1
|
Lew SQ, Chong SY, Lau GW. Modulation of pulmonary immune functions by the Pseudomonas aeruginosa secondary metabolite pyocyanin. Front Immunol 2025; 16:1550724. [PMID: 40196115 PMCID: PMC11973339 DOI: 10.3389/fimmu.2025.1550724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Pseudomonas aeruginosa is a prevalent opportunistic Gram-negative bacterial pathogen. One of its key virulence factors is pyocyanin, a redox-active phenazine secondary metabolite that plays a crucial role in the establishment and persistence of chronic infections. This review provides a synopsis of the mechanisms through which pyocyanin exacerbates pulmonary infections. Pyocyanin induces oxidative stress by generating reactive oxygen and nitrogen species which disrupt essential defense mechanisms in respiratory epithelium. Pyocyanin increases airway barrier permeability and facilitates bacterial invasion. Pyocyanin also impairs mucociliary clearance by damaging ciliary function, resulting in mucus accumulation and airway obstruction. Furthermore, it modulates immune responses by promoting the production of pro-inflammatory cytokines, accelerating neutrophil apoptosis, and inducing excessive neutrophil extracellular trap formation, which exacerbates lung tissue damage. Additionally, pyocyanin disrupts macrophage phagocytic function, hindering the clearance of apoptotic cells and perpetuating inflammation. It also triggers mucus hypersecretion by inactivating the transcription factor FOXA2 and enhancing the IL-4/IL-13-STAT6 and EGFR-AKT/ERK1/2 signaling pathways, leading to goblet cell metaplasia and increased mucin production. Insights into the role of pyocyanin in P. aeruginosa infections may reveal potential therapeutic strategies to alleviate the severity of infections in chronic respiratory diseases including cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
| | | | - Gee W. Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
2
|
Rapp K, Wei S, Roberts M, Yao S, Fei SS, Gao L, Ray K, Wang A, Godiah R, Han L. Transcriptional profiling of mucus production in rhesus macaque endocervical cells under hormonal regulation†. Biol Reprod 2024; 111:1045-1055. [PMID: 39115371 DOI: 10.1093/biolre/ioae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE Endocervical mucus production is a key regulator of fertility throughout the menstrual cycle. With cycle-dependent variability in mucus quality and quantity, cervical mucus can either facilitate or block sperm ascension into the upper female reproductive tract. This study seeks to identify genes involved in the hormonal regulation of mucus production, modification, and regulation through profiling the transcriptome of endocervical cells from the non-human primate, the rhesus macaque (Macaca mulatta). INTERVENTION We treated differentiated primary endocervical cultures with estradiol (E2) and progesterone (P4) to mimic peri-ovulatory and luteal-phase hormonal changes. Using RNA-sequencing, we identified differential expression of gene pathways and mucus-producing and mucus-modifying genes in cells treated with E2 compared to hormone-free conditions and E2 compared to E2-primed cells treated with P4. MAIN OUTCOME MEASURES We pursued differential gene expression analysis on RNA-sequenced cells. Sequence validation was done using quantitative PCR (qPCR). RESULTS Our study identified 158 genes that show significant differential expression in E2-only conditions compared to hormone-free control and 250 genes that show significant differential expression in P4-treated conditions compared to E2-only conditions. From this list, we found hormone-induced changes in transcriptional profiles for genes across several classes of mucus production, including ion channels and enzymes involved in post-translational mucin modification that have not previously been described as hormonally regulated. CONCLUSION Our study is the first to use an in vitro culture system to create an epithelial cell-specific transcriptome of the endocervix. As a result, our study identifies new genes and pathways altered by sex steroids in cervical mucus production. SUMMARY SENTENCE In vitro hormonal regulation of mucus production, modification, and secretion was profiled using primary epithelial endocervical cells.
Collapse
Affiliation(s)
- Katrina Rapp
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, OR, USA
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Shuhao Wei
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, OR, USA
| | - Mackenzie Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, OR, USA
| | - Shan Yao
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, OR, USA
| | - Suzanne S Fei
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Portland, OR, USA
| | - Lina Gao
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Portland, OR, USA
| | - Karina Ray
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Portland, OR, USA
| | - Alexander Wang
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Portland, OR, USA
| | - Rachelle Godiah
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, OR, USA
| | - Leo Han
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, OR, USA
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
3
|
Brand M, Ritzmann F, Kattler K, Milasius D, Yao Y, Herr C, Kirsch SH, Müller R, Yildiz D, Bals R, Beisswenger C. Biochemical and transcriptomic evaluation of a 3D lung organoid platform for pre-clinical testing of active substances targeting senescence. Respir Res 2024; 25:3. [PMID: 38172839 PMCID: PMC10765931 DOI: 10.1186/s12931-023-02636-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Chronic lung diseases such as chronic obstructive pulmonary disease and cystic fibrosis are incurable. Epithelial senescence, a state of dysfunctional cell cycle arrest, contributes to the progression of such diseases. Therefore, lung epithelial cells are a valuable target for therapeutic intervention. Here, we present a 3D airway lung organoid platform for the preclinical testing of active substances with regard to senescence, toxicity, and inflammation under standardized conditions in a 96 well format. Senescence was induced with doxorubicin and measured by activity of senescence associated galactosidase. Pharmaceutical compounds such as quercetin antagonized doxorubicin-induced senescence without compromising organoid integrity. Using single cell sequencing, we identified a subset of cells expressing senescence markers which was decreased by quercetin. Doxorubicin induced the expression of detoxification factors specifically in goblet cells independent of quercetin. In conclusion, our platform enables for the analysis of senescence-related processes and will allow the pre-selection of a wide range of compounds (e.g. natural products) in preclinical studies, thus reducing the need for animal testing.
