1
|
Balzano E, De Cunto G, Goracci C, Bartalesi B, Cavarra E, Lungarella G, Lucattelli M. Immunohistochemical Study of Airways Fibrous Remodeling in Smoking Mice. J Histochem Cytochem 2023; 71:577-599. [PMID: 37818941 PMCID: PMC10617442 DOI: 10.1369/00221554231204926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
The fibrotic remodeling in chronic obstructive pulmonary disease (COPD) is held responsible for narrowing of small airways and thus for disease progression. Oxidant damage and cell senescence factors are recently involved in airways fibrotic remodeling. Unfortunately, we have no indications on their sequential expression at anatomical sites in which fibrotic remodeling develops in smoking subjects. Using immunohistochemical techniques, we investigated in two strains of mice after cigarette smoke (CS) exposure what happens at various times in airway areas where fibrotic remodeling occurs, and if there also exists correspondence among DNA damage induced by oxidants, cellular senescence, the presence of senescence-secreted factors involved in processes that affect transcription, metabolism as well as apoptosis, and the onset of fibrous remodeling that appears at later times in mice exposed to CS. A clear positivity for fibrogenic cytokines TGF-β, PDGF-B, and CTGF, and for proliferation marker PCNA around airways that will be remodeled is observed in both strains. Increased expression of p16ink4A senescence marker and MyoD is also seen in the same areas. p16ink4A and MyoD can promote cell cycle arrest, terminal differentiation of myofibroblasts, and can oppose their dedifferentiation. Of interest, an early progressive attenuation of SIRT-1 is observed after CS exposure. This intracellular regulatory protein can reduce premature cell senescence. These findings suggest that novel agents, which promote myofibroblast dedifferentiation and/or the apoptosis of senescent cells, may dampen progression of airway changes in smoking COPD subjects.
Collapse
Affiliation(s)
- Emilia Balzano
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giovanna De Cunto
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Chiara Goracci
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Barbara Bartalesi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Eleonora Cavarra
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Lungarella
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Monica Lucattelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
2
|
Smoking Cessation in Mice Does Not Switch off Persistent Lung Inflammation and Does Not Restore the Expression of HDAC2 and SIRT1. Int J Mol Sci 2022; 23:ijms23169104. [PMID: 36012370 PMCID: PMC9409159 DOI: 10.3390/ijms23169104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Once COPD is established, pulmonary lesions can only progress and smoking cessation by itself is not sufficient to switch off persistent lung inflammation. Similarly, in former-smoker mice, neutrophil inflammation persists and lung lesions undergo progressive deterioration. The molecular mechanisms underlying disease progression and the inefficiency of smoking cessation in quenching neutrophilic inflammation were studied in male C57 Bl/6 mice after 6 months of rest from smoking cessation. As compared with the mice that continued to smoke, the former-smoker mice showed reduced expression of histone deacetylases HDAC2 and SIRT1 and marked expression of p-p38 MAPK and p-Ser10. All these factors are involved in corticosteroid insensitivity and in perpetuating inflammation. Former-smoker mice do show persistent lung neutrophilic influx and a high number of macrophages which account for the intense staining in the alveolar structures of neutrophil elastase and MMP-9 (capable of destroying lung scaffolding) and 8-OHdG (marker of oxidative stress). “Alarmins” released from necrotic cells together with these factors can sustain and perpetuate inflammation after smoking cessation. Several factors and mechanisms all together are involved in sustaining and perpetuating inflammation in former-smoker mice. This study suggests that a better control of COPD in humans may be achieved by precise targeting of the various molecular mechanisms associated with different phenotypes of disease by using a cocktail of drug active toward specific molecules.
