1
|
Kim KJ, Lee JH, Lim J, Lee T, Joo J, Bhalla M, Wang T, Feng R, Lee CJ. Astrocyte-Specific Phenotyping of FAD 4T as an Alzheimer's Disease Mouse Model. Glia 2025; 73:1258-1271. [PMID: 40009021 DOI: 10.1002/glia.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, characterized by memory decline and behavioral changes. Its pathological features include senile plaques, neurofibrillary tangles, and reactive gliosis, comprising abnormal accumulations of β-amyloid peptide (Aβ) and hyperphosphorylated tau protein surrounded by reactive astrocytes and microglia. Recently, it has emerged that severe reactive astrocytes and MAOB-dependent production of GABA and H2O2 are the real causes of learning and memory impairment and neurodegeneration. Diverse mouse models for AD have been developed to clarify pathological mechanisms and discover therapeutic strategies and drugs. However, there are many shortfalls and discrepancies among them. A new AD mouse model named FAD4T has been developed to overcome various shortcomings. Here, we employed astrocyte-focused screening procedures to examine the pathological features of FAD4T as an AD model. Our results revealed that the FAD4T mice showed abnormal accumulation of Aβ plaques in overall brain regions at 6 and 12 months. We found astrocytic hypertrophy with a significant elevation of GFAP and LCN2. However, the expressions of MAOB and iNOS, a severe reactive astrocyte marker, were unchanged. Electrophysiological and behavioral analysis indicated aberrant tonic GABA release, reduced neuronal activity, and impaired CA1-specific memory. These findings demonstrate that FAD4T mice mimic pathological and functional features of AD, different from other AD mouse models. These findings demonstrate that FAD4T mimics some features of AD patients but lacks other important features, such as severe reactive astrocytes and neurodegeneration. This astrocyte-focused screening method offers valuable tools for advancing AD research and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Ki Jung Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jae-Hun Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jiwoon Lim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Taehee Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jinhyeong Joo
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Mridula Bhalla
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Tao Wang
- GemPharmatech Co Ltd., Guangdong, China
| | - Rui Feng
- GemPharmatech Co. Ltd., Nanjing, China
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
2
|
Fan Y, Gao L, Huang Y, Zhao L, Zhao Y, Wang X, Mo D, Lu H, Wang D. Effects and Significance of Dicliptera chinensis Polysaccharide on the Expression of Transforming Growth Factor β1/Connective Tissue Growth Factor Pathway in the Masseter and Head and Neck Skin of Rats With Radiation-Induced Fibrosis. Int Dent J 2025; 75:784-796. [PMID: 38991877 PMCID: PMC11976479 DOI: 10.1016/j.identj.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
PURPOSE To investigate whether Dicliptera chinensis polysaccharide (DCP) can alleviate radiation-induced fibrosis of masseter and head and neck skin. METHODS SD rats were divided into the control, the irradiation (IR), the IR + low dose DCP (200 mg/kg), and the IR + high dose DCP (400 mg/kg) groups. The head and neck of rats in the last 3 groups received a single dose of 18 Gy X-ray. At 1st, 2nd, 4th week (w) after radiation, haematoxylin and eosin staining were performed on masseter and skin to observe the histopathological changes; immunohistochemistry staining was performed to observe the pathological changes of the skin; Masson staining was performed on masseter and skin to observe the collagen deposition; western blot analysis was used on masseter to calculate the relative transforming growth factor β1 (TGF-β1), connective tissue growth factor (CTGF) expressions; ELISA was used to detect the contents of TGF-β1 and CTGF in skin and the contents of type I and type III collagens in masseter and skin. RESULTS In terms of skin, compared to the IR group, the IR + high-dose DCP group exhibited relatively smaller changes in skin structure, lower levels of TGF-β1 and CTGF; thinner skin thickness was observed at the 4th w after radiation; and the positive rates of collagen fibre and the optical densities of type I and type III collagens were lower at the 2nd and 4th w. For the masseter, compared to the IR group, the morphological changes were improved and the expression levels of TGF-β1 and CTGF proteins decreased in the 2 DCP dose groups at 2nd and 4th w. CONCLUSION DCP can reduce the formation and accumulation of type I and type III collagens after IR and ameliorate radiation-induced fibrosis of masseter and skin by down-regulating the expressions of TGF-β1 and CTGF.
