feng DD. Histone deacetylases: potential therapeutic targets for idiopathic pulmonary fibrosis. Front Cell Dev Biol 2024; 12:1426508. [PMID: 39193364 PMCID: PMC11347278 DOI: 10.3389/fcell.2024.1426508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/03/2024] [Indexed: 08/29/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease of unknown origin and the most common interstitial lung disease. However, therapeutic options for IPF are limited, and novel therapies are urgently needed. Histone deacetylases (HDACs) are enzymes that participate in balancing histone acetylation activity for chromatin remodeling and gene transcription regulation. Increasing evidence suggests that the HDAC family is linked to the development and progression of chronic fibrotic diseases, including IPF. This review aims to summarize available information on HDACs and related inhibitors and their potential applications in treating IPF. In the future, HDACs may serve as novel targets, which can aid in understanding the etiology of PF, and selective inhibition of single HDACs or disruption of HDAC genes may serve as a strategy for treating PF.
Collapse
Affiliation(s)
- Hai-peng Cheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, China
| | - Shi-he Jiang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, China
| | - Jin Cai
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, China
| | - Zi-qiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, Hunan, China
| | - Xiao-hong Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, China
| | - Dan-dan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Ren L, Chang YF, Jiang SH, Li XH, Cheng HP. DNA methylation modification in Idiopathic pulmonary fibrosis. Front Cell Dev Biol 2024; 12:1416325. [PMID: 38915445 PMCID: PMC11194555 DOI: 10.3389/fcell.2024.1416325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible interstitial lung disease with a prognosis worse than lung cancer. It is a fatal lung disease with largely unknown etiology and pathogenesis, and no effective therapeutic drugs render its treatment largely unsuccessful. With continuous in-depth research efforts, the epigenetic mechanisms in IPF pathogenesis have been further discovered and concerned. As a widely studied mechanism of epigenetic modification, DNA methylation is primarily facilitated by DNA methyltransferases (DNMTs), resulting in the addition of a methyl group to the fifth carbon position of the cytosine base, leading to the formation of 5-methylcytosine (5-mC). Dysregulation of DNA methylation is intricately associated with the advancement of respiratory disorders. Recently, the role of DNA methylation in IPF pathogenesis has also received considerable attention. DNA methylation patterns include methylation modification and demethylation modification and regulate a range of essential biological functions through gene expression regulation. The Ten-Eleven-Translocation (TET) family of DNA dioxygenases is crucial in facilitating active DNA demethylation through the enzymatic conversion of the modified genomic base 5-mC to 5-hydroxymethylcytosine (5-hmC). TET2, a member of TET proteins, is involved in lung inflammation, and its protein expression is downregulated in the lungs and alveolar epithelial type II cells of IPF patients. This review summarizes the current knowledge of pathologic features and DNA methylation mechanisms of pulmonary fibrosis, focusing on the critical roles of abnormal DNA methylation patterns, DNMTs, and TET proteins in impacting IPF pathogenesis. Researching DNA methylation will enchance comprehension of the fundamental mechanisms involved in IPF pathology and provide novel diagnostic biomarkers and therapeutic targets for pulmonary fibrosis based on the studies involving epigenetic mechanisms.
Collapse
Affiliation(s)
- Lu Ren
- Clinical Nursing Teaching and Research Section, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan-Fen Chang
- Medicine School, Zhengzhou University of Industrial Technology, Zhengzhou, China
| | - Shi-He Jiang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Hong Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hai-Peng Cheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Zhang YS, Tu B, Song K, Lin LC, Liu ZY, Lu D, Chen Q, Tao H. Epigenetic hallmarks in pulmonary fibrosis: New advances and perspectives. Cell Signal 2023; 110:110842. [PMID: 37544633 DOI: 10.1016/j.cellsig.2023.110842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Epigenetics indicates that certain phenotypes of an organism can undergo heritable changes in the absence of changes in the genetic DNA sequence. Many studies have shown that epigenetic patterns play an important role in the lung and lung diseases. Pulmonary fibrosis (PF) is also a type of lung disease. PF is an end-stage change of a large group of lung diseases, characterized by fibroblast proliferation and massive accumulation of extracellular matrix, accompanied by inflammatory injury and histological destruction, that is, structural abnormalities caused by abnormal repair of normal alveolar tissue. It causes loss of lung function in patients with multiple complex diseases, leading to respiratory failure and subsequent death. However, current treatment options for IPF are very limited and no drugs have been shown to significantly prolong the survival of patients. Therefore, based on a systematic understanding of the disease mechanisms of PF, this review integrates the role of epigenetics in the development and course of PF, describes preventive and potential therapeutic targets for PF, and provides a theoretical basis for further exploration of the mechanisms of PF.
Collapse
Affiliation(s)
- Yun-Sen Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Bin Tu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Kai Song
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Dong Lu
- Department of Interventional Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.
| | - Qi Chen
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| |
Collapse
|
4
|
Liu Q, Liu X, Wang G, Wu F, Hou Y, Liu H. Genome-wide DNA methylation analysis of Astragalus and Danshen on the intervention of myofibroblast activation in idiopathic pulmonary fibrosis. BMC Pulm Med 2023; 23:325. [PMID: 37667288 PMCID: PMC10478235 DOI: 10.1186/s12890-023-02601-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF), a chronic progressive interstitial lung disease of unknown etiology, is characterized by continuous damage to alveolar epithelial cells, abnormal repair of alveolar tissue, and alveolar wall scar formation. Currently, the recommended treatment for IPF in Western medicine is relatively limited. In contrast, traditional Chinese medicine and compound prescriptions show advantages in the diagnosis and treatment of IPF, which can be attributed to their multi-channel and multi-target characteristics and minimal side-effects. The purpose of this study was to further corroborate the effectiveness and significance of the traditional Chinese medications Astragalus and Danshen in IPF treatment. METHODS We performed whole-genome methylation analysis on nine rat lung tissue samples to determine the epigenetic variation between IPF and non-fibrotic lungs using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses and quantitative reverse transcription polymerase chain reactions. RESULTS We identified differentially methylated regions and 105 associated key functional genes in samples related to IPF and Chinese medicine treatment. Based on the methylation levels and gene expression profiles between the Chinese medicine intervention and pulmonary fibrosis model groups, we speculated that Astragalus and Salvia miltiorrhiza (traditionally known as Danshen) act on the Isl1, forkhead box O3, and Sonic hedgehog genes via regulation at transcriptional and epigenetic levels during IPF. CONCLUSIONS These findings provide novel insights into the epigenetic regulation of IPF, indicate the effectiveness of Astragalus and Danshen in treating IPF, and suggest several promising therapeutic targets for preventing and treating IPF.
Collapse
Affiliation(s)
- Qingyin Liu
- Shandong University of Traditional Chinese Medicine, No. 4655, Daxue Road, University Science Park, Changqing District, Jinan City, 250355, China
| | - Xue Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jing Shi Road, Jinan City, 250013, China
| | - Guoyu Wang
- Capital Medical University, No. 10, Xizhang Road, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Fan Wu
- Shandong University of Traditional Chinese Medicine, No. 4655, Daxue Road, University Science Park, Changqing District, Jinan City, 250355, China
| | - Yuan Hou
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jing Shi Road, Jinan City, 250013, China
| | - Huaman Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jing Shi Road, Jinan City, 250013, China.
| |
Collapse
|
5
|
Liu Y, Wen D, Ho C, Yu L, Zheng D, O'Reilly S, Gao Y, Li Q, Zhang Y. Epigenetics as a versatile regulator of fibrosis. J Transl Med 2023; 21:164. [PMID: 36864460 PMCID: PMC9983257 DOI: 10.1186/s12967-023-04018-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Fibrosis, a process caused by excessive deposition of extracellular matrix (ECM), is a common cause and outcome of organ failure and even death. Researchers have made many efforts to understand the mechanism of fibrogenesis and to develop therapeutic strategies; yet, the outcome remains unsatisfactory. In recent years, advances in epigenetics, including chromatin remodeling, histone modification, DNA methylation, and noncoding RNA (ncRNA), have provided more insights into the fibrotic process and have suggested the possibility of novel therapy for organ fibrosis. In this review, we summarize the current research on the epigenetic mechanisms involved in organ fibrosis and their possible clinical applications.
Collapse
Affiliation(s)
- Yangdan Liu
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Dongsheng Wen
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Chiakang Ho
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Li Yu
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Danning Zheng
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | | | - Ya Gao
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Yifan Zhang
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
6
|
Tirelli C, Pesenti C, Miozzo M, Mondoni M, Fontana L, Centanni S. The Genetic and Epigenetic Footprint in Idiopathic Pulmonary Fibrosis and Familial Pulmonary Fibrosis: A State-of-the-Art Review. Diagnostics (Basel) 2022; 12:diagnostics12123107. [PMID: 36553114 PMCID: PMC9777399 DOI: 10.3390/diagnostics12123107] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare disease of the lung with a largely unknown etiology and a poor prognosis. Intriguingly, forms of familial pulmonary fibrosis (FPF) have long been known and linked to specific genetic mutations. There is little evidence of the possible role of genetics in the etiology of sporadic IPF. We carried out a non-systematic, narrative literature review aimed at describing the main known genetic and epigenetic mechanisms that are involved in the pathogenesis and prognosis of IPF and FPF. In this review, we highlighted the mutations in classical genes associated with FPF, including those encoding for telomerases (TERT, TERC, PARN, RTEL1), which are also found in about 10-20% of cases of sporadic IPF. In addition to the Mendelian forms, mutations in the genes encoding for the surfactant proteins (SFTPC, SFTPA1, SFTPA2, ABCA3) and polymorphisms of genes for the mucin MUC5B and the Toll-interacting protein TOLLIP are other pathways favoring the fibrogenesis that have been thoroughly explored. Moreover, great attention has been paid to the main epigenetic alterations (DNA methylation, histone modification and non-coding RNA gene silencing) that are emerging to play a role in fibrogenesis. Finally, a gaze on the shared mechanisms between cancer and fibrogenesis, and future perspectives on the genetics of pulmonary fibrosis have been analyzed.
Collapse
Affiliation(s)
- Claudio Tirelli
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Correspondence:
| | - Chiara Pesenti
- Medical Genetics Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Monica Miozzo
- Medical Genetics Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Michele Mondoni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Laura Fontana
- Medical Genetics Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Stefano Centanni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| |
Collapse
|
7
|
Li X, Feng C, Peng S. Epigenetics alternation in lung fibrosis and lung cancer. Front Cell Dev Biol 2022; 10:1060201. [PMID: 36420141 PMCID: PMC9676258 DOI: 10.3389/fcell.2022.1060201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/20/2022] [Indexed: 09/10/2023] Open
Abstract
Respiratory disease including interstitial lung diseases (ILDs) and lung cancer is a group of devastating diseases that linked with increased morbidity and healthcare burden. However, respiratory diseases cannot be fully explained by the alternation of genetic information. Genetic studies described that epigenetic mechanisms also participate to transmit genetic information. Recently, many studies demonstrated the role of altered epigenetic modification in the pathogenesis of lung cancer and pulmonary fibrosis. Due to lacking effective medication, the underlying pathophysiological processes and causal relationships of lung diseases with epigenetic mechanisms still need to be better understood. Our present review provided a systematic revision of current knowledge concerning diverse epigenetic aberrations in major lung diseases, with special emphasis on DNA methylation, histone modifications, lncRNAs profiles, telomere patterns, as well as chromatin-remodelling complexes. We believed that a new target therapy for lung disease based on findings of the involved epigenetic pathway is a promising future direction.