Collapse
Affiliation(s)
- Michelle Brand
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Felix Ritzmann
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123, Saarbrücken, Germany
| | - Kathrin Kattler
- Department of Genetics/Epigenetics, Saarland University, 66123, Saarbrücken, Germany
| | - Deivydas Milasius
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Yiwen Yao
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Christian Herr
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Susanne H Kirsch
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123, Saarbrücken, Germany
| | - Rolf Müller
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Daniela Yildiz
- Experimental and Clinical Pharmacology and Toxicology, PZMS, and Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123, Saarbrücken, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
4
|
Zhu Y, Li C, Shuai R, Huang Z, Chen F, Wang Y, Zhou Q, Chen J. Experimental study of the mechanism of induction of conjunctival goblet cell hyperexpression using CHIR-99021 in vitro. Biochem Biophys Res Commun 2023; 668:104-110. [PMID: 37245290 DOI: 10.1016/j.bbrc.2023.05.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
A component of the tear film, mucin is produced by conjunctival goblet cells and is crucial to preserving the tear film's stability. Severe thermal burns, chemical burns, and severe ocular surface diseases can cause extensive damage to the conjunctiva, destroy the secretory function of goblet cells, and affect the stability of the tear film and integrity of the ocular surface. Currently, the expansion efficiency of goblet cells in vitro is low. In this study, we observed that rabbit conjunctival epithelial cells exhibited dense colony morphology after stimulation with the Wnt/β-catenin signaling pathway activator CHIR-99021 and promoted the differentiation of conjunctival goblet cells and the expression of its specific marker Muc5ac, among which the best induction effect was observed after 72 h in vitro culture with 5 μmol/L CHIR-99021. Under optimal culture conditions, CHIR-99021 increased the expression levels of the Wnt/β-catenin signaling pathway factors Frzb, β-catenin, SAM pointed domain containing ETS transcription factor, and glycogen synthase kinase-3β and the levels of the Notch signaling pathway factors Notch1 and Krüppel-like factor 4 while decreasing the expression levels of Jagged-1 and Hes1. The expression level of ABCG2, a marker of epithelial stem cells, was raised to keep rabbit conjunctival epithelial cells from self-renewing. Our study showed that CHIR-99021 stimulation successfully activated the Wnt/β-catenin signaling pathway and conjunctival goblet cell differentiation was stimulated, in which the Notch signaling pathway played a combined role. Those results provide a novel idea for the expansion of goblet cells in vitro.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Chaoqun Li
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Ruixue Shuai
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Ziqing Huang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Fangyuan Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yingwei Wang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Qing Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Jian Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
5
|
Rapp K, Wei S, Roberts M, Yao S, Fei SS, Gao L, Ray K, Wang A, Godiah R, Han L. Transcriptional profiling of mucus production and modification in rhesus macaque endocervical cells under hormonal regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541362. [PMID: 37292621 PMCID: PMC10245652 DOI: 10.1101/2023.05.18.541362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Objective Endocervical mucus production is a key regulator of fertility throughout the menstrual cycle. With cycle-dependent variability in mucus quality and quantity, cervical mucus can either facilitate or block sperm ascension into the upper female reproductive tract. This study seeks to identify genes involved in the hormonal regulation of mucus production, modification, and regulation through profiling the transcriptome of endocervical cells from the non-human primate, the Rhesus Macaque (Macaca mulatta). Design Experimental. Setting Translational science laboratory. Intervention We treated differentiated primary endocervical cultures with estradiol (E2) and progesterone (P4) to mimic peri-ovulatory and luteal-phase hormonal changes. Using RNA-sequencing, we identified differential expression of gene pathways and mucus producing and modifying genes in cells treated with E2 compared to hormone-free conditions and E2 compared to E2-primed cells treated with P4. Main Outcome Measures We pursued differential gene expression analysis on RNA-sequenced cells. Sequence validation was done using qPCR. Results Our study identified 158 genes that show significant differential expression in E2-only conditions compared to hormone-free control, and 250 genes that show significant differential expression in P4-treated conditions compared to E2-only conditions. From this list, we found hormone-induced changes in transcriptional profiles for genes across several classes of mucus production, including ion channels and enzymes involved in post-translational mucin modification that have not previously been described as hormonally regulated. Conclusion Our study is the first to use an in vitro culture system to create an epithelial-cell specific transcriptome of the endocervix. As a result, our study identifies new genes and pathways that are altered by sex-steroids in cervical mucus production.
Collapse
|
6
|
Koh KD, Bonser LR, Eckalbar WL, Yizhar-Barnea O, Shen J, Zeng X, Hargett KL, Sun DI, Zlock LT, Finkbeiner WE, Ahituv N, Erle DJ. Genomic characterization and therapeutic utilization of IL-13-responsive sequences in asthma. CELL GENOMICS 2023; 3:100229. [PMID: 36777184 PMCID: PMC9903679 DOI: 10.1016/j.xgen.2022.100229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/02/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Epithelial responses to the cytokine interleukin-13 (IL-13) cause airway obstruction in asthma. Here we utilized multiple genomic techniques to identify IL-13-responsive regulatory elements in bronchial epithelial cells and used these data to develop a CRISPR interference (CRISPRi)-based therapeutic approach to downregulate airway obstruction-inducing genes in a cell type- and IL-13-specific manner. Using single-cell RNA sequencing (scRNA-seq) and acetylated lysine 27 on histone 3 (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) in primary human bronchial epithelial cells, we identified IL-13-responsive genes and regulatory elements. These sequences were functionally validated and optimized via massively parallel reporter assays (MPRAs) for IL-13-inducible activity. The top secretory cell-selective sequence from the MPRA, a novel, distal enhancer of the sterile alpha motif pointed domain containing E-26 transformation-specific transcription factor (SPDEF) gene, was utilized to drive CRISPRi and knock down SPDEF or mucin 5AC (MUC5AC), both involved in pathologic mucus production in asthma. Our work provides a catalog of cell type-specific genes and regulatory elements involved in IL-13 bronchial epithelial response and showcases their use for therapeutic purposes.
