1
|
Zheng Y, Tian Q, Yang H, Cai Y, Zhang J, Wu Y, Zhu S, Qiu Z, Lin Y, Hong J, Zhang Y, Dockrell D, Ma S. Identification of Nicotinic Acetylcholine Receptor for N-Acetylcysteine to Rescue Nicotine-induced Injury Using Beating Cilia in Primary Tissue Derived Airway Organoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407054. [PMID: 39582278 PMCID: PMC11714201 DOI: 10.1002/advs.202407054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/10/2024] [Indexed: 11/26/2024]
Abstract
Smoking is one of the major contributors to airway injuries. N-acetylcysteine (NAC) has been proposed as a treatment or preventive measure for such injuries. However, the exact nature of the smoking-induced injury and the protective mechanism of NAC are not yet fully understood. Here, patient tissue-derived airway organoids for modeling smoking-induced injury, therapeutic investigation, and mechanism studies are developed. Airway organoids consist mainly of ciliated cells, together with basal cells, goblet cells, and myofibroblast-like cells. The organoids display apical-out and basal-in polarity and are enriched in beating cilia, which are sensitive to smoking challenge and NAC treatment. An algorithm is developed to measure ciliary beating activity by analyzing the altered beating pattern of cilia in response to nicotine challenge and NAC treatment. Nicotinic acetylcholine receptors (nAChRs) expressed by airway organoids are involved in the mechanisms of nicotine-induced injury through the nicotine-nAChR pathway. In contrast to the common understanding that NAC has an antioxidative effect that mitigates airway damage, it is elucidated that NAC binding to nicotine can abolish the binding capacity of nicotine to nAChRs and thus prevent nicotine-induced injury. This study focuses on the advances and potential of humanized organoids in understanding biological processes, mechanisms, and identifying therapeutic targets.
Collapse
Affiliation(s)
- Yichao Zheng
- Institute of Biopharmaceutical and Health EngineeringTsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
- Precision Medicine and Healthcare Research CentreTsinghua‐Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
| | - Qinyong Tian
- Department of Cardiothoracic SurgeryZhangzhou Affiliated Hospital of Fujian Medical UniversityZhangzhou363000China
| | - Haowei Yang
- Institute of Biopharmaceutical and Health EngineeringTsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
| | - Yongde Cai
- Institute of Biopharmaceutical and Health EngineeringState Key Laboratory of Chemical OncogenomicsShenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Jiaxin Zhang
- Institute of Biopharmaceutical and Health EngineeringState Key Laboratory of Chemical OncogenomicsShenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Yifen Wu
- Department of Internal MedicineZhangzhou Affiliated Hospital of Fujian Medical UniversityZhangzhou363000China
| | - Shuo Zhu
- Key Laboratory of Rubber‐PlasticsMinistry of Education/Shandong Provincial Key Laboratory of Rubber and PlasticsQingdao University of Science and TechnologyQingdao266042China
| | - Zuocheng Qiu
- Guangdong Provincial Key Laboratory of Speed Capability ResearchJinan UniversityGuangzhou510632China
| | - Yimin Lin
- Department of Cardiothoracic SurgeryZhangzhou Affiliated Hospital of Fujian Medical UniversityZhangzhou363000China
| | - Jiangquan Hong
- Department of Cardiothoracic SurgeryZhangzhou Affiliated Hospital of Fujian Medical UniversityZhangzhou363000China
| | - Yi Zhang
- Department of Cardiothoracic SurgeryZhangzhou Affiliated Hospital of Fujian Medical UniversityZhangzhou363000China
| | - David Dockrell
- Department of Respiratory Medicine and MRC Centre for Inflammation ResearchUniversity of EdinburghEdinburghEH16 4TJUK
| | - Shaohua Ma
- Institute of Biopharmaceutical and Health EngineeringTsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
- Precision Medicine and Healthcare Research CentreTsinghua‐Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
| |
Collapse
|
2
|
Hollenhorst MI, Husnik T, Zylka M, Duda N, Flockerzi V, Tschernig T, Maxeiner S, Krasteva-Christ G. Human airway tuft cells influence the mucociliary clearance through cholinergic signalling. Respir Res 2023; 24:267. [PMID: 37925434 PMCID: PMC10625704 DOI: 10.1186/s12931-023-02570-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Airway tuft cells, formerly called brush cells have long been described only morphologically in human airways. More recent RNAseq studies described a chemosensory cell population, which includes tuft cells, by a distinct gene transcription signature. Yet, until which level in the tracheobronchial tree in native human airway epithelium tuft cells occur and if they function as regulators of innate immunity, e.g., by regulating mucociliary clearance, remained largely elusive. METHODS We performed immunohistochemistry, RT-PCR and immunoblotting analyses for various tuft cell markers to confirm the presence of this cell type in human tracheal samples. Immunohistochemistry was conducted to study the distribution of tuft cells along the intrapulmonary airways in humans. We assessed the influence of bitter substances and the taste transduction pathway on mucociliary clearance in mouse and human tracheal samples by measuring particle transport speed. RESULTS Tuft cells identified by the expression of their well-established marker POU class 2 homeobox 3 (POU2F3) were present from the trachea to the bronchioles. We identified choline acetyltransferase in POU2F3 expressing cells as well as the transient receptor potential melastatin 5 (TRPM5) channel in a small population of tracheal epithelial cells with morphological appearance of tuft cells. Application of bitter substances, such as denatonium, led to an increase in mucociliary clearance in human tracheal preparations. This was dependent on activation of the TRPM5 channel and involved cholinergic and nitric oxide signalling, indicating a functional role for human tuft cells in the regulation of mucociliary clearance. CONCLUSIONS We were able to detect tuft cells in the tracheobronchial tree down to the level of the bronchioles. Moreover, taste transduction and cholinergic signalling occur in the same cells and regulate mucociliary clearance. Thus, tuft cells are potentially involved in the regulation of innate immunity in human airways.
