1
|
Maidana DE, Puente SP, Wang C, Chandra S, Gonzalez-Buendia L, Ilios EP, Kazlauskas A, Vavvas DG. Divergence in photoreceptor cell death and neuroinflammation in transvitreal and transscleral subretinal delivery in mice. J Inflamm (Lond) 2025; 22:5. [PMID: 39920719 PMCID: PMC11806547 DOI: 10.1186/s12950-025-00433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025] Open
Abstract
Subretinal injections provide direct access to photoreceptors and RPE, which is crucial for the delivery of gene therapy and neuroprotective approaches. To access the subretinal space, transvitreal (TV) and transscleral (TS) subretinal injections have been widely used in humans and animal models. In this work, we investigated recent trends and outcomes of utilizing TV and TS subretinal models of retinal detachment (RD). A literature review revealed an increasing utilization of both models over the past two decades, with TS emerging as the predominant model since 2012. Subretinal injection in CX3CR1 + /GFP CCR2 + /RFP mice revealed early inflammatory responses, with TS injections inducing higher infiltration of CD11b + CCR2 + cells compared to TV. Further leukocyte immunophenotyping indicated divergent infiltration patterns, with the TS approach exhibiting higher proportions of neutrophils and macrophages/microglia-like cells, while the TV injections had higher CD45hi CD11b + Ly6G- Ly6C + infiltration. Notably, late-stage analysis demonstrates higher photoreceptor cell death in the TS approach, paralleled by increased subretinal infiltration of CD11b + cells. Both models showed significant reactive gliosis, suggesting comparable late-stage wound healing responses. These findings underscore the utility of these approaches for subretinal delivery, offering insights into their distinctive leukocyte infiltration and late-stage tissue responses.
Collapse
Affiliation(s)
- Daniel E Maidana
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Sara Pastor Puente
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Catherine Wang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Shivam Chandra
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Lucia Gonzalez-Buendia
- Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
- Institute of Ocular Microsurgery (IMO) Miranza Group, Madrid, Spain
| | - Eleftherios Paschalis Ilios
- Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
- Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA, 02114, USA
| | - Andrius Kazlauskas
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Demetrios G Vavvas
- Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.
- Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA, 02114, USA.
| |
Collapse
|
2
|
Alfarhan M, Liu F, Matani BR, Somanath PR, Narayanan SP. SMOX Inhibition Preserved Visual Acuity, Contrast Sensitivity, and Retinal Function and Reduced Neuro-Glial Injury in Mice During Prolonged Diabetes. Cells 2024; 13:2049. [PMID: 39768141 PMCID: PMC11674681 DOI: 10.3390/cells13242049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Diabetic retinopathy, a major cause of vision loss, is characterized by neurovascular changes in the retina. The lack of effective treatments to preserve vision in diabetic patients remains a significant challenge. A previous study from our laboratory demonstrated that 12-week treatment with MDL 72527, a pharmacological inhibitor of spermine oxidase (SMOX, a critical regulator of polyamine metabolism), reduced neurodegeneration in diabetic mice. Utilizing the streptozotocin-induced diabetic mouse model and MDL 72527, the current study investigated the effectiveness of SMOX inhibition on the measures of vision impairment and neuro-glial injury following 24 weeks of diabetes. Reductions in visual acuity, contrast sensitivity, and inner retinal function in diabetic mice were improved by MDL 72527 treatment. Diabetes-induced changes in neuronal-specific class III tubulin (Tuj-1), synaptophysin, glutamine synthetase, and vimentin were attenuated in response to SMOX inhibition. In conclusion, our findings show that SMOX inhibition improved visual acuity, contrast sensitivity, and inner retinal function and mitigated diabetes-induced neuroglial damage during long-term diabetes. Targeting SMOX signaling may provide a potential strategy for reducing retinal neuronal damage and preserving vision in diabetes.
Collapse
Affiliation(s)
- Moaddey Alfarhan
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
- Department of Clinical Practice, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fang Liu
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| | - Bayan R. Matani
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| | - Payaningal R. Somanath
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| | - S. Priya Narayanan
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| |
Collapse
|
3
|
Obeng E, Shen B, Wang W, Xie Z, Zhang W, Li Z, Yao Q, Wu W. Engineered bio-functional material-based nerve guide conduits for optic nerve regeneration: a view from the cellular perspective, challenges and the future outlook. Regen Biomater 2024; 12:rbae133. [PMID: 39776856 PMCID: PMC11703557 DOI: 10.1093/rb/rbae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
Nerve injuries can be tantamount to severe impairment, standard treatment such as the use of autograft or surgery comes with complications and confers a shortened relief. The mechanism relevant to the regeneration of the optic nerve seems yet to be fully uncovered. The prevailing rate of vision loss as a result of direct or indirect insult on the optic nerve is alarming. Currently, the use of nerve guide conduits (NGC) to some extent has proven reliable especially in rodents and among the peripheral nervous system, a promising ground for regeneration and functional recovery, however in the optic nerve, this NGC function seems quite unfamous. The insufficient NGC application and the unabridged regeneration of the optic nerve could be a result of the limited information on cellular and molecular activities. This review seeks to tackle two major factors (i) the cellular and molecular activity involved in traumatic optic neuropathy and (ii) the NGC application for the optic nerve regeneration. The understanding of cellular and molecular concepts encompassed, ocular inflammation, extrinsic signaling and intrinsic signaling for axon growth, mobile zinc role, Ca2+ factor associated with the optic nerve, alternative therapies from nanotechnology based on the molecular information and finally the nanotechnological outlook encompassing applicable biomaterials and the use of NGC for regeneration. The challenges and future outlook regarding optic nerve regenerations are also discussed. Upon the many approaches used, the comprehensive role of the cellular and molecular mechanism may set grounds for the efficient application of the NGC for optic nerve regeneration.
Collapse
Affiliation(s)
- Enoch Obeng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Baoguo Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhenyuan Xie
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wenyi Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhixing Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Qinqin Yao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang 325000, China
| |
Collapse
|
4
|
Obied B, Richard S, Zahavi A, Kreizman-Shefer H, Bajar J, Fixler D, Krmpotić M, Girshevitz O, Goldenberg-Cohen N. Cobalt Toxicity Induces Retinopathy and Optic Neuropathy in Mice. Invest Ophthalmol Vis Sci 2024; 65:59. [PMID: 39601637 PMCID: PMC11605662 DOI: 10.1167/iovs.65.13.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Purpose To explore the effect of cobalt toxicity on vision. Methods A total of 103 wild-type (WT) mice were injected with cobalt chloride by two routes in different concentrations: single intravenous (IV) high or low doses (total, n = 43); or daily repeated intraperitoneal (IP) high (three days) or low (28 days, 56 days) dose, and low-dose cobalt with added minocycline (56 days) (total, n = 60); 10 WT mice served as a control group. An additional group of 17 immunodeficient NOD scid gamma (NSG) mice were injected IV or IP with cobalt, and 10 NSG mice served as control. Cobalt levels were measured in blood, urine, and tears by particle-induced X-ray emission (PIXE). Macroscopic, immunohistochemical, electroretinography (ERG), and molecular studies were done. Results PIXE revealed cobalt elimination from the blood by two hours, with increased levels in urine but under the detection limit in tears. In the retina, ERG recordings showed decreased b-wave amplitude. Apoptosis mainly involved the inner retina, with inner retinal inflammatory reaction in both WT and less in the NSG mice. In the optic nerves, an increased microglial and astrocytic activation was noted. Conclusions This study demonstrated functional visual impairment with extensive inflammatory reaction secondary to cobalt toxicity in mice.
Collapse
Affiliation(s)
- Basel Obied
- The Krieger Eye Research Laboratory, Bruce and Ruth Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Stephen Richard
- The Krieger Eye Research Laboratory, Bruce and Ruth Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Alon Zahavi
- Department of Ophthalmology, Rabin Medical Center—Beilinson Hospital, and Laboratory of Eye Research, Felsenstein Medical Research Center, Petach Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Jacob Bajar
- Department of Pathology, Bnai Zion Medical Center, Haifa, Israel
| | - Dror Fixler
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Matea Krmpotić
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
- Division of Experimental Physics, Ruđer Bošković Institute, Zagreb, Croatia
| | - Olga Girshevitz
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Nitza Goldenberg-Cohen
- The Krieger Eye Research Laboratory, Bruce and Ruth Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Department of Ophthalmology, Bnai Zion Medical Center, Haifa, Israel
| |
Collapse
|
5
|
Campbell GP, Amin D, Hsieh K, Hussey GS, St Leger AJ, Gross JM, Badylak SF, Kuwajima T. Immunomodulation by the combination of statin and matrix-bound nanovesicle enhances optic nerve regeneration. NPJ Regen Med 2024; 9:31. [PMID: 39461953 PMCID: PMC11513974 DOI: 10.1038/s41536-024-00374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Modulating inflammation is critical to enhance nerve regeneration after injury. However, clinically applicable regenerative therapies that modulate inflammation have not yet been established. Here, we demonstrate synergistic effects of the combination of an HMG-CoA reductase inhibitor, statin/fluvastatin and critical components of the extracellular matrix, Matrix-Bound Nanovesicles (MBV) to enhance axon regeneration and neuroprotection after mouse optic nerve injury. Mechanistically, co-intravitreal injections of fluvastatin and MBV robustly promote infiltration of monocytes and neutrophils, which lead to RGC protection and axon regeneration. Furthermore, monocyte infiltration is triggered by elevated expression of CCL2, a chemokine, in the superficial layer of the retina after treatment with a combination of fluvastatin and MBV or IL-33, a cytokine contained within MBV. Finally, this therapy can be further combined with AAV-based gene therapy blocking anti-regenerative pathways in RGCs to extend regenerated axons. These data highlight novel molecular insights into the development of immunomodulatory regenerative therapy.
Collapse
Affiliation(s)
- Gregory P Campbell
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- The Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Dwarkesh Amin
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- The Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Kristin Hsieh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- The Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - George S Hussey
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Anthony J St Leger
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- The Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Takaaki Kuwajima
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
- The Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
6
|
Hein M, Qambari H, An D, Balaratnasingam C. Current understanding of subclinical diabetic retinopathy informed by histology and high-resolution in vivo imaging. Clin Exp Ophthalmol 2024; 52:464-484. [PMID: 38363022 DOI: 10.1111/ceo.14363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024]
Abstract
The escalating incidence of diabetes mellitus has amplified the global impact of diabetic retinopathy. There are known structural and functional changes in the diabetic retina that precede the fundus photography abnormalities which currently are used to diagnose clinical diabetic retinopathy. Understanding these subclinical alterations is important for effective disease management. Histology and high-resolution clinical imaging reveal that the entire neurovascular unit, comprised of retinal vasculature, neurons and glial cells, is affected in subclinical disease. Early functional manifestations are seen in the form of blood flow and electroretinography disturbances. Structurally, there are alterations in the cellular components of vasculature, glia and the neuronal network. On clinical imaging, changes to vessel density and thickness of neuronal layers are observed. How these subclinical disturbances interact and ultimately manifest as clinical disease remains elusive. However, this knowledge reveals potential early therapeutic targets and the need for imaging modalities that can detect subclinical changes in a clinical setting.
Collapse
Affiliation(s)
- Martin Hein
- Physiology and Pharmacology Group, Lions Eye Institute, Perth, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | - Hassanain Qambari
- Physiology and Pharmacology Group, Lions Eye Institute, Perth, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | - Dong An
- Physiology and Pharmacology Group, Lions Eye Institute, Perth, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | - Chandrakumar Balaratnasingam
- Physiology and Pharmacology Group, Lions Eye Institute, Perth, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
- Department of Ophthalmology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| |
Collapse
|
7
|
Tabor SJ, Yuda K, Deck J, Gnanaguru G, Connor KM. Retinal Injury Activates Complement Expression in Müller Cells Leading to Neuroinflammation and Photoreceptor Cell Death. Cells 2023; 12:1754. [PMID: 37443787 PMCID: PMC10340218 DOI: 10.3390/cells12131754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Retinal detachment (RD) is a neurodegenerative blinding disease caused by plethora of clinical conditions. RD is characterized by the physical separation of retina from the underlying retinal pigment epithelium (RPE), eventually leading to photoreceptor cell death, inflammation, and vision loss. Albeit the activation of complement plays a critical role in the pathogenesis of RD, the retinal cellular source for complement production remains elusive. Here, using C3 tdTomato reporter mice we show that retinal injury upregulates C3 expression, specifically in Müller cells. Activation of the complement cascade results in the generation of proinflammatory cleaved products, C3a and C5a, that bind C3aR and C5aR1, respectively. Our flow cytometry data show that retinal injury significantly upregulated C3aR and C5aR1 in microglia and resulted in the infiltration of peripheral immune cells. Loss of C3, C5, C3aR or C5aR1 reduced photoreceptor cell death and infiltration of microglia and peripheral immune cells into the sub-retinal space. These results indicate that C3/C3aR and C5/C5aR1 play a crucial role in eliciting photoreceptor degeneration and inflammatory responses in RD.
