1
|
Kim J, Moon SY, Kang HG, Kim HJ, Choi JS, Lee SHS, Park K, Won SY. Therapeutic potential of AAV2-shmTOR gene therapy in reducing retinal inflammation and preserving endothelial Integrity in age-related macular degeneration. Sci Rep 2025; 15:9517. [PMID: 40108376 PMCID: PMC11923296 DOI: 10.1038/s41598-025-93993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Age-related macular degeneration (AMD) is a prevalent retinal disorder that leads to central vision loss, mainly due to chronic inflammation. Tumor necrosis factor-alpha (TNF-α) is a critical mediator of inflammatory responses within the retinal environment. This study has investigated TNF-α's influence on inflammatory cytokine production and endothelial barrier integrity in human microglial (HMC3) and endothelial (HUVEC) cells. We found that TNF-α significantly elevated the expression and secretion of interleukin-6 (IL-6) and interleukin-1β (IL-1β) in HMC3 cells and disrupted endothelial tight junctions in HUVECs, as evidenced by weakened ZO-1 staining and compromised barrier function. To mitigate these effects and further investigate the in vitro mechanism of actions in CRG-01's in vivo therapeutic efficacy of anti-inflammation, we employed AAV2-shmTOR, CRG-01, as the candidate for therapeutic vector targeting the mammalian target of the rapamycin (mTOR) pathway. TNF-α-induced IL-6, IL-1β, and NF-κB signaling in HMC3 cells were significantly reduced by AAV2-shmTOR treatment, which may present a promising avenue for the fight against AMD. It also effectively preserved endothelial tight junction integrity in TNF-α-treated HUVECs, providing reassurance about its effectiveness. Furthermore, the supernatant medium collected from AAV2-shmTOR-treated HMC3 cells decreased oxidative stress, protein oxidation, and cytotoxicity in ARPE retinal pigment epithelial cells. These results strongly suggested that CRG-01, the candidate therapeutic vector of AAV2-shmTOR, may have a therapeutic potential to treat AMD-related retinal inflammation.
Collapse
Affiliation(s)
- Jin Kim
- Institute of New Drug Development Research, CdmoGen Co., Ltd, Seoul, 05855, Republic of Korea
- CdmoGen Co., Ltd, Cheongju, 28577, Republic of Korea
| | - Seo Yun Moon
- Institute of New Drug Development Research, CdmoGen Co., Ltd, Seoul, 05855, Republic of Korea
- CdmoGen Co., Ltd, Cheongju, 28577, Republic of Korea
| | - Ho Geun Kang
- Institute of New Drug Development Research, CdmoGen Co., Ltd, Seoul, 05855, Republic of Korea
- CdmoGen Co., Ltd, Cheongju, 28577, Republic of Korea
| | - Hee Jong Kim
- Institute of New Drug Development Research, CdmoGen Co., Ltd, Seoul, 05855, Republic of Korea
- CdmoGen Co., Ltd, Cheongju, 28577, Republic of Korea
| | - Jun Sub Choi
- Institute of New Drug Development Research, CdmoGen Co., Ltd, Seoul, 05855, Republic of Korea
- CdmoGen Co., Ltd, Cheongju, 28577, Republic of Korea
| | - Steven Hyun Seung Lee
- Institute of New Drug Development Research, CdmoGen Co., Ltd, Seoul, 05855, Republic of Korea
- CdmoGen Co., Ltd, Cheongju, 28577, Republic of Korea
| | - Keerang Park
- Institute of New Drug Development Research, CdmoGen Co., Ltd, Seoul, 05855, Republic of Korea.
- CdmoGen Co., Ltd, Cheongju, 28577, Republic of Korea.
| | - So-Yoon Won
- Institute of New Drug Development Research, CdmoGen Co., Ltd, Seoul, 05855, Republic of Korea.
- CdmoGen Co., Ltd, Cheongju, 28577, Republic of Korea.
| |
Collapse
|
2
|
Lakkaraju A, Boya P, Csete M, Ferrington DA, Hurley JB, Sadun AA, Shang P, Sharma R, Sinha D, Ueffing M, Brockerhoff SE. How crosstalk between mitochondria, lysosomes, and other organelles can prevent or promote dry age-related macular degeneration. Exp Eye Res 2025; 251:110219. [PMID: 39716681 DOI: 10.1016/j.exer.2024.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 12/25/2024]
Abstract
Organelles such as mitochondria, lysosomes, peroxisomes, and the endoplasmic reticulum form highly dynamic cellular networks and exchange information through sites of physical contact. While each organelle performs unique functions, this inter-organelle crosstalk helps maintain cell homeostasis. Age-related macular degeneration (AMD) is a devastating blinding disease strongly associated with mitochondrial dysfunction, oxidative stress, and decreased clearance of cellular debris in the retinal pigment epithelium (RPE). However, how these occur, and how they relate to organelle function both with the RPE and potentially the photoreceptors are fundamental, unresolved questions in AMD biology. Here, we report the discussions of the "Mitochondria, Lysosomes, and other Organelle Interactions" task group of the 2024 Ryan Initiative for Macular Research (RIMR). Our group focused on understanding the interplay between cellular organelles in maintaining homeostasis in the RPE and photoreceptors, how this could be derailed to promote AMD, and identifying where these pathways could potentially be targeted therapeutically.
Collapse
Affiliation(s)
- Aparna Lakkaraju
- Departments of Ophthalmology and Anatomy, School of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, 94143, USA.
| | - Patricia Boya
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, 1700, Switzerland
| | | | - Deborah A Ferrington
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - James B Hurley
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, WA, USA
| | - Alfredo A Sadun
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Peng Shang
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Debasish Sinha
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marius Ueffing
- Department for Ophthalmology, Institute for Ophthalmic Research, University Eye Clinic, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Susan E Brockerhoff
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Abokyi S, Tse DYY. Age-related driving mechanisms of retinal diseases and neuroprotection by transcription factor EB-targeted therapy. Neural Regen Res 2025; 20:366-377. [PMID: 38819040 PMCID: PMC11317960 DOI: 10.4103/nrr.nrr-d-23-02033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 06/01/2024] Open
Abstract
Retinal aging has been recognized as a significant risk factor for various retinal disorders, including diabetic retinopathy, age-related macular degeneration, and glaucoma, following a growing understanding of the molecular underpinnings of their development. This comprehensive review explores the mechanisms of retinal aging and investigates potential neuroprotective approaches, focusing on the activation of transcription factor EB. Recent meta-analyses have demonstrated promising outcomes of transcription factor EB-targeted strategies, such as exercise, calorie restriction, rapamycin, and metformin, in patients and animal models of these common retinal diseases. The review critically assesses the role of transcription factor EB in retinal biology during aging, its neuroprotective effects, and its therapeutic potential for retinal disorders. The impact of transcription factor EB on retinal aging is cell-specific, influencing metabolic reprogramming and energy homeostasis in retinal neurons through the regulation of mitochondrial quality control and nutrient-sensing pathways. In vascular endothelial cells, transcription factor EB controls important processes, including endothelial cell proliferation, endothelial tube formation, and nitric oxide levels, thereby influencing the inner blood-retinal barrier, angiogenesis, and retinal microvasculature. Additionally, transcription factor EB affects vascular smooth muscle cells, inhibiting vascular calcification and atherogenesis. In retinal pigment epithelial cells, transcription factor EB modulates functions such as autophagy, lysosomal dynamics, and clearance of the aging pigment lipofuscin, thereby promoting photoreceptor survival and regulating vascular endothelial growth factor A expression involved in neovascularization. These cell-specific functions of transcription factor EB significantly impact retinal aging mechanisms encompassing proteostasis, neuronal synapse plasticity, energy metabolism, microvasculature, and inflammation, ultimately offering protection against retinal aging and diseases. The review emphasizes transcription factor EB as a potential therapeutic target for retinal diseases. Therefore, it is imperative to obtain well-controlled direct experimental evidence to confirm the efficacy of transcription factor EB modulation in retinal diseases while minimizing its risk of adverse effects.
Collapse
Affiliation(s)
- Samuel Abokyi
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
- Research Center for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Dennis Yan-yin Tse
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
- Research Center for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
- Center for Eye and Vision Research, Sha Tin, Hong Kong Special Administrative Region, China
| |
Collapse
|
4
|
Khan AH, Mulfaul K. Choroidal macrophages in homeostasis, aging and age-related macular degeneration. Exp Eye Res 2025; 250:110159. [PMID: 39577606 DOI: 10.1016/j.exer.2024.110159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
With increasing age, the optimal functioning of the choroid is essential for efficient removal of waste products formed from photoreceptor renewal. A decline in regulatory elements of the immune system, termed immunosenescence, and the failure of para-inflammation to restore tissue homeostasis can result in the progression of healthy aging to sight-threatening inflammation of the choroid. Macrophages are uniquely situated between the innate and adaptive immune systems, with a high capacity for phagocytosis, recognition of complement components, as well as antigen presentation. In this review, we provide an overview of macrophages and their properties in the healthy choroid and cover the impact of aging, immunosenescence and inflammaging on the function of choroidal macrophages. We will discuss the impact of age on macrophage phenotype and behaviour in the pathophysiology of age-related macular degeneration.
Collapse
Affiliation(s)
- Adnan H Khan
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Kelly Mulfaul
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
5
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2025; 104:101306. [PMID: 39433211 PMCID: PMC11833275 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
6
|
Khan AH, Chowers I, Lotery AJ. Beyond the Complement Cascade: Insights into Systemic Immunosenescence and Inflammaging in Age-Related Macular Degeneration and Current Barriers to Treatment. Cells 2023; 12:1708. [PMID: 37443742 PMCID: PMC10340338 DOI: 10.3390/cells12131708] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Landmark genetic studies have revealed the effect of complement biology and its regulation on the pathogenesis of age-related macular degeneration (AMD). Limited phase 3 clinical trial data showing a benefit of complement inhibition in AMD raises the prospect of more complex mediators at play. Substantial evidence supports the role of para-inflammation in maintaining homeostasis in the retina and choroid. With increasing age, a decline in immune system regulation, known as immunosenescence, has been shown to alter the equilibrium maintained by para-inflammation. The altered equilibrium results in chronic, sterile inflammation with aging, termed 'inflammaging', including in the retina and choroid. The chronic inflammatory state in AMD is complex, with contributions from cells of the innate and adaptive branches of the immune system, sometimes with overlapping features, and the interaction of their secretory products with retinal cells such as microglia and retinal pigment epithelium (RPE), extracellular matrix and choroidal vascular endothelial cells. In this review, the chronic inflammatory state in AMD will be explored by immune cell type, with a discussion of factors that will need to be overcome in the development of curative therapies.
