1
|
Hoh JFY. Developmental, Physiological and Phylogenetic Perspectives on the Expression and Regulation of Myosin Heavy Chains in Craniofacial Muscles. Int J Mol Sci 2024; 25:4546. [PMID: 38674131 PMCID: PMC11050549 DOI: 10.3390/ijms25084546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This review deals with the developmental origins of extraocular, jaw and laryngeal muscles, the expression, regulation and functional significance of sarcomeric myosin heavy chains (MyHCs) that they express and changes in MyHC expression during phylogeny. Myogenic progenitors from the mesoderm in the prechordal plate and branchial arches specify craniofacial muscle allotypes with different repertoires for MyHC expression. To cope with very complex eye movements, extraocular muscles (EOMs) express 11 MyHCs, ranging from the superfast extraocular MyHC to the slowest, non-muscle MyHC IIB (nmMyH IIB). They have distinct global and orbital layers, singly- and multiply-innervated fibres, longitudinal MyHC variations, and palisade endings that mediate axon reflexes. Jaw-closing muscles express the high-force masticatory MyHC and cardiac or limb MyHCs depending on the appropriateness for the acquisition and mastication of food. Laryngeal muscles express extraocular and limb muscle MyHCs but shift toward expressing slower MyHCs in large animals. During postnatal development, MyHC expression of craniofacial muscles is subject to neural and hormonal modulation. The primary and secondary myotubes of developing EOMs are postulated to induce, via different retrogradely transported neurotrophins, the rich diversity of neural impulse patterns that regulate the specific MyHCs that they express. Thyroid hormone shifts MyHC 2A toward 2B in jaw muscles, laryngeal muscles and possibly extraocular muscles. This review highlights the fact that the pattern of myosin expression in mammalian craniofacial muscles is principally influenced by the complex interplay of cell lineages, neural impulse patterns, thyroid and other hormones, functional demands and body mass. In these respects, craniofacial muscles are similar to limb muscles, but they differ radically in the types of cell lineage and the nature of their functional demands.
Collapse
Affiliation(s)
- Joseph Foon Yoong Hoh
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Hoh JFY. Myosin heavy chains in extraocular muscle fibres: Distribution, regulation and function. Acta Physiol (Oxf) 2021; 231:e13535. [PMID: 32640094 DOI: 10.1111/apha.13535] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
This review examines kinetic properties and distribution of the 11 isoforms of myosin heavy chain (MyHC) expressed in extraocular muscle (EOM) fibre types and the regulation and function of these MyHCs. Although recruitment and discharge characteristics of ocular motoneurons during fixation and eye movements are well documented, work directly linking these properties with motor unit contractile speed and MyHC composition is lacking. Recruitment of motor units according to Henneman's size principle has some support in EOMs but needs consolidation. Both neurogenic and myogenic mechanisms regulate MyHC expression as in other muscle allotypes. Developmentally, multiply-innervated (MIFs) and singly-innervated fibres (SIFs) are derived presumably from distinct myoblast lineages, ending up expressing MyHCs in the slow and fast ends of the kinetic spectrum respectively. They modulate the synaptic inputs of their motoneurons through different retrogradely transported neurotrophins, thereby specifying their tonic and phasic impulse patterns. Immunohistochemical analyses of EOMs regenerating in situ and in limb muscle beds suggest that the very impulse patterns driving various ocular movements equip effectors with appropriate MyHC compositions and speeds to accomplish their tasks. These experiments also suggest that satellite cells of SIFs and MIFs are distinct lineages expressing different MyHCs during regeneration. MyHC compositions and functional characteristics of orbital fibres show longitudinal variations that facilitate linear ocular rotation during saccades. Palisade endings on global MIFs are postulated to respond to active and passive tensions by triggering axon reflexes that play important roles during fixation, saccades and vergence. How EOMs implement Listings law during ocular rotation is discussed.
Collapse
Affiliation(s)
- Joseph F. Y. Hoh
- Discipline of Physiology and the Bosch Institute School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| |
Collapse
|
3
|
Molinaro F, Fusi G, Aglianò M, Volpi N, Franci D, Lorenzoni P, Messina M, Galgano A, Grasso F, Plessi C, Messina M, Angotti R. Clinically Differentiated Abnormalities of the Architecture and Expression of Myosin Isoforms of the Human Cremaster Muscle in Cryptorchidism and Retractile Testis. Urol Int 2020; 104:891-901. [PMID: 32674099 DOI: 10.1159/000508432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/03/2020] [Indexed: 11/19/2022]
Abstract
AIM To describe architecture and expression of myosin isoforms of the human cremaster muscle (CM) and to individuate changes in clinically differentiated abnormalities of testicular descent: cryptorchidism or undescended testis (UDT) and retractile testis (RT). BACKGROUND The CM is a nonsomitic striated muscle differentiating from mesenchyme of the gubernaculum testis. Morphofunctional and molecular peculiarities linked to its unique embryological origin are not yet completely defined. Its role in abnormalities of testicular descent is being investigated. SUBJECTS AND METHODS Biopsy samples were obtained from corrective surgery in cases of cryptorchidism, retractile testis, inguinal hernia, or hydrocele. Muscle specimens were processed for morphology, histochemistry, and immunohistology. RESULTS AND CONCLUSIONS The CM differs from the skeletal muscles both for morphological and molecular characteristics. The presence of fascicles with different characterization and its myosinic pattern suggested that the CM could be included in the specialized muscle groups, such as the extrinsic ocular muscles (EOMs) and laryngeal and masticatory muscles. The embryological origin from the nonsomitic mesoderm is, also for the CM, the basis of distinct molecular pathways. In UDT, the histological alterations of CM are suggestive of denervation; the genitofemoral nerve and its molecular messengers directed to this muscle are likely defective. Compared with the other samples, RT has a distinct myosinic pattern; therefore, it has been considered a well-defined entity with respect to the other testicular descent abnormalities.
