1
|
Ishii Y, Orr JC, El Mdawar MB, de Pilger DRB, Pearce DR, Lazarus KA, Graham RE, Nikolić MZ, Ketteler R, Carragher NO, Janes SM, Hynds RE. Compound screening in human airway basal cells identifies Wnt pathway activators as potential pro-regenerative therapies. J Cell Sci 2025; 138:jcs263487. [PMID: 40065746 PMCID: PMC12045047 DOI: 10.1242/jcs.263487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/04/2025] [Indexed: 04/15/2025] Open
Abstract
Regeneration of the airway epithelium restores barrier function and mucociliary clearance following lung injury and infection. The mechanisms regulating the proliferation and differentiation of tissue-resident airway basal stem cells remain incompletely understood. To identify compounds that promote human airway basal cell proliferation, we performed phenotype-based compound screening of 1429 compounds (from the ENZO and Prestwick Chemical libraries) in 384-well format using primary cells transduced with lentiviral luciferase. A total of 17 pro-proliferative compounds were validated in independent donor cell cultures, including the antiretroviral therapy agent abacavir and several Wnt signalling pathway-activating compounds. The effects of compounds on proliferation were further explored in colony formation and 3D organoid assays. Structurally and functionally related compounds that more potently induced Wnt pathway activation were investigated. One such compound, 1-azakenpaullone, induced Wnt target gene activation and basal cell proliferation in mice. Our results demonstrate the pro-proliferative effect of small-molecule Wnt pathway activators on airway basal cells. These findings contribute to the rationale to develop novel approaches to modulate Wnt signalling during airway epithelial repair.
Collapse
Affiliation(s)
- Yuki Ishii
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | - Jessica C. Orr
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
- Epithelial Cell Biology in ENT Research Group, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1DZ, UK
| | - Marie-Belle El Mdawar
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | | | - David R. Pearce
- UCL Cancer Institute, University College London, London WC1N 6DD, UK
| | - Kyren A. Lazarus
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | - Rebecca E. Graham
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Marko Z. Nikolić
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Neil O. Carragher
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | - Robert E. Hynds
- Epithelial Cell Biology in ENT Research Group, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1DZ, UK
- UCL Cancer Institute, University College London, London WC1N 6DD, UK
| |
Collapse
|
2
|
Lv X, Wang W, Dong H, Li W. Glycolysis in asthma: Its role and potential as a diagnostic or therapeutic target. Int Immunopharmacol 2025; 148:114143. [PMID: 39874848 DOI: 10.1016/j.intimp.2025.114143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
Asthma is a heterogeneous disease characterized by chronic airway inflammation and hyperresponsiveness. A number of immune cells are involved in asthma pathogenesis, such as eosinophils, mast cells, T lymphocytes and neutrophils, as well as airway epithelial cells. Glycolysis plays a crucial role in glucose metabolism, and serves as a bridge between metabolic and inflammatory dysfunction. Research has found that abnormal glycolytic metabolism in various immune cells may contribute to the pathogenesis of asthma by inducing dysregulation in congenital and adaptive immune responses. Therefore, the inhibition of glycolysis can be a viable approach to prevent airway inflammation in asthma. The present study reviews the relationship between glycolysis and inflammatory cells in different asthma subtypes, and its potential therapeutic significance.