Collapse
Affiliation(s)
- Steven J. Tabor
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Kentaro Yuda
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Jonathan Deck
- Tulane University School of Medicine, Tulane Medical Center, New Orleans, LA 70112, USA
| | - Gopalan Gnanaguru
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Kip M. Connor
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
8
|
Umejiego E, Paramo R, Zafiris A, Mullane E, Bargagna-Mohan P, Mohan R. A corneo-retinal hypercitrullination axis underlies ocular injury to nitrogen mustard. Exp Eye Res 2023; 231:109485. [PMID: 37080381 PMCID: PMC10214858 DOI: 10.1016/j.exer.2023.109485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
The vesicant sulfur mustard (SM) is a chemical warfare agent that causes acute and chronic injury to the cornea and proximal anterior segment structures. Despite clinical evidence of SM-exposure causing unexplained retinal deficits, there have been no animal studies conducted to examine the retinal toxicity of this vesciant. The cardinal hallmark of retinal response to stressors or injury is the activation of reactive gliosis, a cellular process largely governed by Müller glia. Previously we showed that corneal exposure to sodium hydroxide elicits rapid induction of reactive gliosis and results in retinal degeneration in a dose-related manner. Based on this evidence, we hypothesized that the vesicant nitrogen mustard (NM), an analog of SM, may also elicit reactive gliosis. To test this idea, we developed a mouse model of NM ocular injury and investigated corneal and retinal effects focusing on citrullination, a posttranslational modification (PTM) of proteins. This PTM was recently linked to alkali injury and has also been shown to occur in retinal degenerative conditions. Here, we demonstrate that corneal exposure to 1% NM causes a synchronous activation of citrullination in both the cornea and retina with hypercitrullination becoming apparent temporally and manifesting with altered cellular expression characteristics. A key finding is that ocular citrullination occurs acutely as early as 1-h post-injury in both the cornea and retina, which underscores a need for expeditious interception of this acute corneal and retinal response. Moreover, exploiting dose response and temporal studies, we uncoupled NM-induced retinal citrullination from its induction of retinal gliosis. Our findings demonstrate that hypercitrullination is a common corneo-retinal mechanism that sensitizes the eye to NM injury and suggests that counteracting hypercitrullination may provide a suitable countermeasure to vesicant injury.
Collapse
Affiliation(s)
- Ezigbobiara Umejiego
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Ricky Paramo
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Alexander Zafiris
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Elias Mullane
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Paola Bargagna-Mohan
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Royce Mohan
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
9
|
Pekna M, Siqin S, de Pablo Y, Stokowska A, Torinsson Naluai Å, Pekny M. Astrocyte Responses to Complement Peptide C3a are Highly Context-Dependent. Neurochem Res 2023; 48:1233-1241. [PMID: 36097103 PMCID: PMC10030406 DOI: 10.1007/s11064-022-03743-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 11/27/2022]
Abstract
Astrocytes perform a range of homeostatic and regulatory tasks that are critical for normal functioning of the central nervous system. In response to an injury or disease, astrocytes undergo a pronounced transformation into a reactive state that involves changes in the expression of many genes and dramatically changes astrocyte morphology and functions. This astrocyte reactivity is highly dependent on the initiating insult and pathological context. C3a is a peptide generated by the proteolytic cleavage of the third complement component. C3a has been shown to exert neuroprotective effects, stimulate neural plasticity and promote astrocyte survival but can also contribute to synapse loss, Alzheimer's disease type neurodegeneration and blood-brain barrier dysfunction. To test the hypothesis that C3a elicits differential effects on astrocytes depending on their reactivity state, we measured the expression of Gfap, Nes, C3ar1, C3, Ngf, Tnf and Il1b in primary mouse cortical astrocytes after chemical ischemia, after exposure to lipopolysaccharide (LPS) as well as in control naïve astrocytes. We found that C3a down-regulated the expression of Gfap, C3 and Nes in astrocytes after ischemia. Further, C3a increased the expression of Tnf and Il1b in naive astrocytes and the expression of Nes in astrocytes exposed to LPS but did not affect the expression of C3ar1 or Ngf. Jointly, these results provide the first evidence that the complement peptide C3a modulates the responses of astrocytes in a highly context-dependent manner.
Collapse
Affiliation(s)
- Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Department of Clinical Neuroscience, Center for Brain Repair, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 405 30, Göteborg, Sweden.
| | - Sumen Siqin
- Laboratory of Regenerative Neuroimmunology, Department of Clinical Neuroscience, Center for Brain Repair, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 405 30, Göteborg, Sweden
- Division of Episomal Persistent DNA in Cancer and Chronic Diseases, German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
| | - Yolanda de Pablo
- Laboratory of Astrocyte Biology and CNS Regeneration, Department of Clinical Neuroscience, Center for Brain Repair, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 405 30, Göteborg, Sweden
| | - Anna Stokowska
- Laboratory of Regenerative Neuroimmunology, Department of Clinical Neuroscience, Center for Brain Repair, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 405 30, Göteborg, Sweden
| | - Åsa Torinsson Naluai
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Department of Clinical Neuroscience, Center for Brain Repair, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 405 30, Göteborg, Sweden.
- Florey Institute of Neuroscience and and Mental Health, Parkville, Melbourne, Australia.
- University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|
10
|
Inoue-Yanagimachi M, Himori N, Uchida K, Tawarayama H, Sato K, Yamamoto M, Namekata K, Harada T, Nakazawa T. Changes in glial cells and neurotrophic factors due to rotenone-induced oxidative stress in Nrf2 knockout mice. Exp Eye Res 2023; 226:109314. [PMID: 36400285 DOI: 10.1016/j.exer.2022.109314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/22/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Glaucoma is one of the most common causes of blindness worldwide. It is thought to be a multifactorial disease with underlying mechanisms that include mitochondrial dysfunction and oxidative stress. Here, we used NF-E2 related factor 2 (Nrf2) knockout (KO) mice, which are vulnerable to oxidative stress, to examine a neuroprotective effect against oxidative stress due to rotenone, a mitochondrial complex I inhibitor. Wild-type (WT) and Nrf2 KO mice received an oral solution of rotenone for 30 days. We then extracted the retinas and performed immunohistochemistry and quantitative RT-PCR. We also prepared a primary Müller cell culture of samples from each mouse, added 30 μM rotenone, and then measured cell viability, cytotoxicity and CellRox absorbance. We also examined gene expression. We found a significant increase in the number of 8-OHdG-positive retinal ganglion cells (RGCs) after rotenone administration in both the WT and Nrf2 KO mice. There was no difference in the number of RNA-binding protein with multiple splicing (RBPMS)-positive RGCs in the WT and Nrf2 KO mice, but Nrf2 KO mice that were given rotenone had significantly less retinal gene expression of RBPMS than Nrf2 KO mice given a control. Moreover, there was significantly higher mRNA gene expression of vimentin and glial fibrillary acidic protein (GFAP) in Nrf2 KO mice that received rotenone than WT mice that received rotenone. A statistical analysis of the in vitro experiment showed that cell viability was lower, cytotoxicity was higher, and oxidative stress was higher in the Müller cells of the Nrf2 KO mice than the WT mice. Finally, brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (bFGF) were significantly higher in the Müller cells of the Nrf2 KO mice than the WT mice. These findings suggest that in Nrf2 KO mice under oxidative stress caused by rotenone, temporary neurotrophic factors are secreted from the Müller cells, conferring neuroprotection in these cells.
Collapse
Affiliation(s)
- Maki Inoue-Yanagimachi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Aging Vision Healthcare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Keiko Uchida
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Tawarayama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan; Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
11
|
Dos Santos FM, Ciordia S, Mesquita J, de Sousa JPC, Paradela A, Tomaz CT, Passarinha LAP. Vitreous humor proteome: unraveling the molecular mechanisms underlying proliferative and neovascular vitreoretinal diseases. Cell Mol Life Sci 2022; 80:22. [PMID: 36585968 PMCID: PMC11072707 DOI: 10.1007/s00018-022-04670-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/09/2022] [Accepted: 12/12/2022] [Indexed: 01/01/2023]
Abstract
Proliferative diabetic retinopathy (PDR), proliferative vitreoretinopathy (PVR), and neovascular age-related macular degeneration (nAMD) are among the leading causes of blindness. Due to the multifactorial nature of these vitreoretinal diseases, omics approaches are essential for a deeper understanding of the pathophysiologic processes underlying the evolution to a proliferative or neovascular etiology, in which patients suffer from an abrupt loss of vision. For many years, it was thought that the function of the vitreous was merely structural, supporting and protecting the surrounding ocular tissues. Proteomics studies proved that vitreous is more complex and biologically active than initially thought, and its changes reflect the physiological and pathological state of the eye. The vitreous is the scenario of a complex interplay between inflammation, fibrosis, oxidative stress, neurodegeneration, and extracellular matrix remodeling. Vitreous proteome not only reflects the pathological events that occur in the retina, but the changes in the vitreous itself play a central role in the onset and progression of vitreoretinal diseases. Therefore, this review offers an overview of the studies on the vitreous proteome that could help to elucidate some of the pathological mechanisms underlying proliferative and/or neovascular vitreoretinal diseases and to find new potential pharmaceutical targets.
Collapse
Affiliation(s)
- Fátima Milhano Dos Santos
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal.
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Unidad de Proteomica, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Sergio Ciordia
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Unidad de Proteomica, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Joana Mesquita
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal
| | - João Paulo Castro de Sousa
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal
- Department of Ophthalmology, Centro Hospitalar de Leiria, 2410-197, Leiria, Portugal
| | - Alberto Paradela
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Unidad de Proteomica, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Cândida Teixeira Tomaz
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501, Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, Universidade da Beira Interior, 6201-001, Covilhã, Portugal
| | - Luís António Paulino Passarinha
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal.
- Associate Laboratory i4HB, Faculdade de Ciências e Tecnologia, Institute for Health and Bioeconomy, Universidade NOVA, 2819-516, Caparica, Portugal.
- UCIBIO-Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
- Pharmaco-Toxicology Laboratory, UBIMedical, Universidade da Beira Interior, 6200-000, Covilhã, Portugal.
| |
Collapse
|
12
|
Borges JMP, de Jesus LB, Dos Santos Souza C, da Silva VDA, Costa SL, de Fátima Dias Costa M, El-Bachá RS. Astrocyte Reaction to Catechol-Induced Cytotoxicity Relies on the Contact with Microglia Before Isolation. Neurotox Res 2022; 40:973-994. [PMID: 35708826 DOI: 10.1007/s12640-022-00528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
Astrocytes preserve the brain microenvironment homeostasis in order to protect other brain cells, mainly neurons, against damages. Glial cells have specific functions that are important in the context of neuronal survival in different models of central nervous system (CNS) diseases. Microglia are among these cells, secreting several molecules that can modulate astrocyte functions. Although 1,2-dihydroxybenzene (catechol) is a neurotoxic monoaromatic compound of exogenous origin, several endogenous molecules also present the catechol group. This study compared two methods to obtain astrocyte-enriched cultures from newborn Wistar rats of both sexes. In the first technique (P1), microglial cells began to be removed early 48 h after primary mixed glial cultures were plated. In the second one (P2), microglial cells were late removed 7 to 10 days after plating. Both cultures were exposed to catechol for 72 h. Catechol was more cytotoxic to P1 cultures than to P2, decreasing cellularity and changing the cell morphology. Microglial-conditioned medium (MCM) protected P1 cultures and inhibited the catechol autoxidation. P2 cultures, as well as P1 in the presence of 20% MCM, presented long, dense, and fibrillary processes positive for glial fibrillary acidic protein, which retracted the cytoplasm when exposed to catechol. The Ngf and Il1beta transcription increased in P1, meanwhile astrocytes expressed more Il10 in P2. Catechol decreased Bdnf and Il10 in P2 cultures, and it decreased the expression of Il1beta in both conditions. A prolonged contact with microglia before isolation of astrocyte-enriched cultures modifies astrocyte functions and morphology, protecting these cells against catechol-induced cytotoxicity.