Collapse
Affiliation(s)
- Francesco Molinaro
- Division of Pediatric Surgery, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Giulia Fusi
- Division of Pediatric Surgery, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy,
| | - Margherita Aglianò
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Nila Volpi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Daniela Franci
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Paola Lorenzoni
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Maddalena Messina
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Angela Galgano
- Division of Pediatric Surgery, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Francesco Grasso
- Division of Pediatric Surgery, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Carlotta Plessi
- Division of Pediatric Surgery, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Mario Messina
- Division of Pediatric Surgery, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Rossella Angotti
- Division of Pediatric Surgery, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
4
|
Medler S. Mixing it up: the biological significance of hybrid skeletal muscle fibers. ACTA ACUST UNITED AC 2019; 222:222/23/jeb200832. [PMID: 31784473 DOI: 10.1242/jeb.200832] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skeletal muscle fibers are classified according to the myosin heavy chain (MHC) isoforms and other myofibrillar proteins expressed within these cells. In addition to 'pure' fibers expressing single MHC isoforms, many fibers are 'hybrids' that co-express two or more different isoforms of MHC or other myofibrillar proteins. Although hybrid fibers have been recognized by muscle biologists for more than three decades, uncertainty persists about their prevalence in normal muscles, their role in fiber-type transitions, and what they might tell us about fiber-type regulation at the cellular and molecular levels. This Review summarizes current knowledge on the relative abundance of hybrid fibers in a variety of muscles from different species. Data from more than 150 muscles from 39 species demonstrate that hybrid fibers are common, frequently representing 25% or more of the fibers in normal muscles. Hybrid fibers appear to have two main roles: (1) they function as intermediates during the fiber-type transitions associated with skeletal muscle development, adaptation to exercise and aging; and (2) they provide a functional continuum of fiber phenotypes, as they possess physiological properties that are intermediate to those of pure fiber types. One aspect of hybrid fibers that is not widely recognized is that fiber-type asymmetries - such as dramatic differences in the MHC composition along the length of single fibers - appear to be a common aspect of many fibers. The final section of this Review examines the possible role of differential activities of nuclei in different myonuclear domains in establishing fiber-type asymmetries.
Collapse
Affiliation(s)
- Scott Medler
- Biology Department, State University of New York at Fredonia, Fredonia, NY 14063, USA
| |
Collapse
|
5
|
Hopker LM, Neves JDC, Nascimento DJ, Campos ED, Mendonça TS, Zanoteli E, Allemann N. Histological changes underlying bupivacaine's effect on extra ocular muscle. Exp Eye Res 2018. [PMID: 29530812 DOI: 10.1016/j.exer.2018.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
To determine the changes in the cross-sectional area (CSA) of myofibers and their subtype distribution based on the myosin isoform expression after bupivacaine (BUP) injection in the EOM of rabbits and help the understanding of strabismus correction after BUP injection in the clinical practice. A total of 32 rabbits received 0.3 mL of 1.5% BUP in the superior rectus muscle (SR) of the right eye (OD) and were sacrificed at days 7, 28, 60, and 92. Additional eight untouched rabbits were included as controls. Hematoxylin and eosin staining was performed, and ImageJ software was used to measure CSA. Immunohistochemical analysis was performed to analyze the proportion of myofibers positive for myosin types 1 (slow), 2 (fast) and embryonic. Myofiber area measurement decreased 7 days after BUP injection [SR, 1271 ± 412 μm2 (control) to 909 ± 255 μm2 (day 7)] after BUP injection, followed by an increasing trend after 28 days and normalization after 92 days [SR; 1062 ± 363 μm2 (day 28), 1492 ± 404 μm2 (day 60), 1317 ± 334 μm2 (day 92)]. The proportion of slow myosin-positive fibers increased in the 60-day group (88.5% ± 16.2%). There was no statistically significant difference in fast myosin-positive fibers. The inferior rectus of both eyes showed an increase in CSA. No increase of endomysial fibrous tissue was observed after 60 and 92 days of BUP injection. Bupivacaine, when injected into the SR of rabbits, initially decreases the fiber area followed by a transient increasing trend and normalization. There is a transient increase in the proportion of slow myosin-positive fibers in the injected muscle. Muscle adaptation in untreated EOM was found with increased CSA. These findings help clarify the clinical effects of BUP in extraocular muscle.