Collapse
Affiliation(s)
- Xuejiao Lv
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wenrui Wang
- Department of Hepatopancreatobiliary Medicine, Digestive Diseases Center, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Hongna Dong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
3
|
Lindsay ME, Scimone ER, Lawton J, Richa R, Yonker LM, Di YP, Buch K, Ouyang W, Mo X, Lin AE, Mou H. Gain-of-function variants in SMAD4 compromise respiratory epithelial function. J Allergy Clin Immunol 2025; 155:107-119.e2. [PMID: 39243984 DOI: 10.1016/j.jaci.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Myhre syndrome is an exceedingly rare yet increasingly diagnosed genetic disorder arising from germline variants in the SMAD4 gene. Its core manifestation is the progression of stiffness and fibrosis across multiple organs. Individuals with Myhre syndrome exhibit a propensity for upper respiratory tract remodeling and infections. The molecular and cellular mechanisms underlying this phenotype remain unclear. OBJECTIVE We sought to investigate how SMAD4 pathogenic variants associated with Myhre syndrome affect SMAD4 protein levels, activation, and physiological functions in patient-derived nasal epithelial cells. METHODS Clinical observations were conducted on a cohort of 47 patients recruited at Massachusetts General Hospital from 2016 to 2023. Nasal epithelial basal cells were isolated and cultured from inferior turbinate brushings of healthy subjects (n = 8) and patients with Myhre syndrome (n = 3; SMAD4-Ile500Val, Arg496Cys, and Ile500Thr). Transcriptomic analysis and functional assays were performed to assess SMAD4 levels, transcriptional activity, and epithelial cell host defense functions, including cell proliferation, mucociliary differentiation, and bacterial elimination. RESULTS Clinical observations revealed a prevalent history of otitis media and sinusitis among most individuals with Myhre syndrome. Analyses of nasal epithelial cells indicated that SMAD4 mutations do not alter SMAD4 protein stability or upstream regulatory SMAD phosphorylation but enhance signaling transcriptional activity, supporting a gain-of-function mechanism, likely attributable to increased protein-protein interaction of the SMAD complex. Consequently, Myhre syndrome nasal basal cells exhibit reduced potential in cell proliferation and mucociliary differentiation. Furthermore, Myhre syndrome nasal epithelia are impaired in bacterial killing. CONCLUSIONS Compromised innate immunity originating from epithelial cells in Myhre syndrome may contribute to increased susceptibility to upper respiratory tract infections.
Collapse
Affiliation(s)
- Mark E Lindsay
- Cardiovascular Genetics Program, Massachusetts General Hospital, Boston, Mass; Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Boston, Mass
| | - Eleanor R Scimone
- Medical Genetics, Department of Pediatrics, Mass General for Children, Boston, Mass
| | - Joseph Lawton
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Boston, Mass
| | - Rashmi Richa
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Boston, Mass
| | - Lael M Yonker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Mass
| | - Yuanpu P Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pa
| | - Karen Buch
- Department of Radiology, Massachusetts General Hospital, Boston, Mass
| | - Wukun Ouyang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Ga
| | - Xiulei Mo
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Ga
| | - Angela E Lin
- Medical Genetics, Department of Pediatrics, Mass General for Children, Boston, Mass
| | - Hongmei Mou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Mass.
| |
Collapse
|
4
|
Vazquez Cegla AJ, Jones KT, Cui G, Cottrill KA, Koval M, McCarty NA. Effects of hyperglycemia on airway epithelial barrier function in WT and CF 16HBE cells. Sci Rep 2024; 14:25095. [PMID: 39443580 PMCID: PMC11500396 DOI: 10.1038/s41598-024-76526-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Cystic fibrosis related diabetes (CFRD), the main co-morbidity in cystic fibrosis (CF), is associated with higher rates of lung function decline. We hypothesize that airway epithelial barrier function is impaired in CF and is further exacerbated under hyperglycemia, worsening pulmonary outcomes. Using 16HBE cells, we studied the effects of hyperglycemia in airway epithelial barrier function. Results show increased paracellular dye flux in CF cells in response to insulin under hyperglycemia. Gene expression experiments identified claudin-4 (CLDN4) as a key tight junction protein dysregulated in CF cells. CLDN4 protein localization by confocal microscopy showed that CLDN4 was tightly localized at tight junctions in WT cells, which did not change under hyperglycemia. ln contrast, CLDN4 was less well-localized in CF cells at normal glucose and localization was worsened under hyperglycemia. Treatment with highly effective modulator compounds (ETI) reversed this trend, and CFTR rescue was not affected by insulin or hyperglycemia. Bulk RNA sequencing showed differences in transcriptional responses in CF compared to WT cells under normal or high glucose, highlighting promising targets for future investigation. One of these targets is protein tyrosine phosphatase receptor type G (PTPRG), which has been previously found to play a role in defective Akt signaling and insulin resistance.
