1
|
Heitzer M, Kilic K, Merfort R, Winnand P, Emonts C, Bock A, Ooms M, Steiner T, Hölzle F, Modabber A. Tensile strength of adhesives in peripheral nerve anastomoses: an in vitro biomechanical evaluation of four different neurorrhaphies. Eur J Med Res 2024; 29:264. [PMID: 38698476 PMCID: PMC11067280 DOI: 10.1186/s40001-024-01858-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND The fundamental prerequisite for prognostically favorable postoperative results of peripheral nerve repair is stable neurorrhaphy without interruption and gap formation. METHODS This study evaluates 60 neurorrhaphies on femoral chicken nerves in terms of the procedure and the biomechanical properties. Sutured neurorrhaphies (n = 15) served as control and three sutureless adhesive-based nerve repair techniques: Fibrin glue (n = 15), Histoacryl glue (n = 15), and the novel polyurethane adhesive VIVO (n = 15). Tensile and elongation tests of neurorrhaphies were performed on a tensile testing machine at a displacement rate of 20 mm/min until failure. The maximum tensile force and elongation were recorded. RESULTS All adhesive-based neurorrhaphies were significant faster in preparation compared to sutured anastomoses (p < 0.001). Neurorrhaphies by sutured (102.8 [cN]; p < 0.001), Histoacryl (91.5 [cN]; p < 0.001) and VIVO (45.47 [cN]; p < 0.05) withstood significant higher longitudinal tensile forces compared to fibrin glue (10.55 [cN]). VIVO, with △L/L0 of 6.96 [%], showed significantly higher elongation (p < 0.001) compared to neurorrhaphy using fibrin glue. CONCLUSION Within the limitations of an in vitro study the adhesive-based neurorrhaphy technique with VIVO and Histoacryl have the biomechanical potential to offer alternatives to sutured neuroanastomosis because of their stability, and faster handling. Further in vivo studies are required to evaluate functional outcomes and confirm safety.
Collapse
Affiliation(s)
- Marius Heitzer
- Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 13, 52074, Aachen, Germany.
| | - Konrad Kilic
- Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 13, 52074, Aachen, Germany
| | - Ricarda Merfort
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital of RWTH Aachen, Aachen, Germany
| | - Philipp Winnand
- Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 13, 52074, Aachen, Germany
| | - Caroline Emonts
- Institute of Textile Technology, RWTH Aachen University, Otto-Blumenthal-Straße 1, 52074, Aachen, Germany
| | - Anna Bock
- Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 13, 52074, Aachen, Germany
| | - Mark Ooms
- Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 13, 52074, Aachen, Germany
| | - Timm Steiner
- Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 13, 52074, Aachen, Germany
| | - Frank Hölzle
- Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 13, 52074, Aachen, Germany
| | - Ali Modabber
- Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 13, 52074, Aachen, Germany
| |
Collapse
|
2
|
Heitzer M, Kilic K, Merfort R, Emonts C, Winnand P, Kniha K, Hölzle F, Modabber A. Evaluation of fibrin, cyanoacrylate, and polyurethane-based tissue adhesives in sutureless vascular anastomosis: a comparative mechanical ex vivo study. Int J Oral Maxillofac Surg 2023; 52:1137-1144. [PMID: 37019734 DOI: 10.1016/j.ijom.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
The stability of a microvascular anastomosis is an important prerequisite for successful tissue transfer. Advances in tissue adhesives are potentially opening new avenues for their use in sutureless microsurgical anastomosis, however they have not yet gained clinical acceptance. In this ex vivo study, a novel polyurethane-based adhesive (PA) was used in sutureless anastomoses and its stability compared with that of sutureless anastomoses performed with fibrin glue (FG) and a cyanoacrylate (CA). Stability was assessed using hydrostatic (15 per group) and mechanical tests (13 per group). A total of 84 chicken femoral arteries were used in this study. The time taken to create the PA and CA anastomoses was significantly faster when compared to the FG anastomoses (P < 0.001): 1.55 ± 0.14 min and 1.39 ± 0.06 min, respectively, compared to 2.03 ± 0.35 min. Both sustained significantly higher pressures (289.3 mmHg and 292.7 mmHg, respectively) than anastomoses using FG (137.3 mmHg) (P < 0.001). CA anastomoses (0.99 N; P < 0.001) and PA anastomoses (0.38 N; P = 0.009) could both withstand significantly higher longitudinal tensile forces compared to FG anastomoses (0.10 N). Considering the background of an in vitro study, the PA and CA anastomosis techniques were shown to be similar to each other and superior to FG, due to their stability and faster handling. These findings need to be validated and confirmed in further in vivo studies.