Collapse
Affiliation(s)
- Luisa Moreira Hopker
- Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil; Evangelical Hospital of Curitiba, Curitiba, Brazil.
| | | | | | | | | | - Edmar Zanoteli
- Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil
| | - Norma Allemann
- Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil; University of Illinois at Chicago (UIC), Chicago, IL, USA
| |
Collapse
|
6
|
Complex tropomyosin and troponin T isoform expression patterns in orbital and global fibers of adult dog and rat extraocular muscles. J Muscle Res Cell Motil 2013; 34:211-31. [PMID: 23700265 DOI: 10.1007/s10974-013-9346-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/02/2013] [Indexed: 12/12/2022]
Abstract
We reported marked differences in the myosin heavy and light chain (MHC and MLC) isoform composition of fast and slow fibers between the global and orbital layers of dog extraocular muscles. Many dog extraocular fibers, especially orbital fibers, have MHC and MLC isoform patterns that are distinct from those in limb skeletal muscles. Additional observations suggested possible differences in the tropomyosin (Tm) and troponin T (TnT) isoform composition of global and orbital fibers. Therefore, we tested, using SDS-PAGE and immunoblotting, whether differences in Tm and TnT isoform expression do, in fact, exist between global and orbital layers of dog and rat EOMs and to compare expression patterns among identified fast and slow single fibers from both muscle layers. The Tm isoforms expressed in global fast and slow fibers are the same as in limb fast (α-Tm and β-Tm) and slow (γ-Tm and β-Tm) fibers, respectively. Orbital slow orbital fibers, on the other hand, each co-express all three sarcomeric Tm isoforms (α, β and γ). The results indicate that fast global and orbital fibers express only fast isoforms of TnT, but the relative amounts of the individual isoforms are different from those in limb fast muscle fibers and an abundant fast TnT isoform in the orbital layer was not detected in fast limb muscles. Slow fibers in both layers express slow TnT isoforms and the relative amounts also differ from those in limb slow fibers. Unexpectedly, significant amounts of cardiac TnT isoforms were also detected in slow fibers, especially in the orbital layer in both species. TnI and TnC isoform patterns are the same as in fast and slow fibers in limb muscles. These results expand the understanding of the elaborate diversity in contractile protein isoform expression in mammalian extraocular muscle fibers and suggest that major differences in calcium-activation properties exist among these fibers, based upon Tm and TnT isoform expression patterns.
Collapse
|
7
|
Moncman CL, Andrade ME, McCool AA, McMullen CA, Andrade FH. Development transitions of thin filament proteins in rat extraocular muscles. Exp Cell Res 2013; 319:23-31. [PMID: 23174654 DOI: 10.1016/j.yexcr.2012.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 11/02/2012] [Accepted: 11/11/2012] [Indexed: 10/27/2022]
Abstract
Extraocular muscles are a unique subset of striated muscles. During postnatal development, the extraocular muscles undergo a number of myosin isoform transitions that occur between postnatal day P10 (P10) and P15. These include: (1) loss of embryonic myosin from the global layer resulting in the expression restricted to the orbital layer; (2) the onset of expression of extraocular myosin and the putative tonic myosin (myh 7b/14); and (3) the redistribution of nonmuscle myosin IIB from a subsarcolemmal position to a sarcomeric distribution in the slow fibers of the global layer. For this study, we examined the postnatal appearance and distribution of α-actinin, tropomyosin, and nebulin isoforms during postnatal development of the rat extraocular muscles. Although sarcomeric α-actinin is detectable from birth, α-actinin 3 appears around P15. Both tropomyosin-1 and -2 are present from birth in the same distribution as in the adult animal. The expression of nebulin was monitored by gel electrophoresis and western blots. At P5-10, nebulin exhibits a lower molecular mass than observed P15 and later during postnatal development. The changes in α-actinin 3 and nebulin expression between P10 and P15 coincide with transitions in myosin isoforms as detailed above. These data point to P10-P15 as the critical period for the maturation of the extraocular muscles, coinciding with eyelid opening.