Collapse
Affiliation(s)
- Analia J Vazquez Cegla
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
- Emory+Children's Cystic Fibrosis Center of Excellence, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kymry T Jones
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
- Emory+Children's Cystic Fibrosis Center of Excellence, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Guiying Cui
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kirsten A Cottrill
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
- Emory+Children's Cystic Fibrosis Center of Excellence, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Michael Koval
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nael A McCarty
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Emory+Children's Cystic Fibrosis Center of Excellence, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
5
|
Park DB, Jang DW, Kim DH, Kim SW. Development of a New Swine Model Resembling Human Empty Nose Syndrome. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1559. [PMID: 39459347 PMCID: PMC11509164 DOI: 10.3390/medicina60101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Empty nose syndrome (ENS) is a debilitating condition that often results from traumatic or iatrogenic causes, such as nasal surgery. There are various conservative and surgical treatments for ENS, but their effectiveness remains uncertain. Therefore, the development of animal models that accurately mimic human ENS is essential for advancing effective treatment strategies. Materials and Methods: To investigate ENS development, turbinoplasty was performed in the nasal cavity of swine, entailing partial removal of the ventral turbinate using turbinectomy scissors followed by electrocauterization. After 56 days, samples were obtained for histological and morphological analyses. Results: A significant reduction in the volume of the ventral turbinate in the ENS model led to an expansion of the nasal cavity. Histological analysis revealed mucosal epithelial changes similar to those observed in ENS patients, including squamous cell metaplasia, goblet cell metaplasia, submucosal fibrosis, and glandular atrophy. Biomarkers related to these histopathological features were identified, and signals potentially contributing to squamous cell metaplasia were elucidated. Conclusions: The swine ENS model is anticipated to be instrumental in unraveling the pathogenesis of ENS and may also be useful for evaluating the effectiveness of various treatments for ENS.
Collapse
Affiliation(s)
- Dan Bi Park
- Postech-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - David W. Jang
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Do Hyun Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul Saint Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul Saint Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
6
|
Lin B, Shah VS, Chernoff C, Sun J, Shipkovenska GG, Vinarsky V, Waghray A, Xu J, Leduc AD, Hintschich CA, Surve MV, Xu Y, Capen DE, Villoria J, Dou Z, Hariri LP, Rajagopal J. Airway hillocks are injury-resistant reservoirs of unique plastic stem cells. Nature 2024; 629:869-877. [PMID: 38693267 PMCID: PMC11890216 DOI: 10.1038/s41586-024-07377-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
Airway hillocks are stratified epithelial structures of unknown function1. Hillocks persist for months and have a unique population of basal stem cells that express genes associated with barrier function and cell adhesion. Hillock basal stem cells continually replenish overlying squamous barrier cells. They exhibit dramatically higher turnover than the abundant, largely quiescent classic pseudostratified airway epithelium. Hillocks resist a remarkably broad spectrum of injuries, including toxins, infection, acid and physical injury because hillock squamous cells shield underlying hillock basal stem cells from injury. Hillock basal stem cells are capable of massive clonal expansion that is sufficient to resurface denuded airway, and eventually regenerate normal airway epithelium with each of its six component cell types. Hillock basal stem cells preferentially stratify and keratinize in the setting of retinoic acid signalling inhibition, a known cause of squamous metaplasia2,3. Here we show that mouse hillock expansion is the cause of vitamin A deficiency-induced squamous metaplasia. Finally, we identify human hillocks whose basal stem cells generate functional squamous barrier structures in culture. The existence of hillocks reframes our understanding of airway epithelial regeneration. Furthermore, we show that hillocks are one origin of 'squamous metaplasia', which is long thought to be a precursor of lung cancer.
