1
|
Chilosi M, Piciucchi S, Ravaglia C, Spagnolo P, Sverzellati N, Tomassetti S, Wuyts W, Poletti V. "Alveolar stem cell exhaustion, fibrosis and bronchiolar proliferation" related entities. A narrative review. Pulmonology 2025; 31:2416847. [PMID: 39277539 DOI: 10.1016/j.pulmoe.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 09/17/2024] Open
Affiliation(s)
- M Chilosi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - S Piciucchi
- Department of Radiology, Ospedale GB Morgagni, Forlì I
| | - C Ravaglia
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department
| | - P Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - N Sverzellati
- Scienze Radiologiche, Department of Medicine and Surgery, University Hospital Parma, Parma, Italy
| | - S Tomassetti
- Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| | - W Wuyts
- Pulmonology Department, UZ Leuven, Leuven, Belgium
| | - V Poletti
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department
- Department of Respiratory Diseases & Allergy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Zhou Y, Yang G, Liu J, Yao S, Jia J, Tang X, Gong X, Wan F, Wu R, Zhao Z, Liang H, Liu L, Liu Q, Xie S, Long X, Xiang X, Wang G, Xiao B. MBD2 promotes epithelial-to-mesenchymal transition (EMT) and ARDS-related pulmonary fibrosis by modulating FZD2. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167798. [PMID: 40081619 DOI: 10.1016/j.bbadis.2025.167798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVE To investigate the role and underlying mechanism of Methyl-CpG binding domain protein 2 (MBD2) in the pathogenesis of acute respiratory distress syndrome (ARDS)-related pulmonary fibrosis. METHODS Murine models for ARDS-related pulmonary fibrosis were established in wildtype or MBD2 knockout mice, expressions of MBD2 were determined with immunohistochemistry (IHC), immunofluorescence, and western blot. Epithelial-to-mesenchymal transition (EMT) was detected with determined with decreased expression of E-cadherin and increased expressions of N-cadherin, Vimentin, and α-smooth muscle actin (α-SMA). Transforming growth factor β (TGF-β) treated mouse lung epithelial-12 (MLE-12) cells and primary human type II alveolar epithelial cells were applied to establish in vitro model for EMT. Transcriptional sequencing with RNA-Seq and Chromatin immunoprecipitation (ChIP) assay were used to explore the potential targets of MBD2. Single cell sequencing data and Human pulmonary fibrosis samples were analyzed. RESULTS Bleomycin (BLM) and lipopolysaccharide (LPS) induced EMT, pulmonary fibrosis, and increased expression of MBD2 in alveolar epithelial cells of mice, and MBD2 knockout significantly alleviated BLM- and LPS-induced pulmonary fibrosis and EMT. TGF-β induced EMT and elevated MBD2 expressions in alveolar epithelial cells, which was mitigated by MBD2 knockdown and aggravated by MBD2 overexpression. Frizzled 2 (FZD2) was found to be the potential target of MBD2. Single-cell sequencing analysis of ARDS patients suggested elevated expression of MBD2 in alveolar epithelial cells, and MBD2 expression was elevated in the lungs of patients with pulmonary fibrosis. CONCLUSION Our results indicated that MBD2 could promote EMT and ARDS-related pulmonary fibrosis, potentially by modulating the expression of FZD2.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China; Department of Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Guifang Yang
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China
| | - Jiqiang Liu
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China
| | - Shuo Yao
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China
| | - Jingsi Jia
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China
| | - Xianming Tang
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China
| | - Xun Gong
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China
| | - Fang Wan
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China
| | - Ren Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhenyu Zhao
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hengxing Liang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Thoracic Surgery, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, China
| | - Linxia Liu
- Department of Respiratory and Critical Care Medicine, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, China
| | - Qimi Liu
- Department of Respiratory and Critical Care Medicine, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, China
| | - Shanshan Xie
- Department of Emergency Medicine, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, China
| | - Xian Long
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan, China
| | - Xudong Xiang