Collapse
|
3
|
Routhier J, Pons S, Freidja ML, Dalstein V, Cutrona J, Jonquet A, Lalun N, Mérol JC, Lathrop M, Stitzel JA, Kervoaze G, Pichavant M, Gosset P, Tournier JM, Birembaut P, Dormoy V, Maskos U. An innate contribution of human nicotinic receptor polymorphisms to COPD-like lesions. Nat Commun 2021; 12:6384. [PMID: 34737286 PMCID: PMC8568944 DOI: 10.1038/s41467-021-26637-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic Obstructive Pulmonary Disease is a generally smoking-linked major cause of morbidity and mortality. Genome-wide Association Studies identified a locus including a non-synonymous single nucleotide polymorphism in CHRNA5, rs16969968, encoding the nicotinic acetylcholine receptor α5 subunit, predisposing to both smoking and Chronic Obstructive Pulmonary Disease. Here we report that nasal polyps from rs16969968 non-smoking carriers exhibit airway epithelium remodeling and inflammation. These hallmarks of Chronic Obstructive Pulmonary Disease occur spontaneously in mice expressing human rs16969968. They are significantly amplified after exposure to porcine pancreatic elastase, an emphysema model, and to oxidative stress with a polymorphism-dependent alteration of lung function. Targeted rs16969968 expression in epithelial cells leads to airway remodeling in vivo, increased proliferation and production of pro-inflammatory cytokines through decreased calcium entry and increased adenylyl-cyclase activity. We show that rs16969968 directly contributes to Chronic Obstructive Pulmonary Disease-like lesions, sensitizing the lung to the action of oxidative stress and injury, and represents a therapeutic target. Human polymorphisms in nicotinic acetylcholine receptor genes have been linked to both smoking and lung diseases like Chronic Obstructive Pulmonary Disease (COPD) or lung cancer. Here the authors identify a direct role for a human coding polymorphism in COPD-like lesions independent of smoke or nicotine exposure.
Collapse
Affiliation(s)
- Julie Routhier
- Université de Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, Reims, France
| | - Stéphanie Pons
- Institut Pasteur, Université de Paris, Integrative Neurobiology of Cholinergic Systems, CNRS UMR 3571, Paris, France
| | - Mohamed Lamine Freidja
- Université de Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, Reims, France.,Department of Biochemistry and Microbiology, Faculty of Sciences, University of M'sila, M'sila, Algeria
| | - Véronique Dalstein
- Université de Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, Reims, France.,Department of Biopathology, CHU of Reims, Reims, France
| | - Jérôme Cutrona
- Université de Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, Reims, France
| | - Antoine Jonquet
- Université de Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, Reims, France
| | - Nathalie Lalun
- Université de Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, Reims, France
| | - Jean-Claude Mérol
- Université de Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, Reims, France.,Department of Otorhinolaryngology, CHU of Reims, Reims, France
| | - Mark Lathrop
- McGill University Genome Center, Montréal, QC, Canada
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - Gwenola Kervoaze
- University of Lille, CNRS UMR9017, Inserm U1019, CHU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Muriel Pichavant
- University of Lille, CNRS UMR9017, Inserm U1019, CHU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Philippe Gosset
- University of Lille, CNRS UMR9017, Inserm U1019, CHU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Marie Tournier
- Université de Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, Reims, France
| | - Philippe Birembaut
- Université de Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, Reims, France.,Department of Biopathology, CHU of Reims, Reims, France
| | - Valérian Dormoy
- Université de Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, Reims, France.
| | - Uwe Maskos
- Institut Pasteur, Université de Paris, Integrative Neurobiology of Cholinergic Systems, CNRS UMR 3571, Paris, France.