Collapse
Affiliation(s)
- Julita Maria Pereira Borges
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), 40.110-902, Salvador, Bahia (BA), Brazil. .,Department of Science and Technology, Southwest Bahia State University (UESB), 45.208-409, Jequie, BA, Brazil.
| | - Lívia Bacelar de Jesus
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), 40.110-902, Salvador, Bahia (BA), Brazil
| | - Cleide Dos Santos Souza
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), 40.110-902, Salvador, Bahia (BA), Brazil
| | - Victor Diogenes Amaral da Silva
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), 40.110-902, Salvador, Bahia (BA), Brazil
| | - Silvia Lima Costa
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), 40.110-902, Salvador, Bahia (BA), Brazil
| | - Maria de Fátima Dias Costa
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), 40.110-902, Salvador, Bahia (BA), Brazil
| | - Ramon Santos El-Bachá
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), 40.110-902, Salvador, Bahia (BA), Brazil.
| |
Collapse
|
13
|
Ardalan M, Chumak T, Quist A, Jabbari Shiadeh SM, Mallard AJ, Rafati AH, Mallard C. Sex dependent glio-vascular interface abnormality in the hippocampus following postnatal immune activation in mice. Dev Neurosci 2022; 44:320-330. [PMID: 35705008 PMCID: PMC9533445 DOI: 10.1159/000525478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/06/2022] [Indexed: 11/19/2022] Open
Abstract
The neuro-gliovascular unit is a crucial structure for providing a balanced well-functioning environment for neurons and their synapses. Activation of the immune system during the developmental period is believed to affect the gliovascular unit, which may trigger neurodevelopmental and neurological/neuropsychiatric diseases. In this study, we hypothesized that vulnerability of the male brain to a neonatal insult was conditioned by sex-dependent differences in the impairment of the hippocampal gliovascular unit. Male and female C57BL/6J pups received lipopolysaccharide (LPS) (1 mg/kg) or saline on postnatal day (P) 5. Brains were collected at P12 and morphological quantifications of hippocampal fibrillary glial acid protein (GFAP<sup>+</sup>) astrocytes and ionized calcium-binding adaptor molecule 1 protein (Iba1+) microglia were performed by using 3-D image analysis together with measuring the length of CD31<sup>+</sup> and aquaporin-4 (AQP4<sup>+</sup>) vessels. We found a significant increase in the length of CD31<sup>+</sup> capillaries in the male LPS group compared to the saline group; however, coverage of capillaries by astrocytic end-feet (AQP4<sup>+</sup>) was significantly reduced. In contrast, there was a significant increase in AQP4<sup>+</sup> capillary length in female pups 1 week after LPS injection. GFAP<sup>+</sup> astrocytes via morphological changes in the hippocampus showed significant enhancement in the activity 1 week following LPS injection in male mice. We propose that neonatal inflammation could induce susceptibility to neurodevelopmental disorders through modification of hippocampal gliovascular interface in a sex-dependent manner.
Collapse
Affiliation(s)
- Maryam Ardalan
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- *Maryam Ardalan,
| | - Tetyana Chumak
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alexandra Quist
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Seyedeh Marziyeh Jabbari Shiadeh
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anna-Jean Mallard
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ali Hoseinpoor Rafati
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Abstract
More than 27 yr ago, the vimentin knockout (Vim-/- ) mouse was reported to develop and reproduce without an obvious phenotype, implying that this major cytoskeletal protein was nonessential. Subsequently, comprehensive and careful analyses have revealed numerous phenotypes in Vim-/- mice and their organs, tissues, and cells, frequently reflecting altered responses in the recovery of tissues following various insults or injuries. These findings have been supported by cell-based experiments demonstrating that vimentin intermediate filaments (IFs) play a critical role in regulating cell mechanics and are required to coordinate mechanosensing, transduction, signaling pathways, motility, and inflammatory responses. This review highlights the essential functions of vimentin IFs revealed from studies of Vim-/- mice and cells derived from them.
Collapse
Affiliation(s)
- Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois 60611, USA
| | - John E Eriksson
- Cell Biology, Faculty of Science and Technology, Åbo Akademi University, FIN-20521 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FIN-20521 Turku, Finland
- Euro-Bioimaging European Research Infrastructure Consortium (ERIC), FIN-20521 Turku, Finland
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 90 Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
- University of Newcastle, Newcastle, New South Wales 2300, Australia
| | - Robert D Goldman
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
15
|
Joly S, Mdzomba JB, Rodriguez L, Morin F, Vallières L, Pernet V. B cell-dependent EAE induces visual deficits in the mouse with similarities to human autoimmune demyelinating diseases. J Neuroinflammation 2022; 19:54. [PMID: 35197067 PMCID: PMC8867627 DOI: 10.1186/s12974-022-02416-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the field of autoimmune demyelinating diseases, visual impairments have extensively been studied using the experimental autoimmune encephalomyelitis (EAE) mouse model, which is classically induced by immunization with myelin oligodendrocyte glycoprotein peptide (MOG35-55). However, this model does not involve B cells like its human analogs. New antigens have thus been developed to induce a B cell-dependent form of EAE that better mimics human diseases. METHODS The present study aimed to characterize the visual symptoms of EAE induced with such an antigen called bMOG. After the induction of EAE with bMOG in C57BL/6J mice, visual function changes were studied by electroretinography and optomotor acuity tests. Motor deficits were assessed in parallel with a standard clinical scoring method. Histological examinations and Western blot analyses allowed to follow retinal neuron survival, gliosis, microglia activation, opsin photopigment expression in photoreceptors and optic nerve demyelination. Disease effects on retinal gene expression were established by RNA sequencing. RESULTS We observed that bMOG EAE mice exhibited persistent loss of visual acuity, despite partial recovery of electroretinogram and motor functions. This loss was likely due to retinal inflammation, gliosis and synaptic impairments, as evidenced by histological and transcriptomic data. Further analysis suggests that the M-cone photoreceptor pathway was also affected. CONCLUSION Therefore, by documenting visual changes induced by bMOG and showing similarities to those seen in diseases such as multiple sclerosis and neuromyelitis optica, this study offers a new approach to test protective or restorative ophthalmic treatments.
Collapse
Affiliation(s)
- Sandrine Joly
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Regenerative Medicine Unit, University Hospital Center of Quebec, Laval University, Quebec City, QC Canada
| | - Julius Baya Mdzomba
- Regenerative Medicine Unit, University Hospital Center of Quebec, Laval University, Quebec City, QC Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC Canada
| | - Léa Rodriguez
- Regenerative Medicine Unit, University Hospital Center of Quebec, Laval University, Quebec City, QC Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC Canada
| | - Françoise Morin
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC Canada
- Neuroscience Unit, University Hospital Center of Quebec, Laval University, Quebec City, QC Canada
| | - Luc Vallières
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC Canada
- Neuroscience Unit, University Hospital Center of Quebec, Laval University, Quebec City, QC Canada
| | - Vincent Pernet
- Regenerative Medicine Unit, University Hospital Center of Quebec, Laval University, Quebec City, QC Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC Canada
- Center for Experimental Neurology (ZEN), University of Bern, Bern, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Sahli Haus 1, UG Büro 1, Freiburgstrasse 14, 3010 Bern, Switzerland
| |
Collapse
|
16
|
Reactive Astrocytes Prevent Maladaptive Plasticity after Ischemic Stroke. Prog Neurobiol 2021; 209:102199. [PMID: 34921928 DOI: 10.1016/j.pneurobio.2021.102199] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022]
Abstract
Restoration of functional connectivity is a major contributor to functional recovery after stroke. We investigated the role of reactive astrocytes in functional connectivity and recovery after photothrombotic stroke in mice with attenuated reactive gliosis (GFAP-/-Vim-/-). Infarct volume and longitudinal functional connectivity changes were determined by in vivo T2-weighted magnetic resonance imaging (MRI) and resting-state functional MRI. Sensorimotor function was assessed with behavioral tests, and glial and neural plasticity responses were quantified in the peri-infarct region. Four weeks after stroke, GFAP-/-Vim-/- mice showed impaired recovery of sensorimotor function and aberrant restoration of global neuronal connectivity. These mice also exhibited maladaptive plasticity responses, shown by higher number of lost and newly formed functional connections between primary and secondary targets of cortical stroke regions and increased peri-infarct expression of the axonal plasticity marker Gap43. We conclude that reactive astrocytes modulate recovery-promoting plasticity responses after ischemic stroke.
Collapse
|
17
|
Wang Y, Zhao X, Gao M, Wan X, Guo Y, Qu Y, Chen Y, Li T, Liu H, Jiang M, Wang F, Sun X. Myosin 1f-mediated activation of microglia contributes to the photoreceptor degeneration in a mouse model of retinal detachment. Cell Death Dis 2021; 12:926. [PMID: 34628463 PMCID: PMC8502177 DOI: 10.1038/s41419-021-03983-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/14/2022]
Abstract
Photoreceptor death and neurodegeneration is the leading cause of irreversible vision loss. The inflammatory response of microglia plays an important role in the process of neurodegeneration. In this study, we chose retinal detachment as the model of photoreceptor degeneration. We found Myosin 1f was upregulated after retinal detachment, and it was specifically expressed in microglia. Deficiency of myosin 1f protected against photoreceptor apoptosis by inhibiting microglia activation. The elimination of microglia can abolish the protective effect of myosin 1f deficiency. After stimulation by LPS, microglia with myosin 1f deficiency showed downregulation of the MAPK and AKT pathways. Our results demonstrated that myosin 1f plays a crucial role in microglia-induced neuroinflammation after retinal injury and photoreceptor degeneration by regulating two classic inflammatory pathways and thereby decreasing the expression of inflammatory cytokines. Knockout of myosin 1f reduces the intensity of the immune response and prevents cell death of photoreceptor, suggesting that myosin 1f can be inhibited to prevent a decline in visual acuity after retinal detachment.
Collapse
Affiliation(s)
- Yimin Wang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Disease, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xiaohuan Zhao
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Disease, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Min Gao
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Wan
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Disease, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Yinong Guo
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Disease, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Yingying Qu
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Translational Medicine Center, Shanghai General Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Disease, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Tong Li
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Disease, Shanghai, China
| | - Haiyun Liu
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Disease, Shanghai, China
| | - Mei Jiang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Disease, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Feng Wang
- Shanghai Institute of Immunology, Translational Medicine Center, Shanghai General Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaodong Sun
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Clinical Research Center for Eye Disease, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.
| |
Collapse
|
18
|
Pekna M, Stokowska A, Pekny M. Targeting Complement C3a Receptor to Improve Outcome After Ischemic Brain Injury. Neurochem Res 2021; 46:2626-2637. [PMID: 34379293 PMCID: PMC8437837 DOI: 10.1007/s11064-021-03419-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 02/08/2023]
Abstract
Ischemic stroke is a major cause of disability. No efficient therapy is currently available, except for the removal of the occluding blood clot during the first hours after symptom onset. Loss of function after stroke is due to cell death in the infarcted tissue, cell dysfunction in the peri-infarct region, as well as dysfunction and neurodegeneration in remote brain areas. Plasticity responses in spared brain regions are a major contributor to functional recovery, while secondary neurodegeneration in remote regions is associated with depression and impedes the long-term outcome after stroke. Hypoxic-ischemic encephalopathy due to birth asphyxia is the leading cause of neurological disability resulting from birth complications. Despite major progress in neonatal care, approximately 50% of survivors develop complications such as mental retardation, cerebral palsy or epilepsy. The C3a receptor (C3aR) is expressed by many cell types including neurons and glia. While there is a body of evidence for its deleterious effects in the acute phase after ischemic injury to the adult brain, C3aR signaling contributes to better outcome in the post-acute and chronic phase after ischemic stroke in adults and in the ischemic immature brain. Here we discuss recent insights into the novel roles of C3aR signaling in the ischemic brain with focus on the therapeutic opportunities of modulating C3aR activity to improve the outcome after ischemic stroke and birth asphyxia.
Collapse
Affiliation(s)
- Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30, Gothenburg, Sweden.
| | - Anna Stokowska
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30, Gothenburg, Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Hippert C, Graca AB, Basche M, Kalargyrou AA, Georgiadis A, Ribeiro J, Matsuyama A, Aghaizu N, Bainbridge JW, Smith AJ, Ali RR, Pearson RA. RNAi-mediated suppression of vimentin or glial fibrillary acidic protein prevents the establishment of Müller glial cell hypertrophy in progressive retinal degeneration. Glia 2021; 69:2272-2290. [PMID: 34029407 DOI: 10.1002/glia.24034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Gliosis is a complex process comprising upregulation of intermediate filament (IF) proteins, particularly glial fibrillary acidic protein (GFAP) and vimentin, changes in glial cell morphology (hypertrophy) and increased deposition of inhibitory extracellular matrix molecules. Gliosis is common to numerous pathologies and can have deleterious effects on tissue function and regeneration. The role of IFs in gliosis is controversial, but a key hypothesized function is the stabilization of glial cell hypertrophy. Here, we developed RNAi approaches to examine the role of GFAP and vimentin in vivo in a murine model of inherited retinal degeneration, the Rhodopsin knockout (Rho-/- ) mouse. Specifically, we sought to examine the role of these IFs in the establishment of Müller glial hypertrophy during progressive degeneration, as opposed to (more commonly assessed) acute injury. Prevention of Gfap upregulation had a significant effect on the morphology of reactive Müller glia cells in vivo and, more strikingly, the reduction of Vimentin expression almost completely prevented these cells from undergoing degeneration-associated hypertrophy. Moreover, and in contrast to studies in knockout mice, simultaneous suppression of both GFAP and vimentin expression led to severe changes in the cytoarchitecture of the retina, in both diseased and wild-type eyes. These data demonstrate a crucial role for Vimentin, as well as GFAP, in the establishment of glial hypertrophy and support the further exploration of RNAi-mediated knockdown of vimentin as a potential therapeutic approach for modulating scar formation in the degenerating retina.