Collapse
Affiliation(s)
- Xueren Li
- Department of Respiratory Medicine, Tianjin Haihe Hospital, Tianjin, China
- Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Chunjing Feng
- The Institute Includes H&B(Tianjin) Stem Cell Research Institute, Tianjin, China
| | - Shouchun Peng
- Department of Respiratory Medicine, Tianjin Haihe Hospital, Tianjin, China
- Tianjin Institute of Respiratory Diseases, Tianjin, China
| |
Collapse
|
8
|
Ma H, Wu X, Li Y, Xia Y. Research Progress in the Molecular Mechanisms, Therapeutic Targets, and Drug Development of Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:963054. [PMID: 35935869 PMCID: PMC9349351 DOI: 10.3389/fphar.2022.963054] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease. Recent studies have identified the key role of crosstalk between dysregulated epithelial cells, mesenchymal, immune, and endothelial cells in IPF. In addition, genetic mutations and environmental factors (e.g., smoking) have also been associated with the development of IPF. With the recent development of sequencing technology, epigenetics, as an intermediate link between gene expression and environmental impacts, has also been reported to be implicated in pulmonary fibrosis. Although the etiology of IPF is unknown, many novel therapeutic targets and agents have emerged from clinical trials for IPF treatment in the past years, and the successful launch of pirfenidone and nintedanib has demonstrated the promising future of anti-IPF therapy. Therefore, we aimed to gain an in-depth understanding of the underlying molecular mechanisms and pathogenic factors of IPF, which would be helpful for the diagnosis of IPF, the development of anti-fibrotic drugs, and improving the prognosis of patients with IPF. In this study, we summarized the pathogenic mechanism, therapeutic targets and clinical trials from the perspective of multiple cell types, gene mutations, epigenetic and environmental factors.
Collapse
Affiliation(s)
- Hongbo Ma
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Yi Li
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
- *Correspondence: Yong Xia,
| |
Collapse
|
9
|
Korfei M, Mahavadi P, Guenther A. Targeting Histone Deacetylases in Idiopathic Pulmonary Fibrosis: A Future Therapeutic Option. Cells 2022; 11:1626. [PMID: 35626663 PMCID: PMC9139813 DOI: 10.3390/cells11101626] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with limited therapeutic options, and there is a huge unmet need for new therapies. A growing body of evidence suggests that the histone deacetylase (HDAC) family of transcriptional corepressors has emerged as crucial mediators of IPF pathogenesis. HDACs deacetylate histones and result in chromatin condensation and epigenetic repression of gene transcription. HDACs also catalyse the deacetylation of many non-histone proteins, including transcription factors, thus also leading to changes in the transcriptome and cellular signalling. Increased HDAC expression is associated with cell proliferation, cell growth and anti-apoptosis and is, thus, a salient feature of many cancers. In IPF, induction and abnormal upregulation of Class I and Class II HDAC enzymes in myofibroblast foci, as well as aberrant bronchiolar epithelium, is an eminent observation, whereas type-II alveolar epithelial cells (AECII) of IPF lungs indicate a significant depletion of many HDACs. We thus suggest that the significant imbalance of HDAC activity in IPF lungs, with a "cancer-like" increase in fibroblastic and bronchial cells versus a lack in AECII, promotes and perpetuates fibrosis. This review focuses on the mechanisms by which Class I and Class II HDACs mediate fibrogenesis and on the mechanisms by which various HDAC inhibitors reverse the deregulated epigenetic responses in IPF, supporting HDAC inhibition as promising IPF therapy.
Collapse
Affiliation(s)
- Martina Korfei
- Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, D-35392 Giessen, Germany; (P.M.); (A.G.)
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), D-35392 Giessen, Germany
| | - Poornima Mahavadi
- Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, D-35392 Giessen, Germany; (P.M.); (A.G.)
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), D-35392 Giessen, Germany
| | - Andreas Guenther
- Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, D-35392 Giessen, Germany; (P.M.); (A.G.)
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), D-35392 Giessen, Germany
- Lung Clinic, Evangelisches Krankenhaus Mittelhessen, D-35398 Giessen, Germany
- European IPF Registry and Biobank, D-35392 Giessen, Germany
| |
Collapse
|
10
|
Hata A, Guo Y, Miller AE, Hata M, Mei Z, Manafi A, Li D, Banerjee A, Lazear E, Lau C, Gelman AE, Kreisel D, Yoshino I, Wilkes D, Barker TH, Krupnick AS. Loss of Stromal Cell Thy-1 Plays a Critical Role in Lipopolysaccharide Induced Chronic Lung Allograft Dysfunction. J Heart Lung Transplant 2022; 41:1044-1054. [DOI: 10.1016/j.healun.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 04/14/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
|
11
|
Chronic Inflammation as the Underlying Mechanism of the Development of Lung Diseases in Psoriasis: A Systematic Review. Int J Mol Sci 2022; 23:ijms23031767. [PMID: 35163689 PMCID: PMC8836589 DOI: 10.3390/ijms23031767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 01/04/2023] Open
Abstract
Psoriasis is a systemic inflammatory disease caused by dysfunctional interactions between the innate and adaptive immune responses. The systemic inflammation in psoriasis may be associated with the development of comorbidities, including lung diseases. In this review, we aimed to provide a summary of the evidence regarding the prevalence of lung diseases in patients with psoriasis and the potential underlying mechanisms. Twenty-three articles published between March 2010 and June 2021 were selected from 195 initially identified records. The findings are discussed in terms of the prevalence of asthma, chronic obstructive pulmonary disease, interstitial lung disease, obstructive sleep apnea, pulmonary hypertension, and sarcoidosis in psoriasis. A higher prevalence of lung diseases in psoriasis has been confirmed in asthma, chronic obstructive pulmonary disease, obstructive sleep apnea, and pulmonary hypertension. These conditions are important as they are previously unrecognized causes of morbidity and mortality in psoriasis. The development of lung diseases in patients with psoriasis can be explained by several mechanisms, including common risk factors, shared immune and molecular characteristics associated with chronic inflammation, as well as other mechanisms. Understanding the prevalence of lung diseases in psoriasis and their underlying mechanisms can help implement appropriate preventative and therapeutic strategies to address respiratory diseases in patients with psoriasis.
Collapse
|
12
|
Moretti L, Stalfort J, Barker TH, Abebayehu D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J Biol Chem 2022; 298:101530. [PMID: 34953859 PMCID: PMC8784641 DOI: 10.1016/j.jbc.2021.101530] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Various forms of fibrosis, comprising tissue thickening and scarring, are involved in 40% of deaths across the world. Since the discovery of scarless functional healing in fetuses prior to a certain stage of development, scientists have attempted to replicate scarless wound healing in adults with little success. While the extracellular matrix (ECM), fibroblasts, and inflammatory mediators have been historically investigated as separate branches of biology, it has become increasingly necessary to consider them as parts of a complex and tightly regulated system that becomes dysregulated in fibrosis. With this new paradigm, revisiting fetal scarless wound healing provides a unique opportunity to better understand how this highly regulated system operates mechanistically. In the following review, we navigate the four stages of wound healing (hemostasis, inflammation, repair, and remodeling) against the backdrop of adult versus fetal wound healing, while also exploring the relationships between the ECM, effector cells, and signaling molecules. We conclude by singling out recent findings that offer promising leads to alter the dynamics between the ECM, fibroblasts, and inflammation to promote scarless healing. One factor that promises to be significant is fibroblast heterogeneity and how certain fibroblast subpopulations might be predisposed to scarless healing. Altogether, reconsidering fetal wound healing by examining the interplay of the various factors contributing to fibrosis provides new research directions that will hopefully help us better understand and address fibroproliferative diseases, such as idiopathic pulmonary fibrosis, liver cirrhosis, systemic sclerosis, progressive kidney disease, and cardiovascular fibrosis.
Collapse
Affiliation(s)
- Leandro Moretti
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Jack Stalfort
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Thomas Harrison Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel Abebayehu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
13
|
Jiménez-Alcántar P, López-Gómez R, López-Meza JE, Ochoa-Zarzosa A. PaDef (Persea americana var. drymifolia), a Plant Antimicrobial Peptide, Triggers Apoptosis, and Induces Global Epigenetic Modifications on Histone 3 in an Acute Lymphoid Leukemia Cell Line. Front Mol Biosci 2022; 9:801816. [PMID: 35141282 PMCID: PMC8820506 DOI: 10.3389/fmolb.2022.801816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/03/2022] [Indexed: 12/01/2022] Open
Abstract
In recent years, it has been recognized that epigenetic alterations play an important role in the development and maintenance of cancer, including leukemias. Furthermore, it is known that these alterations are involved in the emergence of resistance to conventional chemotherapeutics. Consequently, molecules with an anticancer activity whose activity is ruled by epigenetic modifications are attractive to search for new therapies against cancer. The plant antimicrobial peptides have been widely evaluated as molecules with anticancer activity; however, the analysis of the epigenetic regulation induced by these molecules associated with this activity is scarce and still is an unexplored field. In this work, we show that the PaDef defensin, a plant antimicrobial peptide from Mexican avocado fruit (Persea americana var. drymifolia) is cytotoxic for Jurkat cell line from acute lymphoid leukemia cells, through an apoptotic process. PaDef inhibited cell viability in a concentration-dependent manner, with an IC50 = 47.3 μM. Treatment of Jurkat cells with PaDef (IC50) induced cell death by apoptosis dependent on caspases 8 and 9; besides, it was related to an increase in the production of reactive oxygen species and the loss of mitochondrial membrane potential. Interestingly, the inhibition of caspase activation by inhibitors of caspases 8 and 9 does not revert the reduction in viability, suggesting that other mechanisms, in addition to caspase activity, could be participating in the PaDef cytotoxic effect. Also, the modifications in the histone 3 tails induced by PaDef in Jurkat cells were evaluated, specifically acetylation and methylation. PaDef increased global histone 3 acetylation and lysine 9 specific marks (2-fold and up to 4-fold, respectively). These effects correlated with the reduction of the Histone Deacetylase activity (HDAC, ∼50%). Based on methylation marks, PaDef treatment increased lysine 9 di- and tri-methylation tags (2-fold in both cases). The epigenetic modulation induced by PaDef on Jurkat cells could be related to the chromatin compaction-decompaction promoting gene expression or repression; however, further studies are necessary to correlate these marks with the transcription of specific genes. Therefore, the study of new molecules that may have anticancer activity through epigenetic modulation is interesting.