| |
Collapse
|
4
|
Zeng H, Li T, He X, Cai S, Luo H, Chen P, Chen Y. Oxidative stress mediates the apoptosis and epigenetic modification of the Bcl-2 promoter via DNMT1 in a cigarette smoke-induced emphysema model. Respir Res 2020; 21:229. [PMID: 32883320 PMCID: PMC7469342 DOI: 10.1186/s12931-020-01495-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Background Emphysema is a crucial pathological characteristic of chronic obstructive pulmonary disease (COPD). Oxidative stress, apoptosis and epigenetic mechanisms contribute to the pathogenesis of emphysema. However, an attempt to accurately identify whether these mechanisms interact with each other and how they are triggered has never been conducted. Method The total reactive oxygen species (ROS) level, pulmonary apoptosis and B-cell lymphoma/leukemia-2 (Bcl-2) expression, an apoptosis regulator, were detected in samples from COPD patients. Bisulfite sequencing PCR (BSP) was conducted to observe the alterations in the methylation of the Bcl-2 promoter in specimens. The dysregulation of DNA methyltransferase enzyme 1 (DNMT1), a vital DNA methyltransferase enzyme, in the lungs of patients was confirmed through western blotting. To find out interactions between oxidative stress and DNA methylation in emphysema, mouse models were built with antioxidant treatment and DNMT1 silencing, and were examined with the pulmonary apoptosis, Bcl-2 and DNMT1 levels, and epigenetic alterations of Bcl-2. Results Higher ROS levels and pulmonary apoptosis were observed in COPD patients than in healthy controls. Downregulated Bcl-2 expression with increased promoter methylation and DNMT1 protein expression was found in COPD patients. Antioxidant treatment reduced the level of ROS, DNMT1 protein and emphysematous progression in the smoking models. Following DNMT1 blockade, smoking models showed improved lung function, pulmonary apoptosis, emphysematous progression, and increased Bcl-2 protein level with less promoter methylation than emphysema mice. Conclusion Cigarette-induced oxidative stress mediates pulmonary apoptosis and hypermethylation of the Bcl-2 promoter in emphysema models through DNMT1.
Collapse
Affiliation(s)
- Huihui Zeng
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Diseases, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China.,Hunan Centre for Evidence-based Medicine, No. 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Tiao Li
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Diseases, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China.,Hunan Centre for Evidence-based Medicine, No. 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Xue He
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Diseases, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China.,Hunan Centre for Evidence-based Medicine, No. 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Shan Cai
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Diseases, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China.,Hunan Centre for Evidence-based Medicine, No. 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Hong Luo
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Diseases, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China.,Hunan Centre for Evidence-based Medicine, No. 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Ping Chen
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Diseases, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China.,Hunan Centre for Evidence-based Medicine, No. 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China. .,Research Unit of Respiratory Diseases, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China. .,Hunan Centre for Evidence-based Medicine, No. 139 Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
5
|
De Cunto G, Cavarra E, Bartalesi B, Lungarella G, Lucattelli M. Alveolar Macrophage Phenotype and Compartmentalization Drive Different Pulmonary Changes in Mouse Strains Exposed to Cigarette Smoke. COPD 2020; 17:429-443. [PMID: 32597232 DOI: 10.1080/15412555.2020.1783648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
COPD can manifest itself with different clinical phenotypes characterized by different disease progression and response to therapy. Although a remarkable number of studies have been carried out, little is known about the mechanisms underlying phenotypes that could guide the development of viable future therapies. Several murine strains mirror some human phenotypes after smoke exposure. It was of interest to investigate in these strains whether different pattern of activation of macrophages, and their distribution in lungs, is associated to changes characterizing different phenotypes. We chose C57Bl/6, and Lck deficient mice, which show significant emphysema, DBA/2 mice that develop changes similar to those of "pulmonary fibrosis/emphysema syndrome", p66Shc ko mice that develop bronchiolitis with fibrosis but not emphysema, and finally ICR mice that do not develop changes at 7 months after smoke exposure. Unlike other strains, ICR mice show very few activated macrophages (Mac-3 positive) mostly negative to M1 or M2 markers. On the other hand, a large population of M1 macrophages predominates in the lung periphery of DBA/2, C57Bl/6 and in Lck deficient mice, where emphysema is more evident. M2 macrophages are mainly observed in subpleural and intraparenchymal areas of DBA/2 mice and around bronchioles of p66Shc ko mice where fibrotic changes are present. We observed slight but significant differences in mRNA expression of iNOS, ECF-L, arginase 1, IL-4, IL-13 and TGF-β between air- and smoke-exposed mice. These differences together with the different compartmentalization of macrophages may offer an explanation for the diversity of lesions and their distribution that we observed among the strains.