Collapse
Affiliation(s)
- Adnan H. Khan
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Southampton Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Itay Chowers
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Southampton Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| |
Collapse
|
7
|
Wang H, Ramshekar A, Cung T, Wallace-Carrete C, Zaugg C, Nguyen J, Stoddard GJ, Hartnett ME. 7-Ketocholesterol Promotes Retinal Pigment Epithelium Senescence and Fibrosis of Choroidal Neovascularization via IQGAP1 Phosphorylation-Dependent Signaling. Int J Mol Sci 2023; 24:10276. [PMID: 37373423 PMCID: PMC10299509 DOI: 10.3390/ijms241210276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Accumulation of 7-ketocholesterol (7KC) occurs in age-related macular degeneration (AMD) and was found previously to promote fibrosis, an untreatable cause of vision loss, partly through induction of endothelial-mesenchymal transition. To address the hypothesis that 7KC causes mesenchymal transition of retinal pigment epithelial cells (RPE), we exposed human primary RPE (hRPE) to 7KC or a control. 7KC-treated hRPE did not manifest increased mesenchymal markers, but instead maintained RPE-specific proteins and exhibited signs of senescence with increased serine phosphorylation of histone H3, serine/threonine phosphorylation of mammalian target of rapamycin (p-mTOR), p16 and p21, β-galactosidase labeling, and reduced LaminB1, suggesting senescence. The cells also developed senescence-associated secretory phenotype (SASP) determined by increased IL-1β, IL-6, and VEGF through mTOR-mediated NF-κB signaling, and reduced barrier integrity that was restored by the mTOR inhibitor, rapamycin. 7KC-induced p21, VEGF, and IL-1β were inhibited by an inhibitor of protein kinase C. The kinase regulates IQGAP1 serine phosphorylation. Furthermore, after 7KC injection and laser-induced injury, mice with an IQGAP1 serine 1441-point mutation had significantly reduced fibrosis compared to littermate control mice. Our results provide evidence that age-related accumulation of 7KC in drusen mediates senescence and SASP in RPE, and IQGAP1 serine phosphorylation is important in causing fibrosis in AMD.
Collapse
Affiliation(s)
- Haibo Wang
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
- Department of Pathology, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Aniket Ramshekar
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
| | - Thaonhi Cung
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
| | - Chris Wallace-Carrete
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
| | - Chandler Zaugg
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
| | - Jasmine Nguyen
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
| | - Gregory J. Stoddard
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA;
| | - M. Elizabeth Hartnett
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
- Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
8
|
Si Z, Zheng Y, Zhao J. The Role of Retinal Pigment Epithelial Cells in Age-Related Macular Degeneration: Phagocytosis and Autophagy. Biomolecules 2023; 13:901. [PMID: 37371481 DOI: 10.3390/biom13060901] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Age-related macular degeneration (AMD) causes vision loss in the elderly population. Dry AMD leads to the formation of Drusen, while wet AMD is characterized by cell proliferation and choroidal angiogenesis. The retinal pigment epithelium (RPE) plays a key role in AMD pathogenesis. In particular, helioreceptor renewal depends on outer segment phagocytosis of RPE cells, while RPE autophagy can protect cells from oxidative stress damage. However, when the oxidative stress burden is too high and homeostasis is disturbed, the phagocytosis and autophagy functions of RPE become damaged, leading to AMD development and progression. Hence, characterizing the roles of RPE cell phagocytosis and autophagy in the pathogenesis of AMD can inform the development of potential therapeutic targets to prevent irreversible RPE and photoreceptor cell death, thus protecting against AMD.
Collapse
Affiliation(s)
- Zhibo Si
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Jing Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
9
|
Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, Li J. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther 2022; 7:391. [PMID: 36522308 PMCID: PMC9755275 DOI: 10.1038/s41392-022-01251-0] [Citation(s) in RCA: 566] [Impact Index Per Article: 188.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is a gradual and irreversible pathophysiological process. It presents with declines in tissue and cell functions and significant increases in the risks of various aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. Although the development of modern medicine has promoted human health and greatly extended life expectancy, with the aging of society, a variety of chronic diseases have gradually become the most important causes of disability and death in elderly individuals. Current research on aging focuses on elucidating how various endogenous and exogenous stresses (such as genomic instability, telomere dysfunction, epigenetic alterations, loss of proteostasis, compromise of autophagy, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing) participate in the regulation of aging. Furthermore, thorough research on the pathogenesis of aging to identify interventions that promote health and longevity (such as caloric restriction, microbiota transplantation, and nutritional intervention) and clinical treatment methods for aging-related diseases (depletion of senescent cells, stem cell therapy, antioxidative and anti-inflammatory treatments, and hormone replacement therapy) could decrease the incidence and development of aging-related diseases and in turn promote healthy aging and longevity.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| |
Collapse
|
10
|
Terao R, Ahmed T, Suzumura A, Terasaki H. Oxidative Stress-Induced Cellular Senescence in Aging Retina and Age-Related Macular Degeneration. Antioxidants (Basel) 2022; 11:2189. [PMID: 36358561 PMCID: PMC9686487 DOI: 10.3390/antiox11112189] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 07/30/2023] Open
Abstract
Aging leads to a gradual decline of function in multiple organs. Cataract, glaucoma, diabetic retinopathy, and age-related macular degeneration (AMD) are age-related ocular diseases. Because their pathogenesis is unclear, it is challenging to combat age-related diseases. Cellular senescence is a cellular response characterized by cell cycle arrest. Cellular senescence is an important contributor to aging and age-related diseases through the alteration of cellular function and the secretion of senescence-associated secretory phenotypes. As a driver of stress-induced premature senescence, oxidative stress triggers cellular senescence and age-related diseases by inducing senescence markers via reactive oxygen species and mitochondrial dysfunction. In this review, we focused on the mechanism of oxidative stress-induced senescence in retinal cells and its role in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Ryo Terao
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Tazbir Ahmed
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Ayana Suzumura
- Department of Ophthalmology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Hiroko Terasaki
- Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
11
|
Intartaglia D, Giamundo G, Conte I. Autophagy in the retinal pigment epithelium: a new vision and future challenges. FEBS J 2022; 289:7199-7212. [PMID: 33993621 PMCID: PMC9786786 DOI: 10.1111/febs.16018] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/07/2021] [Accepted: 05/12/2021] [Indexed: 01/13/2023]
Abstract
The retinal pigment epithelium (RPE) is a highly specialized monolayer of polarized, pigmented epithelial cells that resides between the vessels of the choriocapillaris and the neural retina. The RPE is essential for the maintenance and survival of overlying light-sensitive photoreceptors, as it participates in the formation of the outer blood-retinal barrier, phagocytosis, degradation of photoreceptor outer segment (POS) tips, maintenance of the retinoid cycle, and protection against light and oxidative stress. Autophagy is an evolutionarily conserved 'self-eating' process, designed to maintain cellular homeostasis. The daily autophagy demands in the RPE require precise gene regulation for the digestion and recycling of intracellular and POS components in lysosomes in response to light and stress conditions. In this review, we discuss selective autophagy and focus on the recent advances in our understanding of the mechanism of cell clearance in the RPE for visual function. Understanding how this catabolic process is regulated by both transcriptional and post-transcriptional mechanisms in the RPE will promote the recognition of pathological pathways in genetic disease and shed light on potential therapeutic strategies to treat visual impairments in patients with retinal disorders associated with lysosomal dysfunction.
Collapse
Affiliation(s)
| | | | - Ivan Conte
- Telethon Institute of Genetics and MedicinePozzuoli (Naples)Italy,Department of BiologyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
12
|
Nicotinamide Mononucleotide Ameliorates Cellular Senescence and Inflammation Caused by Sodium Iodate in RPE. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5961123. [PMID: 35898618 PMCID: PMC9313989 DOI: 10.1155/2022/5961123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/29/2022] [Indexed: 11/28/2022]
Abstract
Senescent cells have been demonstrated to have lower cellular NAD+ levels and are involved in the development of various age-related diseases, including age-related macular degeneration (AMD). Sodium iodate (NaIO3) has been primarily used as an oxidant to establish a model of dry AMD. Results of previous studies have showed that NaIO3 induced retinal tissue senescence in vivo. However, the role of NaIO3 and the mechanism by which it induces retinal pigment epithelium (RPE) senescence remains unknown. In this study, RPE cell senescence was confirmed to be potentially induced by NaIO3. The results showed that the number of senescence-associated-β-galactosidase (SA-β-gal-)-positive cells and the protein levels of p16 and p21 increased after NaIO3 treatment. Additionally, the senescent RPE cells underwent oxidative stress and NAD+ depletion. Furthermore, significant DNA damage and mitochondrial dysfunction were also detected in senescent RPE cells. The antioxidant N-acetylcysteine (NAC) could alleviate cellular senescence only by a minimal degree, whereas supplementation with nicotinamide mononucleotide (NMN) strongly ameliorated RPE senescence through the alleviation of DNA damage and the maintenance of mitochondrial function. The protective effects of NMN were demonstrated to rely on undisturbed Sirt1 signaling. Moreover, both the expression of senescence markers of RPE and subretinal inflammatory cell infiltration were decreased by NMN treatment in vivo. Our results indicate that RPE senescence induced by NaIO3 acquired several key features of AMD. More importantly, NMN may potentially be used to treat RPE senescence and senescence-associated pre-AMD changes by restoring the NAD+ levels in cells and tissues.
Collapse
|
13
|
Voisin A, Gaillard A, Balbous A, Leveziel N. Proteins Associated with Phagocytosis Alteration in Retinal Pigment Epithelial Cells Derived from Age-Related Macular Degeneration Patients. Antioxidants (Basel) 2022; 11:antiox11040713. [PMID: 35453399 PMCID: PMC9028973 DOI: 10.3390/antiox11040713] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023] Open
Abstract
Age-related macular degeneration (AMD) is partially characterized by retinal pigment epithelial (RPE) cell dysfunction. This study focused on phagocytosis activity and its involvement in AMD. Phagocytic activity was analyzed by flow cytometry using porcine photoreceptor outer segment (POS) and fluorescent beads in basal and under oxidative stress condition induced by Fe-NTA in fifteen hiPSC-RPE cell lines (six controls, six atrophic AMD and three exudative AMD). Oxidative stress exposure inhibited phagocytosis in the same manner for control, atrophic AMD (AMDa) and exudative AMD (AMDe) cell lines. However, altered phagocytosis in basal condition in hiPSC-RPE AMDa/e was observed compared to control cell lines. Gene expression after 3 or 24 h of POS incubation was analyzed by RNA-Seq based transcriptomic profiling. Differential gene expression was observed by RNA seq after 3 and 24 h POS exposure. We have focused on the genes involved in mTOR/PI3K-AKT/MEK-ERK pathway. We investigated differences in gene expression by analyzing the expression levels and activity of the corresponding proteins by Western blot. We showed the involvement of three proteins essential for phagocytosis activity: fak, tuberin and rictor. These findings demonstrate that hiPSC-RPE AMDa/e cells have a typical disease phenotype characterized by alteration of the main function of RPE cells, phagocytosis activity.