Collapse
Affiliation(s)
- Paola Jiménez-Alcántar
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Rodolfo López-Gómez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Joel E. López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Alejandra Ochoa-Zarzosa
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
- *Correspondence: Alejandra Ochoa-Zarzosa, ,
| |
Collapse
|
14
|
Avci E, Sarvari P, Savai R, Seeger W, Pullamsetti SS. Epigenetic Mechanisms in Parenchymal Lung Diseases: Bystanders or Therapeutic Targets? Int J Mol Sci 2022; 23:ijms23010546. [PMID: 35008971 PMCID: PMC8745712 DOI: 10.3390/ijms23010546] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Epigenetic responses due to environmental changes alter chromatin structure, which in turn modifies the phenotype, gene expression profile, and activity of each cell type that has a role in the pathophysiology of a disease. Pulmonary diseases are one of the major causes of death in the world, including lung cancer, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), pulmonary hypertension (PH), lung tuberculosis, pulmonary embolism, and asthma. Several lines of evidence indicate that epigenetic modifications may be one of the main factors to explain the increasing incidence and prevalence of lung diseases including IPF and COPD. Interestingly, isolated fibroblasts and smooth muscle cells from patients with pulmonary diseases such as IPF and PH that were cultured ex vivo maintained the disease phenotype. The cells often show a hyper-proliferative, apoptosis-resistant phenotype with increased expression of extracellular matrix (ECM) and activated focal adhesions suggesting the presence of an epigenetically imprinted phenotype. Moreover, many abnormalities observed in molecular processes in IPF patients are shown to be epigenetically regulated, such as innate immunity, cellular senescence, and apoptotic cell death. DNA methylation, histone modification, and microRNA regulation constitute the most common epigenetic modification mechanisms.
Collapse
MESH Headings
- Animals
- Biomarkers
- Combined Modality Therapy
- DNA Methylation
- Diagnosis, Differential
- Disease Management
- Disease Susceptibility
- Epigenesis, Genetic
- Gene Expression Regulation
- Histones/metabolism
- Humans
- Idiopathic Pulmonary Fibrosis/diagnosis
- Idiopathic Pulmonary Fibrosis/etiology
- Idiopathic Pulmonary Fibrosis/metabolism
- Idiopathic Pulmonary Fibrosis/therapy
- Lung Diseases, Interstitial/diagnosis
- Lung Diseases, Interstitial/etiology
- Lung Diseases, Interstitial/metabolism
- Lung Diseases, Interstitial/therapy
- Pulmonary Disease, Chronic Obstructive/diagnosis
- Pulmonary Disease, Chronic Obstructive/etiology
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/therapy
- Treatment Outcome
Collapse
Affiliation(s)
- Edibe Avci
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
| | - Pouya Sarvari
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
| | - Rajkumar Savai
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Soni S. Pullamsetti
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-603-270-5380; Fax: +49-603-270-5385
| |
Collapse
|
15
|
Chen F, Gao Q, Zhang L, Ding Y, Wang H, Cao W. Inhibiting HDAC3 (Histone Deacetylase 3) Aberration and the Resultant Nrf2 (Nuclear Factor Erythroid-Derived 2-Related Factor-2) Repression Mitigates Pulmonary Fibrosis. Hypertension 2021; 78:e15-e25. [PMID: 34148362 DOI: 10.1161/hypertensionaha.121.17471] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Fang Chen
- From the Center for Organ Fibrosis and Remodeling Research, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, China
| | - Qi Gao
- From the Center for Organ Fibrosis and Remodeling Research, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, China
| | - Lijun Zhang
- From the Center for Organ Fibrosis and Remodeling Research, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, China
| | - Yibing Ding
- From the Center for Organ Fibrosis and Remodeling Research, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, China
| | - Hongwei Wang
- From the Center for Organ Fibrosis and Remodeling Research, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, China
| | - Wangsen Cao
- From the Center for Organ Fibrosis and Remodeling Research, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, China
| |
Collapse
|
16
|
P KM, Sivashanmugam K, Kandasamy M, Subbiah R, Ravikumar V. Repurposing of histone deacetylase inhibitors: A promising strategy to combat pulmonary fibrosis promoted by TGF-β signalling in COVID-19 survivors. Life Sci 2021; 266:118883. [PMID: 33316266 PMCID: PMC7831549 DOI: 10.1016/j.lfs.2020.118883] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 01/18/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has rapidly spread around the world causing global public health emergency. In the last twenty years, we have witnessed several viral epidemics such as severe acute respiratory syndrome coronavirus (SARS-CoV), Influenza A virus subtype H1N1 and most recently Middle East respiratory syndrome coronavirus (MERS-CoV). There were tremendous efforts endeavoured globally by scientists to combat these viral diseases and now for SARS-CoV-2. Several drugs such as chloroquine, arbidol, remdesivir, favipiravir and dexamethasone are adopted for use against COVID-19 and currently clinical studies are underway to test their safety and efficacy for treating COVID-19 patients. As per World Health Organization reports, so far more than 16 million people are affected by COVID-19 with a recovery of close to 10 million and deaths at 600,000 globally. SARS-CoV-2 infection is reported to cause extensive pulmonary damages in affected people. Given the large number of recoveries, it is important to follow-up the recovered patients for apparent lung function abnormalities. In this review, we discuss our understanding about the development of long-term pulmonary abnormalities such as lung fibrosis observed in patients recovered from coronavirus infections (SARS-CoV and MERS-CoV) and probable epigenetic therapeutic strategy to prevent the development of similar pulmonary abnormalities in SARS-CoV-2 recovered patients. In this regard, we address the use of U.S. Food and Drug Administration (FDA) approved histone deacetylase (HDAC) inhibitors therapy to manage pulmonary fibrosis and their underlying molecular mechanisms in managing the pathologic processes in COVID-19 recovered patients.
Collapse
Affiliation(s)
- Krishna Murthy P
- Cancer Biology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | | | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India; Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India
| | - Rajasekaran Subbiah
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhauri, Madhya Pradesh, India
| | - Vilwanathan Ravikumar
- Cancer Biology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
17
|
Bartczak K, Białas AJ, Kotecki MJ, Górski P, Piotrowski WJ. More than a Genetic Code: Epigenetics of Lung Fibrosis. Mol Diagn Ther 2020; 24:665-681. [PMID: 32926347 PMCID: PMC7677145 DOI: 10.1007/s40291-020-00490-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At the end of the last century, genetic studies reported that genetic information is not transmitted solely by DNA, but is also transmitted by other mechanisms, named as epigenetics. The well-described epigenetic mechanisms include DNA methylation, biochemical modifications of histones, and microRNAs. The role of altered epigenetics in the biology of various fibrotic diseases is well-established, and recent advances demonstrate its importance in the pathogenesis of pulmonary fibrosis-predominantly referring to idiopathic pulmonary fibrosis, the most lethal of the interstitial lung diseases. The deficiency in effective medications suggests an urgent need to better understand the underlying pathobiology. This review summarizes the current knowledge concerning epigenetic changes in pulmonary fibrosis and associations of these changes with several cellular pathways of known significance in its pathogenesis. It also designates the most promising substances for further research that may bring us closer to new therapeutic options.
Collapse
Affiliation(s)
- Krystian Bartczak
- Department of Pneumology and Allergology, The Medical University of Lodz, Kopcińskiego 22, 90-153, Lodz, Poland.
| | - Adam J Białas
- Department of Pathobiology of Respiratory Diseases, The Medical University of Lodz, Lodz, Poland
| | - Mateusz J Kotecki
- Department of Pneumology and Allergology, The Medical University of Lodz, Kopcińskiego 22, 90-153, Lodz, Poland
| | - Paweł Górski
- Department of Pneumology and Allergology, The Medical University of Lodz, Kopcińskiego 22, 90-153, Lodz, Poland
| | - Wojciech J Piotrowski
- Department of Pneumology and Allergology, The Medical University of Lodz, Kopcińskiego 22, 90-153, Lodz, Poland
| |
Collapse
|
18
|
Targeting chromatin dysregulation in organ fibrosis. Cytokine Growth Factor Rev 2020; 57:64-72. [PMID: 32900600 DOI: 10.1016/j.cytogfr.2020.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Fibrosis leads to destruction of organ architecture accompanied by chronic inflammation and loss of function. Fibrosis affects nearly every organ in the body and accounts for ∼45% of total deaths worldwide. Over the past decade, tremendous progress has been made in understanding the basic mechanisms leading to organ fibrosis. However, we are limited with therapeutic options and there is a significant need to develop highly effective anti-fibrotic therapies. Recent advances in sequencing technologies have advanced the burgeoning field of epigenetics towards molecular understanding at a higher resolution. Here we provide a comprehensive review of the recent advances in chromatin regulatory processes, specifically DNA methylation, post-translational modification of histones, and chromatin remodeling complexes in kidney, liver and lung fibrosis. Although this research field is young, we discuss new strategies for potential therapeutic interventions for treating organ fibrosis.
Collapse
|
19
|
Sanders YY, Lyv X, Zhou QJ, Xiang Z, Stanford D, Bodduluri S, Rowe SM, Thannickal VJ. Brd4-p300 inhibition downregulates Nox4 and accelerates lung fibrosis resolution in aged mice. JCI Insight 2020; 5:137127. [PMID: 32544088 DOI: 10.1172/jci.insight.137127] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
Tissue regeneration capacity declines with aging in association with heightened oxidative stress. Expression of the oxidant-generating enzyme, NADPH oxidase 4 (Nox4), is elevated in aged mice with diminished capacity for fibrosis resolution. Bromodomain-containing protein 4 (Brd4) is a member of the bromodomain and extraterminal (BET) family of proteins that function as epigenetic "readers" of acetylated lysine groups on histones. In this study, we explored the role of Brd4 and its interaction with the p300 acetyltransferase in the regulation of Nox4 and the in vivo efficacy of a BET inhibitor to reverse established age-associated lung fibrosis. BET inhibition interferes with the association of Brd4, p300, and acetylated histone H4K16 with the Nox4 promoter in lung fibroblasts stimulated with the profibrotic cytokine, TGF-β1. A number of BET inhibitors, including I-BET-762, JQ1, and OTX015, downregulate Nox4 gene expression and activity. Aged mice with established and persistent lung fibrosis recover capacity for fibrosis resolution with OTX015 treatment. This study implicates epigenetic regulation of Nox4 by Brd4 and p300 and supports BET/Brd4 inhibition as an effective strategy for the treatment of age-related fibrotic lung disease.
