1
|
Lu J, Hu A, Yamaguchi T, Tabuchi M, Ikarashi Y, Kobayashi H. Shoseiryuto Promotes the Formation of a Tight-Junction Barrier in Cultured Human Bronchial Epithelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:4694243. [PMID: 37899908 PMCID: PMC10613115 DOI: 10.1155/2023/4694243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023]
Abstract
Shoseiryuto (SST) (Xiao-Qing-Long-Tang in Chinese) is an effective treatment for respiratory diseases, such as bronchial asthma and allergic rhinitis, but its effects on the bronchial tight-junction (TJ) barrier have not been clarified. This study aimed to evaluate the effect of SST on TJ-barrier function in human bronchial epithelial (16HBE) cells. The 16HBE cells were cultured in a culture medium without (control) and with SST in the absence and presence of bacterial endotoxin lipopolysaccharide (LPS) in transwell chambers. Transepithelial electrical resistance (TEER) and sodium fluorescein (Na-F) permeability of the cultured-cell monolayer were measured as TJ integrity markers. In addition, immunofluorescence staining and quantitative real-time polymerase chain reaction analysis were used to measure the expression of the TJ protein, occludin. SST increased TEER and decreased Na-F permeability of the 16HBE cell monolayers. Furthermore, SST increased both occludin mRNA and immunostained protein expressions, suggesting that SST has the effect of directly promoting epithelial TJ-barrier function. LPS decreased TEER, increased Na-F permeability, and decreased both occludin mRNA and protein expression. LPS-induced barrier dysfunction was completely blocked by pre/co- and posttreatment with SST. These results suggest that SST has protective and therapeutic effects against LPS-induced TJ-barrier damage. To our knowledge, these are the first results to demonstrate the protective and therapeutic effects conferred by TJ-barrier promoting, which may be a novel mechanism contributing to the efficacy of SST for respiratory diseases.
Collapse
Affiliation(s)
- Jingya Lu
- Department of Personalized Kampo Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Ailing Hu
- Department of Personalized Kampo Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Takuji Yamaguchi
- Department of Personalized Kampo Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Masahiro Tabuchi
- Department of Personalized Kampo Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yasushi Ikarashi
- Department of Personalized Kampo Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hiroyuki Kobayashi
- Department of Personalized Kampo Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
2
|
Molot J, Sears M, Marshall LM, Bray RI. Neurological susceptibility to environmental exposures: pathophysiological mechanisms in neurodegeneration and multiple chemical sensitivity. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:509-530. [PMID: 34529912 DOI: 10.1515/reveh-2021-0043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/13/2021] [Indexed: 05/23/2023]
Abstract
The World Health Organization lists air pollution as one of the top five risks for developing chronic non-communicable disease, joining tobacco use, harmful use of alcohol, unhealthy diets and physical inactivity. This review focuses on how host defense mechanisms against adverse airborne exposures relate to the probable interacting and overlapping pathophysiological features of neurodegeneration and multiple chemical sensitivity. Significant long-term airborne exposures can contribute to oxidative stress, systemic inflammation, transient receptor subfamily vanilloid 1 (TRPV1) and subfamily ankyrin 1 (TRPA1) upregulation and sensitization, with impacts on olfactory and trigeminal nerve function, and eventual loss of brain mass. The potential for neurologic dysfunction, including decreased cognition, chronic pain and central sensitization related to airborne contaminants, can be magnified by genetic polymorphisms that result in less effective detoxification. Onset of neurodegenerative disorders is subtle, with early loss of brain mass and loss of sense of smell. Onset of MCS may be gradual following long-term low dose airborne exposures, or acute following a recognizable exposure. Upregulation of chemosensitive TRPV1 and TRPA1 polymodal receptors has been observed in patients with neurodegeneration, and chemically sensitive individuals with asthma, migraine and MCS. In people with chemical sensitivity, these receptors are also sensitized, which is defined as a reduction in the threshold and an increase in the magnitude of a response to noxious stimulation. There is likely damage to the olfactory system in neurodegeneration and trigeminal nerve hypersensitivity in MCS, with different effects on olfactory processing. The associations of low vitamin D levels and protein kinase activity seen in neurodegeneration have not been studied in MCS. Table 2 presents a summary of neurodegeneration and MCS, comparing 16 distinctive genetic, pathophysiological and clinical features associated with air pollution exposures. There is significant overlap, suggesting potential comorbidity. Canadian Health Measures Survey data indicates an overlap between neurodegeneration and MCS (p < 0.05) that suggests comorbidity, but the extent of increased susceptibility to the other condition is not established. Nevertheless, the pathways to the development of these conditions likely involve TRPV1 and TRPA1 receptors, and so it is hypothesized that manifestation of neurodegeneration and/or MCS and possibly why there is divergence may be influenced by polymorphisms of these receptors, among other factors.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, North York, ON, Canada