Collapse
Affiliation(s)
- Yiyang Fan
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China; Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Linjing Gao
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yude Huang
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China
| | - Lixiang Zhao
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China
| | - Yanfei Zhao
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China
| | - Xian Wang
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China
| | - Dongqin Mo
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China
| | - Haoyu Lu
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China
| | - Daiyou Wang
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China.
| |
Collapse
|
3
|
Yuan Z, Lin B, Wang C, Yan Z, Yang F, Su H. Collagen remodeling-mediated signaling pathways and their impact on tumor therapy. J Biol Chem 2025; 301:108330. [PMID: 39984051 PMCID: PMC11957794 DOI: 10.1016/j.jbc.2025.108330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/23/2025] Open
Abstract
In addition to their traditional roles in maintaining tissue morphology and organ development, emerging evidence suggests that collagen (COL) remodeling-referring to dynamic changes in the quantity, stiffness, arrangements, cleavage states, and homo-/hetero-trimerization of COLs-serves as a key signaling mechanism that governs tumor growth and metastasis. COL receptors act as switches, linking various forms of COL remodeling to different cell types during cancer progression, including cancer cells, immune cells, and cancer-associated fibroblasts. In this review, we summarize recent findings on the signaling pathways mediated by COL arrangement, cleavage, and trimerization states (both homo- and hetero-), as well as the roles of the primary COL receptors-integrin, DDR1/2, LAIR-1/2, MRC2, and GPVI-in cancer progression. We also discuss the latest therapeutic strategies targeting COL fragments, cancer-associated fibroblasts, and COL receptors, including integrins, DDR1/2, and LAIR1/2. Understanding the pathways modulated by COL remodeling and COL receptors in various pathological contexts will pave the way for developing new precision therapies.
Collapse
Affiliation(s)
- Zihang Yuan
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, MOE Innovation Center for Basic Research in Tumor Immunotherapy, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bo Lin
- Liver Cancer Institute, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chunlan Wang
- Liver Cancer Institute, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhaoyue Yan
- The Department of Stomatology, Shandong Public Health Clinical Center, Shandong University, Jinan, Shandong, China
| | - Fei Yang
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, MOE Innovation Center for Basic Research in Tumor Immunotherapy, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Hua Su
- Liver Cancer Institute, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Zherdeva VV, Likhov AR, Saidvaliev UA, Fixler D, Demin D, Volodina VN, Apukhtina UA, Pawar S, Atuar B, Tuchin VV. Enhanced Fluorescence Imaging of Implants Based on Polyester Copolymers in Combination With MRI. JOURNAL OF BIOPHOTONICS 2025:e202400147. [PMID: 39899887 DOI: 10.1002/jbio.202400147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 02/05/2025]
Abstract
Nowadays, many biodegradable materials are offered for biomedical applications, but there are only a few in vivo methods for their detection and monitoring. In this work, implants based on biodegradable polyester copolymers were labeled with indocyanine green (ICG) for fluorescence imaging in combination with tissue optical clearing (TOC) and magnetic resonance imaging (MRI). The results include in vitro degradation modeling followed by in vivo imaging of copolymer samples that were subcutaneously implanted in BALB/c mice. TOC with 70% glycerol has been demonstrated to significantly improve sample visualization. The TOC efficiency parameter Q demonstrated the variability of effects correlating with the timing of follow-up in the postimplantation period. It has been shown that nonhealing wounds, peri-implantation inflammation, or fibrosis, confirmed by MRI, affect the effectiveness of TOC in the range from Q = -30% to 70%.