Collapse
|
20
|
Sweat gland regeneration: Current strategies and future opportunities. Biomaterials 2020; 255:120201. [PMID: 32592872 DOI: 10.1016/j.biomaterials.2020.120201] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/21/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
For patients with extensive skin defects, loss of sweat glands (SwGs) greatly decreases their quality of life. Indeed, difficulties in thermoregulation, ion reabsorption, and maintaining fluid balance might render them susceptible to hyperthermia, heatstroke, or even death. Despite extensive studies on the stem cell biology of the skin in recent years, in-situ regeneration of SwGs with both structural and functional fidelity is still challenging because of the limited regenerative capacity and cell fate control of resident progenitors. To overcome these challenges, one must consider both the intrinsic factors relevant to genetic and epigenetic regulation and cues from the cellular microenvironment. Here, we describe recent progress in molecular biology, developmental pathways, and cellular evolution associated with SwGdevelopment and maturation. This is followed by a summary of the current strategies used for cell-fate modulation, transmembrane drug delivery, and scaffold design associated with SwGregeneration. Finally, we offer perspectives for creating more sophisticated systems to accelerate patients' innate healing capacity and developing engineered skin constructs to treat or replace damaged tissues structurally and functionally.
Collapse
|
21
|
Yang J, Zhan XZ, Malola J, Li ZY, Pawar JS, Zhang HT, Zha ZG. The multiple roles of Thy-1 in cell differentiation and regeneration. Differentiation 2020; 113:38-48. [PMID: 32403041 DOI: 10.1016/j.diff.2020.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 11/17/2022]
Abstract
Thy-1 is a 25-37 kDa glycophosphatidylinositol (GPI)-anchored cell surface protein that was discovered more than 50 years ago. Recent findings have suggested that Thy-1 is expressed on thymocytes, mesenchymal stem cells (MSCs), cancer stem cells, hematopoietic stem cells, fibroblasts, myofibroblasts, endothelial cells, neuronal smooth muscle cells, and pan T cells. Thy-1 plays vital roles in cell migration, adhesion, differentiation, transdifferentiation, apoptosis, mechanotransduction, and cell division, which in turn are involved in tumor development, pulmonary fibrosis, neurite outgrowth, and T cell activation. Studies have increasingly indicated a significant role of Thy-1 in cell differentiation and regeneration. However, despite recent research, many questions remain regarding the roles of Thy-1 in cell differentiation and regeneration. This review aimed to summarize the roles of Thy-1 in cell differentiation and regeneration. Furthermore, since Thy-1 is an outer leaflet membrane protein anchored by GPI, we attempted to address how Thy-1 regulates intracellular pathways through cis and trans signals. Due to the complexity and mystery surrounding the issue, we also summarized the Thy-1-related pathways in different biological processes, and this might provide novel insights in the field of cell differentiation and regeneration.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Xiao-Zhen Zhan
- Department of Stomatology, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jonathan Malola
- College of Pharmacy, Purdue University, West Lafayette, 47906, IN, USA
| | - Zhen-Yan Li
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jogendra Singh Pawar
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, 47906, IN, USA
| | - Huan-Tian Zhang
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Zhen-Gang Zha
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
22
|
Pan YY, Yang JX, Mao W, Wang XX. RNA-binding protein SFPQ cooperates with HDAC1 to suppress CD40 transcription in pulmonary adventitial fibroblasts. Cell Biol Int 2020; 44:166-176. [PMID: 31393052 DOI: 10.1002/cbin.11216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/04/2019] [Indexed: 01/24/2023]
Abstract
Pulmonary artery adventitial fibroblasts, the most abundant cellular constituent of adventitia, are often the first to be activated and reprogrammed to then influence the tone and structure of the vessel wall in pulmonary arterial hypertension (PAH). Our previous study found that interruption of CD40 ligand (CD40L)-CD40 signaling improves the efficacy of transplanted endothelial progenitor cells in monocrotaline induced-PAH. However, whether CD40L-CD40 signaling is involved in the activation of adventitial fibroblasts in PAH and whether Drosophila behavior human splicing (DBHS) protein family members have any roles during adventitial fibroblasts activation are completely unclear. Here, we show that soluble CD40L (sCD40L) stimulation progressively increases pro-inflammatory activity, proliferation, and migration of pulmonary adventitial fibroblasts. Besides, sCD40L stimulation decreases splicing factor proline- and glutamine-rich protein (SFPQ) protein (one member of DBHS protein family) expression, while SFPQ overexpression suppresses sCD40L stimulation-induced proliferation and migration of pulmonary adventitial fibroblasts by repressing CD40 transcription. Moreover, ChIP assays found that sCD40L stimulation promotes histone H3 tri-methylation at lysine 4 (H3K4me3), H3K36me3, and H3K27 acetylation (H3K27ac) modifications on CD40 promoter region in pulmonary adventitial fibroblasts, while SFPQ overexpression decreases H3K36me3 modification and increases H3K36ac on CD40 promoter region by interacting with histone deacetylase-1 (HDAC1) to inhibit CD40 transcription. This in-depth study shows that CD40L-CD40 signaling promotes activation of pulmonary adventitial fibroblasts by increasing proliferation, migration, and pro-inflammatory activity of adventitial fibroblasts, and SFPQ could inhibit CD40 transcription though switching H3K36me3 to H3K36ac modifications on its promoter by interacting with HDAC1. This study, first, uncovers the roles of SFPQ on CD40L-CD40 signaling-mediated activation of pulmonary adventitial fibroblasts.
Collapse
Affiliation(s)
- Yan-Yun Pan
- Department of Cardiology, the First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54 Youdian Road, Hangzhou, Zhejiang, 310006, PR China
| | - Jin-Xiu Yang
- Department of Cardiology, the First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54 Youdian Road, Hangzhou, Zhejiang, 310006, PR China
| | - Wei Mao
- Department of Cardiology, the First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54 Youdian Road, Hangzhou, Zhejiang, 310006, PR China
| | - Xing-Xiang Wang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, Zhejiang, 310006, PR China
| |
Collapse
|
23
|
Marconcini S, Denaro M, Cosola S, Gabriele M, Toti P, Mijiritsky E, Proietti A, Basolo F, Giammarinaro E, Covani U. Myofibroblast Gene Expression Profile after Tooth Extraction in the Rabbit. MATERIALS 2019; 12:ma12223697. [PMID: 31717520 PMCID: PMC6888118 DOI: 10.3390/ma12223697] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/29/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
Abstract
After tooth extraction, the alveolar bone tends to shrink in volume, especially on the vestibular side. The role of myofibroblasts in bone remodeling has not been sufficiently investigated. The aim of the present study was to explore the gene expression related to myofibroblasts presence and activity during a 90-day healing period after tooth extraction. The study included 36 rabbits, and a single tooth extraction was performed on each rabbit. The extractive sockets were randomly distributed to natural healing or to scarification of the wound. The sacrifices were staggered in such a manner that animals contributed with sockets representing 2, 7, 15, 30, 60, and 90 days of healing. Nanostring technology was used to evaluate the expression of a wide panel consisting in 148 genes related to the activation, induction, and suppression of myofibroblasts, socket microenvironment, and autophagy. We found that the expression profile of this custom panel was time-related. The post-extractive socket was subjected to significant gene expression changes after 15 days: the genes involved in the induction of myofibroblasts were up-regulated in the first 15-day period and down-regulated during the rest of the follow-up. The study suggested that myofibroblasts play a major role in the immediate 15-day period following tooth extraction.
Collapse
Affiliation(s)
- Simone Marconcini
- Tuscan Dental Institute, Versilia General Hospital, 55041 Lido di Camaiore, Italy; (S.C.); (P.T.); (E.G.)
- Correspondence:
| | - Maria Denaro
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56124 Pisa, Italy; (M.D.); (M.G.); (F.B.); (U.C.)
| | - Saverio Cosola
- Tuscan Dental Institute, Versilia General Hospital, 55041 Lido di Camaiore, Italy; (S.C.); (P.T.); (E.G.)
| | - Mario Gabriele
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56124 Pisa, Italy; (M.D.); (M.G.); (F.B.); (U.C.)
| | - Paolo Toti
- Tuscan Dental Institute, Versilia General Hospital, 55041 Lido di Camaiore, Italy; (S.C.); (P.T.); (E.G.)
| | - Eitan Mijiritsky
- Department of Otolaryngology Head and Neck Surgery and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, Sackler School of Medicine, Tel Aviv 61503, Israel;
| | - Agnese Proietti
- Section of Surgical Pathology, University Hospital of Pisa, 56124 Pisa, Italy;
| | - Fulvio Basolo
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56124 Pisa, Italy; (M.D.); (M.G.); (F.B.); (U.C.)
| | - Enrica Giammarinaro
- Tuscan Dental Institute, Versilia General Hospital, 55041 Lido di Camaiore, Italy; (S.C.); (P.T.); (E.G.)
| | - Ugo Covani
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56124 Pisa, Italy; (M.D.); (M.G.); (F.B.); (U.C.)
| |
Collapse
|
24
|
Zhu Z, Hou Q, Li M, Fu X. Molecular mechanism of myofibroblast formation and strategies for clinical drugs treatments in hypertrophic scars. J Cell Physiol 2019; 235:4109-4119. [PMID: 31612497 DOI: 10.1002/jcp.29302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022]
Abstract
Hypertrophic scars (HTS) commonly occurred after burn and trauma. It was characterized by the excessive deposition of extracellular matrix with the inadequate remodeling, which could result in severe physiological and psychological problems. However, the effective available prevention and treatment measures were still limited. The main pathological feature of HTS was the excessive formation of myofibroblasts, and they persist in the repaired tissue. To better understand the mechanics of this process, this review focused on the characteristics and formation of myofibroblasts, the main effector cells in HTS. We summarized the present theories and opinions on myofibroblasts formation from the perspective of related signaling pathways and epigenetic regulation, such as DNA methylation, miRNA/lncRNA/ceRNA action, histone modification, and so forth for a better understanding on the development of HTS. This information might assist in developing effective experimental and clinical treatment strategies. Additionally, we also summarized currently known clinical strategies for HTS treatment, including traditional drugs, molecular medicine, stem cells, and exosomes.