Collapse
Affiliation(s)
- Giovanna De Cunto
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Eleonora Cavarra
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Barbara Bartalesi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Lungarella
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Monica Lucattelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
6
|
De Cunto G, Cavarra E, Bartalesi B, Lucattelli M, Lungarella G. Innate Immunity and Cell Surface Receptors in the Pathogenesis of COPD: Insights from Mouse Smoking Models. Int J Chron Obstruct Pulmon Dis 2020; 15:1143-1154. [PMID: 32547002 PMCID: PMC7246326 DOI: 10.2147/copd.s246219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/03/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is mainly associated with smoking habit. Inflammation is the major initiating process whereby neutrophils and monocytes are attracted into the lung microenvironment by external stimuli present in tobacco leaves and in cigarette smoke, which promote chemotaxis, adhesion, phagocytosis, release of superoxide anions and enzyme granule contents. A minority of smokers develops COPD and different molecular factors, which contribute to the onset of the disease, have been put forward. After many years of research, the pathogenesis of COPD is still an object of debate. In vivo models of cigarette smoke-induced COPD may help to unravel cellular and molecular mechanisms underlying the pathogenesis of COPD. The mouse represents the most favored animal choice with regard to the study of immune mechanisms due to its genetic and physiological similarities to humans, the availability of a large variability of inbred strains, the presence in the species of several genetic disorders analogous to those in man, and finally on the possibility to create models “made-to-measure” by genetic manipulation. The review outlines the different response of mouse strains to cigarette smoke used in COPD studies while retaining a strong focus on their relatability to human patients. These studies reveal the importance of innate immunity and cell surface receptors in the pathogenesis of pulmonary injury induced by cigarette smoking. They further advance the way in which we use wild type or genetically manipulated strains to improve our overall understanding of a multifaceted disease such as COPD. The structural and functional features, which have been found in the different strains of mice after chronic exposure to cigarette smoke, can be used in preclinical studies to develop effective new therapeutic agents for the different phenotypes in human COPD.
Collapse
Affiliation(s)
- Giovanna De Cunto
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Eleonora Cavarra
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Barbara Bartalesi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Monica Lucattelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Lungarella
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
7
|
Vanden Eynde JJ, Mangoni AA, Rautio J, Leprince J, Azuma YT, García-Sosa AT, Hulme C, Jampilek J, Karaman R, Li W, Gomes PAC, Hadjipavlou-Litina D, Capasso R, Geronikaki A, Cerchia L, Sabatier JM, Ragno R, Tuccinardi T, Trabocchi A, Winum JY, Luque FJ, Prokai-Tatrai K, Spetea M, Gütschow M, Kosalec I, Guillou C, Vasconcelos MH, Kokotos G, Rastelli G, de Sousa ME, Manera C, Gemma S, Mangani S, Siciliano C, Galdiero S, Liu H, Scott PJH, de los Ríos C, Agrofoglio LA, Collina S, Guedes RC, Muñoz-Torrero D. Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes-6. Molecules 2019; 25:E119. [PMID: 31905602 PMCID: PMC6983133 DOI: 10.3390/molecules25010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 11/16/2022] Open
Abstract
Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes is a series of Editorials that is published on a biannual basis by the Editorial Board of the Medicinal Chemistry section of the journal Molecules [...].
Collapse
Affiliation(s)
- Jean Jacques Vanden Eynde
- Formerly head of the Department of Organic Chemistry (FS), University of Mons-UMONS, 7000 Mons, Belgium;
| | - Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park 5042, Adelaide, Australia;
- Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01069 Dresden, Germany
| | - Jarkko Rautio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Jérôme Leprince
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie University, 76000 Rouen, France;
- UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie University, 76000 Rouen, France
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, 1-58 Rinku-ohraikita, Izumisano, Osaka 598-8531, Japan;
| | | | - Christopher Hulme
- Department of Pharmacology and Toxicology, and Department of Chemistry and Biochemistry, College of Pharmacy, The University of Arizona, Biological Sciences West Room 351, 1041 East Lowell Street, Tucson, AZ 85721, USA;
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| | - Rafik Karaman
- Pharmaceutical & Medicinal Chemistry Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine;
- Department of Sciences, University of Basilicata, Viadell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Paula A. C. Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal;
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.H.-L.) (A.G.)
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (NA), Italy;
| | - Athina Geronikaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.H.-L.) (A.G.)