Collapse
Affiliation(s)
- Victoria V Zherdeva
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Astemir R Likhov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Ulugbek A Saidvaliev
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Dmitry Demin
- MIREA - Russian Technological University, Moscow, Russia
| | - Veronika N Volodina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Uliana A Apukhtina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Shweta Pawar
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Bar Atuar
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Valery V Tuchin
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
- Institute of Physics and Science Medical Center, Saratov State University, Saratov, Russian Federation
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russian Federation
| |
Collapse
|
5
|
Spampinato M, Giallongo C, Giallongo S, Spina EL, Duminuco A, Longhitano L, Caltabiano R, Salvatorelli L, Broggi G, Pricoco EP, Del Fabro V, Dulcamare I, DI Mauro AM, Romano A, Di Raimondo F, Li Volti G, Palumbo GA, Tibullo D. Lactate accumulation promotes immunosuppression and fibrotic transformation of bone marrow microenvironment in myelofibrosis. J Transl Med 2025; 23:69. [PMID: 39810250 PMCID: PMC11734442 DOI: 10.1186/s12967-025-06083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Clonal myeloproliferation and fibrotic transformation of the bone marrow (BM) are the pathogenetic events most commonly occurring in myelofibrosis (MF). There is great evidence indicating that tumor microenvironment is characterized by high lactate levels, acting not only as an energetic source, but also as a signaling molecule. METHODS To test the involvement of lactate in MF milieu transformation, we measured its levels in MF patients' sera, eventually finding a massive accumulation of this metabolite, which we showed to promote the expansion of immunosuppressive subsets. Therefore, to assess the significance of its trafficking, we inhibited monocarboxylate transporter 1 (MCT1) by its selective antagonist, AZD3965, eventually finding a mitigation of lactate-mediated immunosuppressive subsets expansion. To further dig into the impact of lactate in tumor microenvironment, we evaluated the effect of this metabolite on mesenchymal stromal cells (MSCs) reprogramming. RESULTS Our results show an activation of a cancer-associated phenotype (CAF) related to mineralized matrix formation and early fibrosis development. Strikingly, MF serum, enriched in lactate, causes a strong deposition of collagen in healthy stromal cells, which was restrained by AZD3965. To corroborate these outcomes, we therefore generated for the first time a TPOhigh zebrafish model for the establishment of experimental fibrosis. By adopting this model, we were able to unveil a remarkable increase in lactate concentration and monocarboxylate transporter 1 (MCT1) expression in the site of hematopoiesis, associated with a strong downregulation of lactate export channel MCT4. Notably, exploiting MCTs expression in biopsy specimens from patients with myeloproliferative neoplasms, we found a loss of MCT4 expression in PMF, corroborating changes in MCT expression during BM fibrosis establishment. CONCLUSIONS In conclusion, our results unveil lactate as a key regulator of immune escape and BM fibrotic transformation in MF patients, suggesting MCT1 blocking as a novel antifibrotic strategy.
Collapse
Affiliation(s)
- Mariarita Spampinato
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Hematology, University of Catania, Catania, Italy
| | - Sebastiano Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Hematology, University of Catania, Catania, Italy
| | - Enrico La Spina
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| | - Andrea Duminuco
- Hematology Unit with BMT, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Anatomic Pathology, University of Catania, Catania, Italy
| | - Lucia Salvatorelli
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Anatomic Pathology, University of Catania, Catania, Italy
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Anatomic Pathology, University of Catania, Catania, Italy
| | | | - Vittorio Del Fabro
- Hematology Unit with BMT, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Ilaria Dulcamare
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Francesco Di Raimondo
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy.
| | - Giuseppe A Palumbo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Hematology, University of Catania, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| |
Collapse
|
6
|
Rout-Pitt N, Boog B, McCarron A, Reyne N, Parsons D, Donnelley M. Insights into epithelial-mesenchymal transition from cystic fibrosis rat models. J Cyst Fibros 2025; 24:149-156. [PMID: 39266334 DOI: 10.1016/j.jcf.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Molecular pathways contributing to Cystic Fibrosis pathogenesis remain poorly understood. Epithelial-mesenchymal transition (EMT) has been recently observed in CF lungs and certain CFTR mutation classes may be more susceptible than others. No investigations of EMT processes in CF animal models have been reported. AIM The aim of this study was to assess the expression of EMT-related markers in Phe508del and knockout (CFTR-KO) rat lung tissue and tracheal-derived basal epithelial stem cells, to determine whether CFTR dysfunction can produce an EMT state. METHOD The expression of EMT-related markers in lung tissue and cultured tracheal basal epithelial stem cells from wildtype (WT), Phe508del, and CFTR-KO rats were assessed using qPCR and Western blots. Cell responses were evaluated in the presence of Rho-associated protein kinase (ROCK) inhibitor Y27632, which blocks EMT-pathways, or after treatment with TGFβ1 to stimulate EMT. RESULTS Different gene expression profiles were observed between Phe508del and CFTR-KO rat models compared to wild type. There was lower expression of type 1 collagen in KO lungs and primary cell cultures, while Phe508del lungs and cells had higher expression, particularly when treated with TGFβ1. The addition of Y27632 rescued changes in EMT related genes in Phe508del cells but not in KO cells. CONCLUSION Our findings show the first evidence of upregulated EMT pathways in the lungs and airway cells of any CF animal model. Differences in the regulation of the EMT genes and proteins in the Phe508del and CFTR-KO cells suggest that the signalling pathways underlying EMT are CFTR mutation dependent.