Collapse
Affiliation(s)
- Claire Hippert
- University College London Institute of Ophthalmology, London, UK
| | - Anna B Graca
- University College London Institute of Ophthalmology, London, UK
| | - Mark Basche
- University College London Institute of Ophthalmology, London, UK
- Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London, UK
| | - Aikaterini A Kalargyrou
- University College London Institute of Ophthalmology, London, UK
- Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London, UK
| | | | - Joana Ribeiro
- University College London Institute of Ophthalmology, London, UK
| | - Ayako Matsuyama
- University College London Institute of Ophthalmology, London, UK
| | - Nozie Aghaizu
- University College London Institute of Ophthalmology, London, UK
| | | | - Alexander J Smith
- University College London Institute of Ophthalmology, London, UK
- Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London, UK
| | - Robin R Ali
- University College London Institute of Ophthalmology, London, UK
- Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London, UK
| | - Rachael A Pearson
- University College London Institute of Ophthalmology, London, UK
- Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
20
|
Gimeno-Hernández R, Cantó A, Fernández-Carbonell A, Olivar T, Hernández-Rabaza V, Almansa I, Miranda M. Thioredoxin Delays Photoreceptor Degeneration, Oxidative and Inflammation Alterations in Retinitis Pigmentosa. Front Pharmacol 2021; 11:590572. [PMID: 33424600 PMCID: PMC7785808 DOI: 10.3389/fphar.2020.590572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/03/2020] [Indexed: 01/02/2023] Open
Abstract
Retinitis pigmentosa (RP) is an inherited ocular disorder with no effective treatment. RP onset and progression trigger a cascade of retinal disorders that lead to the death of photoreceptors. After photoreceptors death, neuronal, glial and vascular remodeling can be observed in the retina. The purpose of this study was to study if thioredoxin (TRX) administration is able to decrease photoreceptor death in an animal model of RP (rd1 mouse), but also if it is able to modulate the retinal oxidative stress, glial and vascular changes that can be observed as the disease progresses. Wild type and rd1 mice received several doses of TRX. After treatment, animals were euthanized at postnatals days 11, 17, or 28. Glutathione (GSH) and other thiol compounds were determined by high performance liquid chromatography (HPLC). Glial fibrilary acidic protein (GFAP) and anti-ionized calcium binding adaptor molecule 1 (Iba1) were studied by immunohistochemistry. Vascular endothelial growth factor (VEGF) and hepatic growth factor (HGF) expression were determined by western blot. TRX administration significantly diminished cell death in rd1 mouse retinas and increased GSH retinal concentrations at postnatal day 11 (PN11). TRX was also able to reverse glial alterations at PN11 and PN17. No alterations were observed in retinal VEGF and HGF expression in rd1 mice. In conclusion, TRX treatment decreases photoreceptor death in the first stages of RP and this protective effect may be due in part to the GSH system activation and to a partially decrease in inflammation.
Collapse
Affiliation(s)
- Roberto Gimeno-Hernández
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Antolin Cantó
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Angel Fernández-Carbonell
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Teresa Olivar
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Vicente Hernández-Rabaza
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Inmaculada Almansa
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - María Miranda
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| |
Collapse
|
21
|
Dabouz R, Cheng CWH, Abram P, Omri S, Cagnone G, Sawmy KV, Joyal JS, Desjarlais M, Olson D, Weil AG, Lubell W, Rivera JC, Chemtob S. An allosteric interleukin-1 receptor modulator mitigates inflammation and photoreceptor toxicity in a model of retinal degeneration. J Neuroinflammation 2020; 17:359. [PMID: 33246504 PMCID: PMC7694438 DOI: 10.1186/s12974-020-02032-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/10/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Inflammation and particularly interleukin-1β (IL-1β), a pro-inflammatory cytokine highly secreted by activated immune cells during early AMD pathological events, contribute significantly to retinal neurodegeneration. Here, we identify specific cell types that generate IL-1β and harbor the IL-1 receptor (IL-1R) and pharmacologically validate IL-1β's contribution to neuro-retinal degeneration using the IL-1R allosteric modulator composed of the amino acid sequence rytvela (as well as the orthosteric antagonist, Kineret) in a model of blue light-induced retinal degeneration. METHODS Mice were exposed to blue light for 6 h and sacrificed 3 days later. Mice were intraperitoneally injected with rytvela, Kineret, or vehicle twice daily for 3 days. The inflammatory markers F4/80, NLRP3, caspase-1, and IL-1β were assessed in the retinas. Single-cell RNA sequencing was used to determine the cell-specific expression patterns of retinal Il1b and Il1r1. Macrophage-induced photoreceptor death was assessed ex vivo using retinal explants co-cultured with LPS-activated bone marrow-derived macrophages. Photoreceptor cell death was evaluated by the TUNEL assay. Retinal function was assessed by flash electroretinography. RESULTS Blue light markedly increased the mononuclear phagocyte recruitment and levels of inflammatory markers associated with photoreceptor death. Co-localization of NLRP3, caspase-1, and IL-1β with F4/80+ mononuclear phagocytes was clearly detected in the subretinal space, suggesting that these inflammatory cells are the main source of IL-1β. Single-cell RNA sequencing confirmed the immune-specific expression of Il1b and notably perivascular macrophages in light-challenged mice, while Il1r1 expression was found primarily in astrocytes, bipolar, and vascular cells. Retinal explants co-cultured with LPS/ATP-activated bone marrow-derived macrophages displayed a high number of TUNEL-positive photoreceptors, which was abrogated by rytvela treatment. IL-1R antagonism significantly mitigated the inflammatory response triggered in vivo by blue light exposure, and rytvela was superior to Kineret in preserving photoreceptor density and retinal function. CONCLUSION These findings substantiate the importance of IL-1β in neuro-retinal degeneration and revealed specific sources of Il1b from perivascular MPs, with its receptor Ilr1 being separately expressed on surrounding neuro-vascular and astroglial cells. They also validate the efficacy of rytvela-induced IL-1R modulation in suppressing detrimental inflammatory responses and preserving photoreceptor density and function in these conditions, reinforcing the rationale for clinical translation.
Collapse
Affiliation(s)
- Rabah Dabouz
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Departments of Pediatrics, Ophthalmology, and Pharmacology, Hôpital Maisonneuve-Rosemont Research Center, 5415 Boul L'Assomption, Montreal, QC, H1T 2 M4, Canada.,Hôpital Sainte Justine Research Centre, Montreal, QC, Canada
| | - Colin W H Cheng
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Departments of Pediatrics, Ophthalmology, and Pharmacology, Hôpital Maisonneuve-Rosemont Research Center, 5415 Boul L'Assomption, Montreal, QC, H1T 2 M4, Canada.,Hôpital Sainte Justine Research Centre, Montreal, QC, Canada
| | - Pénélope Abram
- Departments of Pediatrics, Ophthalmology, and Pharmacology, Hôpital Maisonneuve-Rosemont Research Center, 5415 Boul L'Assomption, Montreal, QC, H1T 2 M4, Canada
| | - Samy Omri
- Departments of Pediatrics, Ophthalmology, and Pharmacology, Hôpital Maisonneuve-Rosemont Research Center, 5415 Boul L'Assomption, Montreal, QC, H1T 2 M4, Canada
| | - Gael Cagnone
- Hôpital Sainte Justine Research Centre, Montreal, QC, Canada
| | | | | | - Michel Desjarlais
- Departments of Pediatrics, Ophthalmology, and Pharmacology, Hôpital Maisonneuve-Rosemont Research Center, 5415 Boul L'Assomption, Montreal, QC, H1T 2 M4, Canada
| | - David Olson
- Department of Obstetrics & Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Alexander G Weil
- Department of Neurosurgery, Hôpital Sainte Justine, Montreal, QC, Canada
| | - William Lubell
- Department of Chemistry, University of Montreal, Montreal, QC, Canada
| | - José Carlos Rivera
- Departments of Pediatrics, Ophthalmology, and Pharmacology, Hôpital Maisonneuve-Rosemont Research Center, 5415 Boul L'Assomption, Montreal, QC, H1T 2 M4, Canada.,Hôpital Sainte Justine Research Centre, Montreal, QC, Canada
| | - Sylvain Chemtob
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada. .,Departments of Pediatrics, Ophthalmology, and Pharmacology, Hôpital Maisonneuve-Rosemont Research Center, 5415 Boul L'Assomption, Montreal, QC, H1T 2 M4, Canada. .,Hôpital Sainte Justine Research Centre, Montreal, QC, Canada.
| |
Collapse
|
22
|
Blockade of Adenosine A 2A Receptor Protects Photoreceptors after Retinal Detachment by Inhibiting Inflammation and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7649080. [PMID: 32714489 PMCID: PMC7354651 DOI: 10.1155/2020/7649080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022]
Abstract
Purpose Adenosine A2A receptor (A2AR) signaling is neuroprotective in some retinal damage models, but its role in neuronal survival during retinal detachment (RD) is unclear. We tested the hypothesis that A2AR antagonist ZM241385 would prevent photoreceptor apoptosis by inhibiting retinal inflammation and oxidative stress after RD. Methods The A2AR antagonist ZM241385 was delivered daily to C57BL/6J mice for three days at a dose (3 mg/kg, i.p.) starting 2 hours prior to creating RD. A2AR expression, microglia proliferation and reactivity, glial fibrillary acidic protein (GFAP) accumulation, IL-1β expression, and reactive oxygen species (ROS) production were evaluated with immunofluorescence. Photoreceptor TUNEL was analyzed. Results A2AR expression obviously increased and accumulated in microglia and Müller cells in the retinas after RD. The A2AR antagonist ZM241385 effectively inhibited retinal microglia proliferation and reactivity, decreased GFAP upregulation and proinflammatory cytokine IL-1β expression of Müller cells, and suppressed ROS overproduction, resulting in attenuation of photoreceptor apoptosis after RD. Conclusions The A2AR antagonist ZM241385 is an effective suppressor of microglia proliferation and reactivity, gliosis, neuroinflammation, oxidative stress, and photoreceptor apoptosis in a mouse model of RD. This suggests that A2AR blockade may be an important therapeutic strategy to protect photoreceptors in RD and other CNS diseases that share a common etiology.
Collapse
|
23
|
McKay KM, Vingopoulos F, Wang JC, Papakostas TD, Silverman RF, Marmalidou A, Lains I, Eliott D, Vavvas DG, Kim LA, Wu DM, Miller JB. Retinal Microvasculature Changes After Repair of Macula-off Retinal Detachment Assessed with Optical Coherence Tomography Angiography. Clin Ophthalmol 2020; 14:1759-1767. [PMID: 32616995 PMCID: PMC7326212 DOI: 10.2147/opth.s214623] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/12/2020] [Indexed: 11/23/2022] Open
Abstract
Objective To characterize the microvascular retinal changes after repair of macula-off rhegmatogenous retinal detachment (RRD) using optical coherence tomography angiography (OCT-A). Patients and Methods A retrospective review of patients who underwent repair of macula-off RRD. Fellow unaffected eyes were used as controls. Post-operative OCT-A allowed comparison of vessel density (VD) and foveal avascular zone (FAZ) area in the superficial and deep retinal capillary plexus (DCP) as well as VD in the choriocapillaris layer. Results Seventeen eyes of 17 RRD patients were included in the final analysis. There was a reduction in VD of the deep retinal capillary plexus in affected eyes compared to fellow eyes (p = 0.046). RRD eyes with reduced VD in DCP compared with their fellow control eyes had worse visual acuity after repair compared to those without (p = 0.032). No significant microvasculature changes were detected in the FAZ area and VD in the superficial capillary plexus and choriocapillaris compared to fellow eyes. Conclusion In macula-off RRD eyes, significant microvascular changes were detected in the DCP using OCT-A even after successful anatomical repair. Decreased VD in the DCP compared to the fellow healthy eyes was correlated with worse visual acuity.
Collapse
Affiliation(s)
- K Matthew McKay
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Filippos Vingopoulos
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jay C Wang
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Thanos D Papakostas
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.,Retina Service, Weill Cornell Medical College, New York, NY, USA
| | - Rebecca F Silverman
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Anna Marmalidou
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Inês Lains
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Dean Eliott
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Demetrios G Vavvas
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Leo A Kim
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - David M Wu
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - John B Miller
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Abstract
In humans, various genetic defects or age-related diseases, such as diabetic retinopathies, glaucoma, and macular degeneration, cause the death of retinal neurons and profound vision loss. One approach to treating these diseases is to utilize stem and progenitor cells to replace neurons in situ, with the expectation that new neurons will create new synaptic circuits or integrate into existing ones. Reprogramming non-neuronal cells in vivo into stem or progenitor cells is one strategy for replacing lost neurons. Zebrafish have become a valuable model for investigating cellular reprogramming and retinal regeneration. This review summarizes our current knowledge regarding spontaneous reprogramming of Müller glia in zebrafish and compares this knowledge to research efforts directed toward reprogramming Müller glia in mammals. Intensive research using these animal models has revealed shared molecular mechanisms that make Müller glia attractive targets for cellular reprogramming and highlighted the potential for curing degenerative retinal diseases from intrinsic cellular sources.