Collapse
Affiliation(s)
| | - Thomas Husnik
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Malin Zylka
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Nele Duda
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Veit Flockerzi
- Institute for Experimental and Clinical Pharmacology and Toxicology, Preclinical Center for Molecular Signaling, Saarland University, Homburg, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Stephan Maxeiner
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | | |
Collapse
|
3
|
Saitoh D, Kawaguchi K, Asano S, Inui T, Marunaka Y, Nakahari T. Enhancement of airway ciliary beating mediated via voltage-gated Ca 2+ channels/α7-nicotinic receptors in mice. Pflugers Arch 2022; 474:1091-1106. [PMID: 35819489 DOI: 10.1007/s00424-022-02724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/18/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
Abstract
Acetylcholine (ACh), which activates muscarinic ACh receptors (mAChRs) and nicotinic ACh receptors (nAChRs), enhances airway ciliary beating by increasing the intracellular Ca2+ concentration ([Ca2+]i). The mechanisms enhancing airway ciliary beating by nAChRs have remained largely unknown, although those by mAChRs are well understood. In this study, we focused on the effects of α7-nAChRs and voltage-gated Ca2+ channels (CaVs) on the airway ciliary beating. The activities of ciliary beating were assessed by frequency (CBF, ciliary beat frequency) and amplitude (CBD, ciliary bend distance) measured by high-speed video microscopy. ACh enhanced CBF and CBD by 25% mediated by an [Ca2+]i increase stimulated by mAChRs and α7-nAChRs (a subunit of nAChR) in airway ciliary cells of mice. Experiments using PNU282987 (an agonist of α7-nAChR) and MLA (an inhibitor of α7-nAChR) revealed that CBF and CBD enhanced by α7-nAChR are approximately 50% of those enhanced by ACh. CBF, CBD, and [Ca2+]i enhanced by α7-nAChRs were inhibited by nifedipine, suggesting activation of CaVs by α7-nAChRs. Experiments using a high K+ solution with/without nifedipine (155.5 mM K+) showed that the activation of CaVs enhances CBF and CBD via an [Ca2+]i increase. Immunofluorescence and immunoblotting studies demonstrated that Cav1.2 and α7-nAChR are expressed in airway cilia. Moreover, IL-13 stimulated MLA-sensitive increases in CBF and CBD in airway ciliary cells, suggesting an autocrine regulation of ciliary beating by CaV1.2/α7-nAChR/ACh. In conclusion, a novel Ca2+ signalling pathway in airway cilia, CaV1.2/α7-nAChR, enhances CBF and CBD and activates mucociliary clearance maintaining healthy airways.
Collapse
Affiliation(s)
- Daichi Saitoh
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan
- Department of Molecular Physiology, Faculty of Pharmacy, BKC, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Kotoku Kawaguchi
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan
- Department of Molecular Physiology, Faculty of Pharmacy, BKC, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Shinji Asano
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan
- Department of Molecular Physiology, Faculty of Pharmacy, BKC, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Toshio Inui
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan
- Saisei Mirai Clinics, Moriguchi, 570-0012, Japan
| | - Yoshinori Marunaka
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto, 604-8472, Japan
| | - Takashi Nakahari
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan.
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto, 604-8472, Japan.
| |
Collapse
|
4
|
Munoz F, Vicencio-Jimenez S, Jorratt P, Delano PH, Terreros G. Corticofugal and Brainstem Functions Associated With Medial Olivocochlear Cholinergic Transmission. Front Neurosci 2022; 16:866161. [PMID: 35573302 PMCID: PMC9094045 DOI: 10.3389/fnins.2022.866161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022] Open
Abstract
Cholinergic transmission is essential for survival and reproduction, as it is involved in several physiological responses. In the auditory system, both ascending and descending auditory pathways are modulated by cholinergic transmission, affecting the perception of sounds. The auditory efferent system is a neuronal network comprised of several feedback loops, including corticofugal and brainstem pathways to the cochlear receptor. The auditory efferent system's -final and mandatory synapses that connect the brain with the cochlear receptor- involve medial olivocochlear neurons and outer hair cells. A unique cholinergic transmission mediates these synapses through α9/α10 nicotinic receptors. To study this receptor, it was generated a strain of mice carrying a null mutation of the Chrna9 gene (α9-KO mice), lacking cholinergic transmission between medial olivocochlear neurons and outer hair cells, providing a unique opportunity to study the role of medial olivocochlear cholinergic transmission in auditory and cognitive functions. In this article, we review behavioral and physiological studies carried out to research auditory efferent function in the context of audition, cognition, and hearing impairments. Auditory studies have shown that hearing thresholds in the α9-KO mice are normal, while more complex auditory functions, such as frequency selectivity and sound localization, are altered. The corticofugal pathways have been studied in α9-KO mice using behavioral tasks, evidencing a reduced capacity to suppress auditory distractors during visual selective attention. Finally, we discuss the evolutionary role of the auditory efferent system detecting vocalizations in noise and its role in auditory disorders, such as the prevention of age-related hearing loss.