Collapse
Affiliation(s)
- Kyung Duk Koh
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Luke R. Bonser
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Walter L. Eckalbar
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ofer Yizhar-Barnea
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiangshan Shen
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xiaoning Zeng
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kirsten L. Hargett
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dingyuan I. Sun
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lorna T. Zlock
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Walter E. Finkbeiner
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nadav Ahituv
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David J. Erle
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
- CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
7
|
A Splice Switch in SIGIRR Causes a Defect of IL-37-Dependent Anti-Inflammatory Activity in Cystic Fibrosis Airway Epithelial Cells. Int J Mol Sci 2022; 23:ijms23147748. [PMID: 35887095 PMCID: PMC9318995 DOI: 10.3390/ijms23147748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Cystic fibrosis (CF) is a hereditary disease typically characterized by infection-associated chronic lung inflammation. The persistent activation of toll-like receptor (TLR) signals is considered one of the mechanisms for the CF hyperinflammatory phenotype; however, how negative regulatory signals of TLRs associate with CF inflammation is still elusive. Here, we showed that the cell surface expression of a single immunoglobulin interleukin-1 receptor (IL-1R)-related molecule (SIGIRR), a membrane protein essential for suppressing TLRs- and IL-1R-dependent signals, was remarkably decreased in CF airway epithelial cells compared to non-CF cells. Notably, CF airway epithelial cells specifically and highly expressed a unique, alternative splice isoform of the SIGIRR that lacks exon 8 (Δ8-SIGIRR), which results in the production of a C-terminal truncated form of the SIGIRR. Δ8-SIGIRR was expressed intracellularly, and its over-expression abolished the cell surface expression and function of the full-length SIGIRR (WT-SIGIRR), indicating its dominant-negative effect leading to the deficiency of anti-inflammatory activity in CF cells. Consistently, IL-37, a ligand for the SIGIRR, failed to suppress viral dsRNA analogue poly(I:C)-dependent JNK activation and IL-8 production, confirming the reduction in the functional WT-SIGIRR expression in the CF cells. Together, our studies reveal that SIGIRR-dependent anti-inflammatory activity is defective in CF airway epithelial cells due to the unique splicing switch of the SIGIRR gene and provides the first evidence of IL-37-SIGIRR signaling as a target of CF airway inflammation.
Collapse
|
8
|
Rayner RE, Makena P, Liu G, Prasad GL, Cormet-Boyaka E. Differential gene expression of 3D primary human airway cultures exposed to cigarette smoke and electronic nicotine delivery system (ENDS) preparations. BMC Med Genomics 2022; 15:76. [PMID: 35369880 PMCID: PMC8978419 DOI: 10.1186/s12920-022-01215-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 03/08/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Acute exposure to cigarette smoke alters gene expression in several biological pathways such as apoptosis, immune response, tumorigenesis and stress response, among others. However, the effects of electronic nicotine delivery systems (ENDS) on early changes in gene expression is relatively unknown. The objective of this study was to evaluate the early toxicogenomic changes using a fully-differentiated primary normal human bronchial epithelial (NHBE) culture model after an acute exposure to cigarette and ENDS preparations. RESULTS RNA sequencing and pathway enrichment analysis identified time and dose dependent changes in gene expression and several canonical pathways when exposed to cigarette preparations compared to vehicle control, including oxidative stress, xenobiotic metabolism, SPINK1 general cancer pathways and mucociliary clearance. No changes were observed with ENDS preparations containing up to 28 µg/mL nicotine. Full model hierarchical clustering revealed that ENDS preparations were similar to vehicle control. CONCLUSION This study revealed that while an acute exposure to cigarette preparations significantly and differentially regulated many genes and canonical pathways, ENDS preparations containing the same concentration of nicotine had very little effect on gene expression in fully-differentiated primary NHBE cultures.
Collapse
Affiliation(s)
- Rachael E Rayner
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | | | - Gang Liu
- RAI Services Company, Winston-Salem, NC, USA
| | - G L Prasad
- RAI Services Company, Winston-Salem, NC, USA
- Prasad Scientific Consulting LLC, Lewisville, NC, USA
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA.
| |
Collapse
|
9
|
Rogers TD, Button B, Kelada SNP, Ostrowski LE, Livraghi-Butrico A, Gutay MI, Esther CR, Grubb BR. Regional Differences in Mucociliary Clearance in the Upper and Lower Airways. Front Physiol 2022; 13:842592. [PMID: 35356083 PMCID: PMC8959816 DOI: 10.3389/fphys.2022.842592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
As the nasal cavity is the portal of entry for inspired air in mammals, this region is exposed to the highest concentration of inhaled particulate matter and pathogens, which must be removed to keep the lower airways sterile. Thus, one might expect vigorous removal of these substances via mucociliary clearance (MCC) in this region. We have investigated the rate of MCC in the murine nasal cavity compared to the more distal airways (trachea). The rate of MCC in the nasal cavity (posterior nasopharynx, PNP) was ∼3-4× greater than on the tracheal wall. This appeared to be due to a more abundant population of ciliated cells in the nasal cavity (∼80%) compared to the more sparsely ciliated trachea (∼40%). Interestingly, the tracheal ventral wall exhibited a significantly lower rate of MCC than the tracheal posterior membrane. The trachealis muscle underlying the ciliated epithelium on the posterior membrane appeared to control the surface architecture and likely in part the rate of MCC in this tracheal region. In one of our mouse models (Bpifb1 KO) exhibiting a 3-fold increase in MUC5B protein in lavage fluid, MCC particle transport on the tracheal walls was severely compromised, yet normal MCC occurred on the tracheal posterior membrane. While a blanket of mucus covered the surface of both the PNP and trachea, this mucus appeared to be transported as a blanket by MCC only in the PNP. In contrast, particles appeared to be transported as discrete patches or streams of mucus in the trachea. In addition, particle transport in the PNP was fairly linear, in contrast transport of particles in the trachea often followed a more non-linear route. The thick, viscoelastic mucus blanket that covered the PNP, which exhibited ∼10-fold greater mass of mucus than did the blanket covering the surface of the trachea, could be transported over large areas completely devoid of cells (made by a breach in the epithelial layer). In contrast, particles could not be transported over even a small epithelial breach in the trachea. The thick mucus blanket in the PNP likely aids in particle transport over the non-ciliated olfactory cells in the nasal cavity and likely contributes to humidification and more efficient particle trapping in this upper airway region.