Collapse
Affiliation(s)
- Carole L Moncman
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, United States.
| | | | | | | | | |
Collapse
|
8
|
Remarkable heterogeneity in myosin heavy-chain composition of the human young masseter compared with young biceps brachii. Histochem Cell Biol 2012; 138:669-82. [PMID: 22777345 DOI: 10.1007/s00418-012-0985-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2012] [Indexed: 10/28/2022]
Abstract
Adult human jaw muscles differ from limb and trunk muscles in enzyme-histochemical fibre type composition. Recently, we showed that the human masseter and biceps differ in fibre type pattern already at childhood. The present study explored the myosin heavy-chain (MyHC) expression in the young masseter and biceps muscles by means of gel electrophoresis (GE) and immuno-histochemical (IHC) techniques. Plasticity in MyHC expression during life was evaluated by comparing the results with the previously reported data for adult muscles. In young masseter, GE identified MyHC-I, MyHC-IIa MyHC-IIx and small proportions of MyHC-fetal and MyHC-α cardiac. Western blots confirmed the presence of MyHC-I, MyHC-IIa and MyHC-IIx. IHC revealed in the masseter six isomyosins, MyHC-I, MyHC-IIa, MyHC-IIx, MyHC-fetal, MyHC α-cardiac and a previously not reported isoform, termed MyHC-IIx'. The majority of the masseter fibres co-expressed two to four isoforms. In the young biceps, both GE and IHC identified MyHC-I, MyHC-IIa and MyHC-IIx. MyHC-I predominated in both muscles. Young masseter showed more slow and less-fast and fetal MyHC than the adult and elderly masseter. These results provide evidence that the young masseter muscle is unique in MyHC composition, expressing MyHC-α cardiac and MyHC-fetal isoforms as well as hitherto unrecognized potential spliced isoforms of MyHC-fetal and MyHC-IIx. Differences in masseter MyHC expression between young adult and elderly suggest a shift from childhood to adulthood towards more fast contractile properties. Differences between masseter and biceps are proposed to reflect diverse evolutionary and developmental origins and confirm that the masseter and biceps present separate allotypes of muscle.
Collapse
|
9
|
Park KA, Lim J, Sohn S, Oh SY. Myosin heavy chain isoform expression in human extraocular muscles: longitudinal variation and patterns of expression in global and orbital layers. Muscle Nerve 2012; 45:713-20. [PMID: 22499099 DOI: 10.1002/mus.23240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION We investigated the distribution of myosin heavy chain (MyHC) isoforms along the length of the global and orbital layers of human extraocular muscles (EOMs). METHODS Whole muscle tissue extracts of human EOMs were cross-sectioned consecutively and separated into orbital and global layers. The extracts from these layers were subjected to electrophoretic analysis, followed by quantification with scanning densitometry. RESULTS MyHC isoforms displayed different distributions along the lengths of EOMs. In the orbital and global layers of all EOMs except for the superior oblique muscle, MyHCeom was enriched in the central regions. MyHCIIa and MyHCI were most abundant in the proximal and distal ends. CONCLUSIONS A variation in MyHC isoform expression was apparent along the lengths of human EOMs. These results provide a basis for understanding the molecular mechanisms underlying the functional diversity of EOMs.
Collapse
Affiliation(s)
- Kyung-Ah Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, South Korea
| | | | | | | |
Collapse
|
10
|
Nien CJ, Jester JV, Bose S. Effects of hyperthyroidism on the rectus muscles in mice. Front Neurol 2010; 1:143. [PMID: 21212842 PMCID: PMC3015165 DOI: 10.3389/fneur.2010.00143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 10/20/2010] [Indexed: 11/23/2022] Open
Abstract
Background: Structural details of vertebrate extraocular muscles (EOMs) have shown an anatomically and functionally distinct laminar organization into an outer orbital (OL) and an inner global layer (GL). Since hyperthyroidism alters tissue oxidative metabolism through mitochondrial enzymes, it is expected that structural/mitochondrial changes may be seen in hyperthyroid EOMs. We investigated the alterations in the laminar organization and mitochondrial changes in hyperthyroid mouse EOMs. Methods: Hyperthyroidism was induced in C57BL/6 mice and fresh rectus muscles were obtained to identify functional mitochondria using MitoTracker® Green and confocal microscopy; frozen sections from rectus muscles were stained with anti-rabbit Troponin T (selectively present in the OL) to demonstrate changes in the OL and GL of the EOMs. Ultrastructural features of EOMs were studied using transmission electron microscopy (TEM). Results: Of all four rectus EOMs studied, the maximum change was seen in the inferior rectus muscle (IR) followed by medial rectus (MR). Myofiber cross-sectional area measurements and Troponin T staining in the control IR EOMs demonstrated a smaller OL (113.2 ± 3.66 μm2) and higher density staining with Troponin T (90%) and a larger GL (411 ± 13.84 μm2) with low intensity staining (10%), while hyperthyroidism resulted in an increased OL (205.9 ± 5.3 μm2) and decreased GL (271.7 ± 7.5 μm2) p = 0.001. Confocal microscopy demonstrated an intense staining especially in the outer rims in the hyperthyroid IR which was confirmed by TEM showing structural alterations in the mitochondria and a subsarcolemmal migration. Conclusions: The outer, thinner, OL of the mouse EOM contains smaller diameter myofibers and fewer mitochondria while the inner, larger GL contains larger diameter myofibers and larger density of mitochondria. Hyperthyroidism results in a significant alteration in the laminar organization and mitochondrial alterations of mouse EOMs.