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China; Department of Respiratory and Critical Care Medicine, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, China
| | - Guyi Wang
- Department of Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Bing Xiao
- Department of Emergency Medicine, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, China; Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Chilosi M, Ravaglia C, Doglioni C, Piciucchi S, Stefanizzi L, Poletti V. The pathogenesis of idiopathic pulmonary fibrosis: from "folies à deux" to "Culprit cell Trio". Pathologica 2025; 117:3-9. [PMID: 40205925 PMCID: PMC11983081 DOI: 10.32074/1591-951x-1123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 04/11/2025] Open
Affiliation(s)
- Marco Chilosi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - Claudia Ravaglia
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
- DIMEC, Bologna University, Forlì Campus, Forlì I
| | - Claudio Doglioni
- Department of Pathology, San Raffaele Scientific Institute. Milan, Italy
| | | | - Lavinia Stefanizzi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - Venerino Poletti
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
- DIMEC, Bologna University, Forlì Campus, Forlì I
- Department of Respiratory Diseases & Allergy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Wan R, Liu Y, Yan J, Lin J. Cell therapy: A beacon of hope in the battle against pulmonary fibrosis. FASEB J 2025; 39:e70356. [PMID: 39873972 DOI: 10.1096/fj.202402790r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/28/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
Pulmonary fibrosis (PF) is a chronic and progressive interstitial lung disease characterized by abnormal activation of myofibroblasts and pathological remodeling of the extracellular matrix, with a poor prognosis and limited treatment options. Lung transplantation is currently the only approach that can extend the life expectancy of patients; however, its applicability is severely restricted due to donor shortages and patient-specific limitations. Therefore, the search for novel therapeutic strategies is imperative. In recent years, stem cells have shown great promise in the field of regenerative medicine due to their self-renewal capacity and multidirectional differentiation potential, and a growing body of literature supports the efficacy of stem cell therapy in PF treatment. This paper systematically summarizes the research progress of various stem cell types in the treatment of PF. Furthermore, it discusses the primary methods and clinical outcomes of stem cell therapy in PF, based on both preclinical and clinical data. Finally, the current challenges and key factors to consider in stem cell therapy for PF are objectively analyzed, and future directions for improving this therapy are proposed, providing new insights and references for the clinical treatment of PF patients.
Collapse
Affiliation(s)
- Ruyan Wan
- Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Jingwen Yan
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
5
|
Bridges JP, Vladar EK, Kurche JS, Krivoi A, Stancil IT, Dobrinskikh E, Hu Y, Sasse SK, Lee JS, Blumhagen RZ, Yang IV, Gerber AN, Peljto AL, Evans CM, Redente EF, Riches DW, Schwartz DA. Progressive lung fibrosis: reprogramming a genetically vulnerable bronchoalveolar epithelium. J Clin Invest 2025; 135:e183836. [PMID: 39744946 PMCID: PMC11684817 DOI: 10.1172/jci183836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is etiologically complex, with well-documented genetic and nongenetic origins. In this Review, we speculate that the development of IPF requires two hits: the first establishes a vulnerable bronchoalveolar epithelium, and the second triggers mechanisms that reprogram distal epithelia to initiate and perpetuate a profibrotic phenotype. While vulnerability of the bronchoalveolar epithelia is most often driven by common or rare genetic variants, subsequent injury of the bronchoalveolar epithelia results in persistent changes in cell biology that disrupt tissue homeostasis and activate fibroblasts. The dynamic biology of IPF can best be contextualized etiologically and temporally, including stages of vulnerability, early disease, and persistent and progressive lung fibrosis. These dimensions of IPF highlight critical mechanisms that adversely disrupt epithelial function, activate fibroblasts, and lead to lung remodeling. Together with better recognition of early disease, this conceptual approach should lead to the development of novel therapeutics directed at the etiologic and temporal drivers of lung fibrosis that will ultimately transform the care of patients with IPF from palliative to curative.