Collapse
Affiliation(s)
- Troy D. Rogers
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Brian Button
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Samir N. P. Kelada
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lawrence E. Ostrowski
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | | | - Mark I. Gutay
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Charles R. Esther
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Barbara R. Grubb
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
10
|
Huang X, Guan W, Xiang B, Wang W, Xie Y, Zheng J. MUC5B regulates goblet cell differentiation and reduces inflammation in a murine COPD model. Respir Res 2022; 23:11. [PMID: 35042537 PMCID: PMC8764756 DOI: 10.1186/s12931-021-01920-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Background Airway mucus hypersecretion is one of the important pathological features of chronic obstructive pulmonary disease (COPD). MUC5B is the main mucin expressed in the airways of COPD patients and has been indicated to play an important role in airway defense. However, the specific biological function of MUC5B in COPD and the possible mechanism are not clear. Methods We established a COPD model with 24-week-old MUC5B−/− mice exposed to cigarette smoke and tested our hypothesis through lung function tests, HE and PAS staining, immunohistochemistry (IHC), western blot, q-PCR and ELISA. Results Compared with MUC5B+/+ mice, MUC5B−/− mice had worse general condition and lung function, increased inflammatory infiltration, reduced goblet cell differentiation as indicated by decreased PAS staining (PAS grade: 1.8 ± 0.24 vs. 0.6 ± 0.16), reduced MUC5AC expression (ELISA: 0.30 ± 0.01 vs. 0.17 ± 0.01 mg/ml, q-PCR: 9.4 ± 1.7 vs. 4.1 ± 0.1 fold, IHC score: 3.1 ± 0.9 vs. 1.6 ± 0.7), increased macrophage secretion of inflammatory factors (TNF-α and IL-6) and expression of downstream pathway factors (ERK1/2 and NF-κB), decreased expression of SPDEF and STAT6, and increased expression of FOXA2. Conclusion The protective effect of MUC5B in the development of COPD was mediated by the promotion of goblet cell differentiation and the inhibition of inflammation. The role of MUC5B in regulating inflammation was related to macrophage function, and goblet cell differentiation was promoted by the induced expression of STAT6 and SPDEF. This study describes a mechanism of mucus hypersecretion and identifies MUC5B as a new target for the treatment of mucus hypersecretion. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-021-01920-8.
Collapse
Affiliation(s)
- Xuan Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, No 151 Yanjiang Road, Guangzhou, 510120, People's Republic of China
| | - Weijie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, No 151 Yanjiang Road, Guangzhou, 510120, People's Republic of China
| | - Bin Xiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, No 151 Yanjiang Road, Guangzhou, 510120, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, No 151 Yanjiang Road, Guangzhou, 510120, People's Republic of China
| | - Yanqing Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, No 151 Yanjiang Road, Guangzhou, 510120, People's Republic of China
| | - Jinping Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, No 151 Yanjiang Road, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
11
|
Walentek P. Signaling Control of Mucociliary Epithelia: Stem Cells, Cell Fates, and the Plasticity of Cell Identity in Development and Disease. Cells Tissues Organs 2022; 211:736-753. [PMID: 33902038 PMCID: PMC8546001 DOI: 10.1159/000514579] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/19/2021] [Indexed: 01/25/2023] Open
Abstract
Mucociliary epithelia are composed of multiciliated, secretory, and stem cells and line various organs in vertebrates such as the respiratory tract. By means of mucociliary clearance, those epithelia provide a first line of defense against inhaled particles and pathogens. Mucociliary clearance relies on the correct composition of cell types, that is, the proper balance of ciliated and secretory cells. A failure to generate and to maintain correct cell type composition and function results in impaired clearance and high risk to infections, such as in congenital diseases (e.g., ciliopathies) as well as in acquired diseases, including asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). While it remains incompletely resolved how precisely cell types are specified and maintained in development and disease, many studies have revealed important mechanisms regarding the signaling control in mucociliary cell types in various species. Those studies not only provided insights into the signaling contribution to organ development and regeneration but also highlighted the remarkable plasticity of cell identity encountered in mucociliary maintenance, including frequent trans-differentiation events during homeostasis and specifically in disease. This review will summarize major findings and provide perspectives regarding the future of mucociliary research and the treatment of chronic airway diseases associated with tissue remodeling.
Collapse
Affiliation(s)
- Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Gally F, Sasse SK, Kurche JS, Gruca MA, Cardwell JH, Okamoto T, Chu HW, Hou X, Poirion OB, Buchanan J, Preissl S, Ren B, Colgan SP, Dowell RD, Yang IV, Schwartz DA, Gerber AN. The MUC5B-associated variant rs35705950 resides within an enhancer subject to lineage- and disease-dependent epigenetic remodeling. JCI Insight 2021; 6:144294. [PMID: 33320836 PMCID: PMC7934873 DOI: 10.1172/jci.insight.144294] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
The G/T transversion rs35705950, located approximately 3 kb upstream of the MUC5B start site, is the cardinal risk factor for idiopathic pulmonary fibrosis (IPF). Here, we investigate the function and chromatin structure of this –3 kb region and provide evidence that it functions as a classically defined enhancer subject to epigenetic programming. We use nascent transcript analysis to show that RNA polymerase II loads within 10 bp of the G/T transversion site, definitively establishing enhancer function for the region. By integrating Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) analysis of fresh and cultured human airway epithelial cells with nuclease sensitivity data, we demonstrate that this region is in accessible chromatin that affects the expression of MUC5B. Through applying paired single-nucleus RNA- and ATAC-seq to frozen tissue from IPF lungs, we extend these findings directly to disease, with results indicating that epigenetic programming of the –3 kb enhancer in IPF occurs in both MUC5B-expressing and nonexpressing lineages. In aggregate, our results indicate that the MUC5B-associated variant rs35705950 resides within an enhancer that is subject to epigenetic remodeling and contributes to pathologic misexpression in IPF.