| | | | | | - Riina I Bray
- Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Chen Y, Zhang W, Xin L, Wang Z, Zheng M, Vijayalakshmi A. Modulatory apoptotic effects of sinomenine on Mycoplasma pneumonia through the attenuation of inflammation via ERK/JNK/NF-κB signaling pathway. Arch Microbiol 2022; 204:441. [PMID: 35773566 DOI: 10.1007/s00203-022-03039-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Mycoplasma pneumoniae (MPP) induced pneumonia is a common disease of children. Sinomenine (SIN) is an isoquinoline mainly sequestered from Sinomenium acutum. It is a promising drug for treating arthritis, lung, colon, liver and gastric cancer. Hence, the present study investigated the role and mechanism of SIN treatment in MPP induced pneumonia in experimental in-vivo mice model. The BALB/c male mice were separated into four groups (n = 6 mice/group): normal, MPP, MPP + SIN (20 mg/kg bw), and SIN (20 mg/kg bw) alone. Results were expressed as mean ± SD. Data were analyzed using one way Analysis of Variance (ANOVA) with the Dunnett's post hoc test using SPSS v 18.0. P value < 0.05 was considered significant. The total protein, cell count, inflammatory cytokines, MP-IgM, Monocyte chemo attractant protein-1 (MCP-1), and MP-DNA were measured. The protein expressions of Bax/Bcl-2, ERK, JNK, NF-κB were analyzed and histopathology of lungs was examined. SIN treatment significantly (p < 0.05) reduced the total proteins, cell counts in BALF, inflammatory cytokines, MP-IgM, MCP-1, MP-DNA and reversed the histological alterations. SIN attenuated the apoptotic pathway through the modulation of Bax/Bcl-2 expression. SIN alleviated pulmonary inflammatory mediators and apoptosis in MPP-infected mice via suppression of ERK/JNK/NF-κB signaling. SIN administration diminished inflammation and lung fibrosis by inhibiting apoptosis in MPP mice. Hence, SIN is a potential natural protective remedy for MPP.
Collapse
Affiliation(s)
- Yao Chen
- Department of Respiratory, Xi'an Children's Hospital, Xi'an City, 710000, China
| | - Wen Zhang
- Department of Respiratory, Xi'an Children's Hospital, Xi'an City, 710000, China
| | - Lihong Xin
- Department of Respiratory, Xi'an Children's Hospital, Xi'an City, 710000, China
| | - Zhen Wang
- Department of Respiratory, Xi'an Children's Hospital, Xi'an City, 710000, China
| | - Mao Zheng
- Department of Emergency, Xi'an Children's Hospital, Xi'an City, 710000, China.
| | - Annamalai Vijayalakshmi
- Department of Biochemistry, Rabiammal Ahamed Maideen College for Women, Thiruvarur, Tamil Nadu, 610001, India
| |
Collapse
|
4
|
Repeated exposure of bronchial epithelial cells to particular matter increases allergen-induced cytokine release and permeability. Cytokine 2022; 154:155878. [DOI: 10.1016/j.cyto.2022.155878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/03/2022] [Indexed: 11/22/2022]
|
5
|
Hyun J, Ryu B, Jiang YF, Je JG, Yang HW, Yang F, Jeon YJ. Detrimental impact of fine dust on zebrafish: Investigating a protective agent against ocular-damage using in vitro and in vivo models. CHEMOSPHERE 2022; 293:133602. [PMID: 35032516 DOI: 10.1016/j.chemosphere.2022.133602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Pollution caused by fine dust is becoming a global problem in the aquatic environment. Many studies have investigated the hazards that fine dust may pose to terrestrial organisms; however, information on the effects on aquatic environments remain limited. In this study, the physicochemical characteristics of the fine dust associated with the captured powder or liquid state were compared using scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). Raw fine dust (RFD), in the captured powder state, was suspended in water (SFD), and the elemental composition, morphology, and size distribution of both were analyzed. Zebrafish were used as a model to study the effects of SFD-exposure on aquatic organisms. A fatal malformation was observed in the integuments of zebrafish exposed to SFD, specifically in the exterior and interior eye tissues. Furthermore, the exposure of SFD to Tg (flk; EGFP) zebrafish remarkably increased ocular vessel diameter expansion along with blood flow velocity. Regarding vessel diameter expansion, EA.hy926 cells exposed to SFD were adversely affected, with a significant increase in cell migration and capillary-like structure formation, which are angiogenic markers. The SFD-induced angiogenesis in vitro and in vivo was dramatically restored to normal via α/β-adenosine isolated from the anti-angiogenic brown algae Ishige okamurae extract. Taken together, the current study presents solid evidence of the altered physicochemical characteristics of SFD compared to RFD, and the detrimental impact of SFD in an aquatic in vivo zebrafish model. In addition, the protective effect of α/β-adenosine, a marine natural product, on SFD-induced angiogenesis suggests that it can be used as an agent to reduce the adverse effects of SFD on aquatic animals.