Collapse
Affiliation(s)
- James P. Bridges
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eszter K. Vladar
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jonathan S. Kurche
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Andrei Krivoi
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ian T. Stancil
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, School of Medicine, Stanford, California, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yan Hu
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sarah K. Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Joyce S. Lee
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachel Z. Blumhagen
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| | - Ivana V. Yang
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anthony N. Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Anna L. Peljto
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher M. Evans
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Elizabeth F. Redente
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - David W.H. Riches
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David A. Schwartz
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
6
|
Wang J, Li K, Hao D, Li X, Zhu Y, Yu H, Chen H. Pulmonary fibrosis: pathogenesis and therapeutic strategies. MedComm (Beijing) 2024; 5:e744. [PMID: 39314887 PMCID: PMC11417429 DOI: 10.1002/mco2.744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic and progressive lung disease characterized by extensive alterations of cellular fate and function and excessive accumulation of extracellular matrix, leading to lung tissue scarring and impaired respiratory function. Although our understanding of its pathogenesis has increased, effective treatments remain scarce, and fibrotic progression is a major cause of mortality. Recent research has identified various etiological factors, including genetic predispositions, environmental exposures, and lifestyle factors, which contribute to the onset and progression of PF. Nonetheless, the precise mechanisms by which these factors interact to drive fibrosis are not yet fully elucidated. This review thoroughly examines the diverse etiological factors, cellular and molecular mechanisms, and key signaling pathways involved in PF, such as TGF-β, WNT/β-catenin, and PI3K/Akt/mTOR. It also discusses current therapeutic strategies, including antifibrotic agents like pirfenidone and nintedanib, and explores emerging treatments targeting fibrosis and cellular senescence. Emphasizing the need for omni-target approaches to overcome the limitations of current therapies, this review integrates recent findings to enhance our understanding of PF and contribute to the development of more effective prevention and management strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Jianhai Wang
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese MedicineTianjin Institute of Respiratory DiseasesTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - Kuan Li
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - De Hao
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
| | - Xue Li
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - Yu Zhu
- Department of Clinical LaboratoryNankai University Affiliated Third Central HospitalTianjinChina
- Department of Clinical LaboratoryThe Third Central Hospital of TianjinTianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesArtificial Cell Engineering Technology Research Center of TianjinTianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Hongzhi Yu
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - Huaiyong Chen
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese MedicineTianjin Institute of Respiratory DiseasesTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| |
Collapse
|
7
|
Liang J, Huang G, Liu X, Zhang X, Rabata A, Liu N, Fang K, Taghavifar F, Dai K, Kulur V, Jiang D, Noble PW. Lipid Deficiency Contributes to Impaired Alveolar Progenitor Cell Function in Aging and Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2024; 71:242-253. [PMID: 38657143 PMCID: PMC11299087 DOI: 10.1165/rcmb.2023-0290oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/24/2024] [Indexed: 04/26/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aging-associated interstitial lung disease resulting from repeated epithelial injury and inadequate epithelial repair. Alveolar type II cells (AEC2s) are progenitor cells that maintain epithelial homeostasis and repair the lung after injury. In the current study, we assessed lipid metabolism in AEC2s from human lungs of patients with IPF and healthy donors, as well as AEC2s from bleomycin-injured young and old mice. Through single-cell RNA sequencing, we observed that lipid metabolism-related genes were downregulated in IPF AEC2s and bleomycin-injured mouse AEC2s. Aging aggravated this decrease and hindered recovery of lipid metabolism gene expression in AEC2s after bleomycin injury. Pathway analyses revealed downregulation of genes related to lipid biosynthesis and fatty acid β-oxidation in AEC2s from IPF lungs and bleomycin-injured, old mouse lungs compared with the respective controls. We confirmed decreased cellular lipid content in AEC2s from IPF lungs and bleomycin-injured, old mouse lungs using immunofluorescence staining and flow cytometry. Futhermore, we show that lipid metabolism was associated with AEC2 progenitor function. Lipid supplementation and PPARγ (peroxisome proliferator activated receptor γ) activation promoted progenitor renewal capacity of both human and mouse AEC2s in three-dimensional organoid cultures. Lipid supplementation also increased AEC2 proliferation and expression of SFTPC in AEC2s. In summary, we identified a lipid metabolism deficiency in AEC2s from lungs of patients with IPF and bleomycin-injured old mice. Restoration of lipid metabolism homeostasis in AEC2s might promote AEC2 progenitor function and offer new opportunities for therapeutic approaches to IPF.