Collapse
Affiliation(s)
- Nathan Rout-Pitt
- Robinson Research Institute, University of Adelaide, South Australia; Adelaide Medical School, University of Adelaide, South Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, South Australia.
| | - Bernadette Boog
- Robinson Research Institute, University of Adelaide, South Australia; Adelaide Medical School, University of Adelaide, South Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, South Australia.
| | - Alexandra McCarron
- Robinson Research Institute, University of Adelaide, South Australia; Adelaide Medical School, University of Adelaide, South Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, South Australia.
| | - Nicole Reyne
- Robinson Research Institute, University of Adelaide, South Australia; Adelaide Medical School, University of Adelaide, South Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, South Australia.
| | - David Parsons
- Robinson Research Institute, University of Adelaide, South Australia; Adelaide Medical School, University of Adelaide, South Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, South Australia.
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, South Australia; Adelaide Medical School, University of Adelaide, South Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, South Australia.
| |
Collapse
|
7
|
Ling S, Kwak D, Takuwa Y, Ge C, Franceschi R, Kim KK. Discoidin domain receptor 2 signaling through PIK3C2α in fibroblasts promotes lung fibrosis. J Pathol 2024; 262:505-516. [PMID: 38332727 PMCID: PMC10940211 DOI: 10.1002/path.6253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/30/2023] [Accepted: 12/12/2023] [Indexed: 02/10/2024]
Abstract
Pulmonary fibrosis, especially idiopathic pulmonary fibrosis (IPF), portends significant morbidity and mortality, and current therapeutic options are suboptimal. We have previously shown that type I collagen signaling through discoidin domain receptor 2 (DDR2), a receptor tyrosine kinase expressed by fibroblasts, is critical for the regulation of fibroblast apoptosis and progressive fibrosis. However, the downstream signaling pathways for DDR2 remain poorly defined and could also be attractive potential targets for therapy. A recent phosphoproteomic approach indicated that PIK3C2α, a poorly studied member of the PI3 kinase family, could be a downstream mediator of DDR2 signaling. We hypothesized that collagen I/DDR2 signaling through PIK3C2α regulates fibroblast activity during progressive fibrosis. To test this hypothesis, we found that primary murine fibroblasts and IPF-derived fibroblasts stimulated with endogenous or exogenous type I collagen led to the formation of a DDR2/PIK3C2α complex, resulting in phosphorylation of PIK3C2α. Fibroblasts treated with an inhibitor of PIK3C2α or with deletion of PIK3C2α had fewer markers of activation after stimulation with TGFβ and more apoptosis after stimulation with a Fas-activating antibody. Finally, mice with fibroblast-specific deletion of PIK3C2α had less fibrosis after bleomycin treatment than did littermate control mice with intact expression of PIK3Cα. Collectively, these data support the notion that collagen/DDR2/PIK3C2α signaling is critical for fibroblast function during progressive fibrosis, making this pathway a potential target for antifibrotic therapy. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Song Ling
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Doyun Kwak
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yoh Takuwa
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa Ishikawa, Japan
| | - Chunxi Ge
- Departments of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Renny Franceschi
- Departments of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Kevin K. Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Lloyd SM, He Y. Exploring Extracellular Matrix Crosslinking as a Therapeutic Approach to Fibrosis. Cells 2024; 13:438. [PMID: 38474402 PMCID: PMC10931134 DOI: 10.3390/cells13050438] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The extracellular matrix (ECM) provides structural support for tissues and regulatory signals for resident cells. ECM requires a careful balance between protein accumulation and degradation for homeostasis. Disruption of this balance can lead to pathological processes such as fibrosis in organs across the body. Post-translational crosslinking modifications to ECM proteins such as collagens alter ECM structure and function. Dysregulation of crosslinking enzymes as well as changes in crosslinking composition are prevalent in fibrosis. Because of the crucial roles these ECM crosslinking pathways play in disease, the enzymes that govern crosslinking events are being explored as therapeutic targets for fibrosis. Here, we review in depth the molecular mechanisms underlying ECM crosslinking, how ECM crosslinking contributes to fibrosis, and the therapeutic strategies being explored to target ECM crosslinking in fibrosis to restore normal tissue structure and function.