Collapse
Affiliation(s)
- Jimin Hyun
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Bomi Ryu
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Yun-Fei Jiang
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea; School of Food Engineering, Jilin Agriculture Science and Technology University, Jilin, 132101, China
| | - Jun-Geon Je
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hye-Won Yang
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Fengqi Yang
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
6
|
Ko R, Hayashi M, Tanaka M, Okuda T, Nishita-Hara C, Ozaki H, Uchio E. Effects of ambient particulate matter on a reconstructed human corneal epithelium model. Sci Rep 2021; 11:3417. [PMID: 33564109 PMCID: PMC7873058 DOI: 10.1038/s41598-021-82971-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/25/2021] [Indexed: 11/25/2022] Open
Abstract
We evaluated the effects of ambient particulate matter (PM) on the corneal epithelium using a reconstructed human corneal epithelium (HCE) model. We collected two PM size fractions [aerodynamic diameter smaller than 2.4 µm: PM0.3–2.4 and larger than 2.4 µm: PM>2.4] and exposed these tissues to PM concentrations of 1, 10, and 100 µg/mL for 24 h. After exposure, cell viability and interleukin (IL) IL-6 and IL-8 levels were determined, and haematoxylin and eosin and immunofluorescence staining of the zonula occludens-1 (ZO-1) were performed on tissue sections. In addition, the effects of a certified reference material of urban aerosols (UA; 100 µg/mL) were also examined as a reference. The viability of cells exposed to 100 μg/mL UA and PM>2.4 decreased to 76.2% ± 7.4 and 75.4% ± 16.1, respectively, whereas PM0.3–2.4 exposure had a limited effect on cell viability. These particles did not increase IL-6 and IL-8 levels significantly even though cell viability was decreased in 100 μg/mL UA and PM>2.4. ZO-1 expression was reduced in a dose-dependent manner in all groups. Reconstructed HCE could be used as an in vitro model to study the effects of environmental PM exposure on ocular surface cell viability and inflammation.
Collapse
Affiliation(s)
- Ryota Ko
- Department of Ophthalmology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Masahiko Hayashi
- Department of Earth System Science, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Miho Tanaka
- Kobayashi Pharmaceutical Co., Ltd., 1-30-3, Toyokawa, Ibaraki, Osaka, 567-0057, Japan
| | - Tomoaki Okuda
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, 223-8522, Japan
| | - Chiharu Nishita-Hara
- Fukuoka Institute for Atmospheric Environment and Health, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Hiroaki Ozaki
- Department of Ophthalmology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Eiichi Uchio
- Department of Ophthalmology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
7
|
Stapleton EM, Kizhakke Puliyakote A, Metwali N, Jeronimo M, Thornell IM, Manges RB, Bilas M, Kamal Batcha MA, Kumaravel MS, Durairaj K, Karuppusamy K, Kathiresan G, Rahim SA, Shanmugam K, Thorne PS, Peters TM, Hoffman EA, Comellas AP. Lung function of primary cooks using LPG or biomass and the effect of particulate matter on airway epithelial barrier integrity. ENVIRONMENTAL RESEARCH 2020; 189:109888. [PMID: 32979995 PMCID: PMC7525042 DOI: 10.1016/j.envres.2020.109888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Cooks exposed to biomass fuel experience increased risk of respiratory disease and mortality. We sought to characterize lung function and environmental exposures of primary cooking women using two fuel-types in southeastern India, as well as to investigate the effect of particulate matter (PM) from kitchens on human airway epithelial (HAE) cells in vitro. METHODS We assessed pre- and post-bronchodilator lung function on 25 primary female cooks using wood biomass or liquified petroleum gas (LPG), and quantified exposures from 34 kitchens (PM2.5, PM < 40 μm, black carbon, endotoxin, and PM metal and bacterial content). We then challenged HAE cells with PM, assessing its cytotoxicity to small-airway cells (A549) and its effect on: transepithelial conductance and macromolecule permeability (NuLi cells), and antimicrobial activity (using airway surface liquid, ASL, from primary HAE cells). RESULTS Lung function was impaired in cooks using both fuel-types. 