Collapse
Affiliation(s)
- Manuela Lahne
- Center for Zebrafish Research, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA; , .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Mikiko Nagashima
- Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, Ann Arbor, Michigan 48105, USA; ,
| | - David R Hyde
- Center for Zebrafish Research, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA; , .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Peter F Hitchcock
- Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, Ann Arbor, Michigan 48105, USA; , .,Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
25
|
Wilhelmsson U, Pozo-Rodrigalvarez A, Kalm M, de Pablo Y, Widestrand Å, Pekna M, Pekny M. The role of GFAP and vimentin in learning and memory. Biol Chem 2020; 400:1147-1156. [PMID: 31063456 DOI: 10.1515/hsz-2019-0199] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/11/2019] [Indexed: 11/15/2022]
Abstract
Intermediate filaments (also termed nanofilaments) are involved in many cellular functions and play important roles in cellular responses to stress. The upregulation of glial fibrillary acidic protein (GFAP) and vimentin (Vim), intermediate filament proteins of astrocytes, is the hallmark of astrocyte activation and reactive gliosis in response to injury, ischemia or neurodegeneration. Reactive gliosis is essential for the protective role of astrocytes at acute stages of neurotrauma or ischemic stroke. However, GFAP and Vim were also linked to neural plasticity and regenerative responses in healthy and injured brain. Mice deficient for GFAP and vimentin (GFAP-/-Vim-/-) exhibit increased post-traumatic synaptic plasticity and increased basal and post-traumatic hippocampal neurogenesis. Here we assessed the locomotor and exploratory behavior of GFAP-/-Vim-/- mice, their learning, memory and memory extinction, by using the open field, object recognition and Morris water maze tests, trace fear conditioning, and by recording reversal learning in IntelliCages. While the locomotion, exploratory behavior and learning of GFAP-/-Vim-/- mice, as assessed by object recognition, the Morris water maze, and trace fear conditioning tests, were comparable to wildtype mice, GFAP-/-Vim-/- mice showed more pronounced memory extinction when tested in IntelliCages, a finding compatible with the scenario of an increased rate of reorganization of the hippocampal circuitry.
Collapse
Affiliation(s)
- Ulrika Wilhelmsson
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, S-40530 Gothenburg, Sweden
| | - Andrea Pozo-Rodrigalvarez
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, S-40530 Gothenburg, Sweden
| | - Marie Kalm
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, S-40530 Gothenburg, Sweden
| | - Yolanda de Pablo
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, S-40530 Gothenburg, Sweden
| | - Åsa Widestrand
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, S-40530 Gothenburg, Sweden
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, S-40530 Gothenburg, Sweden.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,University of Newcastle, Newcastle, NSW, Australia
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, S-40530 Gothenburg, Sweden.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
26
|
Nogo-A-targeting antibody promotes visual recovery and inhibits neuroinflammation after retinal injury. Cell Death Dis 2020; 11:101. [PMID: 32029703 PMCID: PMC7005317 DOI: 10.1038/s41419-020-2302-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
Abstract
N-Methyl-D-aspartate (NMDA)-induced neuronal cell death is involved in a large spectrum of diseases affecting the brain and the retina such as Alzheimer’s disease and diabetic retinopathy. Associated neurological impairments may result from the inhibition of neuronal plasticity by Nogo-A. The objective of the current study was to determine the contribution of Nogo-A to NMDA excitotoxicity in the mouse retina. We observed that Nogo-A is upregulated in the mouse vitreous during NMDA-induced inflammation. Intraocular injection of a function-blocking antibody specific to Nogo-A (11C7) was carried out 2 days after NMDA-induced injury. This treatment significantly enhanced visual function recovery in injured animals. Strikingly, the expression of potent pro-inflammatory molecules was downregulated by 11C7, among which TNFα was the most durably decreased cytokine in microglia/macrophages. Additional analyses suggest that TNFα downregulation may stem from cofilin inactivation in microglia/macrophages. 11C7 also limited gliosis presumably via P.Stat3 downregulation. Diabetic retinopathy was associated with increased levels of Nogo-A in the eyes of donors. In summary, our results reveal that Nogo-A-targeting antibody can stimulate visual recovery after retinal injury and that Nogo-A is a potent modulator of excitotoxicity-induced neuroinflammation. These data may be used to design treatments against inflammatory eye diseases.
Collapse
|
27
|
Augustine J, Pavlou S, Ali I, Harkin K, Ozaki E, Campbell M, Stitt AW, Xu H, Chen M. IL-33 deficiency causes persistent inflammation and severe neurodegeneration in retinal detachment. J Neuroinflammation 2019; 16:251. [PMID: 31796062 PMCID: PMC6889479 DOI: 10.1186/s12974-019-1625-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023] Open
Abstract
Background Interleukin-33 (IL-33) belongs to the IL-1 cytokine family and resides in the nuclei of various cell types. In the neural retina, IL-33 is predominately expressed in Müller cells although its role in health and disease is ill-defined. Müller cell gliosis is a critical response during the acute phase of retinal detachment (RD), and in this study, we investigated if IL-33 was modulatory in the inflammatory and neurodegenerative pathology which is characteristic of this important clinical condition. Methods RD was induced by subretinal injection of sodium hyaluronate into C57BL/6 J (WT) and IL-33−/− mice and confirmed by fundus imaging and optical coherence tomography (OCT). The expression of inflammatory cytokines, complement components and growth factors was examined by RT-PCR. Retinal neurodegeneration, Müller cell activation and immune cell infiltration were assessed using immunohistochemistry. The expression of inflammatory cytokines in primary Müller cells and bone marrow-derived macrophages (BM-DMs) was assessed by RT-PCR and Cytometric Bead Array. Results RD persisted for at least 28 days after the injection of sodium hyaluronate, accompanied by significant cone photoreceptor degeneration. The mRNA levels of CCL2, C1ra, C1s, IL-18, IL-1β, TNFα, IL-33 and glial fibrillary acidic protein (GFAP) were significantly increased at day 1 post-RD, reduced gradually and, with the exception of GFAP and C1ra, returned to the basal levels by day 28 in WT mice. In IL-33−/− mice, RD induced an exacerbated inflammatory response with significantly higher levels of CCL2, IL-1β and GFAP when compared to WT. Sustained GFAP activation and immune cell infiltration was detected at day 28 post-RD in IL-33−/− mice. Electroretinography revealed a lower A-wave amplitude at day 28 post-RD in IL-33−/− mice compared to that in WT RD mice. IL-33−/− mice subjected to RD also had significantly more severe cone photoreceptor degeneration compared to WT counterparts. Surprisingly, Müller cells from IL-33−/− mice expressed significantly lower levels of CCL2 and IL-6 compared with those from WT mice, particularly under hypoxic conditions, whereas IL-33−/− bone marrow-derived macrophages expressed higher levels of inducible nitric oxide synthase, TNFα, IL-1β and CCL2 after LPS + IFNγ stimulation compared to WT macrophages. Conclusion IL-33 deficiency enhanced retinal degeneration and gliosis following RD which was related to sustained subretinal inflammation from infiltrating macrophages. IL-33 may provide a previously unrecognised protective response by negatively regulating macrophage activation following retinal detachment.
Collapse
Affiliation(s)
- Josy Augustine
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sofia Pavlou
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Imran Ali
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Kevin Harkin
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Ema Ozaki
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Heping Xu
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Mei Chen
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
28
|
Wang X, Liu Y, Ni Y, Zhang T, Mo X, Wenyi T, Xu G. Lentivirus vector-mediated knockdown of Sox9 shows neuroprotective effects on light damage in rat retinas. Mol Vis 2019; 25:703-713. [PMID: 31814695 PMCID: PMC6857779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 11/10/2019] [Indexed: 12/03/2022] Open
Abstract
PURPOSE To investigate whether reduced Sox9 function exerts neuroprotection in light-induced retinal damage in rats and to explore the potential mechanism behind it. METHODS Retinal light damage was used as a model for retinal degeneration. Two weeks before light damage in adult Sprague Dawley (SD) rats, the Sox9-shRNA lentiviral vector was intravitreally injected. On days 3, 7, and 14, retinal function was assessed using electroretinography (ERG), and the thickness of the outer nuclear layer (ONL) was measured in hematoxylin and eosin (HE) stained sections. The protein levels of glial fibrillary acidic protein (GFAP), vimentin, nestin, and chondroitin sulfate proteoglycans (Cspgs), which are related to gliosis and extracellular matrix (ECM) remodeling, were observed using western blot analysis. The expression of GFAP was further evaluated by immunohistochemistry. RESULTS On days 3, 7, and 14 after light damage, the thickness of the ONL and the amplitudes of the ERG waves were significantly better preserved in the Sox9-shRNA group when compared with the control group. The protein levels of GFAP, vimentin, nestin, and Cspgs were significantly downregulated in the Sox9-shRNA group. Furthermore, the staining intensity and the spatial distribution of GFAP in the retinas were also obviously attenuated at every studied time point. CONCLUSIONS Intravitreal injection of the Sox9-shRNA lentiviral vector preserved rat retinal morphology and function after light damage and downregulated GFAP, vimentin, nestin, and Cspgs, which are related to Müller cell gliosis and ECM remodeling. The results indicate that Sox9 might be a potential therapeutic target for retinal degenerative diseases.
Collapse
Affiliation(s)
- Xin Wang
- Department of Ophthalmology and Vision Sciences, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Yang Liu
- Department of Ophthalmology and Vision Sciences, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Yingqin Ni
- Department of Ophthalmology and Vision Sciences, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Ting Zhang
- Department of Ophthalmology and Vision Sciences, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Xiaofen Mo
- Department of Ophthalmology and Vision Sciences, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Tang Wenyi
- Department of Ophthalmology and Vision Sciences, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Gezhi Xu
- Department of Ophthalmology and Vision Sciences, Eye and ENT Hospital, Fudan University, Shanghai, China,Key Laboratory of Visual Impairment and Restoration of Shanghai, Fudan University, Shanghai, China,Key NHC Key Laboratory of Myopia (Fudan University); Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
29
|
Fernández-Albarral JA, Salobrar-García E, Martínez-Páramo R, Ramírez AI, de Hoz R, Ramírez JM, Salazar JJ. Retinal glial changes in Alzheimer's disease - A review. JOURNAL OF OPTOMETRY 2019; 12:198-207. [PMID: 30377086 PMCID: PMC6612028 DOI: 10.1016/j.optom.2018.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 05/17/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative dementia characterized by the deposition of extracellular β-amyloid (Aβ) plaques and the presence of neurofibrillary tangles. Until now, the techniques used to analyze these deposits have been difficult to access, invasive, and expensive. This leads us to consider new access routes to the central nervous system (CNS), allowing us to diagnose the disease before the first symptoms appear. Recent studies have shown that microglial and macroglial cell activation could play a role in the development of this disease. Glial cells in the CNS can respond to various damages, such as neurodegenerative pathologies, with morphological and functional changes. These changes are a common feature in neurodegenerative diseases, including AD. The retina is considered an extension of the CNS and has a population of glial cells similar to that of the CNS. When glial cells are activated, various molecules are released and changes in glial cell expression occur, which can be indicators of neuronal damage. The objective of this review is to compile the most relevant findings in the last 10 years relating to alterations in the eye in AD, and the role that glial cells play in the degenerative process in the retina in the context of neurodegeneration.