Collapse
Affiliation(s)
- Fabienne Gally
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA.,Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Jonathan S Kurche
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Margaret A Gruca
- BioFrontiers Institute, University of Colorado-Boulder (CU Boulder), Boulder, Colorado, USA
| | | | - Tsukasa Okamoto
- Department of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hong W Chu
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Xiaomeng Hou
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Olivier B Poirion
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Justin Buchanan
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Sebastian Preissl
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Bing Ren
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA.,Ludwig Institute for Cancer Research, La Jolla, California, USA
| | - Sean P Colgan
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado-Boulder (CU Boulder), Boulder, Colorado, USA.,Molecular, Cellular and Developmental Biology, and.,Computer Science, CU Boulder, Boulder, Colorado, USA
| | - Ivana V Yang
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - David A Schwartz
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Anthony N Gerber
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA.,Department of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
13
|
Xu J, Livraghi-Butrico A, Hou X, Rajagopalan C, Zhang J, Song J, Jiang H, Wei HG, Wang H, Bouhamdan M, Ruan J, Yang D, Qiu Y, Xie Y, Barrett R, McClellan S, Mou H, Wu Q, Chen X, Rogers TD, Wilkinson KJ, Gilmore RC, Esther CR, Zaman K, Liang X, Sobolic M, Hazlett L, Zhang K, Frizzell RA, Gentzsch M, O'Neal WK, Grubb BR, Chen YE, Boucher RC, Sun F. Phenotypes of CF rabbits generated by CRISPR/Cas9-mediated disruption of the CFTR gene. JCI Insight 2021; 6:139813. [PMID: 33232302 PMCID: PMC7821608 DOI: 10.1172/jci.insight.139813] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022] Open
Abstract
Existing animal models of cystic fibrosis (CF) have provided key insights into CF pathogenesis but have been limited by short lifespans, absence of key phenotypes, and/or high maintenance costs. Here, we report the CRISPR/Cas9-mediated generation of CF rabbits, a model with a relatively long lifespan and affordable maintenance and care costs. CF rabbits supplemented solely with oral osmotic laxative had a median survival of approximately 40 days and died of gastrointestinal disease, but therapeutic regimens directed toward restoring gastrointestinal transit extended median survival to approximately 80 days. Surrogate markers of exocrine pancreas disorders were found in CF rabbits with declining health. CFTR expression patterns in WT rabbit airways mimicked humans, with widespread distribution in nasal respiratory and olfactory epithelia, as well as proximal and distal lower airways. CF rabbits exhibited human CF–like abnormalities in the bioelectric properties of the nasal and tracheal epithelia. No spontaneous respiratory disease was detected in young CF rabbits. However, abnormal phenotypes were observed in surviving 1-year-old CF rabbits as compared with WT littermates, and these were especially evident in the nasal respiratory and olfactory epithelium. The CF rabbit model may serve as a useful tool for understanding gut and lung CF pathogenesis and for the practical development of CF therapeutics.
Collapse
Affiliation(s)
- Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | | | | | | | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | - Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | | | | | - Hui Wang
- Department of Oncology, Karmanos Cancer Institute
| | | | - Jinxue Ruan
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | - Yining Qiu
- Center for Molecular Medicine and Genetics, and
| | - Youming Xie
- Department of Oncology, Karmanos Cancer Institute
| | - Ronald Barrett
- Department of Anatomy and Cell Biology, Wayne State University (WSU) School of Medicine, Detroit, Michigan, USA
| | - Sharon McClellan
- Department of Anatomy and Cell Biology, Wayne State University (WSU) School of Medicine, Detroit, Michigan, USA
| | - Hongmei Mou
- Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | - Troy D Rogers
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Kristen J Wilkinson
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Rodney C Gilmore
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Charles R Esther
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Khalequz Zaman
- Department of Pediatrics, Case Western Research University School of Medicine, Cleveland, Ohio, USA
| | - Xiubin Liang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | | | - Linda Hazlett
- Department of Anatomy and Cell Biology, Wayne State University (WSU) School of Medicine, Detroit, Michigan, USA
| | | | - Raymond A Frizzell
- Department of Pediatrics and Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvnia, USA
| | - Martina Gentzsch
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Wanda K O'Neal
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Barbara R Grubb
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
14
|
Walentek P. Xenopus epidermal and endodermal epithelia as models for mucociliary epithelial evolution, disease, and metaplasia. Genesis 2021; 59:e23406. [PMID: 33400364 DOI: 10.1002/dvg.23406] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 11/08/2022]
Abstract
The Xenopus embryonic epidermis is a powerful model to study mucociliary biology, development, and disease. Particularly, the Xenopus system is being used to elucidate signaling pathways, transcription factor functions, and morphogenetic mechanisms regulating cell fate specification, differentiation and cell function. Thereby, Xenopus research has provided significant insights into potential underlying molecular mechanisms for ciliopathies and chronic airway diseases. Recent studies have also established the embryonic epidermis as a model for mucociliary epithelial remodeling, multiciliated cell trans-differentiation, cilia loss, and mucus secretion. Additionally, the tadpole foregut epithelium is lined by a mucociliary epithelium, which shows remarkable features resembling mammalian airway epithelia, including its endodermal origin and a variable cell type composition along the proximal-distal axis. This review aims to summarize the advantages of the Xenopus epidermis for mucociliary epithelial biology and disease modeling. Furthermore, the potential of the foregut epithelium as novel mucociliary model system is being highlighted. Additional perspectives are presented on how to expand the range of diseases that can be modeled in the frog system, including proton pump inhibitor-associated pneumonia as well as metaplasia in epithelial cells of the airway and the gastroesophageal region.