60% of participants in both fuel-types had respiratory restriction (post bronchodilator FEV1/FVC>90). The remaining 40% in the LPG group had normal spirometry (post FEV1/FVC = 80-90), while only 10% of participants in the biomass group had normal spirometry, and the remaining biomass cooks (30%) had respiratory obstruction (post FEV1/FVC<80). Significant differences were found in environmental parameters, with biomass kitchens containing greater PM2.5, black carbon, zirconium, arsenic, iron, vanadium, and endotoxin concentrations. LPG kitchens tended to have more bacteria (p = 0.14), and LPG kitchen PM had greater sulphur concentrations (p = 0.02). In vitro, PM induced cytotoxicity in HAE A549 cells in a dose-dependent manner, however the effect was minimal and there were no differences between fuel-types. PM from homes of participants with a restrictive physiology increased electrical conductance of NuLi HAE cells (p = 0.06) and decreased macromolar permeability (p ≤ 0.05), while PM from homes of those with respiratory obstruction tended to increase electrical conductance (p = 0.20) and permeability (p = 0.07). PM from homes of participants with normal spirometry did not affect conductance or permeability. PM from all homes tended to inhibit antimicrobial activity of primary HAE cell airway surface liquid (p = 0.06). CONCLUSIONS Biomass cooks had airway obstruction, and significantly greater concentrations of kitchen environmental contaminants than LPG kitchens. PM from homes of participants with respiratory restriction and obstruction altered airway cell barrier function, elucidating mechanisms potentially responsible for respiratory phenotypes observed in biomass cooks.
Collapse
Affiliation(s)
- Emma M Stapleton
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States.
| | | | - Nervana Metwali
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, United States.
| | - Matthew Jeronimo
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, V6T1Z3, Canada.
| | - Ian M Thornell
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States.
| | - Robert B Manges
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States.
| | - Monalisa Bilas
- Department of Radiology, University of Iowa, Iowa City, IA, United States.
| | | | | | - Kumar Durairaj
- Centre for Research and Development, Ponnaiah Ramajayam Institute of Science and Technology, Thanjavur, Tamil Nadu, India.
| | - Kesavan Karuppusamy
- Department of Physics, Periyar Maniammai Institute of Science and Technology, Thanjavur, Tamil Nadu, India
| | - Geetha Kathiresan
- Department of Electronics and Communication Engineering, Periyar Maniammai Institute of Science and Technology, Thanjavur, Tamil Nadu, India.
| | - Sirajunnisa Abdul Rahim
- Department of Chemistry, Periyar Maniammai Institute of Science and Technology, Thanjavur, Tamil Nadu, India.
| | - Kumaran Shanmugam
- Department of Biotechnology, Periyar Maniammai Institute of Science and Technology, Thanjavur, Tamil Nadu, India.
| | - Peter S Thorne
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, United States.
| | - Thomas M Peters
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, United States.
| | - Eric A Hoffman
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Department of Radiology, University of Iowa, Iowa City, IA, United States; Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States.
| | - Alejandro P Comellas
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
8
|
Cao T, Cao Y, Wang H, Wang P, Wang X, Niu H, Shao C. The Effect of Exposure to Bisphenol A on Spermatozoon and the Expression of Tight Junction Protein Occludin in Male Mice. Dose Response 2020; 18:1559325820926745. [PMID: 32523488 PMCID: PMC7235676 DOI: 10.1177/1559325820926745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 01/24/2023] Open
Abstract
Although bisphenol A (BPA) has been associated with impaired spermatogenesis, the mechanisms remain unclear. Tight junction occludin plays important roles in spermatogenesis. The objective of the present study was to explore the effects of BPA exposure in adolescent mice. Male mice were orally treated with low-dose (0.05 mg/kg/d), middle-dose (5.0 mg/kg/d), or high-dose (50 mg/kg/d) BPA in corn oil from postnatal day (PND) 35 to 65. Animals were killed on PND 65 and PND 125. On PND 65, the sperm count, sperm motility, and the expression of occludin showed a dose-related decline. On PND 125, the sperm count, sperm motility, and the expression of occludin were in recovery. However, there remained significant decreases in these parameters in the 50 mg/kg/d group on PND 125 compared with the control. The dose-related effects on the measured parameters and occludin expression suggest an early suppressive or damaging effect on the blood–testis barrier followed by recovery after dosing ceased. At a BPA dose of 50 mg/kg/d, recovery did not occur, suggesting that higher doses of BPA may cause irreversible damage to reproduction in male mice.