Collapse
Affiliation(s)
- Chyong Jy Nien
- Gavin Herbert Eye Institute, University of California Irvine Irvine, CA, USA
| | | | | |
Collapse
|
11
|
Rhee HS, Hoh JFY. Immunohistochemical analysis of the effects of cross-innervation of murine thyroarytenoid and sternohyoid muscles. J Histochem Cytochem 2010; 58:1057-65. [PMID: 20713983 DOI: 10.1369/jhc.2010.956706] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This work uses cross-innervation of respiratory muscles of different developmental origins to probe myogenic and neurogenic mechanisms regulating their fiber types. The thyroarytenoid (TA) originates from the sixth branchial arch, whereas the sternohyoid (SH) is derived from somitic mesoderm. Immunohistochemical analysis using highly specific monoclonal antibodies to myosin heavy chain (MyHC) isoforms reveals that normal rat SH comprises slow, 2a, 2x, and 2b fibers, as in limb fast muscles, whereas the external division of the TA has only 2b/eo fibers coexpressing 2B and extraocular (EO) MyHCs. Twelve weeks after cross-innervation with the recurrent laryngeal nerve, the SH retained slow and 2a fibers, greatly increased the proportion of 2x fibers, and their 2b fibers failed to express EO MyHC. In the cross-innervated TA, the SH nerve failed to induce slow and 2A MyHC expression and failed to suppress EO MyHC expression in 2b/eo fibers. However, 2x fibers amounting to 4.2% appeared de novo in the external division of the TA. We conclude that although MyHC gene expression in these muscles can be modulated by neural activity, the patterns of response to altered innervation are largely myogenically determined, thus supporting the idea that SH and TA differ in muscle allotype.
Collapse
Affiliation(s)
- Hannah S Rhee
- Discipline of Physiology, Building F13, Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | |
Collapse
|
12
|
Zhou Y, Liu D, Kaminski HJ. Myosin heavy chain expression in mouse extraocular muscle: more complex than expected. Invest Ophthalmol Vis Sci 2010; 51:6355-63. [PMID: 20610840 DOI: 10.1167/iovs.10-5937] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To characterize the expression patterns of myosin heavy chain (MyHC) isoforms in mouse extraocular muscles (EOMs) during postnatal development. METHODS MyHC isoform expression in mouse EOMs from postnatal day (P)0 to 3 months was evaluated by quantitative polymerase chair reaction (qPCR) and immunohistochemistry. The longitudinal and cross-sectional distribution of each MyHC isoform and coexpression of certain isoforms in single muscle fibers was determined by single, double, and triple immunohistochemistry. RESULTS MyHC isoform expression in postnatal EOMs followed the developmental rules observed in other skeletal muscles; however, important exceptions were found. First, developmental isoforms were retained in the orbital layer of the adult EOMs. Second, expression of emb-MyHC, neo-MyHC, and 2A-MyHC was restricted to the orbital layer and that of 2B-MyHC to the global layer. Third, although slow-MyHC and 2B-MyHC did not exhibit obvious longitudinal variations, emb-MyHC, neo-MyHC, and 2A-MyHC were more abundant distally and were excluded from the innervational zone, whereas eom-MyHC complemented their expression and was more abundant in the mid-belly region in both the orbital and global layers. Fourth, coexpression of MyHC isoforms in single global layer fibers was rare, but it was common among the orbital layer fibers. CONCLUSIONS MyHC isoforms have complex expression patterns, exhibiting not only longitudinal and cross-sectional variation of each isoform, but also of coexpression in single fibers. The highly heterogeneous MyHC expression reflects the complex contractile profiles of EOMs, which in turn are a function of the requirements of eye movements, which range from extremely fast saccades to sustained position, each with a need for precise coordination of each eye.
Collapse
Affiliation(s)
- Yuefang Zhou
- Department of Neurology and Psychiatry, Saint Louis University, St. Louis, MO 63104, USA
| | | | | |
Collapse
|
13
|
Reiser PJ, Bicer S, Chen Q, Zhu L, Quan N. Masticatory (;superfast') myosin heavy chain and embryonic/atrial myosin light chain 1 in rodent jaw-closing muscles. ACTA ACUST UNITED AC 2009; 212:2511-9. [PMID: 19648394 DOI: 10.1242/jeb.031369] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Masticatory myosin is widely expressed among several vertebrate classes. Generally, the expression of masticatory myosin has been associated with high bite force for a carnivorous feeding style (including capturing/restraining live prey), breaking down tough plant material and defensive biting in different species. Masticatory myosin expression in the largest mammalian order, Rodentia, has not been reported. Several members of Rodentia consume large numbers of tree nuts that are encased in very hard shells, presumably requiring large forces to access the nutmeat. We, therefore, tested whether some rodent species express masticatory myosin in jaw-closing muscles. Myosin isoform expression in six Sciuridae species was examined, using protein gel electrophoresis, immunoblotting, mass spectrometry and RNA analysis. The results indicate that masticatory myosin is expressed in some Sciuridae species but not in other closely related species with similar diets but having different nut-opening strategies. We also discovered that the myosin light chain 1 isoform associated with masticatory myosin heavy chain, in the same four Sciuridae species, is the embryonic/atrial isoform. We conclude that rodent speciation did not completely eliminate masticatory myosin and that its persistent expression in some rodent species might be related to not only diet but also to feeding style.