Collapse
Affiliation(s)
| | - Yupeng He
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, USA;
| |
Collapse
|
9
|
Liu ST, Zha KJ, Li PJ, Gao JB, Zhang YG. Protective effect of naringin against radiation-induced heart disease in rats via Sirt1/NF-κB signaling pathway and endoplasmic reticulum stress. Chem Biol Drug Des 2024; 103:e14453. [PMID: 38230793 DOI: 10.1111/cbdd.14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/18/2024]
Abstract
This study was designed to explore the protective effect and mechanism of naringin (NG) on radiation-induced heart disease (RIHD) in rats. Rats were divided into four x-ray (XR) irradiation groups with different absorbed doses (0/10/15/20 Gy), or into three groups (control, XR, and XR + NG groups). Subsequently, the ultrasonic diagnostic apparatus was adopted to assess and compare the left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), left ventricular internal diameter at end diastole (LVIDd), and left ventricular internal diameter at end systole (LVIDs) in rats. Hematoxylin-eosin (H&E) staining and Masson staining were applied to detect the pathological damage and fibrosis of heart tissue. Western blot was used to measure the expression levels of myocardial fibrosis-related proteins, endoplasmic reticulum stress-related proteins, and Sirt1 (silent information regulator 1)/NF-κB (nuclear factor kappa-B) signaling pathway-related proteins in cardiac tissues. Additionally, enzyme-linked immunosorbent assay was utilized to detect the activities of pro-inflammatory cytokines, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) in cardiac tissue. The results showed that NG treatment significantly attenuated the 20 Gy XR-induced decline of LVEF and LVFS and the elevation of LVIDs. Cardiac tissue damage and fibrosis caused by 20 Gy XR were significant improved after NG treatment. Meanwhile, in rats irradiated by XR, marked downregulation was identified in the expressions of fibrosis-related proteins (Col I, collagen type I; α-SMA, α-smooth muscle actin; and TGF-β1, transforming growth factor-beta 1) and endoplasmic reticulum stress-related proteins (GRP78, glucose regulatory protein 78; CHOP, C/EBP homologous protein; ATF6, activating transcription factor 6; and caspase 12) after NG treatment. Moreover, NG treatment also inhibited the production of pro-inflammatory cytokines [interleukin-6, interleukin-1β, and monocyte chemoattractant protein-1 (MCP-1)], reduced the expression of MDA, and promoted the activities of SOD and CAT. Also, NG treatment promoted Sirt1 expression and inhibited p65 phosphorylation. Collectively, XR irradiation induced cardiac injury in rats in a dose-dependent manner. NG could improve the cardiac injury induced by XR irradiation by inhibiting endoplasmic reticulum stress and activating Sirt1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shu-Ting Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kai-Ji Zha
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pei-Jie Li
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jian-Bo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong-Gao Zhang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Li X, Shan J, Chen X, Cui H, Wen G, Yu Y. Decellularized diseased tissues: current state-of-the-art and future directions. MedComm (Beijing) 2023; 4:e399. [PMID: 38020712 PMCID: PMC10661834 DOI: 10.1002/mco2.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 12/01/2023] Open
Abstract
Decellularized matrices derived from diseased tissues/organs have evolved in the most recent years, providing novel research perspectives for understanding disease occurrence and progression and providing accurate pseudo models for developing new disease treatments. Although decellularized matrix maintaining the native composition, ultrastructure, and biomechanical characteristics of extracellular matrix (ECM), alongside intact and perfusable vascular compartments, facilitates the construction of bioengineered organ explants in vitro and promotes angiogenesis and tissue/organ regeneration in vivo, the availability of healthy tissues and organs for the preparation of decellularized ECM materials is limited. In this paper, we review the research advancements in decellularized diseased matrices. Considering that current research focuses on the matrices derived from cancers and fibrotic organs (mainly fibrotic kidney, lungs, and liver), the pathological characterizations and the applications of these diseased matrices are mainly discussed. Additionally, a contrastive analysis between the decellularized diseased matrices and decellularized healthy matrices, along with the development in vitro 3D models, is discussed in this paper. And last, we have provided the challenges and future directions in this review. Deep and comprehensive research on decellularized diseased tissues and organs will promote in-depth exploration of source materials in tissue engineering field, thus providing new ideas for clinical transformation.