Collapse
Affiliation(s)
- Ziying Zhu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| | - Qian Hou
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| | - Meirong Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China.,Central Laboratory, Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital Hainan Branch, Sanya, China
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
25
|
Bin YF, Wu LJ, Sun XJ, Liang Y, Bai J, Zhang JQ, Li MH, Zhong XN, Liang YJ, He ZY. Expression of GR-α and HDAC2 in steroid-Sensitive and steroid-Insensitive interstitial lung disease. Biomed Pharmacother 2019; 118:109380. [PMID: 31545224 DOI: 10.1016/j.biopha.2019.109380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Corticosteroid is one of the main treatments for interstitial lung disease (ILD). Cryptogenic-organizing pneumonia (COP) is sensitive to corticosteroid therapy, whereas idiopathic pulmonary fibrosis (IPF) is not. Glucocorticoid receptor-α (GR-α) and histone deacetylase 2 (HDAC2) play critical roles in the sensitivity to corticosteroid therapy; however, it is unclear whether HDAC2 and/or GR-α are expressed in the lung tissues of patients with COP and/or IPF. Possible aberrant expressions of HDAC2 and GR-α in IPF and COP were investigated in the current study. METHODS Lung tissue samples were obtained from patients with COP (n = 9), IPF (n = 8), pulmonary abscesses (n = 7), or pulmonary inflammatory pseudotumors (n = 6) before corticosteroid treatment, as well as from control subjects (n = 10). The expression of GR-α, HDAC2, PI3K-δ, and NF-κBp65 in the samples was assessed by immunohistochemistry. RESULTS GR-α expression was the same in lung tissues from COP patients and control subjects, but was significantly lower in lung tissue from IPF. In addition, HDAC2 was significantly higher in lung tissues of COP patients compared to both IPF and control subjects. Furthermore, the transcription factor NF-κBp65 was significantly lower in lung tissues from both COP and control compared to IPF subjects, whereas there was no difference in NF-κBp65 when comparing tissues from COP patients to controls. HDAC2 and GR-α were negatively correlated with NF-κBp65 in COP lung tissue. CONCLUSION HDAC2 and GR-α expression in lung tissues are potential biomarkers for predicting corticosteroid sensitivity when initially treating COP and IPF, as well as other forms of ILD.
Collapse
Affiliation(s)
- Yan-Fei Bin
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lu-Jia Wu
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xue-Jiao Sun
- Department of Respiratory and Critical Medicine, Liuzhou People's Hospital, Liuzhou, Guangxi 545006, China
| | - Yi Liang
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jing Bai
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jian-Quan Zhang
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Mei-Hua Li
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiao-Ning Zhong
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yu-Ji Liang
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhi-Yi He
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
26
|
Lyu X, Hu M, Peng J, Zhang X, Sanders YY. HDAC inhibitors as antifibrotic drugs in cardiac and pulmonary fibrosis. Ther Adv Chronic Dis 2019; 10:2040622319862697. [PMID: 31367296 PMCID: PMC6643173 DOI: 10.1177/2040622319862697] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022] Open
Abstract
Fibrosis usually results from dysregulated wound repair and is characterized by
excessive scar tissue. It is a complex process with unclear mechanisms.
Accumulating evidence indicates that epigenetic alterations, including histone
acetylation, play a pivotal role in this process. Histone acetylation is
governed by histone acetyltransferases (HATs) and histone deacetylases (HDACs).
HDACs are enzymes that remove the acetyl groups from both histone and nonhistone
proteins. Aberrant HDAC activities are observed in fibrotic diseases, including
cardiac and pulmonary fibrosis. HDAC inhibitors (HDACIs) are molecules that
block HDAC functions. HDACIs have been studied extensively in a variety of
tumors. Currently, there are four HDACIs approved by the US Food and Drug
Administration for cancer treatment yet none for fibrotic diseases. Emerging
evidence from in vitro and in vivo preclinical
studies has presented beneficial effects of HDACIs in preventing or reversing
fibrogenesis. In this review, we summarize the latest findings of the roles of
HDACs in the pathogenesis of cardiac and pulmonary fibrosis and highlight the
potential applications of HDACIs in these two fibrotic diseases.
Collapse
Affiliation(s)
- Xing Lyu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Hu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieting Peng
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yan Y Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 901 19 Street South, BMRII Room 408, Birmingham, AL 35294, USA
| |
Collapse
|
27
|
Evolving Genomics of Pulmonary Fibrosis. Respir Med 2019. [DOI: 10.1007/978-3-319-99975-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Vella S, Conaldi PG, Cova E, Meloni F, Liotta R, Cuzzocrea S, Martino L, Bertani A, Luca A, Vitulo P. Lung resident mesenchymal cells isolated from patients with the Bronchiolitis Obliterans Syndrome display a deregulated epigenetic profile. Sci Rep 2018; 8:11167. [PMID: 30042393 PMCID: PMC6057887 DOI: 10.1038/s41598-018-29504-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022] Open
Abstract
Bronchiolitis Obliterans Syndrome is the major determinant of the graft function loss after lung transplantation, but its pathogenesis is still incompletely understood and currently available therapeutic strategies are poorly effective. A deeper understanding of its pathogenic mechanisms is crucial for the development of new strategies to prevent and treat this devastating complication. In this study, we focused on the mesenchymal stromal cells, recently recognized as BOS key effectors, and our primary aim was to identify their epigenetic determinants, such as histone modifications and non-coding RNA regulation, which could contribute to their differentiation in myofibroblasts. Interestingly, we identified a deregulated expression of histone deacetylases and methyltransferases, and a microRNA-epigenetic regulatory network, which could represent novel targets for anti-fibrotic therapy. We validated our results in vitro, in a cell model of fibrogenesis, confirming the epigenetic involvement in this process and paving the way for a new application for epigenetic drugs.
Collapse
Affiliation(s)
- Serena Vella
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy.
- Anemocyte S.r.l, Gerenzano, Italy.
| | - Pier Giulio Conaldi
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Emanuela Cova
- Department of Respiratory Diseases, IRCCS San Matteo Foundation and University of Pavia, Pavia, Italy
| | - Federica Meloni
- Department of Respiratory Diseases, IRCCS San Matteo Foundation and University of Pavia, Pavia, Italy
| | - Rosa Liotta
- Department of Diagnostic and Therapeutic Services, Pathology Service, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Lavinia Martino
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Alessandro Bertani
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Angelo Luca
- Department of Diagnostic and Therapeutic Services, Radiology Service, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Patrizio Vitulo
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| |
Collapse
|
29
|
Russell‐Hallinan A, Watson CJ, Baugh JA. Epigenetics of Aberrant Cardiac Wound Healing. Compr Physiol 2018; 8:451-491. [DOI: 10.1002/cphy.c170029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Fibrosis: Lessons from OMICS analyses of the human lung. Matrix Biol 2018; 68-69:422-434. [PMID: 29567123 DOI: 10.1016/j.matbio.2018.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 12/30/2022]
Abstract
In recent decades there has been a significant shift in our understanding of idiopathic pulmonary fibrosis (IPF), a progressive and lethal disorder. While initially much of the mechanistic understanding was derived from hypotheses generated from animal models of disease, in recent decades new insights derived from humans with IPF have taken precedence. This is mainly because of the establishment of large collections of IPF lung tissues and patient cohorts, and the emergence of high throughput profiling technologies collectively termed 'omics' technologies based on their shared suffix. In this review we describe impacts of 'omics' analyses of human IPF samples on our understanding of the disease. In particular, we discuss the results of genomics and transcriptomics studies, as well as proteomics, epigenomics and metabolomics. We then describe how these findings can be integrated in a modified paradigm of human idiopathic pulmonary fibrosis, that introduces the 'hallmarks of aging' as a central theme in the IPF lung. This allows resolution of all the disparate cellular and molecular features in IPF, from the central role of epithelial cells, through the dramatic phenotypic alterations observed in fibroblasts and the numerous aberrations that inflammatory cells exhibit. We end with reiterating a call for renewed efforts to collect and analyze carefully characterized human tissues, in ways that would facilitate implementation of novel technologies for high resolution single cell omics profiling.
Collapse
|
31
|
Duong TE, Hagood JS. Epigenetic Regulation of Myofibroblast Phenotypes in Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2018; 6:79-96. [PMID: 30271681 DOI: 10.1007/s40139-018-0155-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of Review Myofibroblasts are the fundamental drivers of fibrosing disorders; there is great value in better defining epigenetic networks involved in myofibroblast behavior. Complex epigenetic paradigms, which are likely organ and/or disease specific, direct pathologic myofibroblast phenotypes. In this review, we highlight epigenetic regulators and the mechanisms through which they shape myofibroblast phenotype in fibrotic diseases of different organs. Recent Findings Hundreds of genes and their expression contribute to the myofibroblast transcriptional regime influencing myofibroblast phenotype. An increasingly large number of epigenetic modifications have been identified in the regulation of these signaling pathways driving myofibroblast activation and disease progression. Drugs that inhibit or reverse profibrotic epigenetic modifications have shown promise in vitro and in vivo; however, no current epigenetic therapies have been approved to treat fibrosis. Newly described epigenetic mechanisms will be mentioned, along with potential therapeutic targets and innovative strategies to further understand myofibroblast-directed fibrosis. Summary Epigenetic regulators that direct myofibroblast behavior and differentiation into pathologic myofibroblast phenotypes in fibrotic disorders comprise both overlapping and organ-specific epigenetic mechanisms.
Collapse
Affiliation(s)
- Thu Elizabeth Duong
- Division of Pediatric Respiratory Medicine, University of California-San Diego, La Jolla, California.,Division of Respiratory Medicine, Rady Children's Hospital of San Diego, San Diego, California
| | - James S Hagood
- Division of Pediatric Respiratory Medicine, University of California-San Diego, La Jolla, California.,Division of Respiratory Medicine, Rady Children's Hospital of San Diego, San Diego, California
| |
Collapse
|
32
|
Good KV, Martínez de Paz A, Tyagi M, Cheema MS, Thambirajah AA, Gretzinger TL, Stefanelli G, Chow RL, Krupke O, Hendzel M, Missiaen K, Underhill A, Landsberger N, Ausió J. Trichostatin A decreases the levels of MeCP2 expression and phosphorylation and increases its chromatin binding affinity. Epigenetics 2017; 12:934-944. [PMID: 29099289 DOI: 10.1080/15592294.2017.1380760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
MeCP2 binds to methylated DNA in a chromatin context and has an important role in cancer and brain development and function. Histone deacetylase (HDAC) inhibitors are currently being used to palliate many cancer and neurological disorders. Yet, the molecular mechanisms involved are not well known for the most part and, in particular, the relationship between histone acetylation and MeCP2 is not well understood. In this paper, we study the effect of the HDAC inhibitor trichostatin A (TSA) on MeCP2, a protein whose dysregulation plays an important role in these diseases. We find that treatment of cells with TSA decreases the phosphorylation state of this protein and appears to result in a higher MeCP2 chromatin binding affinity. Yet, the binding dynamics with which the protein binds to DNA appear not to be significantly affected despite the chromatin reorganization resulting from the high levels of acetylation. HDAC inhibition also results in an overall decrease in MeCP2 levels of different cell lines. Moreover, we show that miR132 increases upon TSA treatment, and is one of the players involved in the observed downregulation of MeCP2.