Collapse
Affiliation(s)
- Jiurong Liang
- Department of Medicine and Women’s Guild Lung Institute, and
| | - Guanling Huang
- Department of Medicine and Women’s Guild Lung Institute, and
| | - Xue Liu
- Department of Medicine and Women’s Guild Lung Institute, and
| | - Xuexi Zhang
- Department of Medicine and Women’s Guild Lung Institute, and
| | - Anas Rabata
- Department of Medicine and Women’s Guild Lung Institute, and
| | - Ningshan Liu
- Department of Medicine and Women’s Guild Lung Institute, and
| | - Kai Fang
- Department of Medicine and Women’s Guild Lung Institute, and
| | | | - Kristy Dai
- Department of Medicine and Women’s Guild Lung Institute, and
| | - Vrishika Kulur
- Department of Medicine and Women’s Guild Lung Institute, and
| | - Dianhua Jiang
- Department of Medicine and Women’s Guild Lung Institute, and
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Paul W. Noble
- Department of Medicine and Women’s Guild Lung Institute, and
| |
Collapse
|
8
|
Xie T, Liang J, Stripp B, Noble PW. Cell-cell interactions and communication dynamics in lung fibrosis. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:63-71. [PMID: 39169931 PMCID: PMC11332853 DOI: 10.1016/j.pccm.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Indexed: 08/23/2024]
Abstract
Cell-cell interactions are essential components of coordinated cell function in lung homeostasis. Lung diseases involve altered cell-cell interactions and communication between different cell types, as well as between subsets of cells of the same type. The identification and understanding of intercellular signaling in lung fibrosis offer insights into the molecular mechanisms underlying these interactions and their implications in the development and progression of lung fibrosis. A comprehensive cell atlas of the human lung, established with the facilitation of single-cell RNA transcriptomic analysis, has enabled the inference of intercellular communications using ligand-receptor databases. In this review, we provide a comprehensive overview of the modified cell-cell communications in lung fibrosis. We highlight the intricate interactions among the major cell types within the lung and their contributions to fibrogenesis. The insights presented in this review will contribute to a better understanding of the molecular mechanisms underlying lung fibrosis and may guide future research efforts in developing targeted therapies for this debilitating disease.
Collapse
Affiliation(s)
- Ting Xie
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jiurong Liang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Barry Stripp
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W. Noble
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
9
|
Huang G, Geng Y, Kulur V, Liu N, Liu X, Taghavifar F, Liang J, Noble PW, Jiang D. Arrestin beta 1 Regulates Alveolar Progenitor Renewal and Lung Fibrosis. JOURNAL OF RESPIRATORY BIOLOGY AND TRANSLATIONAL MEDICINE 2024; 1:10006. [PMID: 38736470 PMCID: PMC11087074 DOI: 10.35534/jrbtm.2024.10006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The molecular mechanisms that regulate progressive pulmonary fibrosis remain poorly understood. Type 2 alveolar epithelial cells (AEC2s) function as adult stem cells in the lung. We previously showed that there is a loss of AEC2s and a failure of AEC2 renewal in the lungs of idiopathic pulmonary fibrosis (IPF) patients. We also reported that beta-arrestins are the key regulators of fibroblast invasion, and beta-arrestin 1 and 2 deficient mice exhibit decreased mortality, decreased matrix deposition, and increased lung function in bleomycin-induced lung fibrosis. However, the role of beta-arrestins in AEC2 regeneration is unclear. In this study, we investigated the role and mechanism of Arrestin beta 1 (ARRB1) in AEC2 renewal and in lung fibrosis. We used conventional deletion as well as cell type-specific deletion of ARRB1 in mice and found that Arrb1 deficiency in fibroblasts protects mice from lung fibrosis, and the knockout mice exhibit enhanced AEC2 regeneration in vivo, suggesting a role of fibroblast-derived ARRB1 in AEC2 renewal. We further found that Arrb1-deficient fibroblasts promotes AEC2 renewal in 3D organoid assays. Mechanistically, we found that CCL7 is among the top downregulated cytokines in Arrb1 deficient fibroblasts and CCL7 inhibits AEC2 regeneration in 3D organoid experiments. Therefore, fibroblast ARRB1 mediates AEC2 renewal, possibly by releasing chemokine CCL7, leading to fibrosis in the lung.