Collapse
Affiliation(s)
- Felipe Munoz
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua, Chile
- Universidad de Valparaíso, Valparaíso, Chile
| | - Sergio Vicencio-Jimenez
- Department of Otolaryngology-Head and Neck Surgery, The Center for Hearing and Balance, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Pascal Jorratt
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Paul H. Delano
- Facultad de Medicina, Neuroscience Department, Universidad de Chile, Santiago, Chile
- Department of Otolaryngology, Hospital Clínico de la Universidad de Chile, Santiago, Chile
- Centro Avanzado de Ingeniería Eléctrica y Electrónica, AC3E, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Facultad de Medicina, Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - Gonzalo Terreros
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua, Chile
| |
Collapse
|
5
|
Hollenhorst MI, Krasteva-Christ G. Nicotinic Acetylcholine Receptors in the Respiratory Tract. Molecules 2021; 26:6097. [PMID: 34684676 PMCID: PMC8539672 DOI: 10.3390/molecules26206097] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChR) are widely distributed in neuronal and non-neuronal tissues, where they play diverse physiological roles. In this review, we highlight the recent findings regarding the role of nAChR in the respiratory tract with a special focus on the involvement of nAChR in the regulation of multiple processes in health and disease. We discuss the role of nAChR in mucociliary clearance, inflammation, and infection and in airway diseases such as asthma, chronic obstructive pulmonary disease, and cancer. The subtype diversity of nAChR enables differential regulation, making them a suitable pharmaceutical target in many diseases. The stimulation of the α3β4 nAChR could be beneficial in diseases accompanied by impaired mucociliary clearance, and the anti-inflammatory effect due to an α7 nAChR stimulation could alleviate symptoms in diseases with chronic inflammation such as chronic obstructive pulmonary disease and asthma, while the inhibition of the α5 nAChR could potentially be applied in non-small cell lung cancer treatment. However, while clinical studies targeting nAChR in the airways are still lacking, we suggest that more detailed research into this topic and possible pharmaceutical applications could represent a valuable tool to alleviate the symptoms of diverse airway diseases.
Collapse
|
6
|
Kumar P, Scholze P, Fronius M, Krasteva-Christ G, Hollenhorst MI. Nicotine stimulates ion transport via metabotropic β4 subunit containing nicotinic ACh receptors. Br J Pharmacol 2020; 177:5595-5608. [PMID: 32959891 PMCID: PMC7707097 DOI: 10.1111/bph.15270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/25/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background and Purpose Mucociliary clearance is an innate immune process of the airways, essential for removal of respiratory pathogens. It depends on ciliary beat and ion and fluid homeostasis of the epithelium. We have shown that nicotinic ACh receptors (nAChRs) activate ion transport in mouse tracheal epithelium. Yet the receptor subtypes and signalling pathways involved remained unknown. Experimental Approach Transepithelial short circuit currents (ISC) of freshly isolated mouse tracheae were recorded using the Ussing chamber technique. Changes in [Ca2+]i were studied on freshly dissociated mouse tracheal epithelial cells. Key Results Apical application of the nAChR agonist nicotine transiently increased ISC. The nicotine effect was abolished by the nAChR antagonist mecamylamine. α‐Bungarotoxin (α7 antagonist) had no effect. The agonists epibatidine (α3β2, α4β2, α4β4 and α3β4) and A‐85380 (α4β2 and α3β4) increased ISC. The antagonists dihydro‐β‐erythroidine (α4β2, α3β2, α4β4 and α3β4), α‐conotoxin MII (α3β2) and α‐conotoxin PnIA (α3β2) reduced the nicotine effect. Nicotine‐ and epibatidine‐induced currents were unaltered in β2−/−mice, but in β4−/− mice no increase was observed. In the presence of thapsigargin (endoplasmatic reticulum Ca2+‐ATPase inhibitor) or the ryanodine receptor antagonists JTV‐519 and dantrolene there was a reduction in the nicotine‐effect, indicating involvement of Ca2+ release from intracellular stores. Additionally, the PKA inhibitor H‐89 and the TMEM16A (Ca2+‐activated chloride channel) inhibitor T16Ainh‐A01 significantly reduced the nicotine‐effect. Conclusion and Implications α3β4 nAChRs are responsible for the nicotine‐induced current changes via Ca2+ release from intracellular stores, PKA and ryanodine receptor activation. These nAChRs might be possible targets to stimulate chloride transport via TMEM16A.