Collapse
Affiliation(s)
- Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Chen G, Sun L, Kato T, Okuda K, Martino MB, Abzhanova A, Lin JM, Gilmore RC, Batson BD, O'Neal YK, Volmer AS, Dang H, Deng Y, Randell SH, Button B, Livraghi-Butrico A, Kesimer M, Ribeiro CM, O'Neal WK, Boucher RC. IL-1β dominates the promucin secretory cytokine profile in cystic fibrosis. J Clin Invest 2020; 129:4433-4450. [PMID: 31524632 DOI: 10.1172/jci125669] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) lung disease is characterized by early and persistent mucus accumulation and neutrophilic inflammation in the distal airways. Identification of the factors in CF mucopurulent secretions that perpetuate CF mucoinflammation may provide strategies for novel CF pharmacotherapies. We show that IL-1β, with IL-1α, dominated the mucin prosecretory activities of supernatants of airway mucopurulent secretions (SAMS). Like SAMS, IL-1β alone induced MUC5B and MUC5AC protein secretion and mucus hyperconcentration in CF human bronchial epithelial (HBE) cells. Mechanistically, IL-1β induced the sterile α motif-pointed domain containing ETS transcription factor (SPDEF) and downstream endoplasmic reticulum to nucleus signaling 2 (ERN2) to upregulate mucin gene expression. Increased mRNA levels of IL1B, SPDEF, and ERN2 were associated with increased MUC5B and MUC5AC expression in the distal airways of excised CF lungs. Administration of an IL-1 receptor antagonist (IL-1Ra) blocked SAMS-induced expression of mucins and proinflammatory mediators in CF HBE cells. In conclusion, IL-1α and IL-1β are upstream components of a signaling pathway, including IL-1R1 and downstream SPDEF and ERN2, that generate a positive feedback cycle capable of producing persistent mucus hyperconcentration and IL-1α and/or IL-1β-mediated neutrophilic inflammation in the absence of infection in CF airways. Targeting this pathway therapeutically may ameliorate mucus obstruction and inflammation-induced structural damage in young CF children.
Collapse
Affiliation(s)
- Gang Chen
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ling Sun
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Research Center of Regeneration Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Takafumi Kato
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kenichi Okuda
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mary B Martino
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Aiman Abzhanova
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer M Lin
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rodney C Gilmore
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Bethany D Batson
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yvonne K O'Neal
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Allison S Volmer
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hong Dang
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yangmei Deng
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Scott H Randell
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian Button
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alessandra Livraghi-Butrico
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mehmet Kesimer
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Carla Mp Ribeiro
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wanda K O'Neal
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Richard C Boucher
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
16
|
Choi W, Choe S, Lau GW. Inactivation of FOXA2 by Respiratory Bacterial Pathogens and Dysregulation of Pulmonary Mucus Homeostasis. Front Immunol 2020; 11:515. [PMID: 32269574 PMCID: PMC7109298 DOI: 10.3389/fimmu.2020.00515] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/06/2020] [Indexed: 01/21/2023] Open
Abstract
Forkhead box (FOX) proteins are transcriptional factors that regulate various cellular processes. This minireview provides an overview of FOXA2 functions, with a special emphasis on the regulation airway mucus homeostasis in both healthy and diseased lungs. FOXA2 plays crucial roles during lung morphogenesis, surfactant protein production, goblet cell differentiation and mucin expression. In healthy airways, FOXA2 exerts a tight control over goblet cell development and mucin biosynthesis. However, in diseased airways, microbial infections and proinflammatory responses deplete FOXA2 expression, resulting in uncontrolled goblet cell hyperplasia and metaplasia, mucus hypersecretion, and impaired mucociliary clearance of pathogens. Furthermore, accumulated mucus clogs the airways and creates a niche environment for persistent microbial colonization and infection, leading to acute exacerbation and deterioration of pulmonary function in patients with chronic lung diseases. Various studies have shown that FOXA2 inhibition is mediated through induction of antagonistic EGFR and IL-13R-STAT6 signaling pathways as well as through posttranslational modifications induced by microbial infections. An improved understanding of how bacterial pathogens inactivate FOXA2 may pave the way for developing therapeutics that preserve the protein's function, which in turn, will improve the mucus status and mucociliary clearance of pathogens, reduce microbial-mediated acute exacerbation and restore lung function in patients with chronic lung diseases.
Collapse
Affiliation(s)
- Woosuk Choi
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Shawn Choe
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
17
|
Koh KD, Siddiqui S, Cheng D, Bonser LR, Sun DI, Zlock LT, Finkbeiner WE, Woodruff PG, Erle DJ. Efficient RNP-directed Human Gene Targeting Reveals SPDEF Is Required for IL-13-induced Mucostasis. Am J Respir Cell Mol Biol 2020; 62:373-381. [PMID: 31596609 PMCID: PMC7055692 DOI: 10.1165/rcmb.2019-0266oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/09/2019] [Indexed: 01/31/2023] Open
Abstract
Primary human bronchial epithelial cell (HBEC) cultures are a useful model for studies of lung health and major airway diseases. However, mechanistic studies have been limited by our ability to selectively disrupt specific genes in these cells. Here we optimize methods for gene targeting in HBECs by direct delivery of single guide RNA (sgRNA) and rCas9 (recombinant Cas9) complexes by electroporation, without a requirement for plasmids, viruses, or antibiotic selection. Variations in the method of delivery, sgRNA and rCas9 concentrations, and sgRNA sequences all had effects on targeting efficiency, allowing for predictable control of the extent of gene targeting and for near-complete disruption of gene expression. To demonstrate the value of this system, we targeted SPDEF, which encodes a transcription factor previously shown to be essential for the differentiation of MUC5AC-producing goblet cells in mouse models of asthma. Targeting SPDEF led to proportional decreases in MUC5AC expression in HBECs stimulated with IL-13, a central mediator of allergic asthma. Near-complete targeting of SPDEF abolished IL-13-induced MUC5AC expression and goblet cell differentiation. In addition, targeting of SPDEF prevented IL-13-induced impairment of mucociliary clearance, which is likely to be an important contributor to airway obstruction, morbidity, and mortality in asthma. We conclude that direct delivery of sgRNA and rCas9 complexes allows for predictable and efficient gene targeting and enables mechanistic studies of disease-relevant pathways in primary HBECs.