Collapse
Affiliation(s)
- Audrey Voisin
- Laboratoire de Neurosciences Expérimentales et Cliniques, Equipe Thérapie Cellulaire dans les Pathologies Cérébrales, INSERM, Université de Poitiers, F-86073 Poitiers, France; (A.G.); (A.B.); (N.L.)
- CHU Poitiers, F-86021 Poitiers, France
- Correspondence:
| | - Afsaneh Gaillard
- Laboratoire de Neurosciences Expérimentales et Cliniques, Equipe Thérapie Cellulaire dans les Pathologies Cérébrales, INSERM, Université de Poitiers, F-86073 Poitiers, France; (A.G.); (A.B.); (N.L.)
| | - Anaïs Balbous
- Laboratoire de Neurosciences Expérimentales et Cliniques, Equipe Thérapie Cellulaire dans les Pathologies Cérébrales, INSERM, Université de Poitiers, F-86073 Poitiers, France; (A.G.); (A.B.); (N.L.)
- CHU Poitiers, F-86021 Poitiers, France
| | - Nicolas Leveziel
- Laboratoire de Neurosciences Expérimentales et Cliniques, Equipe Thérapie Cellulaire dans les Pathologies Cérébrales, INSERM, Université de Poitiers, F-86073 Poitiers, France; (A.G.); (A.B.); (N.L.)
- CHU Poitiers, F-86021 Poitiers, France
| |
Collapse
|
14
|
Shukal DK, Malaviya PB, Sharma T. Role of the AMPK signalling pathway in the aetiopathogenesis of ocular diseases. Hum Exp Toxicol 2022; 41:9603271211063165. [PMID: 35196887 DOI: 10.1177/09603271211063165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) plays a precise role as a master regulator of cellular energy homeostasis. AMPK is activated in response to the signalling cues that exhaust cellular ATP levels such as hypoxia, ischaemia, glucose depletion and heat shock. As a central regulator of both lipid and glucose metabolism, AMPK is considered to be a potential therapeutic target for the treatment of various diseases, including eye disorders. OBJECTIVE To review all the shreds of evidence concerning the role of the AMPK signalling pathway in the pathogenesis of ocular diseases. METHOD Scientific data search and review of available information evaluating the influence of AMPK signalling on ocular diseases. RESULTS Review highlights the significance of AMPK signalling in the aetiopathogenesis of ocular diseases, including cataract, glaucoma, diabetic retinopathy, retinoblastoma, age-related macular degeneration, corneal diseases, etc. The review also provides the information on the AMPK-associated pathways with reference to ocular disease, which includes mitochondrial biogenesis, autophagy and regulation of inflammatory response. CONCLUSION The study concludes the role of AMPK in ocular diseases. There is growing interest in the therapeutic utilization of the AMPK pathway for ocular disease treatment. Furthermore, inhibition of AMPK signalling might represent more pertinent strategy than AMPK activation for ocular disease treatment. Such information will guide the development of more effective AMPK modulators for ocular diseases.[Formula: see text].
Collapse
Affiliation(s)
- Dhaval K Shukal
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India.,76793Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Pooja B Malaviya
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India.,76793Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Tusha Sharma
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India
| |
Collapse
|
15
|
Yang L, Yu P, Chen M, Lei B. Mammalian Target of Rapamycin Inhibitor Rapamycin Alleviates 7-Ketocholesterol Induced Inflammatory Responses and Vascular Endothelial Growth Factor Elevation by Regulating MAPK Pathway in Human Retinal Pigment Epithelium Cells. J Ocul Pharmacol Ther 2021; 38:189-200. [PMID: 34936813 DOI: 10.1089/jop.2021.0082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose: To validate the protective effect of a mammalian target of rapamycin (mTOR) inhibitor on human retinal pigment epithelium (RPE) cells challenged with 7-ketocholesterol (7-KC) and explored the underlying mechanisms. Methods: Human primary RPE (hRPE) cells and ARPE-19 cells were cultured with or without 10 nM of rapamycin for 6 h before being exposed to 10 μM of 7-KC for 24 h. The transcriptome of 7-KC challenged ARPE-19 cells was investigated by RNA sequencing (RNA-seq). The effects of 7-KC and rapamycin on the viability of ARPE-19 cells were measured with CCK-8. Gene expression was verified by real-time PCR, and protein levels were determined by ELISA or Western blotting. Results: The expression of IL-6, IL-8, and vascular endothelial growth factor (VEGF) in RPE cells was markedly increased after stimulation with 7-KC for 12/24 h compared with the controls. RNA-seq showed that a total of 10,243 genes were differentially expressed, with 5,518 genes upregulated and 4,725 genes downregulated between the 7-KC treated and the control group. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that 7-KC stimulation activated mTOR signaling and other pathways, including adherent junction, MAPK, and Wnt signalings. mTOR inhibitor rapamycin significantly suppressed the elevation of IL-6, IL-8, and VEGF stimulated by 7-KC. Rapamycin not only decreased the level of phosphorylated mTOR, P70S6K, 4EBP1 but also inhibited the activation of MAPK pathway. Conclusions: Inhibition of mTOR signaling pathway suppressed the elevation of inflammatory cytokines IL-6, IL-8, and the angiogenic agent VEGF induced by 7-KC. The protective effect of rapamycin was associated with its downregulation on MAPK pathway.
Collapse
Affiliation(s)
- Lin Yang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Peng Yu
- Department of Ophthalmology, People's Hospital of Changshou District, Chongqing, China
| | - Mei Chen
- Centre for Experimental Medicine, Queen's University, Belfast, United Kingdom
| | - Bo Lei
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Merle DA, Provenzano F, Jarboui MA, Kilger E, Clark SJ, Deleidi M, Armento A, Ueffing M. mTOR Inhibition via Rapamycin Treatment Partially Reverts the Deficit in Energy Metabolism Caused by FH Loss in RPE Cells. Antioxidants (Basel) 2021; 10:1944. [PMID: 34943047 PMCID: PMC8750186 DOI: 10.3390/antiox10121944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/30/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex degenerative disease of the retina with multiple risk-modifying factors, including aging, genetics, and lifestyle choices. The combination of these factors leads to oxidative stress, inflammation, and metabolic failure in the retinal pigment epithelium (RPE) with subsequent degeneration of photoreceptors in the retina. The alternative complement pathway is tightly linked to AMD. In particular, the genetic variant in the complement factor H gene (CFH), which leads to the Y402H polymorphism in the factor H protein (FH), confers the second highest risk for the development and progression of AMD. Although the association between the FH Y402H variant and increased complement system activation is known, recent studies have uncovered novel FH functions not tied to this activity and highlighted functional relevance for intracellular FH. In our previous studies, we show that loss of CFH expression in RPE cells causes profound disturbances in cellular metabolism, increases the vulnerability towards oxidative stress, and modulates the activation of pro-inflammatory signaling pathways, most importantly the NF-kB pathway. Here, we silenced CFH in hTERT-RPE1 cells to investigate the mechanism by which intracellular FH regulates RPE cell homeostasis. We found that silencing of CFH results in hyperactivation of mTOR signaling along with decreased mitochondrial respiration and that mTOR inhibition via rapamycin can partially rescue these metabolic defects. To obtain mechanistic insight into the function of intracellular FH in hTERT-RPE1 cells, we analyzed the interactome of FH via immunoprecipitation followed by mass spectrometry-based analysis. We found that FH interacts with essential components of the ubiquitin-proteasomal pathway (UPS) as well as with factors associated with RB1/E2F signalling in a complement-pathway independent manner. Moreover, we found that FH silencing affects mRNA levels of the E3 Ubiquitin-Protein Ligase Parkin and PTEN induced putative kinase (Pink1), both of which are associated with UPS. As inhibition of mTORC1 was previously shown to result in increased overall protein degradation via UPS and as FH mRNA and protein levels were shown to be affected by inhibition of UPS, our data stress a potential regulatory link between endogenous FH activity and the UPS.
Collapse
Affiliation(s)
- David A. Merle
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Department of Ophthalmology, Medical University of Graz, 8036 Graz, Austria
| | - Francesca Provenzano
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany; (F.P.); (M.D.)
| | - Mohamed Ali Jarboui
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, Eberhard-Karls University of Tuebingen, 72076 Tübingen, Germany
| | - Ellen Kilger
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
| | - Simon J. Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Michela Deleidi
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany; (F.P.); (M.D.)
| | - Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany; (F.P.); (M.D.)
| |
Collapse
|
17
|
mTORC1 Activation in Chx10-Specific Tsc1 Knockout Mice Accelerates Retina Aging and Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6715758. [PMID: 34777691 PMCID: PMC8589503 DOI: 10.1155/2021/6715758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022]
Abstract
Age-associated decline in retina function is largely responsible for the irreversible vision deterioration in the elderly population. It is also an important risk factor for the development of degenerative and angiogenic diseases. However, the molecular mechanisms involved in the process of aging in the retina remain largely elusive. This study investigated the role of mTORC1 signaling in aging of the retina. We showed that mTORC1 was activated in old-aged retina, particularly in the ganglion cells. The role of mTORC1 activation was further investigated in Chx10-Cre;Tsc1fx/fx mouse (Tsc1-cKO). Activation of mTORC1 was found in bipolar and some of the ganglion and amacrine cells in the adult Tsc1-cKO retina. Bipolar cell hypertrophy and Müller gliosis were observed in Tsc1-cKO since 6 weeks of age. The abnormal endings of bipolar cell dendritic tips at the outer nuclear layer resembled that of the old-aged mice. Microglial cell activation became evident in 6-week-old Tsc1-cKO. At 5 months, the Tsc1-cKO mice exhibited advanced features of old-aged retina, including the expression of p16Ink4a and p21, expression of SA-β-gal in ganglion cells, decreased photoreceptor cell numbers, decreased electroretinogram responses, increased oxidative stress, microglial cell activation, and increased expression of immune and inflammatory genes. Inhibition of microglial cells by minocycline partially prevented photoreceptor cell loss and restored the electroretinogram responses. Collectively, our study showed that the activation of mTORC1 signaling accelerated aging of the retina by both cell autonomous and nonautonomous mechanisms. Our study also highlighted the role of microglia cells in driving the decline in retina function.