Collapse
Affiliation(s)
- Praveen Kumar
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Martin Fronius
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
7
|
Affiliation(s)
- Rohit Gaurav
- 1Department of PediatricsNational Jewish HealthDenver, Colorado
| |
Collapse
|
8
|
Li H, Ma N, Wang J, Wang Y, Yuan C, Wu J, Luo M, Yang J, Chen J, Shi J, Liu X. Nicotine Induces Progressive Properties of Lung Adenocarcinoma A549 Cells by Inhibiting Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Expression and Plasma Membrane Localization. Technol Cancer Res Treat 2018; 17:1533033818809984. [PMID: 30384810 PMCID: PMC6259057 DOI: 10.1177/1533033818809984] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 09/04/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022] Open
Abstract
Lung cancer remains one of the most common cancer-related deaths worldwide. The cigarette smoking is a risk factor for lung cancer development. Interestingly, the cystic fibrosis transmembrane conductance regulator encoded by CFTR gene, an ATP-binding cassette transporter-class ion channel that conducts chloride and bicarbonate anions across membrane of epithelial cells, has recently been suggested to play a role in the development and progression of many types of cancer. It has been well-documented that mutations of CFTR gene are the cause of cystic fibrosis, the most common fatal hereditary lung disease in Caucasian population; the function of cystic fibrosis transmembrane conductance regulator in the development of lung cancer however has not yet been established. In the present study, we aimed to interrogate the impact of cystic fibrosis transmembrane conductance regulator on the nicotine-promoted progressive potency in lung adenocarcinoma cells by assessing capacities of cystic fibrosis transmembrane conductance regulator to cell migration, invasion, and clonogenicity and the expression of markers of cell proliferation and lung stem cell-related transcription factors in lung adenocarcinoma A549 cells. The exposure of nicotine exhibited an ability to enhance progressive properties of adenocarcinoma cells including A549 cells, HCC827 cells, and PC-9 cells, alone with an inhibition of cystic fibrosis transmembrane conductance regulator protein expression. Remarkably, an overexpression of cystic fibrosis transmembrane conductance regulator significantly inhibited the progressive potency of A549 cells, including capacity of cell migration and invasion and clonogenicity, along with a decreased expression of cell proliferative markers Ki67, p63, and proliferating cell nuclear antigen, and cancer stem cell marker CD133, stem cell pluripotency-related transcription factors octamer-binding transcription factor ¾, and sex-determining region Y-box 2, regardless of the presence of nicotine. In contrast, opposite effects were observed in A549 cells that the cystic fibrosis transmembrane conductance regulator was knockdown by short hairpin RNA to cystic fibrosis transmembrane conductance regulator. This study thus suggests that cystic fibrosis transmembrane conductance regulator may play a tumor suppressor role in lung cancer cells, which may be a novel therapeutic target warranted for further investigation.
Collapse
Affiliation(s)
- Hui Li
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia,
China
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia,
China
| | - Ningxia Ma
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia,
China
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia,
China
| | - Jing Wang
- Center of Laboratory Medicine, People’s Hospital of Ningxia Hui Autonomous
Region, Yinchuan, Ningxia, China
| | - Ying Wang
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia,
China
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia,
China
| | - Chao Yuan
- College of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Jing Wu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia,
China
| | - Meihui Luo
- College of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Jiali Yang
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia,
China
| | - Juan Chen
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia,
China
| | - Juan Shi
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia,
China
| | - Xiaoming Liu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia,
China
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia,
China
- College of Life Science, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
9
|
Lykhmus O, Voytenko LP, Lips KS, Bergen I, Krasteva-Christ G, Vetter DE, Kummer W, Skok M. Nicotinic Acetylcholine Receptor α9 and α10 Subunits Are Expressed in the Brain of Mice. Front Cell Neurosci 2017; 11:282. [PMID: 28955208 PMCID: PMC5601054 DOI: 10.3389/fncel.2017.00282] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/30/2017] [Indexed: 01/24/2023] Open
Abstract
The α9 and α10 nicotinic acetylcholine receptor (nAChR) subunits are likely to be the evolutionary precursors to the entire cys-loop superfamily of ligand-gated ion channels, which includes acetylcholine, GABA, glycine and serotonin ionotropic receptors. nAChRs containing α9 and α10 subunits are found in the inner ear, dorsal root ganglia and many non-excitable tissues, but their expression in the central nervous system has not been definitely demonstrated. Here we show the presence of both α9 and α10 nAChR subunits in the mouse brain by RT-PCR and immunochemical approaches with a range of nAChR subunit-selective antibodies, which selectivity was demonstrated in the brain preparations of α7−/−, α9−/− and α10−/− mice. The α9 and α10 RNA transcripts were found in medulla oblongata (MO), cerebellum, midbrain (MB), thalamus and putamen (TP), somatosensory cortex (SC), frontal cortex (FC) and hippocampus. High α9-selective signal in ELISA was observed in the FC, SC, MO, TP and hippocampus and α10-selective signal was the highest in MO and FC. The α9 and α10 proteins were found in the brain mitochondria, while their presence on the plasma membrane has not been definitely confirmed The α7-, α9- and α10-selective antibodies stained mainly neurons and hypertrophied astrocytes, but not microglia. The α9- and α10-positive cells formed ordered structures or zones in cerebellum and superior olive (SO) and were randomly distributed among α7-positive cells in the FC; they were found in CA1, CA3 and CA4, but not in CA2 region of the hippocampus. The α9 and α10 subunits were up-regulated in α7−/− mice and both α7 and α9 subunits were down-regulated in α10−/− mice. We conclude that α9 and α10 nAChR subunits are expressed in distinct neurons of the mouse brain and in the brain mitochondria and are compensatory up-regulated in the absence of α7 subunits.