Collapse
Affiliation(s)
- Tingshuai Cao
- Department of Urology, Jinan Central Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Yuanchao Cao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Hongqiang Wang
- Department of Andrology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Peitao Wang
- Department of Andrology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xinsheng Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Haitao Niu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Cuihua Shao
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
9
|
IRF3 and IRF7 contribute to diesel exhaust particles‐induced pulmonary inflammation by mediating mTORC1 activation and restraining autophagy in mice. Eur J Immunol 2020; 50:1142-1153. [DOI: 10.1002/eji.201948415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/10/2020] [Accepted: 03/03/2020] [Indexed: 01/29/2023]
|
10
|
Kim N, Han DH, Suh MW, Lee JH, Oh SH, Park MK. Effect of lipopolysaccharide on diesel exhaust particle-induced junctional dysfunction in primary human nasal epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:736-742. [PMID: 30849591 DOI: 10.1016/j.envpol.2019.02.082] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/11/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVES Tight junctions (TJs) in the epithelium play a critical role in the formation of a paracellular epithelial barrier against the extracellular environment. Diesel exhaust particles (DEPs) disrupt the epithelial barrier. The aim of this study was to investigate how DEPs disrupt the epithelial barrier and whether Toll-like receptor 4 (TLR4) is involved in DEP-induced epithelial barrier dysfunction in primary human nasal epithelial (PHNE) cells. METHODS PHNE cells were cultured at an air-liquid interface (ALI) to create a fully differentiated in vivo-like model of the epithelium and then exposed to DEPs (particulate matter <4 μm) or lipopolysaccharide (LPS) alone (mono-exposure) and DEPs plus LPS (co-exposure) at the apical side of the PHNE. TJ formation and integrity were monitored by measuring transepithelial electric resistance (TEER) and fluorescently labeled dextran permeability. The expression of TJ proteins was assessed by confocal microscopy and a biochemical assay. RESULTS PHNE cell viability was reduced in a time- and dose-dependent manner following DEP exposure. TEER was significantly decreased at ALI day 20 but not at day 12 following DEP exposure. The dextran permeability of the PHNE was significantly increased at both ALI day 12 and day 20 following DEP exposure. The increased dextran permeability recovered to that of the control following co-exposure to DEPs plus LPS. In the presence of DEPs, the membrane expression of myosin light chain kinase (MLCK) was dramatically increased, and the expression of occludin, ZO1, claudin-1, and E-cadherin was significantly decreased. Co-exposure to DEPs plus LPS significantly reduced membrane MLCK, claudin-1, and E-cadherin but increased occludin and ZO1 expression at ALI day 12. CONCLUSION The activation of TLR4 by LPS inhibits MLCK trafficking to the plasma membrane, and this increased during DEP exposure, resulting in increased occludin expression at the plasma membrane that partially recovered TJ barrier dysfunction following DEP exposure.
Collapse
Affiliation(s)
- Nahyun Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Doo Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Myung-Whan Suh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Seung-Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Fukuoka A, Yoshimoto T. Barrier dysfunction in the nasal allergy. Allergol Int 2018; 67:18-23. [PMID: 29150353 DOI: 10.1016/j.alit.2017.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022] Open
Abstract
Epithelial cells form the first physiological barrier against invasion by pathogens and the infiltration of allergens. Tight junctions (TJ), a cell-cell junctional complex located on the apical side of epithelial cells, have a critical role in the maintenance of epithelial barrier function. Impaired TJ structures are observed in patients with asthma, atopic dermatitis and nasal allergy; therefore, the dysfunction of epithelial barriers might be involved in the initiation or progression of allergic diseases. Protease-containing allergens and environmental pollutants enhance paracellular transport in epithelial cells through disruption of epithelial barrier function. This suggests that the disruption of TJ leads to the promotion of allergen delivery into the subepithelia, resulting in the progression of allergic diseases. Thus, protection of the epithelial barrier function might prevent or inhibit the development or exacerbation of allergic diseases. Recently, we reported that diesel exhaust particles (DEP), the main component of particulate patter 2.5, exacerbated allergic rhinitis (AR) in a mouse model through TJ disruption. In addition, we revealed that the oxidative stress-mediated pathway is involved in the effects caused by DEP and that nasal treatment with a reactive oxygen species (ROS) scavenger suppressed DEP-induced TJ disruption and exacerbation of AR. In this review, we focus on the relationship between TJ disruption and allergic disease. Furthermore, we discuss our recent findings regarding TJ disruption and the exacerbation of AR.