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy;
| | - Jean-Marc Sabatier
- Institute of NeuroPhysiopathology, UMR 7051, Faculté de Médecine Secteur Nord, 51, Boulevard Pierre Dramard-CS80011, 13344-Marseille CEDEX 15, France;
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (T.T.); (C.M.)
| | - Andrea Trabocchi
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 13, I-50019 Sesto Fiorentino, Florence, Italy;
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM), École nationale supérieure de chimie de Montpellier (ENSCM), Université de Montpellier, CEDEX 05, 34296 Montpellier, France;
| | - F. Javier Luque
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTC), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramenet, Spain;
| | - Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA;
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria;
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53115 Bonn, Germany;
| | - Ivan Kosalec
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, HR-10000 Zagreb, Croatia;
| | - Catherine Guillou
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Unversité de Paris-Saclay, 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France;
| | - M. Helena Vasconcelos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
- Cancer Drug Resistance Group-IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP-Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece;
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy;
| | - Maria Emília de Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências, Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N 4450-208 Matosinhos, Portugal
| | - Clementina Manera
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (T.T.); (C.M.)
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; (S.G.); (S.M.)
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; (S.G.); (S.M.)
| | - Carlo Siciliano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Arcavacata di Rende, Italy;
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy;
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China;
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Cristóbal de los Ríos
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain;
| | - Luigi A. Agrofoglio
- ICOA, CNRS UMR 7311, Université d’Orleans, Rue de Chartres, 45067 Orleans CEDEX 2, France;
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy;
| | - Rita C. Guedes
- iMed.Ulisboa and Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - Diego Muñoz-Torrero
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| |
Collapse
|
8
|
De Cunto G, Brancaleone V, Riemma MA, Cerqua I, Vellecco V, Spaziano G, Cavarra E, Bartalesi B, D'Agostino B, Lungarella G, Cirino G, Lucattelli M, Roviezzo F. Functional contribution of sphingosine-1-phosphate to airway pathology in cigarette smoke-exposed mice. Br J Pharmacol 2019; 177:267-281. [PMID: 31499592 DOI: 10.1111/bph.14861] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/16/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE A critical role for sphingosine kinase/sphingosine-1-phosphate (S1P) pathway in the control of airway function has been demonstrated in respiratory diseases. Here, we address S1P contribution in a mouse model of mild chronic obstructive pulmonary disease (COPD). EXPERIMENTAL APPROACH C57BL/6J mice have been exposed to room air or cigarette smoke up to 11 months and killed at different time points. Functional and molecular studies have been performed. KEY RESULTS Cigarette smoke caused emphysematous changes throughout the lung parenchyma coupled to a progressive collagen deposition in both peribronchiolar and peribronchial areas. The high and low airways showed an increased reactivity to cholinergic stimulation and α-smooth muscle actin overexpression. Similarly, an increase in airway reactivity and lung resistances following S1P challenge occurred in smoking mice. A high expression of S1P, Sph-K2 , and S1P receptors (S1P2 and S1P3 ) has been detected in the lung of smoking mice. Sphingosine kinases inhibition reversed the increased cholinergic response in airways of smoking mice. CONCLUSIONS AND IMPLICATIONS S1P signalling up-regulation follows the disease progression in smoking mice and is involved in the development of airway hyperresponsiveness. Our study defines a therapeutic potential for S1P inhibitors in management of airways hyperresponsiveness associated to emphysema in smokers with both asthma and COPD.