Collapse
Affiliation(s)
- Olena Lykhmus
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry (NAS Ukraine)Kiev, Ukraine
| | - Larysa P Voytenko
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry (NAS Ukraine)Kiev, Ukraine
| | - Katrin S Lips
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University GiessenGiessen, Germany
| | - Ivonne Bergen
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University GiessenGiessen, Germany
| | | | - Douglas E Vetter
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical CenterJackson, MS, United States
| | - Wolfgang Kummer
- Institute for Anatomy and Cell Biology, Justus-Liebig University GiessenGiessen, Germany.,German Center for Lung Research (DZL)Giessen, Germany
| | - Maryna Skok
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry (NAS Ukraine)Kiev, Ukraine
| |
Collapse
|
10
|
Dittrich NP, Kummer W, Clauss WG, Fronius M. Luminal acetylcholine does not affect the activity of the CFTR in tracheal epithelia of pigs. Int Immunopharmacol 2015; 29:166-72. [DOI: 10.1016/j.intimp.2015.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 11/29/2022]
|
11
|
Gookin JL, Correa MT, Peters A, Malueg A, Mathews KG, Cullen J, Seiler G. Association of Gallbladder Mucocele Histologic Diagnosis with Selected Drug Use in Dogs: A Matched Case-Control Study. J Vet Intern Med 2015; 29:1464-72. [PMID: 26478445 PMCID: PMC4895658 DOI: 10.1111/jvim.13649] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 09/03/2015] [Accepted: 09/17/2015] [Indexed: 02/04/2023] Open
Abstract
Background The cause of gallbladder mucocele (GBM) formation in dogs currently is unknown. Many available drugs represent a newer generation of xenobiotics that may predispose dogs to GBM formation. Objective To determine if there is an association between the histologic diagnosis of GBM in dogs and administration of selected drugs. Animals Eighty‐one dogs with a histologic diagnosis of GBM and 162 breed, age, and admission date‐matched control dogs from a single referral institution. Methods Medical records of dogs with GBM and control dogs from 2001 to 2011 were reviewed. Owner verification of drug history was sought by a standard questionnaire. Reported use of heartworm, flea, and tick preventatives as well as nonsteroidal anti‐inflammatory drugs, analgesics, corticosteroids, or medications for treatment of osteoarthritis was recorded. Results Dogs with GBM were 2.2 times as likely to have had reported use of thyroxine (as a proxy for the diagnosis of hypothyroidism) as control dogs (95% confidence interval [CI], 0.949–5.051), 3.6 times as likely to have had reported treatment for Cushing's disease (95% CI, 1.228–10.612), and 2.3 times as likely to have had reported use of products containing imidacloprid (95% CI, 1.094–4.723). Analysis of a data subset containing only Shetland sheepdogs (23 GBM and 46 control) indicated that Shetland sheepdogs with GBM formation were 9.3 times as likely to have had reported use of imidacloprid as were control Shetland sheepdogs (95% CI, 1.103–78.239). Conclusions and Clinical Importance This study provides evidence for an association between selected drug use and GBM formation in dogs. A larger epidemiologic study of Shetland sheepdogs with GBM formation and exposure to imidacloprid is warranted.
Collapse
Affiliation(s)
- J L Gookin
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - M T Correa
- Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - A Peters
- The Veterinary Hospital, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - A Malueg
- The Veterinary Hospital, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - K G Mathews
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - J Cullen
- Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - G Seiler
- Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| |
Collapse
|
12
|
Krasteva-Christ G, Soultanova A, Schütz B, Papadakis T, Weiss C, Deckmann K, Chubanov V, Gudermann T, Voigt A, Meyerhof W, Boehm U, Weihe E, Kummer W. Identification of cholinergic chemosensory cells in mouse tracheal and laryngeal glandular ducts. Int Immunopharmacol 2015; 29:158-65. [PMID: 26033492 DOI: 10.1016/j.intimp.2015.05.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/27/2015] [Accepted: 05/18/2015] [Indexed: 11/19/2022]
Abstract
Specialized epithelial cells in the respiratory tract such as solitary chemosensory cells and brush cells sense the luminal content and initiate protective reflexes in response to the detection of potentially harmful substances. The majority of these cells are cholinergic and utilize the canonical taste signal transduction cascade to detect "bitter" substances such as bacterial quorum sensing molecules. Utilizing two different mouse strains reporting expression of choline acetyltransferase (ChAT), the synthesizing enzyme of acetylcholine (ACh), we detected cholinergic cells in the submucosal glands of the murine larynx and trachea. These cells were localized in the ciliated glandular ducts and were neither found in the collecting ducts nor in alveolar or tubular segments of the glands. ChAT expression in tracheal gland ducts was confirmed by in situ hybridization. The cholinergic duct cells expressed the brush cell marker proteins, villin and cytokeratin-18, and were immunoreactive for components of the taste signal transduction cascade (Gα-gustducin, transient receptor potential melastatin-like subtype 5 channel = TRPM5, phospholipase C(β2)), but not for carbonic anhydrase IV. Furthermore, these cells expressed the bitter taste receptor Tas2r131, as demonstrated utilizing an appropriate reporter mouse strain. Our study identified a previously unrecognized presumptive chemosensory cell type in the duct of the airway submucosal glands that likely utilizes ACh for paracrine signaling. We propose that these cells participate in infection-sensing mechanisms and initiate responses assisting bacterial clearance from the lower airways.