Collapse
|
12
|
Buonfiglio LGV, Bagegni M, Borcherding JA, Sieren JC, Caraballo JC, Reger A, Zabner J, Li X, Comellas AP. Protein Kinase Cζ Inhibitor Promotes Resolution of Bleomycin-Induced Acute Lung Injury. Am J Respir Cell Mol Biol 2017; 55:869-877. [PMID: 27486964 DOI: 10.1165/rcmb.2015-0006oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Protein kinase Cζ (PKCζ) is highly expressed in the lung, where it plays several regulating roles in the pathogenesis of acute lung injury (ALI). Proliferation and differentiation of integrin β4+ distal lung epithelial progenitor cells seem to play a key role in proper lung regeneration. We investigated the effects of a myristoylated PKCζ inhibitor (PKCζi) in a murine model of bleomycin-induced ALI. After intratracheal injury, we treated mice three times a week with PKCζi or its vehicle, DMSO. We found that mice injured with bleomycin and then treated with PKCζi for one week showed decreased activation of PKCζ, improved lung compliance, and decreased lung protein permeability compared to injured mice treated with DMSO. Mice treated continuously with PKCζi for 6 weeks showed reduced evidence of lung fibrosis by computed tomographic images, decreased lung collagen deposition, and decreased active transforming growth factor-β in the bronchoalveolar lavage fluid. In addition, we found an increased number of lung β4+ cells compared to DMSO at Week 6. Therefore, we grew isolated integrin β4+ lung progenitor cells in the presence of PKCζi or DMSO and found that β4+ cells treated with PKCζi proliferated more in vitro compared to DMSO. We conclude that the use of a PKCζi promotes resolution of lung fibrosis in a bleomycin ALI model and increases the number of β4+ progenitor cells with regenerative potential in the lung.
Collapse
Affiliation(s)
- Luis G Vargas Buonfiglio
- 1 Internal Medicine Department, Division of Pulmonary, Critical Care, and Occupational Medicine, and
| | - Mosaab Bagegni
- 1 Internal Medicine Department, Division of Pulmonary, Critical Care, and Occupational Medicine, and
| | - Jennifer A Borcherding
- 1 Internal Medicine Department, Division of Pulmonary, Critical Care, and Occupational Medicine, and
| | | | - Juan C Caraballo
- 1 Internal Medicine Department, Division of Pulmonary, Critical Care, and Occupational Medicine, and
| | - Andrew Reger
- 1 Internal Medicine Department, Division of Pulmonary, Critical Care, and Occupational Medicine, and
| | - Joseph Zabner
- 1 Internal Medicine Department, Division of Pulmonary, Critical Care, and Occupational Medicine, and
| | - Xiaopeng Li
- 1 Internal Medicine Department, Division of Pulmonary, Critical Care, and Occupational Medicine, and
| | - Alejandro P Comellas
- 1 Internal Medicine Department, Division of Pulmonary, Critical Care, and Occupational Medicine, and
| |
Collapse
|
13
|
Abdel-Halim M, Darwish SS, ElHady AK, Hoppstädter J, Abadi AH, Hartmann RW, Kiemer AK, Engel M. Pharmacological inhibition of protein kinase C (PKC)ζ downregulates the expression of cytokines involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). Eur J Pharm Sci 2016; 93:405-9. [DOI: 10.1016/j.ejps.2016.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/20/2016] [Accepted: 08/07/2016] [Indexed: 10/21/2022]
|
14
|
Fukuoka A, Matsushita K, Morikawa T, Takano H, Yoshimoto T. Diesel exhaust particles exacerbate allergic rhinitis in mice by disrupting the nasal epithelial barrier. Clin Exp Allergy 2015. [DOI: 10.1111/cea.12597] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- A. Fukuoka
- Laboratory of Allergic Diseases; Institute for Advanced Medical Sciences; Hyogo College of Medicine; Nishinomiya Hyogo Japan
| | - K. Matsushita
- Laboratory of Allergic Diseases; Institute for Advanced Medical Sciences; Hyogo College of Medicine; Nishinomiya Hyogo Japan
| | - T. Morikawa
- Laboratory of Allergic Diseases; Institute for Advanced Medical Sciences; Hyogo College of Medicine; Nishinomiya Hyogo Japan
- Department of Otorhinolaryngology-Head and Neck Surgery; Faculty of Medical Science; University of Fukui; Fukui Japan
| | - H. Takano
- Environmental Health Division; Department of Environmental Engineering; Graduate School of Engineering; Kyoto University; Kyoto Japan