Collapse
Affiliation(s)
- Katrina V Good
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Alexia Martínez de Paz
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Monica Tyagi
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Manjinder S Cheema
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Anita A Thambirajah
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada.,b Douglas Hospital Research Center , Department of Psychiatry , McGill University , Montréal , Québec H3G 1Y6 , Canada
| | - Taylor L Gretzinger
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Gilda Stefanelli
- c Department of Medical Biotechnology and Translational Medicine , University of Milan , Milan , Italy
| | - Robert L Chow
- d Department of Biology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Oliver Krupke
- d Department of Biology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Michael Hendzel
- e Department of Cell Biology , Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada.,f Department of Oncology and Department of Cell Biology , Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada
| | - Kristal Missiaen
- f Department of Oncology and Department of Cell Biology , Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada
| | - Alan Underhill
- f Department of Oncology and Department of Cell Biology , Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada
| | - Nicoletta Landsberger
- c Department of Medical Biotechnology and Translational Medicine , University of Milan , Milan , Italy
| | - Juan Ausió
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| |
Collapse
|
33
|
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease characterized by progressive lung scarring and the histological picture of usual interstitial pneumonia (UIP). It is associated with increasing cough and dyspnoea and impaired quality of life. IPF affects ∼3 million people worldwide, with incidence increasing dramatically with age. The diagnostic approach includes the exclusion of other interstitial lung diseases or overlapping conditions and depends on the identification of the UIP pattern, usually with high-resolution CT; lung biopsy might be required in some patients. The UIP pattern is predominantly bilateral, peripheral and with a basal distribution of reticular changes associated with traction bronchiectasis and clusters of subpleural cystic airspaces. The biological processes underlying IPF are thought to reflect an aberrant reparative response to repetitive alveolar epithelial injury in a genetically susceptible ageing individual, although many questions remain on how to define susceptibility. Substantial progress has been made in the understanding of the clinical management of IPF, with the availability of two pharmacotherapeutic agents, pirfenidone and nintedanib, that decrease physiological progression and likely improve progression-free survival. Current efforts are directed at identifying IPF early, potentially relying on combinations of biomarkers that include circulating factors, demographics and imaging data.
Collapse
|
34
|
Liu X, Zhang Q, Guo SW. Histological and Immunohistochemical Characterization of the Similarity and Difference Between Ovarian Endometriomas and Deep Infiltrating Endometriosis. Reprod Sci 2017; 25:329-340. [PMID: 28718381 DOI: 10.1177/1933719117718275] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ovarian endometrioma (OMA) and deep infiltrating endometriosis (DIE) have long been recognized to have different histology and, as such, postulated to be 2 separate disease entities. Few studies, however, have attempted to elucidate the causes for their differences. Making use of ectopic endometrial tissue samples from 25 and 20 women with OMA and DIE, respectively, and control endometrial tissue samples from 25 women without endometriosis, we conducted an immunohistochemical analysis to evaluate the expression of a group of carefully chosen markers for epithelial-mesenchymal transition (EMT), fibroblast-to-myofibroblast transdifferentiation (FMT), smooth muscle metaplasia (SMM), fibrosis, vascularity, hormonal receptors, and proteins involved in epigenetic modifications. We found that both OMA and DIE lesions exhibited the same cellular changes consistent with EMT, FMT, SMM, and fibrosis as already shown in animal models. Compared to OMA, DIE lesions underwent more thorough and extensive EMT, FMT, and SMM and, consequently, displayed significantly higher fibrotic content but less vascularity. The 2 conditions also showed different expression levels of hormonal receptors. Both OMA and DIE lesions, especially the latter, showed significantly higher staining of enhancer of zeste homolog 2, H3K9me3, and H3K27me3 than that of control endometrium, suggesting progressive epigenetic changes concomitant with cellular ones. Finally, proteins that are known to be involved in fibrogenesis, such as thymocyte differentiation antigen 1 and peroxisome proliferator-activated receptor γ , were also aberrantly expressed under both conditions. The many similarities shared by both OMA and DIE indicate that the 2 conditions may actually share the same pathogenesis/pathophysiology. Their differences, however, suggest that the source of these differences may result from the different lesional microenvironments.
Collapse
Affiliation(s)
- Xishi Liu
- 1 Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- 2 Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Qi Zhang
- 1 Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Sun-Wei Guo
- 1 Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- 2 Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| |
Collapse
|
35
|
Sanders YY, Liu H, Scruggs AM, Duncan SR, Huang SK, Thannickal VJ. Epigenetic Regulation of Caveolin-1 Gene Expression in Lung Fibroblasts. Am J Respir Cell Mol Biol 2017; 56:50-61. [PMID: 27560128 DOI: 10.1165/rcmb.2016-0034oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fibrotic disorders are associated with tissue accumulation of fibroblasts. We recently showed that caveolin (Cav)-1 gene suppression by a profibrotic cytokine, transforming growth factor (TGF)-β1, contributes to fibroblast proliferation and apoptosis resistance. Cav-1 has been shown to be constitutively suppressed in idiopathic pulmonary fibrosis (IPF), but mechanisms for this suppression are incompletely understood. We hypothesized that epigenetic processes contribute to Cav-1 down-regulation in IPF lung fibroblasts, and after fibrogenic stimuli. Cav-1 expression levels, DNA methylation status, and histone modifications associated with the Cav-1 promoter were examined by PCR, Western blots, pyrosequencing, or chromatin immunoprecipitation assays in IPF lung fibroblasts, normal fibroblasts after TGF-β1 stimulation, or in murine lung fibroblasts after bleomycin injury. Methylation-specific PCR demonstrated methylated and unmethylated Cav-1 DNA copies in all groups. Despite significant changes in Cav-1 expression, no changes in DNA methylation were observed in CpG islands or CpG island shores of the Cav-1 promoter by pyrosequencing of lung fibroblasts from IPF lungs, in response to TGF-β1, or after bleomycin-induced murine lung injury, when compared with respective controls. In contrast, the association of Cav-1 promoter with the active histone modification mark, H3 lysine 4 trimethylation, correlated with Cav-1 down-regulation in activated/fibrotic lung fibroblasts. Our data indicate that Cav-1 gene silencing in lung fibroblasts is actively regulated by epigenetic mechanisms that involve histone modifications, in particular H3 lysine 4 trimethylation, whereas DNA methylation does not appear to be a primary mechanism. These findings support therapeutic strategies that target histone modifications to restore Cav-1 expression in fibroblasts participating in pathogenic tissue remodeling.
Collapse
Affiliation(s)
- Yan Y Sanders
- 1 Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Hui Liu
- 1 Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Anne M Scruggs
- 2 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Steven R Duncan
- 1 Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Steven K Huang
- 2 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Victor J Thannickal
- 1 Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
36
|
Hannan RT, Peirce SM, Barker TH. Fibroblasts: Diverse Cells Critical to Biomaterials Integration. ACS Biomater Sci Eng 2017; 4:1223-1232. [PMID: 31440581 DOI: 10.1021/acsbiomaterials.7b00244] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fibroblasts are key participants in wound healing and inflammation, and are capable of driving the progression of tissue repair to fully functional tissue or pathologic scar, or fibrosis, depending on the specific mechanical and biochemical cues with which they are presented. Thus, understanding and modulating the fibroblastic response to implanted materials is paramount to achieving desirable outcomes, such as long-term implant function or tissue regeneration. However, fibroblasts are remarkably heterogeneous and can differ vastly in their contributions to regeneration and fibrosis. This heterogeneity exists between tissues and within tissues, down to the level of individual cells. This review will discuss the role of fibroblasts, the pitfalls of describing them as a collective, the specifics of their function, and potential future directions to better understand and organize their highly variable biology.
Collapse
Affiliation(s)
- Riley T Hannan
- Department of Pathology, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States.,Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States
| | - Shayn M Peirce
- Department of Pathology, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States.,Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States
| |
Collapse
|
37
|
Karampitsakos T, Tzilas V, Tringidou R, Steiropoulos P, Aidinis V, Papiris SA, Bouros D, Tzouvelekis A. Lung cancer in patients with idiopathic pulmonary fibrosis. Pulm Pharmacol Ther 2017; 45:1-10. [PMID: 28377145 DOI: 10.1016/j.pupt.2017.03.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/28/2017] [Accepted: 03/31/2017] [Indexed: 12/25/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic lung disease of unknown etiology. With a gradually increasing worldwide prevalence and a mortality rate exceeding that of many cancers, IPF diagnosis and management are critically important and require a comprehensive multidisciplinary approach. This approach also involves assessment of comorbid conditions, such as lung cancer, that exerts a dramatic impact on disease survival. Emerging evidence suggests that progressive lung scarring in the context of IPF represents a risk factor for lung carcinogenesis. Both disease entities present with major similarities in terms of pathogenetic pathways, as well as potential causative factors, such as smoking and viral infections. Besides disease pathogenesis, anti-cancer agents, including nintedanib, have been successfully applied in the treatment of patients with IPF while an oncologic approach with a cocktail of several pleiotropic anti-fibrotic agents is currently in the therapeutic pipeline of IPF. Nevertheless, epidemiologic association between IPF and lung cancer does not prove causality. Currently there is significant lack of knowledge supporting a direct association between lung fibrosis and cancer reflecting to disappointing therapeutic algorithms. An optimal therapeutic strategy for patients with both IPF and lung cancer represents an amenable need. This review article synthesizes the current state of knowledge regarding pathogenetic commonalities between IPF and lung cancer and focuses on clinical and therapeutic data that involve both disease entities.
Collapse
Affiliation(s)
- Theodoros Karampitsakos
- First Academic Department of Pneumonology, Hospital for Diseases of the Chest, "Sotiria", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasilios Tzilas
- First Academic Department of Pneumonology, Hospital for Diseases of the Chest, "Sotiria", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Rodoula Tringidou
- Pathology Department, Hospital for Diseases of the Chest,"Sotiria", Messogion Avenue 152, Athens 11527, Greece
| | | | - Vasilis Aidinis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Spyros A Papiris
- 2nd Pulmonary Medicine Department, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Demosthenes Bouros
- First Academic Department of Pneumonology, Hospital for Diseases of the Chest, "Sotiria", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Argyris Tzouvelekis
- First Academic Department of Pneumonology, Hospital for Diseases of the Chest, "Sotiria", Medical School, National and Kapodistrian University of Athens, Athens, Greece; Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece.
| |
Collapse
|
38
|
Koyama Y, Wang P, Liang S, Iwaisako K, Liu X, Xu J, Zhang M, Sun M, Cong M, Karin D, Taura K, Benner C, Heinz S, Bera T, Brenner DA, Kisseleva T. Mesothelin/mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis. J Clin Invest 2017; 127:1254-1270. [PMID: 28287406 DOI: 10.1172/jci88845] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/11/2017] [Indexed: 01/18/2023] Open
Abstract
Cholestatic liver fibrosis is caused by obstruction of the biliary tract and is associated with early activation of portal fibroblasts (PFs) that express Thy-1, fibulin 2, and the recently identified marker mesothelin (MSLN). Here, we have demonstrated that activated PFs (aPFs) and myofibroblasts play a critical role in the pathogenesis of liver fibrosis induced by bile duct ligation (BDL). Conditional ablation of MSLN+ aPFs in BDL-injured mice attenuated liver fibrosis by approximately 50%. Similar results were observed in MSLN-deficient mice (Msln-/- mice) or mice deficient in the MSLN ligand mucin 16 (Muc16-/- mice). In vitro analysis revealed that MSLN regulates TGF-β1-inducible activation of WT PFs by disrupting the formation of an inhibitory Thy-1-TGFβRI complex. MSLN also facilitated the FGF-mediated proliferation of WT aPFs. Therapeutic administration of anti-MSLN-blocking Abs attenuated BDL-induced fibrosis in WT mice. Liver specimens from patients with cholestatic liver fibrosis had increased numbers of MSLN+ aPFs/myofibroblasts, suggesting that MSLN may be a potential target for antifibrotic therapy.