Collapse
Affiliation(s)
- Kyung Duk Koh
- Lung Biology Center
- Cardiovascular Research Institute
| | - Sana Siddiqui
- Division of Pulmonary, Critical Care, Sleep, and Allergy, and
| | - Dan Cheng
- Lung Biology Center
- Cardiovascular Research Institute
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | | | - Dingyuan I. Sun
- Department of Pathology, University of California San Francisco, San Francisco, California; and
| | - Lorna T. Zlock
- Department of Pathology, University of California San Francisco, San Francisco, California; and
| | - Walter E. Finkbeiner
- Department of Pathology, University of California San Francisco, San Francisco, California; and
| | - Prescott G. Woodruff
- Cardiovascular Research Institute
- Division of Pulmonary, Critical Care, Sleep, and Allergy, and
| | - David J. Erle
- Lung Biology Center
- Cardiovascular Research Institute
- Division of Pulmonary, Critical Care, Sleep, and Allergy, and
| |
Collapse
|
18
|
WNT/RYK signaling restricts goblet cell differentiation during lung development and repair. Proc Natl Acad Sci U S A 2019; 116:25697-25706. [PMID: 31776260 DOI: 10.1073/pnas.1911071116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Goblet cell metaplasia and mucus hypersecretion are observed in many pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. However, the regulation of goblet cell differentiation remains unclear. Here, we identify a regulator of this process in an N-ethyl-N-nitrosourea (ENU) screen for modulators of postnatal lung development; Ryk mutant mice exhibit lung inflammation, goblet cell hyperplasia, and mucus hypersecretion. RYK functions as a WNT coreceptor, and, in the developing lung, we observed high RYK expression in airway epithelial cells and moderate expression in mesenchymal cells as well as in alveolar epithelial cells. From transcriptomic analyses and follow-up studies, we found decreased WNT/β-catenin signaling activity in the mutant lung epithelium. Epithelial-specific Ryk deletion causes goblet cell hyperplasia and mucus hypersecretion but not inflammation, while club cell-specific Ryk deletion in adult stages leads to goblet cell hyperplasia and mucus hypersecretion during regeneration. We also found that the airway epithelium of COPD patients often displays goblet cell metaplastic foci, as well as reduced RYK expression. Altogether, our findings reveal that RYK plays important roles in maintaining the balance between airway epithelial cell populations during development and repair, and that defects in RYK expression or function may contribute to the pathogenesis of human lung diseases.
Collapse
|
19
|
Chen G, Ribeiro CMP, Sun L, Okuda K, Kato T, Gilmore RC, Martino MB, Dang H, Abzhanova A, Lin JM, Hull-Ryde EA, Volmer AS, Randell SH, Livraghi-Butrico A, Deng Y, Scherer PE, Stripp BR, O’Neal WK, Boucher RC. XBP1S Regulates MUC5B in a Promoter Variant-Dependent Pathway in Idiopathic Pulmonary Fibrosis Airway Epithelia. Am J Respir Crit Care Med 2019; 200:220-234. [PMID: 30973754 PMCID: PMC6635783 DOI: 10.1164/rccm.201810-1972oc] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/11/2019] [Indexed: 02/05/2023] Open
Abstract
Rationale: The goal was to connect elements of idiopathic pulmonary fibrosis (IPF) pathogenesis, including chronic endoplasmic reticulum stress in respiratory epithelia associated with injury/inflammation and remodeling, distal airway mucus obstruction and honeycomb cyst formation with accumulation of MUC5B (mucin 5B), and associations between IPF risk and polymorphisms in the MUC5B promoter. Objectives: To test whether the endoplasmic reticulum (ER) stress sensor protein ERN2 (ER-to-nucleus signaling 2) and its downstream effector, the spliced form of XBP1S (X-box-binding protein 1), regulate MUC5B expression and differentially activate the MUC5B promoter variant in respiratory epithelia. Methods: Primary human airway epithelial (HAE) cells, transgenic mouse models, human IPF lung tissues, and cell lines expressing XBP1S and MUC5B promoters were used to explore relationships between the ERN2/XBP1S pathway and MUC5B. An inhibitor of the pathway, KIRA6, and XBP1 CRISPR-Cas9 were used in HAE cells to explore therapeutic potential. Measurements and Main Results: ERN2 regulated MUC5B and MUC5AC mRNAs. Downstream XBP1S selectively promoted MUC5B expression in vitro and in distal murine airway epithelia in vivo. XBP1S bound to the proximal region of the MUC5B promoter and differentially upregulated MUC5B expression in the context of the MUC5B promoter rs35705950 variant. High levels of ERN2 and XBP1S were associated with excessive MUC5B mRNAs in distal airways of human IPF lungs. Cytokine-induced MUC5B expression in HAE cells was inhibited by KIRA6 and XBP1 CRISPR-Cas9. Conclusions: A positive feedback bistable ERN2-XBP1S pathway regulates MUC5B-dominated mucus obstruction in IPF, providing an unfolded protein response-dependent mechanism linking the MUC5B promoter rs35705950 polymorphism with IPF pathogenesis. Inhibiting ERN2-dependent pathways/elements may provide a therapeutic option for IPF.
Collapse
Affiliation(s)
- Gang Chen
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Carla M. P. Ribeiro
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ling Sun
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Research Center of Regeneration Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kenichi Okuda
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Takafumi Kato
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rodney C. Gilmore
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mary B. Martino
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hong Dang
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Aiman Abzhanova
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jennifer M. Lin
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Emily A. Hull-Ryde
- Center of Integrative Chemical Biology and Drug Discovery, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina
| | - Allison S. Volmer
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Scott H. Randell
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alessandra Livraghi-Butrico
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yingfeng Deng
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Philipp E. Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Barry R. Stripp
- Pulmonary Research, Cedars Sinai Medical Center, Los Angeles, California
| | - Wanda K. O’Neal
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard C. Boucher
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
20
|
Immunopathology of Airway Surface Liquid Dehydration Disease. J Immunol Res 2019; 2019:2180409. [PMID: 31396541 PMCID: PMC6664684 DOI: 10.1155/2019/2180409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/29/2019] [Accepted: 05/26/2019] [Indexed: 12/30/2022] Open
Abstract
The primary purpose of pulmonary ventilation is to supply oxygen (O2) for sustained aerobic respiration in multicellular organisms. However, a plethora of abiotic insults and airborne pathogens present in the environment are occasionally introduced into the airspaces during inhalation, which could be detrimental to the structural integrity and functioning of the respiratory system. Multiple layers of host defense act in concert to eliminate unwanted constituents from the airspaces. In particular, the mucociliary escalator provides an effective mechanism for the continuous removal of inhaled insults including pathogens. Defects in the functioning of the mucociliary escalator compromise the mucociliary clearance (MCC) of inhaled pathogens, which favors microbial lung infection. Defective MCC is often associated with airway mucoobstruction, increased occurrence of respiratory infections, and progressive decrease in lung function in mucoobstructive lung diseases including cystic fibrosis (CF). In this disease, a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene results in dehydration of the airway surface liquid (ASL) layer. Several mice models of Cftr mutation have been developed; however, none of these models recapitulate human CF-like mucoobstructive lung disease. As an alternative, the Scnn1b transgenic (Scnn1b-Tg+) mouse model overexpressing a transgene encoding sodium channel nonvoltage-gated 1, beta subunit (Scnn1b) in airway club cells is available. The Scnn1b-Tg+ mouse model exhibits airway surface liquid (ASL) dehydration, impaired MCC, increased mucus production, and early spontaneous pulmonary bacterial infections. High morbidity and mortality among mucoobstructive disease patients, high economic and health burden, and lack of scientific understanding of the progression of mucoobstruction warrants in-depth investigation of the cause of mucoobstruction in mucoobstructive disease models. In this review, we will summarize published literature on the Scnn1b-Tg+ mouse and analyze various unanswered questions on the initiation and progression of mucobstruction and bacterial infections.