Collapse
Affiliation(s)
- G Krasteva-Christ
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany; Institute of Anatomy and Cell Biology, Julius-Maximilians-University, Wuerzburg, Germany.
| | - A Soultanova
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - B Schütz
- Institute for Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - T Papadakis
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - C Weiss
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - K Deckmann
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - V Chubanov
- Walter-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Munich, Germany
| | - T Gudermann
- Walter-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Munich, Germany
| | - A Voigt
- Dept. Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - W Meyerhof
- Dept. Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - U Boehm
- Department of Pharmacology and Toxicology, University of Saarland School of Medicine, Homburg, Germany
| | - E Weihe
- Institute for Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - W Kummer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
13
|
Liao S, Cheung K, O W, Tang F. Adrenomedullin Increases the Short-Circuit Current in the Mouse Seminal Vesicle: Actions on Chloride Secretion1. Biol Reprod 2014; 91:31. [DOI: 10.1095/biolreprod.113.116848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
14
|
Kummer W, Krasteva-Christ G. Non-neuronal cholinergic airway epithelium biology. Curr Opin Pharmacol 2014; 16:43-9. [DOI: 10.1016/j.coph.2014.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/26/2014] [Accepted: 03/03/2014] [Indexed: 01/06/2023]
|
15
|
Contribution of α7 nicotinic receptor to airway epithelium dysfunction under nicotine exposure. Proc Natl Acad Sci U S A 2013; 110:4099-104. [PMID: 23431157 DOI: 10.1073/pnas.1216939110] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Loss or dysfunction of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) leads to impairment of airway mucus transport and to chronic lung diseases resulting in progressive respiratory failure. Nicotinic acetylcholine receptors (nAChRs) bind nicotine and nicotine-derived nitrosamines and thus mediate many of the tobacco-related deleterious effects in the lung. Here we identify α7 nAChR as a key regulator of CFTR in the airways. The airway epithelium in α7 knockout mice is characterized by a higher transepithelial potential difference, an increase of amiloride-sensitive apical Na(+) absorption, a defective cAMP-dependent Cl(-) conductance, higher concentrations of Na(+), Cl(-), K(+), and Ca(2+) in secretions, and a decreased mucus transport, all relevant to a deficient CFTR activity. Moreover, prolonged nicotine exposure mimics the absence of α7 nAChR in mice or its inactivation in vitro in human airway epithelial cell cultures. The functional coupling of α7 nAChR to CFTR occurs through Ca(2+) entry and activation of adenylyl cyclases, protein kinase A, and PKC. α7 nAChR, CFTR, and adenylyl cyclase-1 are physically and functionally associated in a macromolecular complex within lipid rafts at the apical membrane of surface and glandular airway epithelium. This study establishes the potential role of α7 nAChR in the regulation of CFTR function and in the pathogenesis of smoking-related chronic lung diseases.
Collapse
|
16
|
Zemkova H, Kucka M, Bjelobaba I, Tomic M, Stojilkovic SS. Multiple cholinergic signaling pathways in pituitary gonadotrophs. Endocrinology 2013; 154:421-33. [PMID: 23161872 PMCID: PMC3529387 DOI: 10.1210/en.2012-1554] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acetylcholine (ACh) has been established as a paracrine factor in the anterior pituitary gland, but the receptors mediating ACh action and the cell types bearing these receptors have not been identified. Our results showed that the expression of the nicotinic subunits mRNAs followed the order β2 > β1 = α9 > α4 in cultured rat pituitary cells. The expression of the subunits in immortalized LβT2 mouse gonadotrophs followed the order β2 > α4 = α1. M4 > M3 muscarinic receptor mRNA were also identified in pituitary and LβT2 cells. The treatment of cultured pituitary cells with GnRH down-regulated the expression of α9 and α4 mRNAs, without affecting the expression of M3 and M4 receptor mRNAs, and ACh did not alter the expression of GnRH receptor mRNA. We also performed double immunostaining to show the expression of β2-subunit and M4 receptor proteins in gonadotrophs. Functional nicotinic channels capable of generating an inward current, facilitation of electrical activity, and Ca(2+) influx were identified in single gonadotrophs and LβT2 cells. In both cell types, the M3 receptor-mediated, phospholipase C-dependent Ca(2+) mobilization activated an outward apamin-sensitive K(+) current and caused hyperpolarization. The activation of M4 receptors by ACh inhibited cAMP production and GnRH-induced LH release in a pertussis toxin-sensitive manner. We concluded that multiple cholinergic receptors are expressed in gonadotrophs and that the main secretory action of ACh is inhibitory through M4 receptor-mediated down-regulation of cAMP production. The expression of nicotinic receptors in vitro compensates for the lack of regular GnRH stimulation of gonadotrophs.