Collapse
Affiliation(s)
- Xiang Li
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianyang Shan
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin Chen
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina
| | - Haomin Cui
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Gen Wen
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yaling Yu
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
11
|
Ling S, Kwak D, Kim KK. Inhibition of discoidin domain receptor 2 reveals kinase-dependent and kinase-independent functions in regulating fibroblast activity. Am J Physiol Lung Cell Mol Physiol 2023; 325:L342-L351. [PMID: 37489274 PMCID: PMC10625828 DOI: 10.1152/ajplung.00066.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/16/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
Progressive pulmonary fibrosis is a devastating condition and current treatment is suboptimal. There has been considerable interest in the role of tyrosine kinase signaling as mediators of pro- and antifibrotic processes. Nintedanib is a nonspecific tyrosine kinase that has been shown to have therapeutic benefit in lung fibrosis. However, the precise mechanism of action remains unclear because nintedanib inhibits several tyrosine kinases, which are often expressed on multiple cell types with different activities during fibrosis. Discoidin domain receptor 2 (DDR2) has been suggested as a potential target of nintedanib. DDR2 is a receptor tyrosine kinase that is activated by fibrillar collagens such as type I collagen. DDR2 is primarily expressed by fibroblasts. The effectiveness of specifically targeting DDR2 signaling during fibrosis remains undefined. In the present study, we show that nintedanib acts as a direct and indirect inhibitor of DDR2. We then utilize a novel allosteric inhibitor of DDR2, WRG-28, which blocks ligand binding and activation of DDR2. We find that WRG-28 augments fibroblast apoptosis and attenuates fibrosis. Finally, we show that fibroblast type I collagen autocrine signaling is regulated by DDR2 through both kinase-dependent and kinase-independent functions of DDR2. These findings highlight the importance of type I collagen autocrine signaling by fibroblasts during fibrosis and demonstrate that DDR2 has a central role in this pathway making it a potential therapeutic target.NEW & NOTEWORTHY Type I collagen is a major component of fibrosis and can signal through cell surface receptors such as discoidin domain receptor 2 (DDR2). DDR2 activation can lead to further collagen deposition by fibroblasts setting up a profibrotic positive feedback loop. In this report, we find that inhibition of DDR2 with nintedanib or a specific DDR2 inhibitor, WRG-28, can disrupt this cycle and prevent fibrosis through augmented fibroblast apoptosis and inhibited activation.
Collapse
Affiliation(s)
- Song Ling
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Doyun Kwak
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Kevin K Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
12
|
Mia MS, Hossain D, Woodbury E, Kelleher S, Palamuttam RJ, Rao R, Steen P, Jarajapu YP, Mathew S. Integrin β1 is a key determinant of the expression of angiotensin-converting enzyme 2 (ACE2) in the kidney epithelial cells. Eur J Cell Biol 2023; 102:151316. [PMID: 37084657 PMCID: PMC11086052 DOI: 10.1016/j.ejcb.2023.151316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
The expression of the angiotensin-converting enzyme 2 (ACE2) is altered in multiple chronic kidney diseases like hypertension and renal fibrosis, where the signaling from the basal membrane proteins is critical for the development and progression of the various pathologies. Integrins are heterodimeric cell surface receptors that have important roles in the progression of these chronic kidney diseases by altering various cell signaling pathways in response to changes in the basement membrane proteins. It is unclear whether integrin or integrin-mediated signaling affects the ACE2 expression in the kidney. The current study tests the hypothesis that integrin β1 regulates the expression of ACE2 in kidney epithelial cells. The role of integrin β1 in ACE2 expression in renal epithelial cells was investigated by shRNA-mediated knockdown and pharmacological inhibition. In vivo studies were carried out using epithelial cell-specific deletion of integrin β1 in the kidneys. Deletion of integrin β1 from the mouse renal epithelial cells reduced the expression of ACE2 in the kidney. Furthermore, the downregulation of integrin β1 using shRNA decreased ACE2 expression in human renal epithelial cells. ACE2 expression levels were also decreased in renal epithelial cells and cancer cells when treated with an integrin α2β1 antagonist, BTT 3033. SARS-CoV-2 viral entry to human renal epithelial cells and cancer cells was also inhibited by BTT 3033. This study demonstrates that integrin β1 positively regulates the expression of ACE2, which is required for the entry of SARS-CoV-2 into kidney cells.