Collapse
|
39
|
Increased Global DNA Methylation and Decreased TGFβ1 Promoter Methylation in Glaucomatous Lamina Cribrosa Cells. J Glaucoma 2016; 25:e834-e842. [DOI: 10.1097/ijg.0000000000000453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Karin D, Koyama Y, Brenner D, Kisseleva T. The characteristics of activated portal fibroblasts/myofibroblasts in liver fibrosis. Differentiation 2016; 92:84-92. [PMID: 27591095 PMCID: PMC5079826 DOI: 10.1016/j.diff.2016.07.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/08/2016] [Accepted: 07/11/2016] [Indexed: 12/12/2022]
Abstract
Liver fibrosis results from chronic injury of hepatocytes and activation of Collagen Type I producing myofibroblasts that produce fibrous scar in liver fibrosis. Myofibroblasts are not present in the normal liver but rapidly appear early in experimental and clinical liver injury. The origin of the myofibroblast in liver fibrosis is still unresolved. The possibilities include activation of liver resident cells including portal fibroblasts, hepatic stellate cells, mesenchymal progenitor cells, and fibrocytes recruited from the bone marrow. It is considered that hepatic stellate cells and portal fibroblasts are the major source of hepatic myofibroblasts. In fact, the origin of myofibroblasts differs significantly for chronic liver diseases of different etiologies, such as cholestatic liver disease or hepatotoxic liver disease. Depending on etiology of hepatic injury, the fibrogenic foci might initiate within the hepatic lobule as seen in chronic hepatitis, or primarily affect the portal areas as in most biliary diseases. It has been suggested that activated portal fibroblasts/myofibroblasts work as "myofibroblasts for cholangiocytes" while hepatic stellate cells work as "myofibroblast for hepatocytes". This review will focus on our current understanding of the activated portal fibroblasts/myofibroblasts in cholestatic liver fibrosis.
Collapse
Affiliation(s)
- Daniel Karin
- Department of Surgery, University of California, San Diego, La Jolla CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla CA 92093, USA
| | - Yukinori Koyama
- Department of Surgery, University of California, San Diego, La Jolla CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla CA 92093, USA; Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Pediatrics, University of California, San Diego, La Jolla CA 92093, USA
| | - David Brenner
- Department of Medicine, University of California, San Diego, La Jolla CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla CA 92093, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla CA 92093, USA.
| |
Collapse
|
41
|
HDAC Inhibitors as Epigenetic Regulators of the Immune System: Impacts on Cancer Therapy and Inflammatory Diseases. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8797206. [PMID: 27556043 PMCID: PMC4983322 DOI: 10.1155/2016/8797206] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 06/08/2016] [Accepted: 06/29/2016] [Indexed: 01/13/2023]
Abstract
Histone deacetylase (HDAC) inhibitors are powerful epigenetic regulators that have enormous therapeutic potential and have pleiotropic effects at the cellular and systemic levels. To date, HDAC inhibitors are used clinically for a wide variety of disorders ranging from hematopoietic malignancies to psychiatric disorders, are known to have anti-inflammatory properties, and are in clinical trials for several other diseases. In addition to influencing gene expression, HDAC enzymes also function as part of large, multisubunit complexes which have many nonhistone targets, alter signaling at the cellular and systemic levels, and result in divergent and cell-type specific effects. Thus, the effects of HDAC inhibitor treatment are too intricate to completely understand with current knowledge but the ability of HDAC inhibitors to modulate the immune system presents intriguing therapeutic possibilities. This review will explore the complexity of HDAC inhibitor treatment at the cellular and systemic levels and suggest strategies for effective use of HDAC inhibitors in biomedical research, focusing on the ability of HDAC inhibitors to modulate the immune system. The possibility of combining the documented anticancer effects and newly emerging immunomodulatory effects of HDAC inhibitors represents a promising new combinatorial therapeutic approach for HDAC inhibitor treatments.
Collapse
|
42
|
Zhou WQ, Wang P, Shao QP, Wang J. Lipopolysaccharide promotes pulmonary fibrosis in acute respiratory distress syndrome (ARDS) via lincRNA-p21 induced inhibition of Thy-1 expression. Mol Cell Biochem 2016; 419:19-28. [PMID: 27392907 DOI: 10.1007/s11010-016-2745-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 06/15/2016] [Indexed: 01/08/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a common clinical disorder characterized by pulmonary edema leading to acute lung damage and arterial hypoxemia. Pulmonary fibrosis is a progressive, fibrotic lung disorder, whose pathogenesis in ARDS remains speculative. LincRNA-p21 was a novel regulator of cell proliferation, apoptosis and DNA damage response. This study aims to investigate the effects and mechanism of lincRNA-p21 on pulmonary fibrosis in ARDS. Purified 10 mg/kg LPS was dropped into airways of C57BL/6 mice. Expression levels of lincRNA-p21 and Thy-1 were measured by real-time PCR or western blotting. Proliferation of lung fibroblasts was analyzed by BrdU incorporation assay. Lung and BAL collagen contents were estimated using colorimetric Sircol assay. LincRNA-p21 expression was time-dependently increased and Thy-1 expression was time-dependently reduced in a mouse model of ARDS and in LPS-treated lung fibroblasts. Meanwhile, lung fibroblast proliferation was also time-dependently elevated in LPS-treated lung fibroblasts. In addition, lung fibroblast proliferation could be promoted by lincRNA-p21 overexpression and LPS treatment, however, the elevated lung fibroblast proliferation was further abrogated by Thy-1 overexpression or lincRNA-p21 interference. And Thy-1 interference could elevate cell viability of lung fibroblasts and rescue the reduction of lung fibroblast proliferation induced by lincRNA-p21 interference. Moreover, lincRNA-p21 overexpression dramatically inhibited acetylation of H3 and H4 at the Thy-1 promoter and Thy-1 expression levels in HLF1 cells. Finally, lincRNA-p21 interference rescued LPS-induced increase of lung and BAL collagen contents. LincRNA-p21 could lead to pulmonary fibrosis in ARDS by inhibition of the expression of Thy-1.
Collapse
Affiliation(s)
- Wen-Qin Zhou
- Department of Emergency Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China
| | - Peng Wang
- Department of Emergency Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China
| | - Qiu-Ping Shao
- Department of Emergency Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China
| | - Jian Wang
- Department of Respiratory Medicine, Affiliated People's Hospital, Jiangsu University, 8, Dianli Road, Zhenjiang, 212002, Jiangsu, China.
| |
Collapse
|
43
|
Glasser SW, Hagood JS, Wong S, Taype CA, Madala SK, Hardie WD. Mechanisms of Lung Fibrosis Resolution. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1066-77. [PMID: 27021937 DOI: 10.1016/j.ajpath.2016.01.018] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 02/09/2023]
Abstract
Fibrogenesis involves a dynamic interplay between factors that promote the biosynthesis and deposition of extracellular matrix along with pathways that degrade the extracellular matrix and eliminate the primary effector cells. Opposing the often held perception that fibrotic tissue is permanent, animal studies and clinical data now demonstrate the highly plastic nature of organ fibrosis that can, under certain circumstances, regress. This review describes the current understanding of the mechanisms whereby the lung is known to resolve fibrosis focusing on degradation of the extracellular matrix, removal of myofibroblasts, and the role of inflammatory cells. Although there are significant gaps in understanding lung fibrosis resolution, accelerated improvements in biotechnology and bioinformatics are expected to improve the understanding of these mechanisms and have high potential to lead to novel and effective restorative therapies in the treatment not only of pulmonary fibrosis, but also of a wide-ranging spectrum of chronic disorders.
Collapse
Affiliation(s)
- Stephan W Glasser
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - James S Hagood
- Division of Pediatric Respiratory Medicine, University of California-San Diego, La Jolla, California; Division of Respiratory Medicine, Rady Children's Hospital of San Diego, San Diego, California
| | - Simon Wong
- Division of Pediatric Respiratory Medicine, University of California-San Diego, La Jolla, California
| | - Carmen A Taype
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California-San Diego, La Jolla, California
| | - Satish K Madala
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - William D Hardie
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
44
|
SCHWARTZ DAVIDA. IDIOPATHIC PULMONARY FIBROSIS IS A COMPLEX GENETIC DISORDER. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2016; 127:34-45. [PMID: 28066036 PMCID: PMC5216513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a complex, heterogeneous genetic disorder that is associated with rare and common sequence variants in many genes (MUC5B, SFTPC, SFTPA2, RTEL1, TERT, and hTR), 11 novel loci, and multiple emerging epigenetic and transcriptional profiles. In the past 5 years, we have found that: 1) genetic risk variants play major and similar roles in the development of both familial and sporadic fibrotic idiopathic interstitial pneumonia, accounting for up to 35% of the risk of idiopathic interstitial pneumonia (a disease that was previously thought to be idiopathic); 2) a promoter variant in MUC5B rs35705950 is the strongest risk factor for the development of IIP and IPF; however, rs35705950 has a low penetrance; and 3) IPF is a complex genetic disease with 11 independent loci contributing to the development of this disease, pronounced changes in DNA methylation, and transcriptional subtypes. In aggregate, these findings suggest that IPF is a heterogeneous disease and that genetic and molecular subtypes of IPF will provide essential clues to disease pathogenesis, prognosis, treatment, and survival, all of which remain major problems in understanding and treating patients with IPF. Although the basic biological mechanisms involved in IPF are emerging, the disease is heterogeneous pathologically and the final common pathways of fibrogenesis are not well understood. These observations lead us to postulate that the etiology and severity/extent of this complex condition will best be understood through an integrated approach that accounts for inherited factors, epigenetic marks, and dynamic changes in the transcriptome.