Collapse
Affiliation(s)
- Hana Zemkova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic.
| | | | | | | | | |
Collapse
|
17
|
Althaus M, Urness KD, Clauss WG, Baines DL, Fronius M. The gasotransmitter hydrogen sulphide decreases Na⁺ transport across pulmonary epithelial cells. Br J Pharmacol 2012; 166:1946-63. [PMID: 22352810 DOI: 10.1111/j.1476-5381.2012.01909.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE The transepithelial absorption of Na(+) in the lungs is crucial for the maintenance of the volume and composition of epithelial lining fluid. The regulation of Na(+) transport is essential, because hypo- or hyperabsorption of Na(+) is associated with lung diseases such as pulmonary oedema or cystic fibrosis. This study investigated the effects of the gaseous signalling molecule hydrogen sulphide (H(2) S) on Na(+) absorption across pulmonary epithelial cells. EXPERIMENTAL APPROACH Ion transport processes were electrophysiologically assessed in Ussing chambers on H441 cells grown on permeable supports at air/liquid interface and on native tracheal preparations of pigs and mice. The effects of H(2)S were further investigated on Na(+) channels expressed in Xenopus oocytes and Na(+) /K(+)-ATPase activity in vitro. Membrane abundance of Na(+) /K(+)-ATPase was determined by surface biotinylation and Western blot. Cellular ATP concentrations were measured colorimetrically, and cytosolic Ca(2+) concentrations were measured with Fura-2. KEY RESULTS H(2)S rapidly and reversibly inhibited Na(+) transport in all the models employed. H(2)S had no effect on Na(+) channels, whereas it decreased Na(+) /K(+)-ATPase currents. H(2)S did not affect the membrane abundance of Na(+) /K(+)-ATPase, its metabolic or calcium-dependent regulation, or its direct activity. However, H(2)S inhibited basolateral calcium-dependent K(+) channels, which consequently decreased Na(+) absorption by H441 monolayers. CONCLUSIONS AND IMPLICATIONS H(2) S impairs pulmonary transepithelial Na(+) absorption, mainly by inhibiting basolateral Ca(2+)-dependent K(+) channels. These data suggest that the H(2)S signalling system might represent a novel pharmacological target for modifying pulmonary transepithelial Na(+) transport.
Collapse
Affiliation(s)
- M Althaus
- Institute of Animal Physiology, Justus-Liebig University of Giessen, Giessen, Germany.
| | | | | | | | | |
Collapse
|
18
|
Fu XW, Rekow SS, Spindel ER. The ly-6 protein, lynx1, is an endogenous inhibitor of nicotinic signaling in airway epithelium. Am J Physiol Lung Cell Mol Physiol 2012; 303:L661-8. [PMID: 22923641 PMCID: PMC3469634 DOI: 10.1152/ajplung.00075.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 08/21/2012] [Indexed: 02/08/2023] Open
Abstract
Our laboratory has previously reported that bronchial epithelial cells (BEC) express a regulatory cascade of classic neurotransmitters and receptors that communicate in an almost neuronal-like manner to achieve physiological regulation. In this paper we show that the similarity between neurotransmitter signaling in neurons and BEC extends to the level of transmitter receptor allosteric modulators. Lynx1 is a member of the ly-6/three-finger superfamily of proteins, many of which modulate receptor signaling activity. Lynx1 specifically has been shown to modulate nicotinic acetylcholine receptor (nAChR) function in neurons by altering receptor sensitivity and desensitization. We now report that lynx1 forms a complex with α7 nAChR in BEC and serves to negatively regulate α7 downstream signaling events. Treatment of primary cultures of BEC with nicotine increased levels of nAChR subunits and that increase was potentiated by lynx1 knockdown. Lynx1 knockdown also potentiated the nicotine-induced increase in GABA(A) receptors (GABA(A)R) and MUC5AC mRNA expression, and that effect was blocked by α7 antagonists and α7 knockdown. In parallel with the increases in nAChR, GABA(A)R, and mucin mRNA levels, lynx1 knockdown also increased levels of p-Src. Consistent with this, inhibition of Src signaling blocked the ability of the lynx1 knockdown to increase basal and nicotine-stimulated GABA(A)R and mucin mRNA expression. Thus lynx1 appears to act as a negative modulator of α7 nAChR-induced events by inhibiting Src activation. This suggests that lynx1 agonists or mimetics are a potentially important therapeutic target to develop new therapies for smoking-related diseases characterized by increased mucin expression.