Collapse
Affiliation(s)
- Md Saimon Mia
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA
| | - Delowar Hossain
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA
| | - Emerson Woodbury
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA
| | - Sean Kelleher
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA
| | | | - Reena Rao
- Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Preston Steen
- Sanford Health Roger Maris Cancer Center, Fargo, ND, USA
| | - Yagna Pr Jarajapu
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA
| | - Sijo Mathew
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA; Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
13
|
Sun Y, Jing P, Gan H, Wang X, Zhu X, Fan J, Li H, Zhang Z, Lin JCJ, Gu Z. Evaluation of an ex vivo fibrogenesis model using human lung slices prepared from small tissues. Eur J Med Res 2023; 28:143. [PMID: 36998092 PMCID: PMC10061769 DOI: 10.1186/s40001-023-01104-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/20/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND In recent years, there have been breakthroughs in the preclinical research of respiratory diseases, such as organoids and organ tissue chip models, but they still cannot provide insight into human respiratory diseases well. Human lung slices model provides a promising in vitro model for the study of respiratory diseases because of its preservation of lung structure and major cell types. METHODS Human lung slices were manually prepared from small pieces of lung tissues obtained from lung cancer patients subjected to lung surgery. To evaluate the suitability of this model for lung fibrosis research, lung slices were treated with CdCl2 (30 μM), TGF-β1 (1 ng/ml) or CdCl2 plus TGF-β1 for 3 days followed by toxicity assessment, gene expression analysis and histopathological observations. RESULTS CdCl2 treatment resulted in a concentration-dependent toxicity profile evidenced by MTT assay as well as histopathological observations. In comparison with the untreated group, CdCl2 and TGF-β1 significantly induces MMP2 and MMP9 gene expression but not MMP1. Interestingly, CdCl2 plus TGF-β1 significantly induces the expression of MMP1 but not MMP2, MMP7 or MMP9. Microscopic observations reveal the pathogenesis of interstitial lung fibrosis in the lung slices of all groups; however, CdCl2 plus TGF-β1 treatment leads to a greater alveolar septa thickness and the formation of fibroblast foci-like pathological features. The lung slice model is in short of blood supply and the inflammatory/immune-responses are considered minimal. CONCLUSIONS The results are in favor of the hypothesis that idiopathic pulmonary fibrosis (IPF) is mediated by tissue damage and abnormal repair. Induction of MMP1 gene expression and fibroblast foci-like pathogenesis suggest that this model might represent an early stage of IPF.
Collapse
Affiliation(s)
- Ying Sun
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Pengyu Jing
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Helina Gan
- Fibroscience LLC, 8037 Glengarriff Rd., Clemmons, NC, 27012, USA
| | - Xuejiao Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Ximing Zhu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Jiangjiang Fan
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Haichao Li
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Zhipei Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | | | - Zhongping Gu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
14
|
Ferreira BA, De Moura FBR, Tomiosso TC, Corrêa NCR, Goulart LR, Barcelos LS, Clissa PB, Araújo FDA. Jararhagin-C, a disintegrin-like protein, improves wound healing in mice through stimulation of M2-like macrophage, angiogenesis and collagen deposition. Int Immunopharmacol 2021; 101:108224. [PMID: 34655846 DOI: 10.1016/j.intimp.2021.108224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Jararhagin-C (Jar-C) is a disintegrin-like protein, isolated from the venom of B. jararaca, with affinity for α2β1 integrin and the ability to incite processes such as angiogenesis and collagen deposition in vivo. Thus, we raised the hypothesis that this protein could be used as a therapeutic strategy for stimulating the healing of excisional wounds in mice. Four wounds were made on the back of Swiss mice, treated with daily intradermal injections of PBS (control group) or Jar-C (200 ng). Ten animals from each experimental group were euthanized and the tissue from the wounds and skin around them were collected for further biochemical, histological and molecular analysis. Wounds treated with Jar-C showed a faster closure rate, accompanied by a reduction in neutrophil infiltrate (MPO), pro-inflammatory cytokine levels (TNF, CXCL1 and CCL2) and an accumulation of macrophages in the analyzed tissues. It was also observed a greater expression of genes associated with the phenotype of alternatively activated macrophages (M2). Concomitantly, the administration of Jar-C holds an angiogenic potential, increasing the density of blood vessels and the synthesis of pro-angiogenic cytokines (VEGF and FGF). We also observed an increase in collagen deposition, accompanied by higher levels of the pro-fibrogenic cytokine TGF-β1. Our data suggests Jar-C stimulates wound healing through stimulation of M2-like macrophage, angiogenesis and collagen deposition. Jar-C may be explored as a therapeutic strategy for wound healing, including the treatment of chronic wounds, where processes such as inflammation, angiogenesis and the deposition / remodeling of the matrix constituents are unregulated.