Collapse
Affiliation(s)
- José A Fernández-Albarral
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Spain
| | - Elena Salobrar-García
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Spain
| | - Rebeca Martínez-Páramo
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Spain
| | - Ana I Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Spain; Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, Spain
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Spain; Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, Spain
| | - José M Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Spain; Facultad de Medicina, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, Spain.
| | - Juan J Salazar
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Spain; Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, Spain.
| |
Collapse
|
30
|
Cebulla CM, Kim B, George V, Heisler-Taylor T, Hamadmad S, Reese AY, Kothari SS, Kusibati R, Wilson H, Abdel-Rahman MH. Oral Selumetinib Does Not Negatively Impact Photoreceptor Survival in Murine Experimental Retinal Detachment. Invest Ophthalmol Vis Sci 2019; 60:349-357. [PMID: 30682205 PMCID: PMC6348998 DOI: 10.1167/iovs.18-25405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Purpose Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling is neuroprotective in some retinal damage models but its role in neuronal survival during retinal detachment (RD) is unclear. In addition, serous RDs are a prevalent side effect of MEK inhibitors (MEKi), blocking MAPK/ERK signaling for treatment of certain cancers. We tested the hypothesis that MEKi treatment in experimental RD would increase photoreceptor death. Methods The MEKi selumetinib was delivered daily to C57BL/6 mice at a clinically relevant dose (10 mg/mL) starting 1 day prior to creating RD with subretinal hyaluronic acid injection. Photoreceptor TUNEL and outer nuclear layer (ONL) thickness were analyzed. Phospho-ERK1/2 (pERK) distribution, glial fibrillary acidic protein (GFAP) accumulation, and Iba-1 (microglia/macrophages) were evaluated with immunofluorescence. Results pERK accumulated in the Müller glia in detached retinas, but this was effectively blocked by selumetinib. Selumetinib did not induce serous RDs at day 1 and did not increase TUNEL positive photoreceptors or further decrease ONL thickness compared to controls. Retinal gliosis was not altered, but selumetinib did block the increase in intraretinal microglia/macrophage Iba-1 fluorescence intensity and acquisition of amoeboid morphology. Conclusions MAPK/ERK is neuroprotective in some retinal damage models; in RD, selumetinib blocked Müller pERK accumulation and changed the retinal microglia/macrophage phenotype but did not alter photoreceptor survival. This is consistent with the relatively good visual acuity seen in patients developing transient retinal detachments on MEK inhibitor therapy. Compensation by other neuroprotective pathways in the retina during retinal detachment may occur in the presence of MEK inhibition.
Collapse
Affiliation(s)
- Colleen M Cebulla
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Bongsu Kim
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Valerie George
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Tyler Heisler-Taylor
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States.,Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus, Ohio, United States
| | - Sumaya Hamadmad
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Alana Y Reese
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Shaili S Kothari
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Rania Kusibati
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Hailey Wilson
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Mohamed H Abdel-Rahman
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States.,Division of Human Genetics, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| |
Collapse
|
31
|
Kiang L, Ross BX, Yao J, Shanmugam S, Andrews CA, Hansen S, Besirli CG, Zacks DN, Abcouwer SF. Vitreous Cytokine Expression and a Murine Model Suggest a Key Role of Microglia in the Inflammatory Response to Retinal Detachment. Invest Ophthalmol Vis Sci 2019; 59:3767-3778. [PMID: 30046818 PMCID: PMC6059764 DOI: 10.1167/iovs.18-24489] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Retinal detachment (RD) separates the retina from the underlying retinal pigment epithelium, resulting in a gradual degeneration of photoreceptor (PR) cells. It is known that RD also results in an inflammatory response, but its contribution to PR degeneration is unknown. In this study we examine the inflammatory responses to RD in patient vitreous and validate a mouse experimental RD as a model of this phenomenon. Methods Multiplex bead arrays were used to examine cytokine levels in vitreous samples from 24 patients with macula-off rhegmatogenous retinal detachment (RRD) undergoing reattachment surgery and from 10 control patients undergoing vitrectomy for vitreous opacities or epiretinal membrane. Activation of the innate immune response was then examined in a mouse model of RD. Results Twenty-eight factors were significantly increased in vitreous from RD patients versus controls. Notable were the cytokines MCP-1 (CCL2), IP-10 (CXCL10), fractalkine (CX3CL1), GRO (CXCL1), MDC (CCL22), IL-6, and IL-8, which all exhibited relatively high concentrations and several-fold increases in the vitreous of RD patients. Concentrations of various analytes correlated with a range of clinical variables such as duration of detachment and visual acuity. Retinal detachment in the mouse resulted in cytokine mRNA expression changes consistent with human RD vitreous results, as well as microglial proliferation and migration toward the outer retina. Conclusions The findings suggest that an inflammatory response involving microglia is a component of the reaction to retinal detachment that may impact visual acuity after surgical repair and that mouse experimental RD can serve as a model to study this effect.
Collapse
Affiliation(s)
- Lee Kiang
- Oregon Health and Science University, Casey Eye Institute, Portland, Oregon, United States
| | - Bing X Ross
- University of Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Jingyu Yao
- University of Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Sumathi Shanmugam
- University of Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Chris A Andrews
- University of Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Sean Hansen
- University of Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Cagri G Besirli
- University of Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - David N Zacks
- University of Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Steven F Abcouwer
- University of Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| |
Collapse
|
32
|
Abstract
Müller cells, as the predominant glial element in the sensory retina, play a crucial role in healthy and diseased retina. Overactivation of Müller cells in response to damage is detrimental to the retina tissue. Current research shows that inhibiting glial fibrillary acidic protein (GFAP), a sensitive indicator of Müller cell activation, attenuated glial reactions and promoted neuroprotection. Recent evidence suggests that the transcript factor SOX9 (sex-determining region Y box 9), part of the SOX family, regulates GFAP expression of astrocytes in the central nervous system. However, in retina Müller cells, it is still unknown whether GFAP can be downregulated by reduced SOX9 function. The present results show that clustered regularly interspaced short palindromic repeats/Cas9-mediated SOX9 knockout not only inhibited GFAP expression in rat Müller cells but also attenuated cell migration ability. These results suggest that inhibition of SOX9 activity may be a novel therapeutic strategy for reduction of glial cell activity.
Collapse
|
33
|
Kunikata H, Abe T, Nakazawa T. Historical, Current and Future Approaches to Surgery for Rhegmatogenous Retinal Detachment. TOHOKU J EXP MED 2019; 248:159-168. [DOI: 10.1620/tjem.248.159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hiroshi Kunikata
- Department of Ophthalmology, Tohoku University Graduate School of Medicine
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine
| | - Toshiaki Abe
- Division of Clinical Cell Therapy Center for Advanced Medical Research and Development, Tohoku University Graduate School of Medicine
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine
| |
Collapse
|
34
|
Telegina DV, Kozhevnikova OS, Kolosova NG. Changes in Retinal Glial Cells with Age and during Development of Age-Related Macular Degeneration. BIOCHEMISTRY (MOSCOW) 2018; 83:1009-1017. [PMID: 30472939 DOI: 10.1134/s000629791809002x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Age is the major risk factor in the age-related macular degeneration (AMD) which is a complex multifactor neurodegenerative disease of the retina and the main cause of irreversible vision loss in people over 60 years old. The major role in AMD pathogenesis belongs to structure-functional changes in the retinal pigment epithelium cells, while the onset and progression of AMD are commonly believed to be caused by the immune system dysfunctions. The role of retinal glial cells (Muller cells, astrocytes, and microglia) in AMD pathogenesis is studied much less. These cells maintain neurons and retinal vessels through the synthesis of neurotrophic and angiogenic factors, as well as perform supporting, separating, trophic, secretory, and immune functions. It is known that retinal glia experiences morphological and functional changes with age. Age-related impairments in the functional activity of glial cells are closely related to the changes in the expression of trophic factors that affect the status of all cell types in the retina. In this review, we summarized available literature data on the role of retinal macro- and microglia and on the contribution of these cells to AMD pathogenesis.
Collapse
Affiliation(s)
- D V Telegina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - O S Kozhevnikova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - N G Kolosova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| |
Collapse
|
35
|
Eastlake K, Heywood WE, Banerjee P, Bliss E, Mills K, Khaw PT, Charteris D, Limb GA. Comparative proteomic analysis of normal and gliotic PVR retina and contribution of Müller glia to this profile. Exp Eye Res 2018; 177:197-207. [PMID: 30176221 PMCID: PMC6280037 DOI: 10.1016/j.exer.2018.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/07/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022]
Abstract
Müller glia are responsible for the neural retina regeneration observed in fish and amphibians throughout life. Despite the presence of these cells in the adult human retina, there is no evidence of regeneration occurring in humans following disease or injury. It may be possible that factors present in the degenerated retina could prevent human Müller glia from proliferating and neurally differentiating within the diseased retina. On this basis, investigations into the proteomic profile of these cells and the abundance of key proteins associated to Müller glia in the gliotic PVR retina, may assist in the identification of factors with the potential to control Müller proliferation and neural differentiation in vivo. Label free mass spectrometry identified 1527 proteins in Müller glial cell preparations, 1631 proteins in normal retina and 1074 in gliotic PVR retina. Compared to normal retina, 28 proteins were upregulated and 196 proteins downregulated by 2-fold or more in the gliotic PVR retina. As determined by comparative proteomic analyses, of the proteins highly upregulated in the gliotic PVR retina, the most highly abundant proteins in Müller cell lysates included vimentin, GFAP, polyubiquitin and HSP90a. The observations that proteins highly upregulated in the gliotic retina constitute major proteins expressed by Müller glia provide the basis for further studies into mechanisms that regulate their production. In addition investigations aimed at controlling the expression of these proteins may aid in the identification of factors that could potentially promote endogenous regeneration of the adult human retina after disease or injury. Proteomic analyses showed evidence for Müller glia contribution to retinal gliosis. Polyubiquitin-C and HSP90a produced by Müller glia, are upregulated in gliotic retina. Müller glia are a source of prelamin, elongation factor and serpin found in retina.
Collapse
Affiliation(s)
- Karen Eastlake
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| | - Wendy E Heywood
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Phillip Banerjee
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| | - Emily Bliss
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Kevin Mills
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Peng T Khaw
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| | - David Charteris
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| | - G Astrid Limb
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK.
| |
Collapse
|
36
|
Pekny M, Wilhelmsson U, Tatlisumak T, Pekna M. Astrocyte activation and reactive gliosis-A new target in stroke? Neurosci Lett 2018; 689:45-55. [PMID: 30025833 DOI: 10.1016/j.neulet.2018.07.021] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/03/2018] [Accepted: 07/14/2018] [Indexed: 11/27/2022]
Abstract
Stroke is an acute insult to the central nervous system (CNS) that triggers a sequence of responses in the acute, subacute as well as later stages, with prominent involvement of astrocytes. Astrocyte activation and reactive gliosis in the acute stage of stroke limit the tissue damage and contribute to the restoration of homeostasis. Astrocytes also control many aspects of neural plasticity that is the basis for functional recovery. Here, we discuss the concept of intermediate filaments (nanofilaments) and the complement system as two handles on the astrocyte responses to injury that both present attractive opportunities for novel treatment strategies modulating astrocyte functions and reactive gliosis.
Collapse
Affiliation(s)
- Milos Pekny
- Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530 Gothenburg, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Newcastle, Newcastle, NSW, Australia.
| | - Ulrika Wilhelmsson
- Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530 Gothenburg, Sweden
| | - Turgut Tatlisumak
- Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530 Gothenburg, Sweden; Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcela Pekna
- Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530 Gothenburg, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
37
|
Tsoka P, Matsumoto H, Maidana DE, Kataoka K, Naoumidi I, Gravanis A, Vavvas DG, Tsilimbaris MK. Effects of BNN27, a novel C17-spiroepoxy steroid derivative, on experimental retinal detachment-induced photoreceptor cell death. Sci Rep 2018; 8:10661. [PMID: 30006508 PMCID: PMC6045604 DOI: 10.1038/s41598-018-28633-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 06/26/2018] [Indexed: 02/01/2023] Open
Abstract
Retinal detachment (RD) leads to photoreceptor cell death secondary to the physical separation of the retina from the underlying retinal pigment epithelium. Intensifying photoreceptor survival in the detached retina could be remarkably favorable for many retinopathies in which RD can be seen. BNN27, a blood-brain barrier (BBB)-permeable, C17-spiroepoxy derivative of dehydroepiandrosterone (DHEA) has shown promising neuroprotective activity through interaction with nerve growth factor receptors, TrkA and p75NTR. Here, we administered BNN27 systemically in a murine model of RD. TUNEL+ photoreceptors were significantly decreased 24 hours post injury after a single administration of 200 mg/kg BNN27. Furthermore, BNN27 increased inflammatory cell infiltration, as well as, two markers of gliosis 24 hours post RD. However, single or multiple doses of BNN27 were not able to protect the overall survival of photoreceptors 7 days post injury. Additionally, BNN27 did not induce the activation/phosphorylation of TrkAY490 in the detached retina although the mRNA levels of the receptor were increased in the photoreceptors post injury. Together, these findings, do not demonstrate neuroprotective activity of BNN27 in experimentally-induced RD. Further studies are needed in order to elucidate the paradox/contradiction of these results and the mechanism of action of BNN27 in this model of photoreceptor cell damage.