Collapse
Affiliation(s)
- Giovanna De Cunto
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | | | - Ida Cerqua
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Giuseppe Spaziano
- Department of Experimental Medicine L. Donatelli, Section of Pharmacology, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Eleonora Cavarra
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Barbara Bartalesi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Bruno D'Agostino
- Department of Experimental Medicine L. Donatelli, Section of Pharmacology, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giuseppe Lungarella
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Cirino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Monica Lucattelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | |
Collapse
|
9
|
Rychlik KA, Secrest JR, Lau C, Pulczinski J, Zamora ML, Leal J, Langley R, Myatt LG, Raju M, Chang RCA, Li Y, Golding MC, Rodrigues-Hoffmann A, Molina MJ, Zhang R, Johnson NM. In utero ultrafine particulate matter exposure causes offspring pulmonary immunosuppression. Proc Natl Acad Sci U S A 2019; 116:3443-3448. [PMID: 30808738 PMCID: PMC6397543 DOI: 10.1073/pnas.1816103116] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Early life exposure to fine particulate matter (PM) in air is associated with infant respiratory disease and childhood asthma, but limited epidemiological data exist concerning the impacts of ultrafine particles (UFPs) on the etiology of childhood respiratory disease. Specifically, the role of UFPs in amplifying Th2- and/or Th17-driven inflammation (asthma promotion) or suppressing effector T cells (increased susceptibility to respiratory infection) remains unclear. Using a mouse model of in utero UFP exposure, we determined early immunological responses to house dust mite (HDM) allergen in offspring challenged from 0 to 4 wk of age. Two mice strains were exposed throughout gestation: C57BL/6 (sensitive to oxidative stress) and BALB/C (sensitive to allergen exposure). Offspring exposed to UFPs in utero exhibited reduced inflammatory response to HDM. Compared with filtered air (FA)-exposed/HDM-challenged mice, UFP-exposed offspring had lower white blood cell counts in bronchoalveolar lavage fluid and less pronounced peribronchiolar inflammation in both strains, albeit more apparent in C57BL/6 mice. In the C57BL/6 strain, offspring exposed in utero to FA and challenged with HDM exhibited a robust response in inflammatory cytokines IL-13 and Il-17. In contrast, this response was lost in offspring exposed in utero to UFPs. Circulating IL-10 was significantly up-regulated in C57BL/6 offspring exposed to UFPs, suggesting increased regulatory T cell expression and suppressed Th2/Th17 response. Our results reveal that in utero UFP exposure at a level close to the WHO recommended PM guideline suppresses an early immune response to HDM allergen, likely predisposing neonates to respiratory infection and altering long-term pulmonary health.
Collapse
Affiliation(s)
- Kristal A Rychlik
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843
| | - Jeremiah R Secrest
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Carmen Lau
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843
| | - Jairus Pulczinski
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843
| | - Misti L Zamora
- Department of Atmospheric Sciences, Texas A&M University, College Station, TX 77843
| | - Jeann Leal
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843
| | - Rebecca Langley
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843
| | - Louise G Myatt
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843
| | - Muppala Raju
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843
| | - Richard C-A Chang
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843
| | - Yixin Li
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Michael C Golding
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843
| | | | - Mario J Molina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Renyi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX 77843
- Department of Atmospheric Sciences, Texas A&M University, College Station, TX 77843
| | - Natalie M Johnson
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843;
| |
Collapse
|
10
|
De Cunto G, Bartalesi B, Cavarra E, Balzano E, Lungarella G, Lucattelli M. Ongoing Lung Inflammation and Disease Progression in Mice after Smoking Cessation: Beneficial Effects of Formyl-Peptide Receptor Blockade. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2195-2206. [PMID: 30031729 DOI: 10.1016/j.ajpath.2018.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/04/2018] [Accepted: 06/18/2018] [Indexed: 01/24/2023]
Abstract
The most important risk factor for chronic obstructive pulmonary disease (COPD) is cigarette smoking. Until now, smoking cessation (SC) is the only treatment effective in slowing down the progression of the disease. However, in many cases SC may only relieve the airflow obstruction and inflammatory response. Consequently, a persistent lung inflammation in ex-smokers is associated with progressive deterioration of respiratory functions. This is an increasingly important clinical problem whose mechanistic basis remains poorly understood. Available therapies do not adequately suppress inflammation and are not able to stop the vicious cycle that is at the basis of persistent inflammation. In addition, in mice after SC an ongoing inflammation and progressive lung deterioration is observed. After 4 months of smoke exposure mice show mild emphysematous changes. Lung inflammation is still present after SC, and emphysema progresses during the next 6-month period of observation. Destruction of alveolar walls is associated with airways remodeling (goblet cell metaplasia and peribronchiolar fibrosis). Modulation of formyl-peptide receptor signaling with antagonists mitigates inflammation and prevents deterioration of lung structures. This study suggests an important role for N-formylated peptides in the progression and exacerbation of COPD. Modulating formyl-peptide receptor signal should be explored as a potential new therapy for COPD.