Collapse
Affiliation(s)
- M Heitzer
- Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Aachen, Germany.
| | - K Kilic
- Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Aachen, Germany
| | - R Merfort
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital of RWTH Aachen, Aachen, Germany
| | - C Emonts
- Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
| | - P Winnand
- Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Aachen, Germany
| | - K Kniha
- Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Aachen, Germany
| | - F Hölzle
- Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Aachen, Germany
| | - A Modabber
- Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Aachen, Germany
| |
Collapse
|
3
|
Kvandová M, Rajlic S, Stamm P, Schmal I, Mihaliková D, Kuntic M, Bayo Jimenez MT, Hahad O, Kollárová M, Ubbens H, Strohm L, Frenis K, Duerr GD, Foretz M, Viollet B, Ruan Y, Jiang S, Tang Q, Kleinert H, Rapp S, Gericke A, Schulz E, Oelze M, Keaney JF, Daiber A, Kröller-Schön S, Jansen T, Münzel T. Mitigation of aircraft noise-induced vascular dysfunction and oxidative stress by exercise, fasting, and pharmacological α1AMPK activation: molecular proof of a protective key role of endothelial α1AMPK against environmental noise exposure. Eur J Prev Cardiol 2023; 30:1554-1568. [PMID: 37185661 DOI: 10.1093/eurjpc/zwad075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/22/2023] [Accepted: 03/11/2023] [Indexed: 05/17/2023]
Abstract
AIMS Environmental stressors such as traffic noise represent a global threat, accounting for 1.6 million healthy life years lost annually in Western Europe. Therefore, the noise-associated health side effects must be effectively prevented or mitigated. Non-pharmacological interventions such as physical activity or a balanced healthy diet are effective due to the activation of the adenosine monophosphate-activated protein kinase (α1AMPK). Here, we investigated for the first time in a murine model of aircraft noise-induced vascular dysfunction the potential protective role of α1AMPK activated via exercise, intermittent fasting, and pharmacological treatment. METHODS AND RESULTS Wild-type (B6.Cg-Tg(Cdh5-cre)7Mlia/J) mice were exposed to aircraft noise [maximum sound pressure level of 85 dB(A), average sound pressure level of 72 dB(A)] for the last 4 days. The α1AMPK was stimulated by different protocols, including 5-aminoimidazole-4-carboxamide riboside application, voluntary exercise, and intermittent fasting. Four days of aircraft noise exposure produced significant endothelial dysfunction in wild-type mice aorta, mesenteric arteries, and retinal arterioles. This was associated with increased vascular oxidative stress and asymmetric dimethylarginine formation. The α1AMPK activation with all three approaches prevented endothelial dysfunction and vascular oxidative stress development, which was supported by RNA sequencing data. Endothelium-specific α1AMPK knockout markedly aggravated noise-induced vascular damage and caused a loss of mitigation effects by exercise or intermittent fasting. CONCLUSION Our results demonstrate that endothelial-specific α1AMPK activation by pharmacological stimulation, exercise, and intermittent fasting effectively mitigates noise-induced cardiovascular damage. Future population-based studies need to clinically prove the concept of exercise/fasting-mediated mitigation of transportation noise-associated disease.
Collapse
Affiliation(s)
- Miroslava Kvandová
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute of Normal and Pathological Physiology, Center of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1813 71 Bratislava, Slovak Republic
| | - Sanela Rajlic
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Department of Cardiovascular Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Paul Stamm
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Isabella Schmal
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Dominika Mihaliková
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Marta Kollárová
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Sasinkova 2, 811 08 Bratislava, Slovakia
| | - Henning Ubbens
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Lea Strohm
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Katie Frenis
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Georg Daniel Duerr
- Department of Cardiovascular Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Marc Foretz
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Benoit Viollet
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Yue Ruan
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Subao Jiang
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Qi Tang
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Steffen Rapp
- Department of Cardiology, Preventive Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | | | - Matthias Oelze
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - John F Keaney
- Division of Cardiovascular Medicine, UMass Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Andreas Daiber
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Swenja Kröller-Schön
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Thomas Jansen
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Department of Cardiology, KVB Hospital Königstein, 61462 Königstein, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
4
|