Collapse
|
18
|
Lee HS, Park HW. Role of mTOR in the development of asthma in mice with cigarette smoke-induced cellular senescence. J Gerontol A Biol Sci Med Sci 2021; 77:433-442. [PMID: 34723336 PMCID: PMC8893251 DOI: 10.1093/gerona/glab303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 11/14/2022] Open
Abstract
The role of cellular senescence in the development of asthma is not well known. We aimed to evaluate the susceptibility of mice with cellular senescence to asthma development and determine whether the mTOR pathway played an important role in this process. Cellular senescence was induced in mice by intranasal instillation of 2% cigarette smoke extract (CSE). Subsequently, a low dose (0.1 μg) of house dust mite (HDM) allergens, which cause no inflammation and airway hyperresponsiveness (AHR) in mice without cellular senescence, was administered intranasally. To evaluate the role of the mTOR pathway in this model, rapamycin (TORC1 inhibitor) was injected intraperitoneally before CSE instillation. CSE significantly increased senescence-associated β-gal activity in lung homogenate and S100A8/9+ p-mTOR+ population in lung cells. Moreover, S100A8/9+ or HMGB1+ populations in airway epithelial cells with p-mTOR activity increased remarkably. Rapamycin attenuated all changes. Subsequent administration of low-dose HDM allergen induced murine asthma characterized by increased AHR, serum HDM-specific immunoglobulin E, and eosinophilic airway inflammation; these asthma characteristics disappeared after rapamycin injection. In vitro experiments showed significant activation of bone marrow-derived cells cocultured with S100A9 or HMGB1 overexpressing MLE-12 cells treated with HDM allergen, compared to those treated with HDM allergen only. CSE increased the levels of senescence markers (S100A8/9 and HMGB1) in airway epithelial cells, making the mice susceptible to asthma development due to low-dose HDM allergens by activating dendritic cells. Because rapamycin significantly attenuated asthma characteristics, the mTOR pathway may be important in this murine model.
Collapse
Affiliation(s)
- Hyun Seung Lee
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Heung-Woo Park
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
19
|
Zhang M, Serna-Salas S, Damba T, Borghesan M, Demaria M, Moshage H. Hepatic stellate cell senescence in liver fibrosis: Characteristics, mechanisms and perspectives. Mech Ageing Dev 2021; 199:111572. [PMID: 34536446 DOI: 10.1016/j.mad.2021.111572] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/15/2021] [Accepted: 09/10/2021] [Indexed: 02/08/2023]
Abstract
Myofibroblasts play an important role in fibrogenesis. Hepatic stellate cells are the main precursors of myofibroblasts. Cellular senescence is the terminal cell fate in which proliferating cells undergo irreversible cell cycle arrest. Senescent hepatic stellate cells were identified in liver fibrosis. Senescent hepatic stellate cells display decreased collagen production and proliferation. Therefore, induction of senescence could be a protective mechanism against progression of liver fibrosis and the concept of therapy-induced senescence has been proposed to treat liver fibrosis. In this review, characteristics of senescent hepatic stellate cells and the essential signaling pathways involved in senescence are reviewed. Furthermore, the potential impact of senescent hepatic stellate cells on other liver cell types are discussed. Senescent cells are cleared by the immune system. The persistence of senescent cells can remodel the microenvironment and interact with inflammatory cells to induce aging-related dysfunction. Therefore, senolytics, a class of compounds that selectively induce death of senescent cells, were introduced as treatment to remove senescent cells and consequently decrease the disadvantageous effects of persisting senescent cells. The effects of senescent hepatic stellate cells in liver fibrosis need further investigation.
Collapse
Affiliation(s)
- Mengfan Zhang
- Dept. of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sandra Serna-Salas
- Dept. of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Turtushikh Damba
- Dept. of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Michaela Borghesan
- European Research Institute on the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marco Demaria
- European Research Institute on the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Han Moshage
- Dept. of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
20
|
Cayo A, Segovia R, Venturini W, Moore-Carrasco R, Valenzuela C, Brown N. mTOR Activity and Autophagy in Senescent Cells, a Complex Partnership. Int J Mol Sci 2021; 22:ijms22158149. [PMID: 34360912 PMCID: PMC8347619 DOI: 10.3390/ijms22158149] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is a form of proliferative arrest triggered in response to a wide variety of stimuli and characterized by unique changes in cell morphology and function. Although unable to divide, senescent cells remain metabolically active and acquire the ability to produce and secrete bioactive molecules, some of which have recognized pro-inflammatory and/or pro-tumorigenic actions. As expected, this “senescence-associated secretory phenotype (SASP)” accounts for most of the non-cell-autonomous effects of senescent cells, which can be beneficial or detrimental for tissue homeostasis, depending on the context. It is now evident that many features linked to cellular senescence, including the SASP, reflect complex changes in the activities of mTOR and other metabolic pathways. Indeed, the available evidence indicates that mTOR-dependent signaling is required for the maintenance or implementation of different aspects of cellular senescence. Thus, depending on the cell type and biological context, inhibiting mTOR in cells undergoing senescence can reverse senescence, induce quiescence or cell death, or exacerbate some features of senescent cells while inhibiting others. Interestingly, autophagy—a highly regulated catabolic process—is also commonly upregulated in senescent cells. As mTOR activation leads to repression of autophagy in non-senescent cells (mTOR as an upstream regulator of autophagy), the upregulation of autophagy observed in senescent cells must take place in an mTOR-independent manner. Notably, there is evidence that autophagy provides free amino acids that feed the mTOR complex 1 (mTORC1), which in turn is required to initiate the synthesis of SASP components. Therefore, mTOR activation can follow the induction of autophagy in senescent cells (mTOR as a downstream effector of autophagy). These functional connections suggest the existence of autophagy regulatory pathways in senescent cells that differ from those activated in non-senescence contexts. We envision that untangling these functional connections will be key for the generation of combinatorial anti-cancer therapies involving pro-senescence drugs, mTOR inhibitors, and/or autophagy inhibitors.
Collapse
Affiliation(s)
- Angel Cayo
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
| | - Raúl Segovia
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
| | - Whitney Venturini
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, Talca 346000, Chile;
| | - Rodrigo Moore-Carrasco
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, Talca 346000, Chile;
| | - Claudio Valenzuela
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
| | - Nelson Brown
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
- Correspondence:
| |
Collapse
|
21
|
Saltykova IV, Elahi A, Pitale PM, Gorbatyuk OS, Athar M, Gorbatyuk MS. Tribbles homolog 3-mediated targeting the AKT/mTOR axis in mice with retinal degeneration. Cell Death Dis 2021; 12:664. [PMID: 34215725 PMCID: PMC8253859 DOI: 10.1038/s41419-021-03944-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
Various retinal degenerative disorders manifest in alterations of the AKT/mTOR axis. Despite this, consensus on the therapeutic targeting of mTOR in degenerating retinas has not yet been achieved. Therefore, we investigated the role of AKT/mTOR signaling in rd16 retinas, in which we restored the AKT/mTOR axis by genetic ablation of pseudokinase TRB3, known to inhibit phosphorylation of AKT and mTOR. First, we found that TRB3 ablation resulted in preservation of photoreceptor function in degenerating retinas. Then, we learned that the mTOR downstream cellular pathways involved in the homeostasis of photoreceptors were also reprogrammed in rd16 TRB3-/- retinas. Thus, the level of inactivated translational repressor p-4E-BP1 was significantly increased in these mice along with the restoration of translational rate. Moreover, in rd16 mice manifesting decline in p-mTOR at P15, we found elevated expression of Beclin-1 and ATG5 autophagy genes. Thus, these mice showed impaired autophagy flux measured as an increase in LC3 conversion and p62 accumulation. In addition, the RFP-EGFP-LC3 transgene expression in rd16 retinas resulted in statistically fewer numbers of red puncta in photoreceptors, suggesting impaired late autophagic vacuoles. In contrast, TRIB3 ablation in these mice resulted in improved autophagy flux. The restoration of translation rate and the boost in autophagosome formation occurred concomitantly with an increase in total Ub and rhodopsin protein levels and the elevation of E3 ligase Parkin1. We propose that TRB3 may retard retinal degeneration and be a promising therapeutic target to treat various retinal degenerative disorders.
Collapse
Affiliation(s)
- Irina V Saltykova
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Asif Elahi
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Priyam M Pitale
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Oleg S Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohammad Athar
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marina S Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
22
|
Zhang Q, Presswalla F, Ali RR, Zacks DN, Thompson DA, Miller JML. Pharmacologic activation of autophagy without direct mTOR inhibition as a therapeutic strategy for treating dry macular degeneration. Aging (Albany NY) 2021; 13:10866-10890. [PMID: 33872219 PMCID: PMC8109132 DOI: 10.18632/aging.202974] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/13/2021] [Indexed: 12/15/2022]
Abstract
Dry age-related macular degeneration (AMD) is marked by the accumulation of extracellular and intracellular lipid-rich deposits within and around the retinal pigment epithelium (RPE). Inducing autophagy, a conserved, intracellular degradative pathway, is a potential treatment strategy to prevent disease by clearing these deposits. However, mTOR inhibition, the major mechanism for inducing autophagy, disrupts core RPE functions. Here, we screened autophagy inducers that do not directly inhibit mTOR for their potential as an AMD therapeutic in primary human RPE culture. Only two out of more than thirty autophagy inducers tested reliably increased autophagy flux in RPE, emphasizing that autophagy induction mechanistically differs across distinct tissues. In contrast to mTOR inhibitors, these compounds preserved RPE health, and one inducer, the FDA-approved compound flubendazole (FLBZ), reduced the secretion of apolipoprotein that contributes to extracellular deposits termed drusen. Simultaneously, FLBZ increased production of the lipid-degradation product β-hydroxybutyrate, which is used by photoreceptor cells as an energy source. FLBZ also reduced the accumulation of intracellular deposits, termed lipofuscin, and alleviated lipofuscin-induced cellular senescence and tight-junction disruption. FLBZ triggered compaction of lipofuscin-like granules into a potentially less toxic form. Thus, induction of RPE autophagy without direct mTOR inhibition is a promising therapeutic approach for dry AMD.