Collapse
Affiliation(s)
- Pavlina Tsoka
- Laboratory of Optics and Vision, University of Crete Medical School, Heraklion, Crete, Greece.,Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Hidetaka Matsumoto
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel E Maidana
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Keiko Kataoka
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Irene Naoumidi
- Laboratory of Optics and Vision, University of Crete Medical School, Heraklion, Crete, Greece
| | - Achille Gravanis
- Department of Pharmacology, University of Crete Medical School, Heraklion, Crete, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Demetrios G Vavvas
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA.
| | - Miltiadis K Tsilimbaris
- Laboratory of Optics and Vision, University of Crete Medical School, Heraklion, Crete, Greece.
| |
Collapse
|
38
|
Choi JA, Kim YJ, Seo BR, Koh JY, Yoon YH. Potential Role of Zinc Dyshomeostasis in Matrix Metalloproteinase-2 and -9 Activation and Photoreceptor Cell Death in Experimental Retinal Detachment. ACTA ACUST UNITED AC 2018; 59:3058-3068. [DOI: 10.1167/iovs.17-23502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jeong A Choi
- Neural Injury Research Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Yoon Jeon Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Seoul, Korea
| | - Bo-Ra Seo
- Neural Injury Research Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Young Koh
- Neural Injury Research Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Hee Yoon
- Department of Ophthalmology, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
39
|
Wilmes AT, Reinehr S, Kühn S, Pedreiturria X, Petrikowski L, Faissner S, Ayzenberg I, Stute G, Gold R, Dick HB, Kleiter I, Joachim SC. Laquinimod protects the optic nerve and retina in an experimental autoimmune encephalomyelitis model. J Neuroinflammation 2018; 15:183. [PMID: 29903027 PMCID: PMC6002998 DOI: 10.1186/s12974-018-1208-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 05/20/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The oral immunomodulatory agent laquinimod is currently evaluated for multiple sclerosis (MS) treatment. Phase II and III studies demonstrated a reduction of degenerative processes. In addition to anti-inflammatory effects, laquinimod might have neuroprotective properties, but its impact on the visual system, which is often affected by MS, is unknown. The aim of our study was to investigate potential protective effects of laquinimod on the optic nerve and retina in an experimental autoimmune encephalomyelitis (EAE) model. METHODS We induced EAE in C57/BL6 mice via MOG35-55 immunization. Animals were divided into an untreated EAE group, three EAE groups receiving laquinimod (1, 5, or 25 mg/kg daily), starting the day post-immunization, and a non-immunized control group. Thirty days post-immunization, scotopic electroretinograms were carried out, and mice were sacrificed for histopathology (HE, LFB), immunohistochemistry (MBP, Iba1, Tmem119, F4/80, GFAP, vimentin, Brn-3a, cleaved caspase 3) of the optic nerve and retina, and retinal qRT-PCR analyses (Brn-3a, Iba1, Tmem119, AMWAP, CD68, GFAP). To evaluate the effect of a therapeutic approach, EAE animals were treated with 25 mg/kg laquinimod from day 16 when 60% of the animals had developed clinical signs of EAE. RESULTS Laquinimod reduced neurological EAE symptoms and improved the neuronal electrical output of the inner nuclear layer compared to untreated EAE mice. Furthermore, cellular infiltration, especially recruited phagocytes, and demyelination in the optic nerve were reduced. Microglia were diminished in optic nerve and retina. Retinal macroglial signal was reduced under treatment, whereas in the optic nerve macroglia were not affected. Additionally, laquinimod preserved retinal ganglion cells and reduced apoptosis. A later treatment with laquinimod in a therapeutic approach led to a reduction of clinical signs and to an improved b-wave amplitude. However, no changes in cellular infiltration and demyelination of the optic nerves were observed. Also, the number of retinal ganglion cells remained unaltered. CONCLUSION From our study, we deduce neuroprotective and anti-inflammatory effects of laquinimod on the optic nerve and retina in EAE mice, when animals were treated before any clinical signs were noted. Given the fact that the visual system is frequently affected by MS, the agent might be an interesting subject of further neuro-ophthalmic investigations.
Collapse
Affiliation(s)
- Anna T Wilmes
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Sandra Kühn
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Xiomara Pedreiturria
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Laura Petrikowski
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Simon Faissner
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Ilya Ayzenberg
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Gesa Stute
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Ingo Kleiter
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany.
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany.
| |
Collapse
|
40
|
Santos FM, Gaspar LM, Ciordia S, Rocha AS, Castro E Sousa JP, Paradela A, Passarinha LA, Tomaz CT. iTRAQ Quantitative Proteomic Analysis of Vitreous from Patients with Retinal Detachment. Int J Mol Sci 2018; 19:ijms19041157. [PMID: 29641463 PMCID: PMC5979392 DOI: 10.3390/ijms19041157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/07/2018] [Accepted: 04/08/2018] [Indexed: 12/15/2022] Open
Abstract
Rhegmatogenous retinal detachment (RRD) is a potentially blinding condition characterized by a physical separation between neurosensory retina and retinal pigment epithelium. Quantitative proteomics can help to understand the changes that occur at the cellular level during RRD, providing additional information about the molecular mechanisms underlying its pathogenesis. In the present study, iTRAQ labeling was combined with two-dimensional LC-ESI-MS/MS to find expression changes in the proteome of vitreous from patients with RRD when compared to control samples. A total of 150 proteins were found differentially expressed in the vitreous of patients with RRD, including 96 overexpressed and 54 underexpressed. Several overexpressed proteins, several such as glycolytic enzymes (fructose-bisphosphate aldolase A, gamma-enolase, and phosphoglycerate kinase 1), glucose transporters (GLUT-1), growth factors (metalloproteinase inhibitor 1), and serine protease inhibitors (plasminogen activator inhibitor 1) are regulated by HIF-1, which suggests that HIF-1 signaling pathway can be triggered in response to RRD. Also, the accumulation of photoreceptor proteins, including phosducin, rhodopsin, and s-arrestin, and vimentin in vitreous may indicate that photoreceptor degeneration occurs in RRD. Also, the accumulation of photoreceptor proteins, including phosducin, rhodopsin, and s-arrestin, and vimentin in vitreous may indicate that photoreceptor degeneration occurs in RRD. Nevertheless, the differentially expressed proteins found in this study suggest that different mechanisms are activated after RRD to promote the survival of retinal cells through complex cellular responses.
Collapse
Affiliation(s)
- Fátima Milhano Santos
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal.
- Chemistry Department, Faculty of Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal.
- Laboratory of Pharmacology and Toxicology-UBIMedical, University of Beira Interior, 6200-284 Covilhã, Portugal.
| | - Leonor Mesquita Gaspar
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal.
- Chemistry Department, Faculty of Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal.
| | - Sergio Ciordia
- Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Ana Sílvia Rocha
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal.
- Chemistry Department, Faculty of Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal.
| | - João Paulo Castro E Sousa
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal.
- Hospital Center Leiria-Pombal, 3100-462 Pombal, Portugal.
| | - Alberto Paradela
- Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Luís António Passarinha
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal.
- Laboratory of Pharmacology and Toxicology-UBIMedical, University of Beira Interior, 6200-284 Covilhã, Portugal.
| | - Cândida Teixeira Tomaz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal.
- Chemistry Department, Faculty of Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal.
| |
Collapse
|
41
|
Chiha W, LeVaillant CJ, Bartlett CA, Hewitt AW, Melton PE, Fitzgerald M, Harvey AR. Retinal genes are differentially expressed in areas of primary versus secondary degeneration following partial optic nerve injury. PLoS One 2018; 13:e0192348. [PMID: 29425209 PMCID: PMC5806857 DOI: 10.1371/journal.pone.0192348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/20/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Partial transection (PT) of the optic nerve is an established experimental model of secondary degeneration in the central nervous system. After a dorsal transection, retinal ganglion cells (RGCs) with axons in ventral optic nerve are intact but vulnerable to secondary degeneration, whereas RGCs in dorsal retina with dorsal axons are affected by primary and secondary injuries. Using microarray, we quantified gene expression changes in dorsal and ventral retina at 1 and 7 days post PT, to characterize pathogenic pathways linked to primary and secondary degeneration. RESULTS In comparison to uninjured retina Cryba1, Cryba2 and Crygs, were significantly downregulated in injured dorsal retina at days 1 and 7. While Ecel1, Timp1, Mt2A and CD74, which are associated with reducing excitotoxicity, oxidative stress and inflammation, were significantly upregulated. Genes associated with oxygen binding pathways, immune responses, cytokine receptor activity and apoptosis were enriched in dorsal retina at day 1 after PT. Oxygen binding and apoptosis remained enriched at day 7, as were pathways involved in extracellular matrix modification. Fewer changes were observed in ventral retina at day 1 after PT, most associated with the regulation of protein homodimerization activity. By day 7, apoptosis, matrix organization and signal transduction pathways were enriched. Discriminant analysis was also performed for specific functional gene groups to compare expression intensities at each time point. Altered expression of selected genes (ATF3, GFAP, Ecel1, TIMP1, Tp53) and proteins (GFAP, ECEL1 and ATF3) were semi-quantitatively assessed by qRT-PCR and immunohistochemistry respectively. CONCLUSION There was an acute and complex primary injury response in dorsal retina indicative of a dynamic interaction between neuroprotective and neurodegenerative events; ventral retina vulnerable to secondary degeneration showed a delayed injury response. Both primary and secondary injury resulted in the upregulation of numerous genes linked to RGC death, but differences in the nature of these changes strongly suggest that death occurred via different molecular mechanisms.
Collapse
Affiliation(s)
- Wissam Chiha
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, WA, Australia
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Chrisna J. LeVaillant
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Carole A. Bartlett
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Alex W. Hewitt
- Lions Eye Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Phillip E. Melton
- Curtin/UWA Centre for Genetic Origins of Health and Disease, School of Biomedical Science, The University of Western Australia and Curtin University, Bentley, WA, Australia
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Alan R. Harvey
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, WA, Australia
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA, Australia
- * E-mail:
| |
Collapse
|
42
|
670nm light treatment following retinal injury modulates Müller cell gliosis: Evidence from in vivo and in vitro stress models. Exp Eye Res 2018; 169:1-12. [PMID: 29355737 DOI: 10.1016/j.exer.2018.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/04/2018] [Accepted: 01/12/2018] [Indexed: 11/22/2022]
Abstract
Photobiomodulation (PBM) with 670 nm light has been shown to accelerate wound healing in soft tissue injuries, and also to protect neuronal tissues. However, little data exist on its effects on the non-neuronal components of the retina, such as Müller cells (MCs), which are the principal macroglia of the retina that play a role in maintaining retinal homeostasis. The aim of this study was to explore the effects of 670 nm light on activated MCs using in vivo and in vitro stress models. Adult Sprague-Dawley rats were exposed to photo-oxidative damage (PD) for 24 h and treated with 670 nm light at 0, 3 and 14 days after PD. Tissue was collected at 30 days post-PD for analysis. Using the in vitro scratch model with a human MC line (MIO-M1), area coverage and cellular stress were analysed following treatment with 670 nm light. We showed that early treatment with 670 nm light after PD reduced MC activation, lowering the retinal expression of GFAP and FGF-2. 670 nm light treatment mitigated the production of MC-related pro-inflammatory cytokines (including IL-1β), and reduced microglia/macrophage (MG/MΦ) recruitment into the outer retina following PD. This subsequently decreased photoreceptor loss, slowing the progression of retinal degeneration. In vitro, we showed that 670 nm light directly modulated MC activation, reducing rates of area coverage by suppressing cellular proliferation and spreading. This study indicates that 670 nm light treatment post-injury may have therapeutic benefit when administered shortly after retinal damage, and could be useful for retinal degenerations where MC gliosis is a feature of disease progression.
Collapse
|
43
|
de Pablo Y, Chen M, Möllerström E, Pekna M, Pekny M. Drugs targeting intermediate filaments can improve neurosupportive properties of astrocytes. Brain Res Bull 2018; 136:130-138. [DOI: 10.1016/j.brainresbull.2017.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/15/2017] [Accepted: 01/27/2017] [Indexed: 12/25/2022]
|
44
|
Graca AB, Hippert C, Pearson RA. Müller Glia Reactivity and Development of Gliosis in Response to Pathological Conditions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:303-308. [PMID: 29721957 DOI: 10.1007/978-3-319-75402-4_37] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Within the mammalian retina, both Müller glia and astrocytes display reactivity in response to many forms of retinal injury and disease in a process termed gliosis. Reactive gliosis is a complex process that is considered to represent a cellular response to protect the retina from further damage and to promote its repair following pathological insult. It includes morphological, biochemical and physiological changes, which may vary depending on the type and degree of the initial injury. Not only does gliosis have numerous triggers, but also there is a great degree of heterogeneity in the glial response, creating multiple levels of complexity. For these reasons, understanding the process of glial scar formation and how this process differs in different pathological conditions and finding strategies to circumvent these barriers represent major challenges to the advancement of many ocular therapies.