Collapse
Affiliation(s)
- Guanling Huang
- Division of Pulmonary, Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Current Address: GH, Sanofi, 500 Kendall Street, Cambridge, MA 02142, USA
| | - Yan Geng
- Division of Pulmonary, Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Current Address: YG, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Vrishika Kulur
- Division of Pulmonary, Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ningshan Liu
- Division of Pulmonary, Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xue Liu
- Division of Pulmonary, Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Forough Taghavifar
- Division of Pulmonary, Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jiurong Liang
- Division of Pulmonary, Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W. Noble
- Division of Pulmonary, Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dianhua Jiang
- Division of Pulmonary, Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
10
|
Yu Y, Liu H, Yuan L, Pan M, Bei Z, Ye T, Qian Z. Niclosamide - encapsulated lipid nanoparticles for the reversal of pulmonary fibrosis. Mater Today Bio 2024; 25:100980. [PMID: 38434573 PMCID: PMC10907778 DOI: 10.1016/j.mtbio.2024.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 03/05/2024] Open
Abstract
Pulmonary fibrosis (PF) is a serious and progressive fibrotic interstitial lung disease that is possibly life-threatening and that is characterized by fibroblast accumulation and collagen deposition. Nintedanib and pirfenidone are currently the only two FDA-approved oral medicines for PF. Some drugs such as antihelminthic drug niclosamide (Ncl) have shown promising therapeutic potentials for PF treatment. Unfortunately, poor aqueous solubility problems obstruct clinical application of these drugs. Herein, we prepared Ncl-encapsulated lipid nanoparticles (Ncl-Lips) for pulmonary fibrosis therapy. A mouse model of pulmonary fibrosis induced by bleomycin (BLM) was generated to assess the effects of Ncl-Lips and the mechanisms of reversing fibrosis in vivo. Moreover, cell models treated with transforming growth factor β1 (TGFβ1) were used to investigate the mechanism through which Ncl-Lips inhibit fibrosis in vitro. These findings demonstrated that Ncl-Lips could alleviate fibrosis, consequently reversing the changes in the levels of the associated marker. Moreover, the results of the tissue distribution experiment showed that Ncl-Lips had aggregated in the lung. Additionally, Ncl-Lips improved the immune microenvironment in pulmonary fibrosis induced by BLM. Furthermore, Ncl-Lips suppressed the TGFβ1-induced activation of fibroblasts and epithelial-mesenchymal transition (EMT) in epithelial cells. Based on these results, we demonstrated that Ncl-Lips is an efficient strategy for reversing pulmonary fibrosis via drug-delivery.
Collapse
Affiliation(s)
- Yan Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hongyao Liu
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer and Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liping Yuan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Meng Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhongwu Bei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tinghong Ye
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer and Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
11
|
Giriyappagoudar M, Vastrad B, Horakeri R, Vastrad C. Study on Potential Differentially Expressed Genes in Idiopathic Pulmonary Fibrosis by Bioinformatics and Next-Generation Sequencing Data Analysis. Biomedicines 2023; 11:3109. [PMID: 38137330 PMCID: PMC10740779 DOI: 10.3390/biomedicines11123109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with reduced quality of life and earlier mortality, but its pathogenesis and key genes are still unclear. In this investigation, bioinformatics was used to deeply analyze the pathogenesis of IPF and related key genes, so as to investigate the potential molecular pathogenesis of IPF and provide guidance for clinical treatment. Next-generation sequencing dataset GSE213001 was obtained from Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) were identified between IPF and normal control group. The DEGs between IPF and normal control group were screened with the DESeq2 package of R language. The Gene Ontology (GO) and REACTOME pathway enrichment analyses of the DEGs were performed. Using the g:Profiler, the function and pathway enrichment analyses of DEGs were performed. Then, a protein-protein interaction (PPI) network was constructed via the Integrated Interactions Database (IID) database. Cytoscape with Network Analyzer was used to identify the hub genes. miRNet and NetworkAnalyst databaseswereused to construct the targeted microRNAs (miRNAs), transcription factors (TFs), and small drug molecules. Finally, receiver operating characteristic (ROC) curve analysis was used to validate the hub genes. A total of 958 DEGs were screened out in this study, including 479 up regulated genes and 479 down regulated genes. Most of the DEGs were significantly enriched in response to stimulus, GPCR ligand binding, microtubule-based process, and defective GALNT3 causes HFTC. In combination with the results of the PPI network, miRNA-hub gene regulatory network and TF-hub gene regulatory network, hub genes including LRRK2, BMI1, EBP, MNDA, KBTBD7, KRT15, OTX1, TEKT4, SPAG8, and EFHC2 were selected. Cyclothiazide and rotigotinethe are predicted small drug molecules for IPF treatment. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of IPF, and provide a novel strategy for clinical therapy.