Collapse
Affiliation(s)
- Peter J Reiser
- Department of Oral Biology, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
14
|
Stirn Kranjc B, Smerdu V, Erzen I. Histochemical and immunohistochemical profile of human and rat ocular medial rectus muscles. Graefes Arch Clin Exp Ophthalmol 2009; 247:1505-15. [PMID: 19609551 PMCID: PMC2758108 DOI: 10.1007/s00417-009-1128-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 06/15/2009] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To compare the organization of human and rat ocular medial recti muscles (MR). METHODS The cryosections of human and rat MR were processed for myofibrillar ATPase (mATPase), succinate dehydrogenase and glycerol-3-phosphate dehydrogenase. To reveal myosin heavy chain (MyHC) isoforms, specific monoclonal antibodies against MyHC-1/beta- slow, alpha-cardiac (-alpha), -2a, -2x, -2b, -extraocular (eom), -embryonic (-emb) and -neonatal (-neo) were applied. The MyHC gene expression was studied by in situ hybridization in human muscle. RESULTS The muscle fibers were arranged in two distinct layers in both species. In the orbital layer most fibers were highly oxidative and expressed fast MyHC isoforms, whereas slow and oxidative fibers expressed MyHC-1 and -alpha, some of them also MyHC-2a, -2x, -eom, very rarely -emb, and -neo. In the global layer, slow fibers with very low oxidative and glycolytic activity and three types of fast fibers, glycolytic, oxidative and oxidative-glycolytic, could be distinguished. The slow medium-sized fibers with mATPase activity stable at pH 4.4 expressed mostly MyHC-1 and -alpha in rat, while in humans they co-expressed MyHC-1 with -2b, -2x, -eom, and -neo. In both species, the fast fibers showed variable mATPase activity after preincubation at pH 9.4, and co-expressed various combinations of MyHC-2b, -2x, -2a and -eom but not -emb and -neo. MyHC-2b expressing fibers were larger and glycolytic, while MyHC-2a expressing fibers were smaller and highly oxidative in both species. To our knowledge, the present study is the first that demonstrated the expression of MyHC-2b in any of human skeletal muscles. Though the expression of MyHC genes did not correlate with the immunohistochemical profile of fibers in human MR, the expression of MyHC-2b gene was undoubtedly confirmed. CONCLUSIONS Rat MR represent a good model that can be applied to study human MR in experiment or disease, however certain differences are to be expected due to specific oculomotor demands in humans.
Collapse
Affiliation(s)
- Branka Stirn Kranjc
- University Medical Centre, University Eye Hospital Ljubljana, Ljubljana, Slovenia.
| | | | | |
Collapse
|
15
|
Park CY, Park SE, Oh SY. Acute effect of bupivacaine and ricin mAb 35 on extraocular muscle in the rabbit. Curr Eye Res 2009; 29:293-301. [PMID: 15590475 DOI: 10.1080/02713680490516125] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To identify acute histologic change of extraocular muscles induced by bupivacaine or ricin mAb 35 injection. METHODS The superior rectus and inferior rectus of white rabbits were injected with bupivacaine (0.4 mg in 0.3 ml) or ricin mAb 35 (0.2 microg/kg in 0.3 ml). After 1, 2, and 4 weeks, the rectus muscles were harvested, and postinjection changes in the muscle layers were examined histopathologically. RESULTS Bupivacaine and ricin mAb 35 induced myotoxic changes in both the orbital and the global layers. However, the inflammation and the myofiber destruction produced by bupivacaine injection was localized to the injection site, which compared with the diffuse change induced by ricin mAb 35. Inflammation reduced rapidly over 2 weeks. Regenerating myofibers with a central nucleus were found at 1 week after injecting these myotoxins. Four weeks after injection, the acute changes induced by these two toxins respectively were much recovered with prominent myofiber regeneration. CONCLUSIONS We found that extraocular muscle has a superb ability to recover from the acute injury induced by bupivacaine or ricin mAb 35, and the two myotoxins induce unique damage including the predilection of muscle layers and duration of damage persisted. Further investigation about the functional change during recovery from the myotoxin-induced injury of extraocular muscles is needed.