Collapse
Affiliation(s)
- Brian Lin
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA.
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA, USA.
| | - Viral S Shah
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chaim Chernoff
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Developmental and Regenerative Biology Program, Harvard, Cambridge, MA, USA
| | - Jiawei Sun
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Gergana G Shipkovenska
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Vladimir Vinarsky
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Avinash Waghray
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Jiajie Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Andrew D Leduc
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Constantin A Hintschich
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA, USA
- Department of Otorhinolaryngology, Regensburg University Hospital, Regensburg, Germany
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Manalee Vishnu Surve
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Yanxin Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Diane E Capen
- Program in Membrane Biology and Nephrology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Jorge Villoria
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Zhixun Dou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Lida P Hariri
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA.
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Developmental and Regenerative Biology Program, Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
McCauley KB, Kukreja K, Tovar Walker AE, Jaffe AB, Klein AM. A map of signaling responses in the human airway epithelium. Cell Syst 2024; 15:307-321.e10. [PMID: 38508187 PMCID: PMC11031335 DOI: 10.1016/j.cels.2024.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Receptor-mediated signaling plays a central role in tissue regeneration, and it is dysregulated in disease. Here, we build a signaling-response map for a model regenerative human tissue: the airway epithelium. We analyzed the effect of 17 receptor-mediated signaling pathways on organotypic cultures to determine changes in abundance and phenotype of epithelial cell types. This map recapitulates the gamut of known airway epithelial signaling responses to these pathways. It defines convergent states induced by multiple ligands and diverse, ligand-specific responses in basal cell and secretory cell metaplasia. We show that loss of canonical differentiation induced by multiple pathways is associated with cell-cycle arrest, but that arrest is not sufficient to block differentiation. Using the signaling-response map, we show that a TGFB1-mediated response underlies specific aberrant cells found in multiple lung diseases and identify interferon responses in COVID-19 patient samples. Thus, we offer a framework enabling systematic evaluation of tissue signaling responses. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Katherine B McCauley
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Respiratory Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA; Disease Area X, Biomedical Research, Novartis, Cambridge, MA 02139, USA
| | - Kalki Kukreja
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Aron B Jaffe
- Respiratory Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Sun Y, Zhang Y, Zhang J, Chen YE, Jin JP, Zhang K, Mou H, Liang X, Xu J. XBP1-mediated transcriptional regulation of SLC5A1 in human epithelial cells in disease conditions. Cell Biosci 2024; 14:27. [PMID: 38388523 PMCID: PMC10885492 DOI: 10.1186/s13578-024-01203-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Sodium-Glucose cotransporter 1 and 2 (SGLT1/2) belong to the family of glucose transporters, encoded by SLC5A1 and SLC5A2, respectively. SGLT2 is almost exclusively expressed in the renal proximal convoluted tubule cells. SGLT1 is expressed in the kidneys but also in other organs throughout the body. Many SGLT inhibitor drugs have been developed based on the mechanism of blocking glucose (re)absorption mediated by SGLT1/2, and several have gained major regulatory agencies' approval for treating diabetes. Intriguingly these drugs are also effective in treating diseases beyond diabetes, for example heart failure and chronic kidney disease. We recently discovered that SGLT1 is upregulated in the airway epithelial cells derived from patients of cystic fibrosis (CF), a devastating genetic disease affecting greater than 70,000 worldwide. RESULTS In the present work, we show that the SGLT1 upregulation is coupled with elevated endoplasmic reticulum (ER) stress response, indicated by activation of the primary ER stress senor inositol-requiring protein 1α (IRE1α) and the ER stress-induced transcription factor X-box binding protein 1 (XBP1), in CF epithelial cells, and in epithelial cells of other stress conditions. Through biochemistry experiments, we demonstrated that the spliced form of XBP1 (XBP1s) acts as a transcription factor for SLC5A1 by directly binding to its promoter region. Targeting this ER stress → SLC5A1 axis by either the ER stress inhibitor Rapamycin or the SGLT1 inhibitor Sotagliflozin was effective in attenuating the ER stress response and reducing the SGLT1 level in these cellular model systems. CONCLUSIONS The present work establishes a causal relationship between ER stress and SGLT1 upregulation and provides a mechanistic explanation why SGLT inhibitor drugs benefit diseases beyond diabetes.