Collapse
Affiliation(s)
- Giovanna De Cunto
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Barbara Bartalesi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Eleonora Cavarra
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Emilia Balzano
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Lungarella
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Monica Lucattelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| |
Collapse
|
11
|
Ghosh A, Coakley RC, Mascenik T, Rowell TR, Davis ES, Rogers K, Webster MJ, Dang H, Herring LE, Sassano MF, Livraghi-Butrico A, Van Buren SK, Graves LM, Herman MA, Randell SH, Alexis NE, Tarran R. Chronic E-Cigarette Exposure Alters the Human Bronchial Epithelial Proteome. Am J Respir Crit Care Med 2018; 198:67-76. [PMID: 29481290 PMCID: PMC6034122 DOI: 10.1164/rccm.201710-2033oc] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/23/2018] [Indexed: 12/16/2022] Open
Abstract
RATIONALE E-cigarettes vaporize propylene glycol/vegetable glycerin (PG/VG), nicotine, and flavorings. However, the long-term health effects of exposing lungs to vaped e-liquids are unknown. OBJECTIVES To determine the effects of chronic vaping on pulmonary epithelia. METHODS We performed research bronchoscopies on healthy nonsmokers, cigarette smokers, and e-cigarette users (vapers) and obtained bronchial brush biopsies and lavage samples from these subjects for proteomic investigation. We further employed in vitro and murine exposure models to support our human findings. MEASUREMENTS AND MAIN RESULTS Visual inspection by bronchoscopy revealed that vaper airways appeared friable and erythematous. Epithelial cells from biopsy samples revealed approximately 300 proteins that were differentially expressed in smoker and vaper airways, with only 78 proteins being commonly altered in both groups and 113 uniquely altered in vapers. For example, CYP1B1 (cytochrome P450 family 1 subfamily B member 1), MUC5AC (mucin 5 AC), and MUC4 levels were increased in vapers. Aerosolized PG/VG alone significantly increased MUC5AC protein in human airway epithelial cultures and in murine nasal epithelia in vivo. We also found that e-liquids rapidly entered cells and that PG/VG reduced membrane fluidity and impaired protein diffusion. CONCLUSIONS We conclude that chronic vaping exerts marked biological effects on the lung and that these effects may in part be mediated by the PG/VG base. These changes are likely not harmless and may have clinical implications for the development of chronic lung disease. Further studies will be required to determine the full extent of vaping on the lung.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Lee M. Graves
- UNC Proteomics Core Facility, Department of Pharmacology
| | | | | | - Neil E. Alexis
- Center for Environmental Medicine Asthma and Lung Biology, University of North Carolina at Chapel Hill, North Carolina
| | - Robert Tarran
- Marsico Lung Institute
- Department of Cell Biology and Physiology
| |
Collapse
|
12
|
Rashid K, Sundar IK, Gerloff J, Li D, Rahman I. Lung cellular senescence is independent of aging in a mouse model of COPD/emphysema. Sci Rep 2018; 8:9023. [PMID: 29899396 PMCID: PMC5998122 DOI: 10.1038/s41598-018-27209-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022] Open
Abstract
Cigarette smoke (CS) induces lung cellular senescence that plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). How aging influences cellular senescence and other molecular hallmarks, and increases the risk of CS-induced damage remains unknown. We hypothesized that aging-associated changes in lungs worsen the COPD/emphysema by CS exposure. Younger and older groups of C57BL/6J mice were exposed to chronic CS for 6 months with respective age-matched air-exposed controls. CS caused a decline in lung function and affected the lung structure of both groups of mice. No alterations were observed in the induction of inflammatory mediators between the air-exposed younger and older controls, but aging increased the severity of CS-induced lung inflammation. Aging per se increased lung cellular senescence and significant changes in damage-associated molecular patterns marker S100A8. Gene transcript analysis using the nanoString nCounter showed a significant upregulation of key pro-senescence targets by CS (Mmp12, Ccl2, Cdkn2a, Tert, Wrn, and Bub1b). Aging independently influenced lung function and structure, as well as increased susceptibility to CS-induced inflammation in emphysema, but had a negligible effect on cellular senescence. Thus, aging solely does not contribute to the induction of cellular senescence by CS in a mouse model of COPD/emphysema.