| | - T. Yoshimoto
- Laboratory of Allergic Diseases; Institute for Advanced Medical Sciences; Hyogo College of Medicine; Nishinomiya Hyogo Japan
- Department of Immunology; Hyogo College of Medicine; Nishinomiya Hyogo Japan
| |
Collapse
|
15
|
Li N, Buglak N. Convergence of air pollutant-induced redox-sensitive signals in the dendritic cells contributes to asthma pathogenesis. Toxicol Lett 2015; 237:55-60. [PMID: 26026960 DOI: 10.1016/j.toxlet.2015.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/12/2015] [Accepted: 05/21/2015] [Indexed: 11/16/2022]
Abstract
Exposure to airborne particulate matter (PM) is a major risk factor for allergic airway inflammation such as asthma. Many of the PM components (i.e., polycyclic aromatic hydrocarbons and metals) are redox-active and capable of inducing cellular oxidative stress and injuries including inflammation and cell death. Airway epithelial cells and antigen-presenting dendritic cells (DC) are the major and direct targets of inhaled PM. The epithelial cells can further enhance the DC response to allergen and PM through several immune regulatory cytokines including thymic stromal lymphopoietin (TSLP), IL-33, and IL-25. Among these cytokines TSLP is particularly relevant to the mechanisms by which particulate air pollutants contribute to asthma pathogenesis. Studies have found that TSLP released by PM-exposed human airway epithelial cells could polarize the DC towards a T-helper 2 immune response, which is one of the key immunological mechanisms in asthma pathogenesis. The convergence of regulatory signals generated by PM-induced oxidative stress in DC and the interactions among them may be one of the major mechanisms that are specifically related to the contribution of PM towards asthma pathogenesis.
Collapse
Affiliation(s)
- Ning Li
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 1129 Farm Lane, East Lansing, MI, USA.
| | - Nicholas Buglak
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 1129 Farm Lane, East Lansing, MI, USA
| |
Collapse
|
16
|
Sodhi CP, Jia H, Yamaguchi Y, Lu P, Good M, Egan C, Ozolek J, Zhu X, Billiar TR, Hackam DJ. Intestinal Epithelial TLR-4 Activation Is Required for the Development of Acute Lung Injury after Trauma/Hemorrhagic Shock via the Release of HMGB1 from the Gut. THE JOURNAL OF IMMUNOLOGY 2015; 194:4931-9. [PMID: 25862813 DOI: 10.4049/jimmunol.1402490] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/13/2015] [Indexed: 12/11/2022]
Abstract
The mechanisms that lead to the development of remote lung injury after trauma remain unknown, although a central role for the gut in the induction of lung injury has been postulated. We hypothesized that the development of remote lung injury after trauma/hemorrhagic shock requires activation of TLR4 in the intestinal epithelium, and we sought to determine the mechanisms involved. We show that trauma/hemorrhagic shock caused lung injury in wild-type mice, but not in mice that lack TLR4 in the intestinal epithelium, confirming the importance of intestinal TLR4 activation in the process. Activation of intestinal TLR4 after trauma led to increased endoplasmic reticulum (ER) stress, enterocyte apoptosis, and the release of circulating HMGB1, whereas inhibition of ER stress attenuated apoptosis, reduced circulating HMGB1, and decreased lung injury severity. Neutralization of circulating HMGB1 led to reduced severity of lung injury after trauma, and mice that lack HMGB1 in the intestinal epithelium were protected from the development of lung injury, confirming the importance of the intestine as the source of HMGB1, whose release of HMGB1 induced a rapid protein kinase C ζ-mediated internalization of surface tight junctions in the pulmonary epithelium. Strikingly, the use of a novel small-molecule TLR4 inhibitor reduced intestinal ER stress, decreased circulating HMGB1, and preserved lung architecture after trauma. Thus, intestinal epithelial TLR4 activation leads to HMGB1 release from the gut and the development of lung injury, whereas strategies that block upstream TLR4 signaling may offer pulmonary protective strategies after trauma.