Collapse
Affiliation(s)
- Bruno Antonio Ferreira
- Institute of Biotechnology, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil; Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Francyelle Borges Rosa De Moura
- Department of Cell Biology, Histology and Embryology, Institute of Biomedical Sciences, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Tatiana Carla Tomiosso
- Department of Cell Biology, Histology and Embryology, Institute of Biomedical Sciences, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil
| | | | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil; Department of Medical Microbiology and Immunology, University of California-Davis, Davis, USA
| | - Lucíola Silva Barcelos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Fernanda de Assis Araújo
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil.
| |
Collapse
|
15
|
X-Linked Osteogenesis Imperfecta Possibly Caused by a Novel Variant in PLS3. Genes (Basel) 2021; 12:genes12121851. [PMID: 34946798 PMCID: PMC8701009 DOI: 10.3390/genes12121851] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Osteogenesis imperfecta (OI) represents a complex spectrum of genetic bone diseases that occur primarily due to mutations and deletions of the COL1A1 and COL1A2 genes. Recent molecular studies of the network of signaling pathways have contributed to a better understanding of bone remodeling and the pathogenesis of OI caused by mutations in many other genes associated with normal bone mineralization. In this paper, a case of a rare X-linked variant of OI with a change in the gene encoding plastin 3—a protein important for the regulation of the actin cytoskeleton, is presented. A 16-year-old patient developed ten bone fractures caused by minor trauma or injury, including a compression fracture of the second lumbar vertebra during his lifetime. Next-generation sequencing analysis did not show pathologically relevant deviations in the COL1A1 and COL1A2 genes. Targeted gene analyses (Skeletal disorder panel) of the patient, his father, mother and sister were then performed, detecting variants of uncertain significance (VUS) for genes PLS3, FN1 and COL11A2. A variant in the PLS3 gene were identified in the patient, his mother and sister. Since the PLS3 gene is located on the X chromosome, the mother and sister showed no signs of the disease. Although the variant in the PLS3 gene (c.685G>A (p.Gly229Arg)) has not yet been described in the literature, nor is its pathogenicity known, clinical findings combined with genetic testing showed that this variant may explain the cause of X-linked OI in our patient. This rare case of the PLS3 variant of X-linked OI might point to a novel target for personalized therapy in patients with this severe disease.
Collapse
|
16
|
Podolanczuk AJ, Wong AW, Saito S, Lasky JA, Ryerson CJ, Eickelberg O. Update in Interstitial Lung Disease 2020. Am J Respir Crit Care Med 2021; 203:1343-1352. [PMID: 33835899 DOI: 10.1164/rccm.202103-0559up] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Anna J Podolanczuk
- Division of Pulmonary and Critical Care, Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York
| | - Alyson W Wong
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Shigeki Saito
- Section of Pulmonary Disease, Critical Care and Environmental Medicine, Department of Medicine, Tulane University, New Orleans, Louisiana; and
| | - Joseph A Lasky
- Section of Pulmonary Disease, Critical Care and Environmental Medicine, Department of Medicine, Tulane University, New Orleans, Louisiana; and
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Oliver Eickelberg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|