Collapse
Affiliation(s)
- Choul Yong Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | | | | |
Collapse
|
16
|
Patruno M, Caliaro F, Maccatrozzo L, Sacchetto R, Martinello T, Toniolo L, Reggiani C, Mascarello F. Myostatin shows a specific expression pattern in pig skeletal and extraocular muscles during pre- and post-natal growth. Differentiation 2007; 76:168-81. [PMID: 17573916 DOI: 10.1111/j.1432-0436.2007.00189.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myogenesis is driven by an extraordinary array of cellular signals that follow a common expression pattern among different animal phyla. Myostatin (mstn) is a secreted growth factor that plays a pivotal role in skeletal muscle mass regulation. The aim of the present study was to investigate mstn expression in a large mammal (the pig) in order to ascertain whether distinct expression changes of this factor might be linked to the fiber-type composition of the muscle examined and/or to specific developmental stages. To assess the expression pattern of mstn in relation to myogenic proliferative (Pax7 and MyoD) and differentiative (myogenin) markers, we evaluated muscles with different myosin heavy-chain compositions sampled during pre- and post-natal development and on myogenic cells isolated from the same muscles. Skeletal muscles showed higher levels of mRNA for mstn and all other genes examined during fetal development than after birth. The wide distribution of mstn was also confirmed by immunohistochemistry experiments supporting evidence for cytoplasmic staining in early fetal periods as well as the localization in type 1 fibers at the end of the gestation period. Extraocular muscles, in contrast, did not exhibit decreasing mRNA levels for mstn or other genes even in adult samples and expressed higher levels of both mstn mRNA and protein compared with skeletal muscles. Experiments carried out on myogenic cells showed that mstn mRNA levels decreased when myoblasts entered the differentiation program and that cells isolated at early post-natal stages maintained a high level of Pax7 expression. Our results showed that mstn had a specific expression pattern whose variations depended on the muscle type examined, thus supporting the hypothesis that at birth, porcine myogenic cells continue to be influenced by hyperplastic/proliferative mechanisms.
Collapse
Affiliation(s)
- Marco Patruno
- Department of Experimental Veterinary Sciences, Istituto Interuniversitario di Miologia, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Vlahovich N, Schevzov G, Nair-Shaliker V, Ilkovski B, Artap ST, Joya JE, Kee AJ, North KN, Gunning PW, Hardeman EC. Tropomyosin 4 defines novel filaments in skeletal muscle associated with muscle remodelling/regeneration in normal and diseased muscle. ACTA ACUST UNITED AC 2007; 65:73-85. [PMID: 17968984 DOI: 10.1002/cm.20245] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Nicole Vlahovich
- Muscle Development Unit, Children's Medical Research Institute, Locked Bag 23, Wentworthville, New South Wales 2145, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Dennehey BK, Leinwand LA, Krauter KS. Diversity in transcriptional start site selection and alternative splicing affects the 5'-UTR of mouse striated muscle myosin transcripts. J Muscle Res Cell Motil 2006; 27:559-75. [PMID: 16819597 DOI: 10.1007/s10974-006-9071-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 05/23/2006] [Indexed: 10/24/2022]
Abstract
We have analyzed nearly 2,000 myosin heavy chain gene (Myh) clones representing over 30 different transcripts from seven of eight striated muscle Myh genes expressed in mouse. We also report the transcriptional start sites (TSS) for the mouse developmental Myh genes. The data reveal a previously unknown diversity of TSSs and 5'-end alternative splicing in these transcripts. The cardiac Myh6 gene had two major TSSs. Use of the major downstream site led to an alternatively spliced second exon. Each of the other Myh genes had one major TATA-directed TSS and one or more minor alternative TSSs, some associated with alternative splicing. The minor transcripts were associated with polysomes and their spatial-temporal expression largely mirrored that of the major transcripts in wild-type, Myh1 null, Myh4 null, injured, and uninjured muscle, except that one form of Myh7, detected in heart, was not detected in diaphragm, and the ratio of the two major Myh6 transcripts varied in some circumstances. These findings indicate that alternative TSS usage and alternative splicing in the 5'-UTR are a general feature of murine Myh gene expression and that Myh gene regulation is more complex than previously appreciated.