Collapse
Affiliation(s)
- Qitao Zhang
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Feriel Presswalla
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Robin R. Ali
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
- KCL Centre for Cell and Gene Therapy, London, England WC2R 2LS, United Kingdom
| | - David N. Zacks
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Debra A. Thompson
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jason ML. Miller
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
23
|
Lee KS, Lin S, Copland DA, Dick AD, Liu J. Cellular senescence in the aging retina and developments of senotherapies for age-related macular degeneration. J Neuroinflammation 2021; 18:32. [PMID: 33482879 PMCID: PMC7821689 DOI: 10.1186/s12974-021-02088-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
Age-related macular degeneration (AMD), a degenerative disease in the central macula area of the neuroretina and the supporting retinal pigment epithelium, is the most common cause of vision loss in the elderly. Although advances have been made, treatment to prevent the progressive degeneration is lacking. Besides the association of innate immune pathway genes with AMD susceptibility, environmental stress- and cellular senescence-induced alterations in pathways such as metabolic functions and inflammatory responses are also implicated in the pathophysiology of AMD. Cellular senescence is an adaptive cell process in response to noxious stimuli in both mitotic and postmitotic cells, activated by tumor suppressor proteins and prosecuted via an inflammatory secretome. In addition to physiological roles in embryogenesis and tissue regeneration, cellular senescence is augmented with age and contributes to a variety of age-related chronic conditions. Accumulation of senescent cells accompanied by an impairment in the immune-mediated elimination mechanisms results in increased frequency of senescent cells, termed “chronic” senescence. Age-associated senescent cells exhibit abnormal metabolism, increased generation of reactive oxygen species, and a heightened senescence-associated secretory phenotype that nurture a proinflammatory milieu detrimental to neighboring cells. Senescent changes in various retinal and choroidal tissue cells including the retinal pigment epithelium, microglia, neurons, and endothelial cells, contemporaneous with systemic immune aging in both innate and adaptive cells, have emerged as important contributors to the onset and development of AMD. The repertoire of senotherapeutic strategies such as senolytics, senomorphics, cell cycle regulation, and restoring cell homeostasis targeted both at tissue and systemic levels is expanding with the potential to treat a spectrum of age-related diseases, including AMD.
Collapse
Affiliation(s)
- Keng Siang Lee
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Shuxiao Lin
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - David A Copland
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Andrew D Dick
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK. .,Institute of Ophthalmology, University College London, London, EC1V 9EL, UK. .,National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, EC1V 2QH, UK.
| | - Jian Liu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
24
|
Go YM, Zhang J, Fernandes J, Litwin C, Chen R, Wensel TG, Jones DP, Cai J, Chen Y. MTOR-initiated metabolic switch and degeneration in the retinal pigment epithelium. FASEB J 2020; 34:12502-12520. [PMID: 32721041 DOI: 10.1096/fj.202000612r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
The retinal pigment epithelium (RPE) is a particularly vulnerable tissue to age-dependent degeneration. Over the life span, the RPE develops an expanded endo-lysosomal compartment to maintain the high efficiency of phagocytosis and degradation of photoreceptor outer segments (POS) necessary for photoreceptor survival. As the assembly and activation of the mechanistic target of rapamycin complex 1 (mTORC1) occur on the lysosome surface, increased lysosome mass with aging leads to higher mTORC1 activity. The functional consequences of hyperactive mTORC1 in the RPE are unclear. In the current study, we used integrated high-resolution metabolomic and genomic approaches to examine mice with RPE-specific deletion of the tuberous sclerosis 1 (Tsc1) gene which encodes an upstream suppressor of mTORC1. Our data show that RPE cells with constitutively high mTORC1 activity were reprogramed to be hyperactive in glucose and lipid metabolism. Lipolysis was suppressed, mitochondrial carnitine shuttle was inhibited, while genes involved in fatty acid (FA) biosynthesis were upregulated. The metabolic changes occurred prior to structural changes of RPE and retinal degeneration. These findings have revealed cellular events and intrinsic mechanisms that contribute to lipid accumulation in the RPE cells during aging and age-related degeneration.
Collapse
Affiliation(s)
- Young-Mi Go
- Department of Medicine, Emory University, Atlanta, GA, USA
| | - Jing Zhang
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jolyn Fernandes
- Department of Medicine, Emory University, Atlanta, GA, USA.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Christopher Litwin
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rui Chen
- Department of Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Biochemistry, Baylor College of Medicine, Houston, TX, USA
| | - Theodore G Wensel
- Department of Biochemistry, Baylor College of Medicine, Houston, TX, USA
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, GA, USA
| | - Jiyang Cai
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yan Chen
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
25
|
Joseph C, Mangani AS, Gupta V, Chitranshi N, Shen T, Dheer Y, Kb D, Mirzaei M, You Y, Graham SL, Gupta V. Cell Cycle Deficits in Neurodegenerative Disorders: Uncovering Molecular Mechanisms to Drive Innovative Therapeutic Development. Aging Dis 2020; 11:946-966. [PMID: 32765956 PMCID: PMC7390532 DOI: 10.14336/ad.2019.0923] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Cell cycle dysregulation has been implicated in the pathogenesis of neurodegenerative disorders. Specialised function obligates neuronal cells to subsist in a quiescent state of cell cycle once differentiated and therefore the circumstances and mechanisms underlying aberrant cell cycle activation in post-mitotic neurons in physiological and disease conditions remains an intriguing area of research. There is a strict requirement of concurrence to cell cycle regulation for neurons to ensure intracellular biochemical conformity as well as interrelationship with other cells within neural tissues. This review deliberates on various mechanisms underlying cell cycle regulation in neuronal cells and underscores potential implications of their non-compliance in neural pathology. Recent research suggests that successful duplication of genetic material without subsequent induction of mitosis induces inherent molecular flaws that eventually assert as apoptotic changes. The consequences of anomalous cell cycle activation and subsequent apoptosis are demonstrated by the increased presence of molecular stress response and apoptotic markers. This review delineates cell cycle events under normal physiological conditions and deficits amalgamated by alterations in protein levels and signalling pathways associated with cell-division are analysed. Cell cycle regulators essentially, cyclins, CDKs, cip/kip family of inhibitors, caspases, bax and p53 have been identified to be involved in impaired cell cycle regulation and associated with neural pathology. The pharmacological modulators of cell cycle that are shown to impart protection in various animal models of neurological deficits are summarised. Greater understanding of the molecular mechanisms that are indispensable to cell cycle regulation in neurons in health and disease conditions will facilitate targeted drug development for neuroprotection.
Collapse
Affiliation(s)
- Chitra Joseph
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | | | - Veer Gupta
- 2School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Nitin Chitranshi
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ting Shen
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yogita Dheer
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Devaraj Kb
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Mehdi Mirzaei
- 3Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yuyi You
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.,4Save Sight Institute, Sydney University, Sydney, NSW 2109, Australia
| | - Stuart L Graham
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.,4Save Sight Institute, Sydney University, Sydney, NSW 2109, Australia
| | - Vivek Gupta
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
26
|
Perumal N, Straßburger L, Herzog DP, Müller MB, Pfeiffer N, Grus FH, Manicam C. Bioenergetic shift and actin cytoskeleton remodelling as acute vascular adaptive mechanisms to angiotensin II in murine retina and ophthalmic artery. Redox Biol 2020; 34:101597. [PMID: 32513477 PMCID: PMC7327981 DOI: 10.1016/j.redox.2020.101597] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
Ocular vascular dysfunction is a major contributing factor to the pathogenesis of glaucoma. In recent years, there has been a renewed interest in the role of angiotensin II (Ang II) in mediating the disease progression. Despite its (patho)physiological importance, the molecular mechanisms underlying Ang II-mediated oxidative stress remain largely unexplored in the ocular vasculature. Here, we provide the first direct evidence of the alterations of proteome and signalling pathways underlying Ang II-elicited oxidative insult independent of arterial pressure changes in the ophthalmic artery (OA) and retina (R) employing an in vitro experimental model. Both R and OA were isolated from male C57Bl/6J mice (n = 15/group; n = 5/biological replicate) and incubated overnight in medium containing either vehicle or Ang II (0.1 μM) at physiological conditions. Label-free quantitative mass spectrometry (MS)-based proteomics analysis identified a differential expression of 107 and 34 proteins in the R and OA, respectively. Statistical and bioinformatics analyses revealed that protein clusters involved in actin cytoskeleton and integrin-linked kinase signalling were significantly activated in the OA. Conversely, a large majority of differentially expressed retinal proteins were involved in dysregulation of numerous energy-producing and metabolic signalling pathways, hinting to a possible shift in retinal cell bioenergetics. Particularly, Ang II-mediated downregulation of septin-7 (Sept7; p < 0.01) and superoxide dismutase [Cu-Zn] (Sod1; p < 0.05), and upregulation of troponin T, fast skeletal muscle (Tnnt3; p < 0.05) and tropomyosin alpha-3 chain (Tpm3; p < 0.01) in the OA, and significant decreased expressions of two crystallin proteins (Cryab; p < 0.05 and Crybb2; p < 0.0001) in the R were verified at the mRNA level, corroborating our proteomics findings. In summary, these results demonstrated that exogenous application of Ang II over an acute time period caused impairment of retinal bioenergetics and cellular demise, and actin cytoskeleton-mediated vascular remodelling in the OA. Acute Ang II stimulation elicits oxidative stress in ocular vasculature without pressor effect. . Dysregulation of energy-producing and metabolic pathways are implicated in the retina. . Actin cytoskeleton remodelling are vascular adaptation processes in the ophthalmic artery. .
Collapse
Affiliation(s)
- Natarajan Perumal
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Lars Straßburger
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - David P Herzog
- Department of Psychiatry and Psychotherapy & Focus Program Translational Neurosciences (FTN), University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Marianne B Müller
- Department of Psychiatry and Psychotherapy & Focus Program Translational Neurosciences (FTN), University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Franz H Grus
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
27
|
Altered photoreceptor metabolism in mouse causes late stage age-related macular degeneration-like pathologies. Proc Natl Acad Sci U S A 2020; 117:13094-13104. [PMID: 32434914 PMCID: PMC7293639 DOI: 10.1073/pnas.2000339117] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The main cause for blindness in the elderly worldwide is age-related macular degeneration (AMD). What causes AMD remains unknown. The high metabolic demands of photoreceptors are thought to contribute to disease pathogenesis, yet whether photoreceptor metabolism differs in individuals with AMD has not been determined. Here, we show that photoreceptor metabolism does differ between diseased and nondiseased individuals. Mimicking the metabolic profile of diseased individuals in mouse resulted in the similar advanced pathologies as those that cause blindness in humans. A disease model with photoreceptors as a contributing factor explains also why AMD affects preferentially the macula; it is the region of highest photoreceptor density. The data might open new avenues to study the role of PRs in disease pathogenesis. Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. While the histopathology of the different disease stages is well characterized, the cause underlying the progression, from the early drusen stage to the advanced macular degeneration stage that leads to blindness, remains unknown. Here, we show that photoreceptors (PRs) of diseased individuals display increased expression of two key glycolytic genes, suggestive of a glucose shortage during disease. Mimicking aspects of this metabolic profile in PRs of wild-type mice by activation of the mammalian target of rapamycin complex 1 (mTORC1) caused early drusen-like pathologies, as well as advanced AMD-like pathologies. Mice with activated mTORC1 in PRs also displayed other early disease features, such as a delay in photoreceptor outer segment (POS) clearance and accumulation of lipofuscin in the retinal-pigmented epithelium (RPE) and of lipoproteins at the Bruch’s membrane (BrM), as well as changes in complement accumulation. Interestingly, formation of drusen-like deposits was dependent on activation of mTORC1 in cones. Both major types of advanced AMD pathologies, including geographic atrophy (GA) and neovascular pathologies, were also seen. Finally, activated mTORC1 in PRs resulted in a threefold reduction in di-docosahexaenoic acid (DHA)–containing phospholipid species. Feeding mice a DHA-enriched diet alleviated most pathologies. The data recapitulate many aspects of the human disease, suggesting that metabolic adaptations in photoreceptors could contribute to disease progression in AMD. Identifying the changes downstream of mTORC1 that lead to advanced pathologies in mouse might present new opportunities to study the role of PRs in AMD pathogenesis.