Collapse
MESH Headings
- Animals
- Antigens, Ly/genetics
- Antigens, Ly/immunology
- Antigens, Ly/metabolism
- Asthma/immunology
- Asthma/metabolism
- Bronchi/cytology
- Cells, Cultured
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/immunology
- GPI-Linked Proteins/metabolism
- Gene Knockdown Techniques
- Macaca mulatta
- Mucin 5AC/immunology
- Mucin 5AC/metabolism
- Nicotine/immunology
- Nicotine/metabolism
- Nicotinic Agonists/immunology
- Nicotinic Agonists/metabolism
- Pulmonary Disease, Chronic Obstructive/immunology
- Pulmonary Disease, Chronic Obstructive/metabolism
- RNA, Small Interfering/genetics
- Receptors, GABA-A/immunology
- Receptors, GABA-A/metabolism
- Receptors, Nicotinic/immunology
- Receptors, Nicotinic/metabolism
- Respiratory Mucosa/cytology
- Respiratory Mucosa/immunology
- Respiratory Mucosa/metabolism
- Signal Transduction/immunology
- Smoking/immunology
- Smoking/metabolism
- alpha7 Nicotinic Acetylcholine Receptor
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Xiao Wen Fu
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | | |
Collapse
|
19
|
Hollenhorst MI, Lips KS, Wolff M, Wess J, Gerbig S, Takats Z, Kummer W, Fronius M. Luminal cholinergic signalling in airway lining fluid: a novel mechanism for activating chloride secretion via Ca²⁺-dependent Cl⁻ and K⁺ channels. Br J Pharmacol 2012; 166:1388-402. [PMID: 22300281 DOI: 10.1111/j.1476-5381.2012.01883.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Recent studies detected the expression of proteins involved in cholinergic metabolism in airway epithelial cells, although the function of this non-neuronal cholinergic system is not known in detail. Thus, this study focused on the effect of luminal ACh as a regulator of transepithelial ion transport in epithelial cells. EXPERIMENTAL APPROACH RT-PCR experiments were performed using mouse tracheal epithelial cells for ChAT and organic cation transporter (OCT) transcripts. Components of tracheal airway lining fluid were analysed with desorption electrospray ionization (DESI) MS. Effects of nicotine on mouse tracheal epithelial ion transport were examined with Ussing-chamber experiments. KEY RESULTS Transcripts encoding ChAT and OCT1-3 were detected in mouse tracheal epithelial cells. The DESI experiments identified ACh in the airway lining fluid. Luminal ACh induced an immediate, dose-dependent increase in the transepithelial ion current (EC₅₀: 23.3 µM), characterized by a transient peak and sustained plateau current. This response was not affected by the Na⁺-channel inhibitor amiloride. The Cl⁻-channel inhibitor niflumic acid or the K⁺-channel blocker Ba²⁺ attenuated the ACh effect. The calcium ionophore A23187 mimicked the ACh effect. Luminal nicotine or muscarine increased the ion current. Experiments with receptor gene-deficient animals revealed the participation of muscarinic receptor subtypes M₁ and M₃. CONCLUSIONS AND IMPLICATIONS The presence of luminal ACh and activation of transepithelial ion currents by luminal ACh receptors identifies a novel non-neuronal cholinergic pathway in the airway lining fluid. This pathway could represent a novel drug target in the airways.
Collapse
Affiliation(s)
- Monika I Hollenhorst
- Institute of Animal Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hollenhorst MI, Lips KS, Kummer W, Fronius M. Nicotine-induced activation of soluble adenylyl cyclase participates in ion transport regulation in mouse tracheal epithelium. Life Sci 2012; 91:1009-12. [PMID: 22771693 DOI: 10.1016/j.lfs.2012.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 06/21/2012] [Accepted: 06/21/2012] [Indexed: 11/17/2022]
Abstract
AIMS Functional nicotinic acetylcholine receptors (nAChR) have been identified in airway epithelia and their location in the apical and basolateral membrane makes them targets for acetylcholine released from neuronal and non-neuronal sources. One function of nAChR in airway epithelia is their involvement in the regulation of transepithelial ion transport by activation of chloride and potassium channels. However, the mechanisms underlying this nicotine-induced activation of ion transport are not fully elucidated. Thus, the aim of this study was to investigate the involvement of adenylyl cyclases in the nicotine-induced ion current in mouse tracheal epithelium. MAIN METHODS To evaluate the nicotine-mediated changes of transepithelial ion transport processes electrophysiological Ussing chamber measurements were applied and nicotine-induced ion currents were recorded in the absence and presence of adenylyl cyclase inhibitors. KEY FINDINGS The ion current changes induced by nicotine (100 μM, apical) were not altered in the presence of high doses of atropine (25 μM, apical and basolateral), underlining the involvement of nAChR. Experiments with the transmembrane adenylyl cyclase inhibitor 2'5'-dideoxyadenosine (50 μM, apical and basolateral) and the soluble adenylyl cyclase inhibitor KH7 (10 μM, apical and basolateral) both reduced the nicotine-mediated ion current to a similar extent. Yet, a statistically significant reduction was obtained only in the experiments with KH7. SIGNIFICANCE This study indicates that nicotine binding to nAChR in mouse tracheal epithelium activates transepithelial ion transport involving adenylyl cyclase activity. This might be important for novel therapeutic strategies targeting epithelial ion transport mediated by the non-neuronal cholinergic system.
Collapse
Affiliation(s)
- Monika I Hollenhorst
- Institute of Animal Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | |
Collapse
|
21
|
Cooke JP. Imaging Vascular Nicotine Receptors. JACC Cardiovasc Imaging 2012; 5:537-9. [DOI: 10.1016/j.jcmg.2012.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
|