Collapse
Affiliation(s)
- Chhinder P Sodhi
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD 21287
| | - Hongpeng Jia
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD 21287
| | - Yukihiro Yamaguchi
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD 21287
| | - Peng Lu
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD 21287
| | - Misty Good
- Division of Newborn Medicine, Children's Hospital of Pittsburgh, Pittsburgh, PA 15213; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Charlotte Egan
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD 21287
| | - John Ozolek
- Division of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Xiaorong Zhu
- Department of Medicine, Gastroenterology, Hepatology and Nutrition, University of Chicago, Chicago, IL 60637; and
| | - Timothy R Billiar
- Division of Trauma and General Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - David J Hackam
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD 21287;
| |
Collapse
|
17
|
Manners S, Alam R, Schwartz DA, Gorska MM. A mouse model links asthma susceptibility to prenatal exposure to diesel exhaust. J Allergy Clin Immunol 2014; 134:63-72. [PMID: 24365139 PMCID: PMC4065237 DOI: 10.1016/j.jaci.2013.10.047] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/30/2013] [Accepted: 10/14/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND Most asthma begins in the first years of life. This early onset cannot be attributed merely to genetic factors because the prevalence of asthma is increasing. Epidemiologic studies have indicated roles for prenatal and early childhood exposures, including exposure to diesel exhaust. However, little is known about the mechanisms. This is largely due to a paucity of animal models. OBJECTIVE We aimed to develop a mouse model of asthma susceptibility through prenatal exposure to diesel exhaust. METHODS Pregnant C57BL/6 female mice were given repeated intranasal applications of diesel exhaust particles (DEPs) or PBS. Offspring underwent suboptimal immunization and challenge with ovalbumin (OVA) or received PBS. Pups were examined for features of asthma; lung and liver tissues were analyzed for transcription of DEP-regulated genes. RESULTS Offspring of mice exposed to DEPs were hypersensitive to OVA, as indicated by airway inflammation and hyperresponsiveness, increased serum OVA-specific IgE levels, and increased pulmonary and systemic TH2 and TH17 cytokine levels. These cytokines were primarily produced by natural killer (NK) cells. Antibody-mediated depletion of NK cells prevented airway inflammation. Asthma susceptibility was associated with increased transcription of genes known to be specifically regulated by the aryl hydrocarbon receptor and oxidative stress. Features of asthma were either marginal or absent in OVA-treated pups of PBS-exposed mice. CONCLUSION We created a mouse model that linked maternal exposure to DEPs with asthma susceptibility in offspring. Development of asthma was dependent on NK cells and associated with increased transcription from aryl hydrocarbon receptor- and oxidative stress-regulated genes.
Collapse
Affiliation(s)
- Sarah Manners
- Department of Medicine, Division of Allergy and Clinical Immunology, National Jewish Health, Denver, Colo
| | - Rafeul Alam
- Department of Medicine, Division of Allergy and Clinical Immunology, National Jewish Health, Denver, Colo; Department of Medicine, Division of Allergy and Clinical Immunology, University of Colorado Denver, Aurora, Colo
| | - David A Schwartz
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colo
| | - Magdalena M Gorska
- Department of Medicine, Division of Allergy and Clinical Immunology, National Jewish Health, Denver, Colo; Department of Medicine, Division of Allergy and Clinical Immunology, University of Colorado Denver, Aurora, Colo.
| |
Collapse
|
18
|
Monick MM, Baltrusaitis J, Powers LS, Borcherding JA, Caraballo JC, Mudunkotuwa I, Peate DW, Walters K, Thompson JM, Grassian VH, Gudmundsson G, Comellas AP. Effects of Eyjafjallajökull volcanic ash on innate immune system responses and bacterial growth in vitro. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:691-8. [PMID: 23478268 PMCID: PMC3672917 DOI: 10.1289/ehp.1206004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 03/07/2013] [Indexed: 05/24/2023]
Abstract
BACKGROUND On 20 March 2010, the Icelandic volcano Eyjafjallajökull erupted for the first time in 190 years. Despite many epidemiological reports showing effects of volcanic ash on the respiratory system, there are limited data evaluating cellular mechanisms involved in the response to ash. Epidemiological studies have observed an increase in respiratory infections in subjects and populations exposed to volcanic eruptions. METHODS We physicochemically characterized volcanic ash, finding various sizes of particles, as well as the presence of several transition metals, including iron. We examined the effect of Eyjafjallajökull ash on primary rat alveolar epithelial cells and human airway epithelial cells (20-100 µg/cm(2)), primary rat and human alveolar macrophages (5-20 µg/cm(2)), and Pseudomonas aeruginosa (PAO1) growth (3 µg/104 bacteria). RESULTS Volcanic ash had minimal effect on alveolar and airway epithelial cell integrity. In alveolar macrophages, volcanic ash disrupted pathogen-killing and inflammatory responses. In in vitro bacterial growth models, volcanic ash increased bacterial replication and decreased bacterial killing by antimicrobial peptides. CONCLUSIONS These results provide potential biological plausibility for epidemiological data that show an association between air pollution exposure and the development of respiratory infections. These data suggest that volcanic ash exposure, while not seriously compromising lung cell function, may be able to impair innate immunity responses in exposed individuals.
Collapse
Affiliation(s)
- Martha M Monick
- Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|