Collapse
|
28
|
Zhang M, Jiang N, Chu Y, Postnikova O, Varghese R, Horvath A, Cheema AK, Golestaneh N. Dysregulated metabolic pathways in age-related macular degeneration. Sci Rep 2020; 10:2464. [PMID: 32051464 PMCID: PMC7016007 DOI: 10.1038/s41598-020-59244-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/27/2020] [Indexed: 01/03/2023] Open
Abstract
Age-related macular degeneration is a major cause of vision impairment in the Western world among people of 55 years and older. Recently we have shown that autophagy is dysfunctional in the retinal pigment epithelium (RPE) of the AMD donor eyes (AMD RPE). We also showed increased reactive oxygen (ROS) production, increased cytoplasmic glycogen accumulation, mitochondrial dysfunction and disintegration, and enlarged and annular LAMP-1-positive organelles in AMD RPE. However, the underlying mechanisms inducing these abnormalities remain to be elucidated. Here, by performing a comprehensive study, we show increased PAPR2 expression, deceased NAD+, and SIRT1, increased PGC-1α acetylation (inactive form), lower AMPK activity, and overactive mTOR pathway in AMD RPE as compared to normal RPE. Metabolomics and lipidomics revealed dysregulated metabolites in AMD RPE as compared to normal RPE, including glycerophospholipid metabolism, involved in autophagy, lipid, and protein metabolisms, glutathione, guanosine, and L-glutamic acid, which are implicated in protection against oxidative stress and neurotoxicity, further supporting our observations. Our data show dysregulated metabolic pathways as important contributors to AMD pathophysiology, and facilitate the development of new treatment strategies for this debilitating disease of the visual system.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Nisi Jiang
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Yi Chu
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Olga Postnikova
- Laboratory of Retinal Cell & Molecular Biology (HNW28), NIH/NEI, Bethesda, MD, 20814, USA
| | - Rency Varghese
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Anelia Horvath
- Department of Pharmacology and Physiology, Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, 20037, USA
| | - Amrita K Cheema
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA.,Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Nady Golestaneh
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, 20057, USA. .,Department of Neurology, Georgetown University Medical Center, Washington, DC, 20057, USA. .,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
29
|
Tumour, but not Age-associated, Increase of Senescence Markers γH2AX and p21 in the Canine Eye. J Comp Pathol 2019; 173:41-48. [PMID: 31812172 DOI: 10.1016/j.jcpa.2019.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 01/31/2023]
Abstract
Senescent cells display an irreversible cell cycle arrest with resistance to apoptosis. They are known to accumulate with age in mice, monkeys and man, and are suspected to drive the development and progression of neoplasia. Eyes develop age-associated changes, most commonly in the retina, cornea and lens. The aim of this study was to test whether senescent cells increase with age in the canine eye in general and in the microenvironment of ocular tumours in particular. The senescence markers γH2AX and p21 were tested in young (n = 10, age ≤2 years) versus old (n = 9, age range 9.5-12.4 years) canine eyes, as well as in the microenvironment of intraocular tumours, namely uveal melanocytomas (n = 13) and ciliary body adenomas (n = 9). To consider a potential association of senescence with biological behaviour, we compared the expression of both markers in tumour cells of benign uveal melanocytomas (n = 13) versus malignant conjunctival melanomas (n = 7). Canine eyes showed no age-dependent changes in senescent cells. However, a significant increase of the percentage of γH2AX- or p21-labelled cells was found in the retina, uvea and lens of tumour-bearing eyes. Tumour cells in conjunctival melanomas had a significantly increased percentage of p21-expressing cells compared with uveal melanocytomas. We conclude, that senescent cells do not accumulate with age in otherwise normal canine eyes and that a senescent microenvironment of intraocular tumours is unlikely to be age driven. In addition, as in man, the percentage of p21-positive cells was increased in melanomas, supporting the theory that malignant tumours may override the senescence-associated cell cycle arrest.
Collapse
|
30
|
Huang J, Gu S, Chen M, Zhang SJ, Jiang Z, Chen X, Jiang C, Liu G, Radu RA, Sun X, Vollrath D, Du J, Yan B, Zhao C. Abnormal mTORC1 signaling leads to retinal pigment epithelium degeneration. Am J Cancer Res 2019; 9:1170-1180. [PMID: 30867823 PMCID: PMC6401408 DOI: 10.7150/thno.26281] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 12/24/2018] [Indexed: 12/13/2022] Open
Abstract
Retinal pigment epithelial (RPE) degeneration is potentially involved in the pathogenesis of several retinal degenerative diseases. mTORC1 signaling is shown as a crucial regulator of many biological processes and disease progression. In this study, we aimed at investigating the role of mTORC1 signaling in RPE degeneration. Methods: Western blots were conducted to detect mTORC1 expression pattern during RPE degeneration. Cre-loxP system was used to generate RPE-specific mTORC1 activation mice. Fundus, immunofluorescence staining, transmission electron microscopy, and targeted metabolomic analysis were conducted to determine the effects of mTORC1 activation on RPE degeneration in vivo. Electroretinography, spectral-domain optical coherence tomography, and histological experiments were conducted to determine the effects of mTORC1 activation on choroidal and retinal function in vivo. Results: RPE-specific activation of mTORC1 led to RPE degeneration as shown by the loss of RPE-specific marker, compromised cell junction integrity, and intracellular accumulation of lipid droplets. RPE degeneration further led to abnormal choroidal and retinal function. The inhibition of mTORC1 signaling with rapamycin could partially reverse RPE degeneration. Targeted metabolomics analysis further revealed that mTORC1 activation affected the metabolism of purine, carboxylic acid, and niacin in RPE. Conclusion: This study revealed that abnormal activation of mTORC1 signaling leads to RPE degeneration, which could provide a promising target for the treatment of RPE dysfunction-related diseases.
Collapse
|
31
|
Enhancing TFEB-Mediated Cellular Degradation Pathways by the mTORC1 Inhibitor Quercetin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5073420. [PMID: 30510622 PMCID: PMC6230393 DOI: 10.1155/2018/5073420] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/16/2018] [Accepted: 08/09/2018] [Indexed: 12/17/2022]
Abstract
Signaling pathways mediated by the mechanistic target of rapamycin (mTOR) play key roles in aging and age-related diseases. As a downstream protein of mTOR, transcription factor EB (TFEB) controls lysosome biogenesis and cellular trafficking, processes that are essential for the functions of phagocytic cells like the retinal pigment epithelium (RPE). In the current study, we show that a naturally occurring polyphenolic compound, quercetin, promoted TFEB nuclear translocation and enhanced its transcriptional activity in cultured RPE cells. Activated TFEB facilitated degradation of phagocytosed photoreceptor outer segments. Quercetin is a direct inhibitor of mTOR but did not influence the activity of Akt at the tested concentration range. Our data suggest that the dietary compound quercetin can have beneficial roles in neuronal tissues by improving the functions of the TFEB-lysosome axis and enhancing the capacities of cellular degradation and self-renewal.
Collapse
|
32
|
Schottler J, Randoll N, Lucius R, Caliebe A, Roider J, Klettner A. Long-term treatment with anti-VEGF does not induce cell aging in primary retinal pigment epithelium. Exp Eye Res 2018. [DOI: 10.1016/j.exer.2018.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Abbadie C, Pluquet O, Pourtier A. Epithelial cell senescence: an adaptive response to pre-carcinogenic stresses? Cell Mol Life Sci 2017; 74:4471-4509. [PMID: 28707011 PMCID: PMC11107641 DOI: 10.1007/s00018-017-2587-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 01/01/2023]
Abstract
Senescence is a cell state occurring in vitro and in vivo after successive replication cycles and/or upon exposition to various stressors. It is characterized by a strong cell cycle arrest associated with several molecular, metabolic and morphologic changes. The accumulation of senescent cells in tissues and organs with time plays a role in organismal aging and in several age-associated disorders and pathologies. Moreover, several therapeutic interventions are able to prematurely induce senescence. It is, therefore, tremendously important to characterize in-depth, the mechanisms by which senescence is induced, as well as the precise properties of senescent cells. For historical reasons, senescence is often studied with fibroblast models. Other cell types, however, much more relevant regarding the structure and function of vital organs and/or regarding pathologies, are regrettably often neglected. In this article, we will clarify what is known on senescence of epithelial cells and highlight what distinguishes it from, and what makes it like, replicative senescence of fibroblasts taken as a standard.