Collapse
Affiliation(s)
- Yifei Sun
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yihan Zhang
- The Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, 55 Fruit Street, Jackson, 1402, Boston, MA, 02114, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jian-Ping Jin
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Hongmei Mou
- The Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, 55 Fruit Street, Jackson, 1402, Boston, MA, 02114, USA.
| | - Xiubin Liang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Bankoti K, Wang W, Amonkar GM, Xiong L, Shui JE, Zhao C, Van E, Mwase C, Park JA, Mou H, Fang Y, Que J, Bai Y, Lerou PH, Ai X. Airway Basal Stem Cells in COVID-19 Exhibit a Proinflammatory Signature and Impaired Mucocililary Differentiation. Am J Respir Cell Mol Biol 2024; 70:26-38. [PMID: 37699145 PMCID: PMC10768838 DOI: 10.1165/rcmb.2023-0104oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023] Open
Abstract
Airway basal stem cells (BSCs) play a critical role in epithelial regeneration. Whether coronavirus disease (COVID-19) affects BSC function is unknown. Here, we derived BSC lines from patients with COVID-19 using tracheal aspirates (TAs) to circumvent the biosafety concerns of live-cell derivation. We show that BSCs derived from the TAs of control patients are bona fide bronchial BSCs. TA BSCs from patients with COVID-19 tested negative for severe acute respiratory syndrome coronavirus 2 RNA; however, these so-termed COVID-19-exposed BSCs in vitro resemble a predominant BSC subpopulation uniquely present in patients with COVID-19, manifested by a proinflammatory gene signature and STAT3 hyperactivation. Furthermore, the sustained STAT3 hyperactivation drives goblet cell differentiation of COVID-19-exposed BSCs in an air-liquid interface. Last, these phenotypes of COVID-19-exposed BSCs can be induced in control BSCs by cytokine cocktail pretreatment. Taken together, acute inflammation in COVID-19 exerts a long-term impact on mucociliary differentiation of BSCs.
Collapse
Affiliation(s)
- Kamakshi Bankoti
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Wei Wang
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gaurang M. Amonkar
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Linjie Xiong
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jessica E. Shui
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Caiqi Zhao
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eric Van
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Chimwemwe Mwase
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Jin-Ah Park
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Hongmei Mou
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts; and
| | - Yinshan Fang
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, New York
| | - Jianwen Que
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, New York
| | - Yan Bai
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paul H. Lerou
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xingbin Ai
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Liu D, Fu Y, Wang X, Wang X, Fang X, Zhou Y, Wang R, Zhang P, Jiang M, Jia D, Wang J, Chen H, Guo G, Han X. Characterization of human pluripotent stem cell differentiation by single-cell dual-omics analyses. Stem Cell Reports 2023; 18:2464-2481. [PMID: 37995704 PMCID: PMC10724075 DOI: 10.1016/j.stemcr.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
In vivo differentiation of human pluripotent stem cells (hPSCs) has unique advantages, such as multilineage differentiation, angiogenesis, and close cell-cell interactions. To systematically investigate multilineage differentiation mechanisms of hPSCs, we constructed the in vivo hPSC differentiation landscape containing 239,670 cells using teratoma models. We identified 43 cell types, inferred 18 cell differentiation trajectories, and characterized common and specific gene regulation patterns during hPSC differentiation at both transcriptional and epigenetic levels. Additionally, we developed the developmental single-cell Basic Local Alignment Search Tool (dscBLAST), an R-based cell identification tool, to simplify the identification processes of developmental cells. Using dscBLAST, we aligned cells in multiple differentiation models to normally developing cells to further understand their differentiation states. Overall, our study offers new insights into stem cell differentiation and human embryonic development; dscBLAST shows favorable cell identification performance, providing a powerful identification tool for developmental cells.