Collapse
|
45
|
|
46
|
HDAC is essential for epigenetic regulation of Thy-1 gene expression during LPS/TLR4-mediated proliferation of lung fibroblasts. J Transl Med 2015; 95:1105-16. [PMID: 26214583 DOI: 10.1038/labinvest.2015.97] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 06/05/2015] [Accepted: 06/23/2015] [Indexed: 11/09/2022] Open
Abstract
Lipopolysaccharide (LPS)-induced proliferation of lung fibroblasts is closely correlated with loss of gene expression of thymocyte differentiation antigen-1 (Thy-1), accompanied with deacetylation of histones H3 and H4 at the Thy-1 gene promoter region; however, the mechanism remains enigmatic. We report here that LPS downregulates Thy-1 gene expression by activating histone deacetylases (HDACs) via Toll-like receptor 4 (TLR4) signaling. Treatment of primary cultured mouse lung fibroblasts with LPS resulted in significant upregulation of TLR4 and enhanced cell proliferation that was abolished by silencing TLR4 with lentivirus-delivered TLR4 shRNA. Interestingly, LPS increased the mRNA and protein levels of HDAC-4, -5, and -7, an effect that was abrogated by HDAC inhibitor trichostatin A (TSA) or TLR4-shRNA-lentivirus. Consistent with these findings, Ace-H3 and Ace-H4 were decreased by LPS that was prevented by TSA. Most importantly, chromosome immunoprecipitation (ChIP) analysis demonstrated that LPS decreased the association of Ace-H4 at the Thy-1 promoter region that was efficiently restored by pretreatment with TSA. Accordingly, LPS decreased the mRNA and protein levels of Thy-1 that was inhibited by TSA. Furthermore, silencing the Thy-1 gene by lentivirus-delivered Thy-1 shRNA could promote lung fibroblast proliferation, even in the absence of LPS. Conversely, overexpressing Thy-1 gene could inhibit lung fibroblast proliferation and reduce LPS-induced lung fibroblast proliferation. Our data suggest that LPS upregulates and activates HDACs through TLR4, resulting in deacetylation of histones H3 and H4 at the Thy-1 gene promoter that may contribute to Thy-1 gene silencing and lung fibroblast proliferation.
Collapse
|
47
|
Neveu WA, Mills ST, Staitieh BS, Sueblinvong V. TGF-β1 epigenetically modifies Thy-1 expression in primary lung fibroblasts. Am J Physiol Cell Physiol 2015; 309:C616-26. [PMID: 26333597 DOI: 10.1152/ajpcell.00086.2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/25/2015] [Indexed: 11/22/2022]
Abstract
Idiopathic pulmonary fibrosis is a progressive lung disease that increases in incidence with age. We identified a profibrotic lung phenotype in aging mice characterized by an increase in the number of fibroblasts lacking the expression of thymocyte differentiation antigen 1 (Thy-1) and an increase in transforming growth factor (TGF)-β1 expression. It has been shown that Thy-1 expression can be epigenetically modified. Lung fibroblasts (PLFs) were treated with TGF-β1 ± DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-AZA) and analyzed for Thy-1 gene and protein expression, DNMT protein expression, and activity. α-Smooth muscle actin (α-SMA) and collagen type 1 (Col1A1) gene and protein expression was assessed. PLFs were transfected with DNMT1 silencing RNA ± TGF-β1. TGF-β1 inhibited Thy-1 gene and protein expression in PLFs, and cotreatment with 5-AZA ameliorated this effect and appeared to inhibit DNMT1 activation. TGF-β1 induced Thy-1 promoter methylation as assessed by quantitative methyl PCR. Treatment with 5-AZA attenuated TGF-β1-induced Col1A1 gene and protein expression and α-SMA gene expression (but not α-SMA protein expression). Inhibiting DNMT1 with silencing RNA attenuated TGF-β1-induced DNMT activity and its downstream suppression of Thy-1 mRNA and protein expression as well as inhibited α-SMA mRNA and Col1A1 mRNA and protein expression, and showed a decreased trend in Thy-1 promoter methylation. Immunofluorescence for α-SMA suggested that 5-AZA inhibited stress fiber formation. These findings suggest that TGF-β1 epigenetically regulates lung fibroblast phenotype through methylation of the Thy-1 promoter. Targeted inhibition of DNMT in the right clinical context might prevent fibroblast to myofibroblast transdifferentiation and collagen deposition, which in turn could prevent fibrogenesis in the lung and other organs.
Collapse
Affiliation(s)
- Wendy A Neveu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Stephen T Mills
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Bashar S Staitieh
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Viranuj Sueblinvong
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Idiopathic pulmonary fibrosis (IPF) is a fatal disease with limited treatment options and extensive gene expression changes identified in the lung parenchyma. Multiple lines of evidence suggest that epigenetic factors contribute to dysregulation of gene expression in IPF lung. Most importantly, risk factors that predispose to IPF - age, sex, cigarette smoke, and genetic variants - all influence epigenetic marks. This review summarizes recent findings of association of DNA methylation and histone modifications with the presence of disease and fibroproliferation. RECENT FINDINGS In addition to targeted studies focused on specific gene loci, genome-wide profiles of DNA methylation demonstrate widespread DNA methylation changes in IPF lung tissue and a substantial effect of these methylation changes on gene expression. Genetic loci that have been recently associated with IPF also contain differentially methylated regions, suggesting that genetic and epigenetic factors act in concert to dysregulate gene expression in IPF lung. SUMMARY Although we are in very early stages of understanding the role of epigenetics in IPF, the potential for the use of epigenetic marks as biomarkers and therapeutic targets is high and discoveries made in this field will likely bring us closer to better prognosticating and treating this fatal disease.
Collapse
Affiliation(s)
- Britney A. Helling
- Department of Medicine, University of Colorado School of Medicine, Aurora CO
| | - Ivana V. Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora CO
- Department of Epidemiology, Colorado School of Public Health, Aurora CO
- Center for Genes, Environment and Health, National Jewish Health, Denver CO
| |
Collapse
|
49
|
Noguchi S, Eitoku M, Moriya S, Kondo S, Kiyosawa H, Watanabe T, Suganuma N. Regulation of Gene Expression by Sodium Valproate in Epithelial-to-Mesenchymal Transition. Lung 2015; 193:691-700. [PMID: 26286207 DOI: 10.1007/s00408-015-9776-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE Epithelial-to-mesenchymal transition (EMT) is an important mechanism in cancer metastasis and pulmonary fibrosis. Previous studies demonstrated effect of histone H3 and H4 acetylation in cancer and pulmonary fibrosis, so we hypothesized that histone modification might play a crucial role in gene regulation during EMT. In this study, we investigated the mechanism behind EMT by analyzing comprehensive gene expression and the effect of sodium valproate (VPA), a class I histone deacetylase inhibitory drug, on histone modification. METHODS EMT was induced in human alveolar epithelial cells (A549) using 5 ng/mL of transforming growth factor (TGF)-β1. Various concentrations of VPA were then administered, and Western blotting was used to analyze histone acetylation or methylation. Comprehensive gene expression analysis was carried out by RNA sequencing, and chromatin immunoprecipitation was performed with an anti-acetyl histone H3 lysine 27 antibody. RESULTS TGF-β1 stimulation led to a decrease in histone acetylation, especially that of histone H3K27, and H3K27ac localization was decreased at particular gene loci. This decrease was recovered by VPA treatment, which also up-regulated the mRNA expression of genes down-regulated by TGF-β1, and correlated with the localization of H3K27ac. However, genes up-regulated by TGF-β1 stimulation were not suppressed by VPA, with the exception of COL1A1. CONCLUSIONS Histone acetylation was down-regulated by TGF-β1 stimulation in A549 cells. VPA partially inhibited EMT and the decrease of histone acetylation, which plays an important role in the progression of EMT.
Collapse
Affiliation(s)
- Shuhei Noguchi
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Oko-cho Kohasu, Nankoku, Kochi, 783-8505, Japan
| | - Masamitsu Eitoku
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Oko-cho Kohasu, Nankoku, Kochi, 783-8505, Japan
| | - Shigeharu Moriya
- Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Shinji Kondo
- Research Integration Center, Research Organization of Information and Systems, National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo, 190-8518, Japan
| | - Hidenori Kiyosawa
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Oko-cho Kohasu, Nankoku, Kochi, 783-8505, Japan
| | - Takashi Watanabe
- Organization for Regional Alliances, Kochi University of Technology, Tosayamada, Kami, Kochi, 782-8502, Japan.,Graduate School of Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, 5-1 Oe, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Narufumi Suganuma
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Oko-cho Kohasu, Nankoku, Kochi, 783-8505, Japan.
| |
Collapse
|
50
|
Xiao X, Tang W, Yuan Q, Peng L, Yu P. Epigenetic repression of Krüppel-like factor 4 through Dnmt1 contributes to EMT in renal fibrosis. Int J Mol Med 2015; 35:1596-602. [PMID: 25892014 PMCID: PMC4432929 DOI: 10.3892/ijmm.2015.2189] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 04/03/2015] [Indexed: 01/03/2023] Open
Abstract
Krüppel-like factor 4 (KLF4) is a transcription factor which plays divergent roles in a number of physiological or pathological process. However, the expression and role of KLF4 in renal fibrosis remain undetermined. The aim of the present study was to determine the epigenetic alterations of KLF4 and its potential role and mechanisms of action in epithelial-to-mesenchymal transition (EMT) in renal fibrosis. The hypermethylation of the KLF4 promoter accompanied by a decrease in KLF4 expression were observed in mice subjected to unilateral ureteral obstruction (UUO) and in HK-2 cells stimulated with transforming growth factor (TGF)-β1. However, treatment with 5-aza-2'-deoxycytidine attenuated the TGF-β1-induced downregulation of KLF4 and E-cadherin and the upregulation of α-smooth muscle actin (α-SMA) in the HK-2 cells. DNA methyltransferase 1 (Dnmt1) participated in the TGF-β1-mediated hypermethylation of the KLF4 promoter in the HK-2 cells. In addition, functional analysis demonstrated that the overexpression of KLF4 led to an increase in the expression of E-cadherin and zonula occludens-l (ZO-1), and a decrease in the expression of α-SMA and fibroblast-specific protein 1 (FSP-1), thus reversing the effects of the suppression of KLF4. These data suggest that KLF4 inhibits the progression of EMT in renal epithelial cells. In conclusion, our findings demonstrate that KLF4 is downregulated during EMT in renal fibrosis in vivo and in vitro; thus, KLF4 functions as a suppressor of renal fibrogenesis. The hypermethylation of KLF4 directly mediated by Dnmt1 contributes to the progression of EMT in renal epithelial cells. KLF4 promoter methylation may thus be a promising diagnostic marker or therapeutic target in renal fibrosis.
Collapse
Affiliation(s)
- Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Wenbin Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Ling Peng
- The Nephrotic Laboratory of Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Pingping Yu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| |
Collapse
|