Collapse
Affiliation(s)
- Muttanagouda Giriyappagoudar
- Department of Radiation Oncology, Karnataka Institute of Medical Sciences (KIMS), Hubballi 580022, Karnataka, India;
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. Socitey’s College of Pharmacy, Gadag 582101, Karnataka, India;
| | - Rajeshwari Horakeri
- Department of Computer Science, Govt First Grade College, Hubballi 580032, Karnataka, India;
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
12
|
Brussow J, Feng K, Thiam F, Phogat S, Osei ET. Epithelial-fibroblast interactions in IPF: Lessons from in vitro co-culture studies. Differentiation 2023; 134:11-19. [PMID: 37738701 DOI: 10.1016/j.diff.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/19/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial disease that is characterized by increased cellular proliferation and differentiation together with excessive extracellular matrix (ECM) deposition leading to buildup of scar tissue (fibrosis) and remodeling in the lungs. The activated and differentiated (myo)fibroblasts are one of the main sources of tissue remodeling in IPF and a crucial mechanism known to contribute to this feature is an aberrant crosstalk between pulmonary fibroblasts and the abnormal or injured pulmonary epithelium. This epithelial-fibroblast interaction mimics the temporal, spatial and cell-type specific crosstalk between the endoderm and mesoderm in the so-called epithelial-mesenchymal trophic unit (EMTU) during lung development that is proposed to be activated in healthy lung repair and dysregulated in various lung diseases including IPF. To study the dysregulated lung EMTU in IPF, various complex in vitro models have been established. Hence, in this review, we will provide a summary of studies that have used complex (3-dimensional) in vitro co-culture, and organoid models to assess how abnormal epithelial-fibroblast interactions in lung EMTU contribute to crucial features of the IPF including defective cellular differentiation, proliferation and migration as well as increased ECM deposition.
Collapse
Affiliation(s)
- J Brussow
- Department of Biology, Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - K Feng
- Department of Biology, Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - F Thiam
- Department of Biology, Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - S Phogat
- Department of Biology, Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - E T Osei
- Department of Biology, Okanagan Campus, University of British Columbia, Kelowna, BC, Canada; Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada.
| |
Collapse
|
13
|
Cui T, Wangpaichitr M, Schally AV, Griswold AJ, Vidaurre I, Sha W, Jackson RM. Alveolar epithelial cell growth hormone releasing hormone receptor in alveolar epithelial inflammation. Exp Lung Res 2023; 49:152-164. [PMID: 37584484 DOI: 10.1080/01902148.2023.2246074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023]
Abstract
Purpose: Growth hormone-releasing hormone (GHRH) is a 44-amino acid peptide that regulates growth hormone (GH) secretion. We hypothesized that GHRH receptor (GHRH-R) in alveolar type 2 (AT2) cells could modulate pro-inflammatory and possibly subsequent pro-fibrotic effects of lipopolysaccharide (LPS) or cytokines, such that AT2 cells could participate in lung inflammation and fibrosis. Methods: We used human alveolar type 2 (iAT2) epithelial cells derived from induced pluripotent stem cells (iPSC) to investigate how GHRH-R modulates gene and protein expression. We tested iAT2 cells' gene expression in response to LPS or cytokines, seeking whether these mechanisms caused endogenous production of pro-inflammatory molecules or mesenchymal markers. Quantitative real-time PCR (RT-PCR) and Western blotting were used to investigate differential expression of epithelial and mesenchymal markers. Result: Incubation of iAT2 cells with LPS increased expression of IL1-β and TNF-α in addition to mesenchymal genes, including ACTA2, FN1 and COL1A1. Alveolar epithelial cell gene expression due to LPS was significantly inhibited by GHRH-R peptide antagonist MIA-602. Incubation of iAT2 cells with cytokines like those in fibrotic lungs similarly increased expression of genes for IL1-β, TNF-α, TGFβ-1, Wnt5a, smooth muscle actin, fibronectin and collagen. Expression of mesenchymal proteins, such as N-cadherin and vimentin, were also elevated after prolonged exposure to cytokines, confirming epithelial production of pro-inflammatory molecules as an important mechanism that might lead to subsequent fibrosis. Conclusion: iAT2 cells clearly expressed the GHRH-R. Exposure to LPS or cytokines increased iAT2 cell production of pro-inflammatory factors. GHRH-R antagonist MIA-602 inhibited pro-inflammatory gene expression, implicating iAT2 cell GHRH-R signaling in lung inflammation and potentially in fibrosis.
Collapse
Affiliation(s)
- Tengjiao Cui
- Research Service, Miami VAHS, Miami, Florida, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Andrew V Schally
- Research Service, Miami VAHS, Miami, Florida, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Pathology and Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Anthony J Griswold
- Dr. John T. McDonald Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Wei Sha
- Research Service, Miami VAHS, Miami, Florida, USA
| | - Robert M Jackson
- Research Service, Miami VAHS, Miami, Florida, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|