Collapse
Affiliation(s)
- Anna B Graca
- Department of Genetics, University College London Institute of Ophthalmology, London, UK.
| | - Claire Hippert
- Roche, Stem Cell Platform, Chemical Biology Roche Pharma Research and Early Development, Basel, Switzerland
| | - Rachael A Pearson
- Department of Genetics, University College London Institute of Ophthalmology, London, UK.
| |
Collapse
|
45
|
Sene A, Apte RS. Inflammation-Induced Photoreceptor Cell Death. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:203-208. [PMID: 29721945 DOI: 10.1007/978-3-319-75402-4_25] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuroinflammation is an important aspect of many diseases of the eye, and experimental animal models have been widely used to determine its impact on retinal homeostasis and neuron survival. Physical separation of the neurosensory retina from the underlying retinal pigment epithelium (RPE) results in activation and infiltration of macrophages. Numerous studies have shown the critical role of macrophages in retinal disease processes. In retinal detachment, accumulation of macrophages in the subretinal space is associated with changes in cytokine and chemokine profile which lead to photoreceptor cell death. Targeted disruption of macrophage chemotaxis significantly reduces retinal detachment-induced photoreceptor degeneration. Apoptosis is the predominant mechanism of cell death; however regulated necrosis is also a contributor of photoreceptor loss. Therefore, effective neuroprotective approaches could integrate combined inhibition of both apoptotic and regulated necrosis pathways.
Collapse
Affiliation(s)
- Abdoulaye Sene
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.
| | - Rajendra S Apte
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.,Department of Developmental Biology and Medicine, Washington University School of Medicine, St. Louis, MO, USA.,Department of Biology, Allergan, Inc., Irvine, CA, USA
| |
Collapse
|
46
|
Galán A, Jmaeff S, Barcelona PF, Brahimi F, Sarunic MV, Saragovi HU. In retinitis pigmentosa TrkC.T1-dependent vectorial Erk activity upregulates glial TNF-α, causing selective neuronal death. Cell Death Dis 2017; 8:3222. [PMID: 29242588 PMCID: PMC5870594 DOI: 10.1038/s41419-017-0074-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/26/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022]
Abstract
In some diseases the TrkC.T1 isoform is upregulated in glia, associated with glial TNF-α production and neuronal death. What remains unknown are the activating signals in glia, and how paracrine signals may be selective for a targeted neuron while sparing other proximate neurons. We studied these questions in the retina, where Müller glia contacts photoreceptors on one side and retinal ganglion cells on the other. In a mutant Rhodopsin mouse model of retinitis pigmentosa (RP) causing progressive photoreceptor death—but sparing retinal ganglion cells—TrkC.T1 and NT-3 ligand are upregulated in Müller glia. TrkC.T1 activity generates p-Erk, which causes increased TNF-α. These sequential events take place predominantly in Müller fibers contacting stressed photoreceptors, and culminate in selective death. Each event and photoreceptor death can be prevented by reduction of TrkC.T1 expression, by pharmacological antagonism of TrkC or by pharmacological inhibition Erk. Unmasking the sequence of non-cell autologous events and mechanisms causing selective neuronal death may help rationalize therapies.
Collapse
Affiliation(s)
- Alba Galán
- Lady Davis Institute-Jewish General Hospital, McGill University, Montréal, QC, H3T 1E2, Canada
| | - Sean Jmaeff
- Lady Davis Institute-Jewish General Hospital, McGill University, Montréal, QC, H3T 1E2, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Pablo F Barcelona
- Lady Davis Institute-Jewish General Hospital, McGill University, Montréal, QC, H3T 1E2, Canada
| | - Fouad Brahimi
- Lady Davis Institute-Jewish General Hospital, McGill University, Montréal, QC, H3T 1E2, Canada
| | - Marinko V Sarunic
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - H Uri Saragovi
- Lady Davis Institute-Jewish General Hospital, McGill University, Montréal, QC, H3T 1E2, Canada. .,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada. .,Department of Ophthalmology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
47
|
Kuo HK, Chen YH, Kuo YH, Ke MC, Tseng YC, Wu PC. Evaluation of the Effect of Everolimus on Retinal Pigment Epithelial Cells and Experimental Proliferative Vitreoretinopathy. Curr Eye Res 2017; 43:333-339. [PMID: 29182404 DOI: 10.1080/02713683.2017.1396618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Failure of retinal detachment surgery is most commonly due to the development of proliferative vitreoretinopathy (PVR). Everolimus is an inhibitor of mammalian target of rapamycin (mTOR), and is available as oral tablets. In this study, we investigated the effect of everolimus on retinal pigment epithelial cells and modification of the severity of experimental PVR. METHODS In our in vitro studies, primary culture of retinal pigment epithelium (RPE) cells was obtained from pigmented Rex rabbits. Cell proliferation was assayed with the tetrazolium dye cytotoxicity test, and cell migration assay was performed in 24-well transwell units with 8-μm filters. In the in vivo study, pigmented Rex rabbits weighing between 2 and 2.5 kg were used. Each rabbit eye underwent gas compression; one week later, 5 × 104 RPE cells were injected into the vitreous cavity to induce PVR, and each eye was graded with indirect ophthalmoscopy on days 1, 3, 7, 14, 21, and 28. The rabbits were administered everolimus (0.5 mg/day orally) from the day of PVR induction. Total proteins extracted from RPE cells and dissected retinal samples were processed for Western blotting analysis of mTOR and ribosomal protein S6 (RPS6). RESULTS The in vitro studies showed that everolimus significantly inhibited the proliferation of RPE cells at 0.1 μg/ml; additionally, at 10 μg/ml, it suppressed the migration of RPE cells and significantly suppressed the expression of mTOR and RPS6 in RPE cells. The in vivo study did not show any benefit of oral everolimus (0.5 mg/day) in suppressing experimental PVR. Thus, everolimus significantly suppressed the expression of mTOR and RPS6 in PVR. CONCLUSIONS Everolimus suppressed the proliferation and migration of RPE cells in vitro. Oral everolimus (0.5 mg/day) suppressed the expression of mTOR and RPS6 in the retina, but showed no effect in suppressing experimental PVR.
Collapse
Affiliation(s)
- Hsi-Kung Kuo
- a Department of Ophthalmology , Kaohsiung Chang-Gung Memorial Hospital , Kaohsiung , Taiwan.,b Chang-Gung University College of Medicine , Kaohsiung , Taiwan
| | - Yi-Hao Chen
- a Department of Ophthalmology , Kaohsiung Chang-Gung Memorial Hospital , Kaohsiung , Taiwan.,b Chang-Gung University College of Medicine , Kaohsiung , Taiwan
| | - Yu-Hsia Kuo
- a Department of Ophthalmology , Kaohsiung Chang-Gung Memorial Hospital , Kaohsiung , Taiwan
| | - Mu-Chan Ke
- a Department of Ophthalmology , Kaohsiung Chang-Gung Memorial Hospital , Kaohsiung , Taiwan
| | - Ya-Chi Tseng
- a Department of Ophthalmology , Kaohsiung Chang-Gung Memorial Hospital , Kaohsiung , Taiwan
| | - Pei-Chang Wu
- a Department of Ophthalmology , Kaohsiung Chang-Gung Memorial Hospital , Kaohsiung , Taiwan.,b Chang-Gung University College of Medicine , Kaohsiung , Taiwan
| |
Collapse
|
48
|
MIF Inhibitor ISO-1 Protects Photoreceptors and Reduces Gliosis in Experimental Retinal Detachment. Sci Rep 2017; 7:14336. [PMID: 29084983 PMCID: PMC5662618 DOI: 10.1038/s41598-017-14298-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/06/2017] [Indexed: 01/16/2023] Open
Abstract
Photoreceptor death and retinal gliosis underlie the majority of vision threatening retinal diseases including retinal detachment (RD). Although the underlying pathobiology of vision limiting processes in RD is not fully understood, inflammation is known to play a critical role. We conducted an iTRAQ proteomic screen of up- and down-regulated proteins in a murine model of RD to identify potential targetable candidates. Macrophage migration inhibitory factor (MIF) was identified and evaluated for neurotoxic and pro-gliotic effects during RD. Systemic administration of the MIF inhibitor ISO-1 significantly blocked photoreceptor apoptosis, outer nuclear layer (ONL) thinning, and retinal gliosis. ISO-1 and MIF knockout (MIFKO) had greater accumulation of Müller glia pERK expression in the detached retina, suggesting that Müller survival pathways might underlie the neuroprotective response. Our data show the feasibility of the MIF-inhibitor ISO-1 to block pathological damage responses in retinal detachment and provide a rationale to explore MIF inhibition as a potential therapeutic option for RD.
Collapse
|
49
|
Lu YZ, Natoli R, Madigan M, Fernando N, Saxena K, Aggio-Bruce R, Jiao H, Provis J, Valter K. Photobiomodulation with 670 nm light ameliorates Müller cell-mediated activation of microglia and macrophages in retinal degeneration. Exp Eye Res 2017; 165:78-89. [PMID: 28888911 DOI: 10.1016/j.exer.2017.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/03/2017] [Accepted: 09/05/2017] [Indexed: 12/21/2022]
Abstract
Müller cells, the supporting cells of the retina, play a key role in responding to retinal stress by releasing chemokines, including CCL2, to recruit microglia and macrophages (MG/MΦ) into the damaged retina. Photobiomodulation (PBM) with 670 nm light has been shown to reduce inflammation in models of retinal degeneration. In this study, we aimed to investigate whether 670 nm light had an effect on Müller cell-initiated inflammation under retinal photo-oxidative damage (PD) in vivo and in vitro. Sprague-Dawley rats were pre-treated with 670 nm light (9J/cm2) once daily over 5 days prior to PD. The expression of inflammatory genes including CCL2 and IL-1β was analysed in retinas. In vitro, primary Müller cells dissociated from neonatal rat retinas were co-cultured with 661W photoreceptor cells. Co-cultures were exposed to PD, followed by 670 nm light treatment to the Müller cells only, and Müller cell stress and inflammation were assessed. Primary MG/MΦ were incubated with supernatant from the co-cultures, and collected for analysis of inflammatory activation. To further understand the mechanism of 670 nm light, the expression of COX5a and mitochondrial membrane potential (ΔΨm) were measured in Müller cells. Following PD, 670 nm light-treated Müller cells had a reduced inflammatory activation, with lower levels of CCL2, IL-1β and IL-6. Supernatant from 670 nm light-treated co-cultures reduced activation of primary MG/MΦ, and lowered the expression of pro-inflammatory cytokines, compared to untreated PD controls. Additionally, 670 nm light-treated Müller cells had an increased expression of COX5a and an elevated ΔΨm following PD, suggesting that retrograde signaling plays a role in the effects of 670 nm light on Müller cell gene expression. Our data indicates that 670 nm light reduces Müller cell-mediated retinal inflammation, and offers a potential cellular mechanism for 670 nm light therapy in regulating inflammation associated with retinal degenerations.
Collapse
Affiliation(s)
- Yen-Zhen Lu
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia; ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Michele Madigan
- Save Sight Institute, Discipline of Clinical Ophthalmology, The University of Sydney, Sydney, NSW, Australia; School of Optometry and Vision Science, The University of New South Wales, Kensington, NSW, Australia
| | - Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Kartik Saxena
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Haihan Jiao
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Jan Provis
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia; ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Krisztina Valter
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia; ANU Medical School, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
50
|
Edwards MM, McLeod DS, Bhutto IA, Grebe R, Duffy M, Lutty GA. Subretinal Glial Membranes in Eyes With Geographic Atrophy. Invest Ophthalmol Vis Sci 2017; 58:1352-1367. [PMID: 28249091 PMCID: PMC5358932 DOI: 10.1167/iovs.16-21229] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose Müller cells create the external limiting membrane (ELM) by forming junctions with photoreceptor cells. This study evaluated the relationship between focal photoreceptors and RPE loss in geographic atrophy (GA) and Müller cell extension into the subretinal space. Methods Human donor eyes with no retinal disease or geographic atrophy (GA) were fixed and the eye cups imaged. The retinal posterior pole was stained for glial fibrillary acidic protein (GFAP; astrocytes and activated Müller cells) and vimentin (Müller cells) while the submacular choroids were labeled with Ulex Europaeus Agglutinin lectin (blood vessels). Choroids and retinas were imaged using a Zeiss 710 confocal microscope. Additional eyes were cryopreserved or processed for transmission electron microscopy (TEM) to better visualize the Müller cells. Results Vimentin staining of aged control retinas (n = 4) revealed a panretinal cobblestone-like ELM. While this pattern was also observed in the GA retinas (n = 7), each also had a distinct area in which vimentin+ and vimentin+/GFAP+ processes created a subretinal membrane. Subretinal glial membranes closely matched areas of RPE atrophy in the gross photos. Choroidal vascular loss was also evident in these atrophic areas. Smaller glial projections were noted, which correlated with drusen in gross photos. The presence of glia in the subretinal space was confirmed by TEM and cross cross-section immunohistochemistry. Conclusions In eyes with GA, subretinal Müller cell membranes present in areas of RPE atrophy may be a Müller cell attempt to replace the ELM. These membranes could interfere with treatments such as stem cell therapy.
Collapse
Affiliation(s)
- Malia M Edwards
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - D Scott McLeod
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Imran A Bhutto
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Rhonda Grebe
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Maeve Duffy
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Gerard A Lutty
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|