Collapse
Affiliation(s)
- Daiyuan Liu
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yuting Fu
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xinru Wang
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xueyi Wang
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xing Fang
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou, Zhejiang 310058, China
| | - Yincong Zhou
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Renying Wang
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Peijing Zhang
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou, Zhejiang 310058, China
| | - Mengmeng Jiang
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Danmei Jia
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jingjing Wang
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Haide Chen
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; M20 Genomics, Hangzhou, China
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou, Zhejiang 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Xiaoping Han
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
11
|
Sun Y, Zhang Y, Zhang J, Chen YE, Jin JP, Zhang K, Mou H, Liang X, Xu J. XBP1-mediated transcriptional regulation of SLC5A1 in human epithelial cells in disease conditions. RESEARCH SQUARE 2023:rs.3.rs-3112506. [PMID: 37502997 PMCID: PMC10371076 DOI: 10.21203/rs.3.rs-3112506/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background sodium-dependent glucose cotransporter 1 and 2 (SGLT1/2) belong to the family of glucose transporters, encoded by SLC5A1 and SLC5A2, respectively. SGLT-2 is almost exclusively expressed in the renal proximal convoluted tubule cells. SGLT-1 is expressed in the kidneys but also in other organs throughout the body. Many SGLT inhibitor drugs have been developed based on the mechanism of blocking glucose (re)absorption mediated by SGLT1/2, and several have gained major regulatory agencies' approval for treating diabetes. Intriguingly these drugs are also effective in treating diseases beyond diabetes, for example heart failure and chronic kidney disease. We recently discovered that SGLT-1 is upregulated in the airway epithelial cells derived from patients of cystic fibrosis (CF), a devastating genetic disease affecting greater than 70,000 worldwide. Results in the present work, we show that the SGLT-1 upregulation is coupled with elevated endoplasmic reticulum (ER) stress response, indicated by activation of the primary ER stress senor inositol-requiring protein 1a (IRE1a) and the ER stress-induced transcription factor X-box binding protein 1 (XBP1), in CF epithelial cells, and in epithelial cells of other stress conditions. Through biochemistry experiments, we demonstrated that XBP1 acts as a transcription factor for SLC5A1 by directly binding to its promoter region. Targeting this ER stress → SLC5A1 axis by either the ER stress inhibitor Rapamycin or the SGLT-1 inhibitor Sotagliflozin was effective in attenuating the ER stress response and reducing the SGLT-1 levels in these cellular model systems. Conclusions the present work establishes a causal relationship between ER stress and SGLT-1 upregulation and provides a mechanistic explanation why SGLT inhibitor drugs benefit diseases beyond diabetes.
Collapse
Affiliation(s)
- Yifei Sun
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yihan Zhang
- The Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, 55 Fruit Street, Jackson 1402, Boston, MA 02114, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Y. Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jian-Ping Jin
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Hongmei Mou
- The Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, 55 Fruit Street, Jackson 1402, Boston, MA 02114, USA
| | - Xiubin Liang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
12
|
McCravy MS, Ingram JL. A Hint from Wnt: Squamous Cell Differentiation in the Airways. Am J Respir Cell Mol Biol 2023; 68:601-602. [PMID: 36920447 PMCID: PMC10257068 DOI: 10.1165/rcmb.2023-0065ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/15/2023] [Indexed: 03/16/2023] Open
Affiliation(s)
- Matthew S McCravy
- Department of Medicine Duke University School of Medicine Durham, North Carolina
| | - Jennifer L Ingram
- Department of Medicine Duke University School of Medicine Durham, North Carolina
| |
Collapse
|