Collapse
Affiliation(s)
- Corinne Abbadie
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France.
| | - Olivier Pluquet
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| | - Albin Pourtier
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| |
Collapse
|
34
|
Gu Z, Tan W, Ji J, Feng G, Meng Y, Da Z, Guo G, Xia Y, Zhu X, Shi G, Cheng C. Rapamycin reverses the senescent phenotype and improves immunoregulation of mesenchymal stem cells from MRL/lpr mice and systemic lupus erythematosus patients through inhibition of the mTOR signaling pathway. Aging (Albany NY) 2017; 8:1102-14. [PMID: 27048648 PMCID: PMC4931856 DOI: 10.18632/aging.100925] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/13/2016] [Indexed: 12/22/2022]
Abstract
We have shown that bone marrow (BM)-derived mesenchymal stem cells (BM-MSCs) from SLE patients exhibit senescent behavior and are involved in the pathogenesis of SLE. The aim of this study was to investigate the effects of rapamycin (RAPA) on the senescences and immunoregulatory ability of MSCs of MRL/lpr mice and SLE patients and the underlying mechanisms. Cell morphology, senescence associated β-galactosidase (SA-β-gal) staining, F-actin staining were used to detect the senescence of cells. BM-MSCs and purified CD4+ T cells were co-cultured indirectly. Flow cytometry was used to inspect the proportion of regulatory T (Treg) /T helper type 17 (Th17). We used small interfering RNA (siRNA) to interfere the expression of mTOR, and detect the effects by RT-PCR, WB and immunofluorescence. Finally, 1×106 of SLE BM-MSCs treated with RAPA were transplanted to cure the 8 MRL/lpr mice aged 16 weeks for 12 weeks. We demonstrated that RAPA alleviated the clinical symptoms of lupus nephritis and prolonged survival in MRL/lpr mice. RAPA reversed the senescent phenotype and improved immunoregulation of MSCs from MRL/lpr mice and SLE patients through inhibition of the mTOR signaling pathway. Marked therapeutic effects were observed in MRL/lpr mice following transplantation of BM-MSCs from SLE patients pretreated with RAPA.
Collapse
Affiliation(s)
- Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Wei Tan
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China.,Department of Emergency Medicine, The Yangzhou First People's Hospital, Yangzhou, Jiangsu Province 225001, China
| | - Juan Ji
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Guijian Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yan Meng
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Zhanyun Da
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Genkai Guo
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yunfei Xia
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Xinhang Zhu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Guixiu Shi
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China.,Department of Rheumatology, Affiliated First Hospital of Xiamen University, Xiamen, Fujian Province 361000, China
| | - Chun Cheng
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China.,Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu Province 226001, China
| |
Collapse
|
35
|
Cellular Senescence in Age-Related Macular Degeneration: Can Autophagy and DNA Damage Response Play a Role? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5293258. [PMID: 29225722 PMCID: PMC5687149 DOI: 10.1155/2017/5293258] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/29/2017] [Accepted: 06/28/2017] [Indexed: 12/14/2022]
Abstract
Age-related macular degeneration (AMD) is the main reason of blindness in developed countries. Aging is the main AMD risk factor. Oxidative stress, inflammation and some genetic factors play a role in AMD pathogenesis. AMD is associated with the degradation of retinal pigment epithelium (RPE) cells, photoreceptors, and choriocapillaris. Lost RPE cells in the central retina can be replaced by their peripheral counterparts. However, if they are senescent, degenerated regions in the macula cannot be regenerated. Oxidative stress, a main factor of AMD pathogenesis, can induce DNA damage response (DDR), autophagy, and cell senescence. Moreover, cell senescence is involved in the pathogenesis of many age-related diseases. Cell senescence is the state of permanent cellular division arrest and concerns only mitotic cells. RPE cells, although quiescent in the retina, can proliferate in vitro. They can also undergo oxidative stress-induced senescence. Therefore, cellular senescence can be considered as an important molecular pathway of AMD pathology, resulting in an inability of the macula to regenerate after degeneration of RPE cells caused by a factor inducing DDR and autophagy. It is too early to speculate about the role of the mutual interplay between cell senescence, autophagy, and DDR, but this subject is worth further studies.
Collapse
|
36
|
Megakaryocytic differentiation of mouse embryonic stem cells via coculture with immortalized OP9 stromal cells. Exp Cell Res 2015; 339:44-50. [DOI: 10.1016/j.yexcr.2015.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/12/2015] [Accepted: 10/02/2015] [Indexed: 12/14/2022]
|
37
|
Lenox AR, Bhootada Y, Gorbatyuk O, Fullard R, Gorbatyuk M. Unfolded protein response is activated in aged retinas. Neurosci Lett 2015; 609:30-5. [PMID: 26467812 DOI: 10.1016/j.neulet.2015.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/04/2015] [Accepted: 10/06/2015] [Indexed: 12/24/2022]
Abstract
An unfolded protein response (UPR) in addition to oxidative stress and the inflammatory response is known to be activated in age-related ocular disorders, such as macular degeneration, diabetic retinopathy, glaucoma, and cataracts. Therefore, we aimed to investigate whether healthy aged retinas display UPR hallmarks, in order to establish a baseline for the activated UPR markers for age-related ocular diseases. Using western blotting, we determined that the hallmarks of the UPR PERK arm, phosphorylated (p) eIF2a, ATF4, and GADD34, were significantly altered in aged vs. young rat retinas. The cleaved pATF6 (50) and CHOP proteins were dramatically upregulated in the aged rodent retinas, indicating the activation of the ATF6 UPR arm. The UPR activation was associated with a drop in rhodopsin expression and in the NRF2 and HO1 levels, suggesting a decline in the anti-oxidant defense in aged retinas. Moreover, we observed down-regulation of anti-inflammatory IL-10 and IL-13 and upregulation of pro-inflammatory RANTES in the healthy aged retinas, as measured using the Bio-plex assay. Our results suggest that cellular homeostasis in normal aged retinas is compromised, resulting in the concomitant activation of the UPR, oxidative stress, and inflammatory signaling. This knowledge brings us closer to understanding the cellular mechanisms of the age-related retinopathies and ocular disorders characterized by an ongoing UPR, and highlight the UPR signaling molecules that should be validated as potential therapeutic targets.
Collapse
Affiliation(s)
- Austin R Lenox
- University of Alabama at Birmingham, Department of Vision Sciences, United States
| | - Yogesh Bhootada
- University of Alabama at Birmingham, Department of Vision Sciences, United States
| | - Oleg Gorbatyuk
- University of Alabama at Birmingham, Department of Vision Sciences, United States
| | - Roderick Fullard
- University of Alabama at Birmingham, Department of Vision Sciences, United States
| | - Marina Gorbatyuk
- University of Alabama at Birmingham, Department of Vision Sciences, United States.
| |
Collapse
|
38
|
Sinha D, Valapala M, Shang P, Hose S, Grebe R, Lutty GA, Zigler JS, Kaarniranta K, Handa JT. Lysosomes: Regulators of autophagy in the retinal pigmented epithelium. Exp Eye Res 2015; 144:46-53. [PMID: 26321509 DOI: 10.1016/j.exer.2015.08.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/09/2015] [Accepted: 08/18/2015] [Indexed: 12/19/2022]
Abstract
The retinal pigmented epithelium (RPE) is critically important to retinal homeostasis, in part due to its very active processes of phagocytosis and autophagy. Both of these processes depend upon the normal functioning of lysosomes, organelles which must fuse with (auto)phagosomes to deliver the hydrolases that effect degradation of cargo. It has become clear that signaling through mTOR complex 1 (mTORC1), is very important in the regulation of lysosomal function. This signaling pathway is becoming a target for therapeutic intervention in diseases, including age-related macular degeneration (AMD), where lysosomal function is defective. In addition, our laboratory has been studying animal models in which the gene (Cryba1) for βA3/A1-crystallin is deficient. These animals exhibit impaired lysosomal clearance in the RPE and pathological signs that are similar to some of those seen in AMD patients. The data demonstrate that βA3/A1-crystallin localizes to lysosomes in the RPE and that it is a binding partner of V-ATPase, the proton pump that acidifies the lysosomal lumen. This suggests that βA3/A1-crystallin may also be a potential target for therapeutic intervention in AMD. In this review, we focus on effector molecules that impact the lysosomal-autophagic pathway in RPE cells.
Collapse
Affiliation(s)
- Debasish Sinha
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Mallika Valapala
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peng Shang
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology of Shanghai Tenth Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Stacey Hose
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rhonda Grebe
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerard A Lutty
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Samuel Zigler
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine and Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - James T Handa
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Petrou PA, Cunningham D, Shimel K, Harrington M, Hammel K, Cukras CA, Ferris FL, Chew EY, Wong WT. Intravitreal sirolimus for the treatment of geographic atrophy: results of a phase I/II clinical trial. Invest Ophthalmol Vis Sci 2014; 56:330-8. [PMID: 25525171 DOI: 10.1167/iovs.14-15877] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To investigate the safety and effects of intravitreal sirolimus for the potential treatment of geographic atrophy (GA). METHODS The study was a single-center, open-label, phase I/II trial enrolling six participants with bilateral GA treated with intravitreal sirolimus in only one randomly assigned eye, with the fellow eye as control. The primary efficacy outcome measure was the change in total GA area from baseline on color fundus photography (CFP); secondary outcomes included changes in GA area on fundus autofluorescence (FAF), visual acuity, central retinal thickness (CRT), and macular sensitivity from baseline. RESULTS Although no systemic adverse events were attributed to treatment, two of six participants had ocular adverse events that were possibly associated. The treated eye of one participant developed abnormal paralesional changes on FAF that were associated with accelerated retinal thinning. This accelerated retinal thinning was also seen in the treated eye of a second participant. Because of concern that these events were associated with treatment, treatment was suspended. Comparisons of treated and fellow eyes for change in visual acuity, change in GA area, and change in CRT showed no evidence of treatment benefit and generally favored the untreated fellow eye. CONCLUSIONS While paralesional FAF changes and rapid retinal thinning observed are potentially part of the natural course of GA, they may possibly be related to treatment. No general evidence of anatomical or functional benefit was detected in treated eyes. Further data on intravitreal sirolimus for GA treatment will be available from a larger phase II trial. (ClinicalTrials.gov number, NCT01445548.).
Collapse
Affiliation(s)
- Philip A Petrou
- Unit on Neuron-Glia Interactions in Retinal Diseases, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Denise Cunningham
- Office of the Clinical Director, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Katherine Shimel
- Office of the Clinical Director, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | | | - Keri Hammel
- The EMMES Corporation, Rockville, Maryland, United States
| | - Catherine A Cukras
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Frederick L Ferris
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Wai T Wong
- Unit on Neuron-Glia Interactions in Retinal Diseases, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
40
|
Yu B, Xu P, Zhao Z, Cai J, Sternberg P, Chen Y. Subcellular distribution and activity of mechanistic target of rapamycin in aged retinal pigment epithelium. Invest Ophthalmol Vis Sci 2014; 55:8638-50. [PMID: 25491300 DOI: 10.1167/iovs.14-14758] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Inhibiting mechanistic target of rapamycin (mTOR) by pharmacological or genetic approaches can extend lifespan in mammals. The kinase activity of mTOR is controlled by upstream regulatory proteins and its subcellular localization. The purpose of this study was to characterize age-related alterations and functional consequences of mTOR signaling in the postmitotic RPE cells. METHODS Activity of mTOR complex 1 (mTORC1) was monitored by measuring phosphorylation status of its downstream effector protein S6, in either cultured human RPE cells or RPE explants prepared from mice at different ages. Subcellular distribution of mTOR was investigated by immunofluorescent staining of RPE culture or flatmount. The signaling of mTORC1 was modulated by either overexpression of a small guanosine triphosphatase, Ras homolog enriched in brain (Rheb), or disruption of the Ragulator complex with small interference RNA targeting p18. The effects of mTOR pathway on degradation of phagocytosed photoreceptor outer segments (POS) were determined by measuring the turnover rate of rhodopsin. RESULTS Aged RPE cells had more lysosome-associated mTOR and had increased response to amino acid stimulation. The lysosome distribution was essential for mTORC1 function, as disruption of the Ragulator complex abolished mTORC1 activation by amino acids. Increased mTORC1 activity caused decreased rate of degradation of internalized POS in the RPE. CONCLUSIONS Aging changes the subcellular localization and function of mTOR in the RPE. Increased mTORC1 inhibits POS degradation and may further exacerbate lysosome dysfunction of aged RPE.