Collapse
Affiliation(s)
- Briana K Dennehey
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | |
Collapse
|
19
|
Toniolo L, Maccatrozzo L, Patruno M, Caliaro F, Mascarello F, Reggiani C. Expression of eight distinct MHC isoforms in bovine striated muscles: evidence for MHC-2B presence only in extraocular muscles. ACTA ACUST UNITED AC 2006; 208:4243-53. [PMID: 16272247 DOI: 10.1242/jeb.01904] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study aimed to analyse the expression of myosin heavy chain (MHC) isoforms in bovine muscles, with particular attention to the MHC-2B gene. Diaphragm, longissimus dorsi, masseter, several laryngeal muscles and two extraocular muscles (rectus lateralis and retractor bulbi) were sampled in adult male Bos taurus (age 18-24 months, mass 400-500 kg) and analysed by RT-PCR, gel electrophoresis and immunohistochemistry. Transcripts and proteins corresponding to eight MHC isoforms were identified: MHC-alpha and MHC-beta/slow (or MHC-1), two developmental isoforms (MHC-embryonic and MHC-neonatal), three adult fast isoforms (MHC-2A, MHC-2X and MHC-2B) and the extraocular isoform MHC-Eo. All eight MHC isoforms were found to be co-expressed in extrinsic eye muscles, retractor bulbi and rectus lateralis, four (beta/slow, 2A, 2X, neonatal) in laryngeal muscles, three (beta/slow, 2A and 2X) in trunk and limb muscles and two (beta/slow and alpha) in masseter. The expression of MHC-2B and MHC-Eo was restricted to extraocular muscles. Developmental MHC isoforms (neonatal and embryonic) were only found in specialized muscles in the larynx and in the eye. MHC-alpha was only found in extraocular and masseter muscle. Single fibres dissected from masseter, diaphragm and longissimus were classified into five groups (expressing, respectively, beta/slow, alpha, slow and 2A, 2A and 2X) on the basis of MHC isoform electrophoretical separation, and their contractile properties [maximum shortening velocity (v(0)) and isometric tension (P(0))] were determined. v(0) increased progressively from slow to fast 2A and fast 2X, whereas hybrid 1-2A fibres and fibres containing MHC-alpha were intermediate between slow and fast 2A.
Collapse
Affiliation(s)
- L Toniolo
- Dipartimento di Anatomia e Fisiologia Umana, Università di Padova, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Extraocular muscle is fundamentally distinct from other skeletal muscles. Here, we review the biological organization of the extraocular muscles with the intent of understanding this novel muscle group in the context of oculomotor system function. The specific objectives of this review are threefold. The first objective is to understand the anatomic arrangement of the extraocular muscles and their compartmental or layered organization in the context of a new concept of orbital mechanics, the active pulley hypothesis. The second objective is to present an integrated view of the morphologic, cellular, and molecular differences between extraocular and the more traditional skeletal muscles. The third objective is to relate recent data from functional and molecular biology studies to the established extraocular muscle fiber types. Developmental mechanisms that may be responsible for the divergence of the eye muscles from a skeletal muscle prototype also are considered. Taken together, a multidisciplinary understanding of extraocular muscle biology in health and disease provides insights into oculomotor system function and malfunction. Moreover, because the eye muscles are selectively involved or spared in a variety of neuromuscular diseases, knowledge of their biology may improve current pathogenic models of and treatments for devastating systemic diseases.
Collapse
Affiliation(s)
- Robert F Spencer
- Department of Anatomy, Medical College of Virginia, Richmond, VA 23298, USA
| | | |
Collapse
|
21
|
Li ZB, Lehar M, Nakagawa H, Hoh JFY, Flint PW. Differential expression of myosin heavy chain isoforms between abductor and adductor muscles in the human larynx. Otolaryngol Head Neck Surg 2004; 130:217-22. [PMID: 14990919 DOI: 10.1016/j.otohns.2003.09.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE This study examines the differential expression of myosin heavy chain (MyHC) components in human laryngeal muscle groups. STUDY DESIGN A battery of monospecific monoclonal antibodies in Western blots was used to determine expression of IIX, extraocular-specific (EOM), and IIB MyHCs for the thyroarytenoid (TA), vocalis (VOC), lateral cricoarytenoid (LCA), cricothyroid (CT), and posterior cricoarytenoid (PCA) muscles obtained from fresh cadaver specimens. RESULTS Fast IIX MyHC was only expressed in the TA, VOC, and LCA muscles. Fast IIA and slow MyHCs were expressed in all laryngeal muscles including the CT and PCA. The CT with mixed phonatory and respiratory function and the PCA with respiratory function did not express IIX MyHC. The 2 MyHC isoforms associated with the highest speeds of contraction in rat laryngeal muscle, namely, the EOM MyHC and IIB MyHC, were not detected in human laryngeal muscles. Novel MyHC bands were not detected in SDS-PAGE gels or Western blots using a broad specificity MyHC antibody. CONCLUSION The profile of MyHC expression in human laryngeal muscles differs from that observed in human extraocular and masticator muscles, and other mammalian species. Our data demonstrate that IIX MyHC expression is associated primarily with muscles affecting glottic closure and is absent in CT and PCA. SIGNIFICANCE A higher percentage of IIX MyHC is expected to impart a high speed of shortening to the TA and LCA muscles. The absence of IIX MyHC in muscles with respiratory (PCA) and mixed respiratory/phonatory function (CT) further supports the inference that the physiologic difference between laryngeal muscles is reflected in the molecular composition of contractile protein.
Collapse
Affiliation(s)
- Zhao-Bo Li
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | | | |
Collapse
|