Collapse
Affiliation(s)
- Kahkashan Rashid
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Janice Gerloff
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Dongmei Li
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
13
|
Kaur G, Muthumalage T, Rahman I. Mechanisms of toxicity and biomarkers of flavoring and flavor enhancing chemicals in emerging tobacco and non-tobacco products. Toxicol Lett 2018; 288:143-155. [PMID: 29481849 PMCID: PMC6549714 DOI: 10.1016/j.toxlet.2018.02.025] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 01/11/2023]
Abstract
Tobacco products containing flavorings, such as electronic nicotine delivery devices (ENDS) or e-cigarettes, cigars/cigarillos, waterpipes, and heat-not-burn devices (iQOS) are continuously evolving. In addition to increasing the exposure of teenagers and adults to nicotine containing flavoring products and flavoring enhancers, chances of nicotine addiction through chronic use and abuse also increase. These flavorings are believed to be safe for ingestion, but little information is available about their effects on the lungs. In this review, we have discussed the in vitro and in vivo data on toxicity of flavoring chemicals in lung cells. We have further discussed the common flavoring agents, such as diacetyl and menthol, currently available detection methods, and the toxicological mechanisms associated with oxidative stress, inflammation, mucociliary clearance, and DNA damage in cells, mice, and humans. Finally, we present potential biomarkers that could be utilized for future risk assessment. This review provides crucial parameters important for evaluation of risk associated with flavoring agents and flavoring enhancers used in tobacco products and ENDS. Future studies can be designed to address the potential toxicity of inhaled flavorings and their biomarkers in users as well as in chronic exposure studies.
Collapse
Affiliation(s)
- Gurjot Kaur
- Human and Environmental Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Thivanka Muthumalage
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
14
|
Radder JE, Shapiro SD. Reply to: Quantitative Histology Seriously Flawed by Lack of Lung Volume Measurement. Am J Respir Cell Mol Biol 2018; 58:274-275. [PMID: 29388831 DOI: 10.1165/rcmb.2017-0394le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Josiah E Radder
- 1 University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Steven D Shapiro
- 1 University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Khan NA, Sundar IK, Rahman I. Strain- and sex-dependent pulmonary toxicity of waterpipe smoke in mouse. Physiol Rep 2018; 6:e13579. [PMID: 29417753 PMCID: PMC5803106 DOI: 10.14814/phy2.13579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/23/2022] Open
Abstract
Waterpipe smoking is emerging as a form of tobacco smoking, but its lung health/risks is not known. It has been shown that different mouse strains show differences in susceptibility to tobacco smoke. However, the effect of waterpipe smoke (WPS) exposure and strain differences in susceptibility to oxidative and inflammatory responses is not known. Here, we showed acute WPS exposure induced oxidative stress and inflammatory response in C57BL/6J and BALB/cJ mouse strains. WPS exposure induced inflammatory cell influx (neutrophils and T-lymphocytes) in bronchoalveolar lavage fluid (BAL fluid), which varied among mouse strains. Proinflammatory cytokines release differed among both the strains, but was significantly increased in C57BL/6J mice. Myeloperoxidase levels in BAL fluid were increased significantly in both the strains. Total reduced glutathione (GSH) level was decreased, whereas the level of oxidized or glutathione disulfide (GSSG) increased in lungs of both the strains. Similarly, the level of lipid peroxidation markers, 15-isoprostane (plasma), malondialdehyde and 4-hydroxy-2-nonenal (lung homogenates) were increased by WPS. Our data suggest that, oxidative stress and inflammatory responses are influenced by strain characteristics during acute WPS exposure. Overall, C57BL/6J mice showed more susceptibility to oxidative stress and inflammatory responses compared to BALB/cJ mice. Acute WPS mediated pulmonary toxicity is differentially regulated in different mouse strains.
Collapse
Affiliation(s)
- Naushad Ahmad Khan
- Department of Environmental MedicineUniversity of Rochester Medical CenterRochesterNew York
| | | | - Irfan Rahman
- Department of Environmental MedicineUniversity of Rochester Medical CenterRochesterNew York
| |
Collapse
|