Collapse
Affiliation(s)
- Bo Yu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Pei Xu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Zhenyang Zhao
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Jiyang Cai
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Paul Sternberg
- Vanderbilt Eye Institute, Vanderbilt University, Nashville, Tennessee, United States
| | - Yan Chen
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| |
Collapse
|
41
|
Martín-Cano FE, Camello-Almaraz C, Hernandez D, Pozo MJ, Camello PJ. mTOR pathway and Ca²⁺ stores mobilization in aged smooth muscle cells. Aging (Albany NY) 2013; 5:339-46. [PMID: 23661091 PMCID: PMC3701109 DOI: 10.18632/aging.100555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aging is considered to be driven by the so called senescence pathways, especially the mTOR route, although there is almost no information on its activity in aged tissues. Aging also induces Ca2+ signal alterations, but information regarding the mechanisms for these changes is almost inexistent. We investigated the possible involvement of the mTOR pathway in the age-dependent changes on Ca2+ stores mobilization in colonic smooth muscle cells of young (4 month old) and aged (24 month old) guinea pigs. mTORC1 activity was enhanced in aged smooth muscle, as revealed by phosphorylation of mTOR and its direct substrates S6K1 and 4E-BP1. Mobilization of intracellular Ca2+ stores through IP3R or RyR channels was impaired in aged cells, and it was facilitated by mTOR and by FKBP12, as indicated by the inhibitory effects of KU0063794 (a direct mTOR inhibitor), rapamycin (a FKBP12-mediated mTOR inhibitor) and FK506 (an FKBP12 binding immunosuppressant). Aging suppressed the facilitation of the Ca2+ mobilization by FKBP12 but not by mTOR, without changing the total expression of FKBP12 protein. In conclusion, or study shows that in smooth muscle aging enhances the constitutive activity of mTORC1 pathway and impairs Ca2+ stores mobilization by suppression of the FKBP12-induced facilitation of Ca2+ release.
Collapse
Affiliation(s)
- Francisco E Martín-Cano
- Department of Physiology, Faculty of Nursing and Faculty of Veterinary Sciences, University of Extremadura, 10003 Cáceres, Spain
| | | | | | | | | |
Collapse
|
42
|
Wong WT, Dresner S, Forooghian F, Glaser T, Doss L, Zhou M, Cunningham D, Shimel K, Harrington M, Hammel K, Cukras CA, Ferris FL, Chew EY. Treatment of geographic atrophy with subconjunctival sirolimus: results of a phase I/II clinical trial. Invest Ophthalmol Vis Sci 2013; 54:2941-50. [PMID: 23548622 DOI: 10.1167/iovs.13-11650] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To investigate the safety and effects of subconjunctival sirolimus, an mTOR inhibitor and immunosuppressive agent, for the treatment of geographic atrophy (GA). METHODS The study was a single-center, open-label phase II trial, enrolling 11 participants with bilateral GA; eight participants completed 24 months of follow-up. Sirolimus (440 μg) was administered every 3 months as a subconjunctival injection in only one randomly assigned eye in each participant for 24 months. Fellow eyes served as untreated controls. The primary efficacy outcome measure was the change in the total GA area at 24 months. Secondary outcomes included changes in visual acuity, macular sensitivity, central retinal thickness, and total drusen area. RESULTS The study drug was well tolerated with few symptoms and related adverse events. Study treatment in study eyes was not associated with structural or functional benefits relative to the control fellow eyes. At month 24, mean GA area increased by 54.5% and 39.7% in study and fellow eyes, respectively (P = 0.41), whereas mean visual acuity decreased by 21.0 letters and 3.0 letters in study and fellow eyes, respectively (P = 0.03). Substantial differences in mean changes in drusen area, central retinal thickness, and macular sensitivity were not detected for all analysis time points up to 24 months. CONCLUSIONS Repeated subconjunctival sirolimus was well-tolerated in patients with GA, although no positive anatomic or functional effects were identified. Subconjunctival sirolimus may not be beneficial in the prevention of GA progression, and may potentially be associated with effects detrimental to visual acuity. (ClinicalTrials.gov number, NCT00766649.).
Collapse
Affiliation(s)
- Wai T Wong
- Unit on Neuron–Glia Interactions in Retinal Disease, Building 6, Room 215, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hyttinen JMT, Petrovski G, Salminen A, Kaarniranta K. 5'-Adenosine monophosphate-activated protein kinase--mammalian target of rapamycin axis as therapeutic target for age-related macular degeneration. Rejuvenation Res 2011; 14:651-60. [PMID: 22007913 DOI: 10.1089/rej.2011.1220] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is the most common reason for blindness in developed countries. AMD essentially involves chronic oxidative stress, increased accumulation of lipofuscin in retinal pigment epithelial (RPE) cells, and extracellular drusen formation, as well as presence of chronic inflammation in the retina. The capacity to prevent the accumulation of cellular cytotoxic protein aggregates is decreased in senescent cells, which may evoke lipofuscin accumulation into lysosomes in postmitotic RPE cells. The formation of lipofuscin, in turn, decreases the lysosomal enzyme activity and impairs the autophagic clearance of damaged proteins destined for cellular removal. 5'-Adenosine monophosphate-activated protein kinase (AMPK) is a well-known inhibitor of mammalian target of rapamycin (mTOR) that subsequently evokes induction of autophagy. This review examines the novel potential therapeutic targets on the AMPK-mTOR axis and the ways in which autophagy clearance can suppress or prevent RPE degeneration and development of AMD.
Collapse
Affiliation(s)
- Juha M T Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O.Box 1627, FI-70211 Kuopio, Finland.
| | | | | | | |
Collapse
|
44
|
Blueberry anthocyanins: protection against ageing and light-induced damage in retinal pigment epithelial cells. Br J Nutr 2011; 108:16-27. [PMID: 22018225 DOI: 10.1017/s000711451100523x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Retinal pigment epithelium (RPE) cells are vital for retinal health. However, they are susceptible to injury with ageing and exposure to excessive light, including UV (100-380 nm) and visible (380-760 nm) radiation. To evaluate the protective effect of blueberry anthocyanins on RPE cells, in vitro cell models of replicative senescent and light-induced damage were established in the present study. After purification and fractionation, blueberry anthocyanin extracts (BAE) were yielded with total anthocyanin contents of 31·0 (SD 0·5) % and were used in this study. Replicative senescence of RPE cells was induced by repeatedly passaging cells from the fourth passage to the tenth. From the fifth passage, cultured RPE cells began to enter a replicative senescence, exhibiting reduced cell proliferation along with an increase in the number of β-galactosidase-positive cells. RPE cells maintained high cell viability (P < 0·01) and a low (P < 0·01) percentage of β-galactosidase-positive cells when treated with 0·1 μg/ml BAE. In contrast, after exposure to 2500 (SD 500) lx light (420-800 nm) for 12 h, RPE cells in the positive control (light exposure, no BAE treatment) exhibited premature senescence, low (P < 0·01) cell viability and increased (P < 0·01) vascular endothelial growth factor (VEGF) release compared with negative control cells, which were not subjected to light irradiation and BAE exposure. Correspondingly, BAE is beneficial to RPE cells by protecting these cells against light-induced damage through the suppression of ageing and apoptosis as well as the down-regulation of the over-expressed VEGF to normal level. These results demonstrate that BAE is efficacious against senescence and light-induced damage of RPE cells.
Collapse
|
45
|
Kokkinopoulos I, Shahabi G, Colman A, Jeffery G. Mature peripheral RPE cells have an intrinsic capacity to proliferate; a potential regulatory mechanism for age-related cell loss. PLoS One 2011; 6:e18921. [PMID: 21526120 PMCID: PMC3081302 DOI: 10.1371/journal.pone.0018921] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 03/25/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mammalian peripheral retinal pigmented epithelium (RPE) cells proliferate throughout life, while central cells are senescent. It is thought that some peripheral cells migrate centrally to correct age-related central RPE loss. METHODOLOGY/PRINCIPAL FINDINGS We ask whether this proliferative capacity is intrinsic to such cells and whether cells located centrally produce diffusible signals imposing senescence upon the former once migrated. We also ask whether there are regional differences in expression patterns of key genes involved in these features between the centre and the periphery in vivo and in vitro. Low density RPE cultures obtained from adult mice revealed significantly greater levels of proliferation when derived from peripheral compared to central tissue, but this significance declined with increasing culture density. Further, exposure to centrally conditioned media had no influence on proliferation in peripheral RPE cell cultures at the concentrations examined. Central cells expressed significantly higher levels of E-Cadherin revealing a tighter cell adhesion than in the peripheral regions. Fluorescence-labelled staining for E-Cadherin, F-actin and ZO-1 in vivo revealed different patterns with significantly increased expression on central RPE cells than those in the periphery or differences in junctional morphology. A range of other genes were investigated both in vivo and in vitro associated with RPE proliferation in order to identify gene expression differences between the centre and the periphery. Specifically, the cell cycle inhibitor p27(Kip1) was significantly elevated in central senescent regions in vivo and mTOR, associated with RPE cell senescence, was significantly elevated in the centre in comparison to the periphery. CONCLUSIONS These data show that the proliferative capacity of peripheral RPE cells is intrinsic and cell-autonomous in adult mice. These differences between centre and periphery are reflected in distinct patterns in junctional markers. The regional proliferation differences may be inversely dependent to cell-cell contact.
Collapse
Affiliation(s)
- Ioannis Kokkinopoulos
- Institute of Ophthalmology, University College London, London, United Kingdom
- School of Biomedical and Health Sciences Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Golnaz Shahabi
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Alan Colman
- Singapore Stem Cell Consortium, Singapore, Singapore
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|