Collapse
|
21
|
Amini SE, Gouyer V, Portal C, Gottrand F, Desseyn JL. Muc5b is mainly expressed and sialylated in the nasal olfactory epithelium whereas Muc5ac is exclusively expressed and fucosylated in the nasal respiratory epithelium. Histochem Cell Biol 2019; 152:167-174. [PMID: 31030254 DOI: 10.1007/s00418-019-01785-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2019] [Indexed: 01/03/2023]
Abstract
The nose is a complex organ that filters and warms breathing airflow. The nasal epithelium is the first barrier between the host and the external environment and is covered by a mucus gel that is poorly documented. Mucins are large, heavily O-glycosylated polymeric molecules secreted in the nose lumen by specialized cells, and they are responsible for the biochemical properties of the mucus gel. The mucus traps particles and clears them, and it also bathes microbiota, host molecules, and receptors that are all essential for odor perception in the olfactory epithelium. We used histology and immunohistochemistry to study the expression of the two main airway polymeric mucins, Muc5ac and Muc5b, in wild-type, green fluorescent protein-reporter Muc5b, and in genetically Muc5b-deficient mice. We report that Muc5ac is produced by goblet cells at the cell surface in the respiratory epithelium but is not expressed in the olfactory epithelium, whereas Muc5b is secreted by Bowman's glands situated in the lamina propria beneath the olfactory epithelium and also by goblet cells in the distal part of the respiratory epithelium. We also observed that Muc5b-deficient mice exhibited depletion of Bowman's glands. Using lectins, we found that terminally O-glycosylated chains of Muc5b were sialylated but not fucosylated, whereas Muc5ac was fucosylated but not sialylated. Specific localization and specific terminal glycosylation of the two mucins suggest different functions of the mucins.
Collapse
Affiliation(s)
- Salah-Eddine Amini
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, 1 place de Verdun, 59000, Lille, France
| | - Valérie Gouyer
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, 1 place de Verdun, 59000, Lille, France
| | - Céline Portal
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, 1 place de Verdun, 59000, Lille, France
- Wilmer Eye Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, 21201, USA
| | - Frédéric Gottrand
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, 1 place de Verdun, 59000, Lille, France
| | - Jean-Luc Desseyn
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, 1 place de Verdun, 59000, Lille, France.
| |
Collapse
|
22
|
Evans CM, Seibold MA, Gerber AN. SPDEFending the Lung through Mucin Expression. Am J Respir Cell Mol Biol 2019; 59:287-288. [PMID: 29723043 DOI: 10.1165/rcmb.2018-0141ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Christopher M Evans
- 1 Division of Pulmonary Sciences and Critical Care Medicine University of Colorado Denver School of Medicine Aurora, Colorado
| | - Max A Seibold
- 2 Department of Pediatrics.,3 Center for Genes, Environment, and Health National Jewish Health Denver, Colorado and
| | - Anthony N Gerber
- 1 Division of Pulmonary Sciences and Critical Care Medicine University of Colorado Denver School of Medicine Aurora, Colorado.,4 Department of Medicine National Jewish Health Denver, Colorado
| |
Collapse
|
23
|
Mucociliary Clearance in Mice Measured by Tracking Trans-tracheal Fluorescence of Nasally Aerosolized Beads. Sci Rep 2018; 8:14744. [PMID: 30282981 PMCID: PMC6170422 DOI: 10.1038/s41598-018-33053-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022] Open
Abstract
Mucociliary clearance (MCC) is the first line of defense in clearing airways. In genetically engineered mice, each component of this system (ciliary beat, mucus, airway surface hydration) can be studied separately to determine its contribution to MCC. Because MCC is difficult to measure in mice, MCC measurements are often omitted from these studies. We report a simple method to measure MCC in mice involving nasal inhalation of aerosolized fluorescent beads and trans-tracheal bead tracking. This method has a number of advantages over existing methods: (1) a small volume of liquid is deposited thus minimally disturbing the airway surface; (2) bead behavior on airways can be visualized; (3) useful for adult or neonatal mice; (4) the equipment is relatively inexpensive and easily obtainable. The type of anesthetic had no significant effect on the rate of MCC, but overloading the airways with beads significantly decreased MCC. In addition, the rate of bead transport was not different in alive (3.11 mm/min) vs recently euthanized mice (3.10 mm/min). A 5-min aerosolization of beads in a solution containing UTP significantly increased the rate of MCC, demonstrating that our method would be of value in testing the role of various pharmacological agents on MCC.
Collapse
|
24
|
Korfei M. The underestimated danger of E-cigarettes - also in the absence of nicotine. Respir Res 2018; 19:159. [PMID: 30157845 PMCID: PMC6114529 DOI: 10.1186/s12931-018-0870-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/20/2018] [Indexed: 12/28/2022] Open
Affiliation(s)
- Martina Korfei
- Department of Internal Medicine II, Klinikstrasse 36, 35392, Giessen, Germany. .,Biomedical Research Center Seltersberg (BFS), Justus-Liebig-University Giessen, Schubertstrasse 81, 35392, Giessen, Germany. .,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392, Giessen, Germany.
| |
Collapse
|