Sinha AK, Lee C, Holt JC. Elucidating the role of muscarinic acetylcholine receptor (mAChR) signaling in efferent mediated responses of vestibular afferents in mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.549902. [PMID: 37577578 PMCID: PMC10418111 DOI: 10.1101/2023.07.31.549902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The peripheral vestibular system detects head position and movement through activation of vestibular hair cells (HCs) in vestibular end organs. HCs transmit this information to the CNS by way of primary vestibular afferent neurons. The CNS, in turn, modulates HCs and afferents via the efferent vestibular system (EVS) through activation of cholinergic signaling mechanisms. In mice, we previously demonstrated that activation of muscarinic acetylcholine receptors (mAChRs), during EVS stimulation, gives rise to a slow excitation that takes seconds to peak and tens of seconds to decay back to baseline. This slow excitation is mimicked by muscarine and ablated by the non-selective mAChR blockers scopolamine, atropine, and glycopyrrolate. While five distinct mAChRs (M1-M5) exist, the subtype(s) driving EVS-mediated slow excitation remain unidentified and details on how these mAChRs alter vestibular function is not well understood. The objective of this study is to characterize which mAChR subtypes drive the EVS-mediated slow excitation, and how their activation impacts vestibular physiology and behavior. In C57Bl/6J mice, M3mAChR antagonists were more potent at blocking slow excitation than M1mAChR antagonists, while M2/M4 blockers were ineffective. While unchanged in M2/M4mAChR double KO mice, EVS-mediated slow excitation in M3 mAChR-KO animals were reduced or absent in irregular afferents but appeared unchanged in regular afferents. In agreement, vestibular sensory-evoked potentials (VsEP), known to be predominantly generated from irregular afferents, were significantly less enhanced by mAChR activation in M3mAChR-KO mice compared to controls. Finally, M3mAChR-KO mice display distinct behavioral phenotypes in open field activity, and thermal profiles, and balance beam and forced swim test. M3mAChRs mediate efferent-mediated slow excitation in irregular afferents, while M1mAChRs may drive the same process in regular afferents.
Collapse
|
5
|
Cirla A, Drigo M, Ballerini L, Trucco E, Barsotti G. Effects of pupil dilation with topical 0.5% tropicamide on retinal vascular parameters assessed by VAMPIRE® software in healthy cats. Res Vet Sci 2023; 160:50-54. [PMID: 37267768 DOI: 10.1016/j.rvsc.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
Our study investigates the effects of mydriasis obtained with topical 0.5% tropicamide on retinal vascular parameters evaluated in cats using the retinal imaging software: Vascular Assessment and Measurement Platform for Images of the Retina (VAMPIRE®). Forty client-owned healthy adult cats were included in the study. Topical 0.5% tropicamide was applied to dilate only the right pupil. The left eye was used as a control. Before dilation (T0), infrared pupillometry of both pupils was performed and fundus oculi images were taken from both eyes. Right eye fundus images were then captured 30 min after topical application of tropicamide (T30), when mydriasis was achieved. The retinal vessel widths (3 arteries and 3 veins) were measured with VAMPIRE® in four standard measurement areas (SMA) identified with the letters A, B, C, D. Average value of the 3 vessel widths was used. After normality assessment, the t-test was used to analyse the mean difference in vascular parameters of the left and right eyes at T0 and T30, with p set <0.05. The two eyes showed no statistical differences in pupil and vascular parameter measurements at T0. At T30, only one artery measurement of the right eye (SMA A-peripapillary area) showed a small but statistically significant mean vasoconstriction of approximately 4%. The results indicate that local application of 0.5% tropicamide seems to be associated with a small retinal arteriolar vasoconstriction as assessed by VAMPIRE® in cats. However, this change is minimal, and should not affect the interpretation of the results when VAMPIRE® is used.
Collapse
Affiliation(s)
- Alessandro Cirla
- Department of Ophthalmology, San Marco Veterinary Clinic and Laboratory, Veggiano, PD, Italy.
| | - Michele Drigo
- Department of Animal Medicine, Production and Health, University of Padova -, Legnaro, PD, Italy
| | | | - Emanuele Trucco
- VAMPIRE Project, Computing, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Giovanni Barsotti
- Department of Veterinary Science, University of Pisa, S. Piero a Grado, PI, Italy
| |
Collapse
|
6
|
Yu R, Ye X, Wang X, Wu Q, Jia L, Dong K, Zhu Z, Bao Y, Hou X, Jia W. Serum cholinesterase is associated with incident diabetic retinopathy: the Shanghai Nicheng cohort study. Nutr Metab (Lond) 2023; 20:26. [PMID: 37138337 PMCID: PMC10155425 DOI: 10.1186/s12986-023-00743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/13/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Serum cholinesterase (ChE) is positively associated with incident diabetes and dyslipidemia. We aimed to investigate the relationship between ChE and the incidence of diabetic retinopathy (DR). METHODS Based on a community-based cohort study followed for 4.6 years, 1133 participants aged 55-70 years with diabetes were analyzed. Fundus photographs were taken for each eye at both baseline and follow-up investigations. The presence and severity of DR were categorized into no DR, mild non-proliferative DR (NPDR), and referable DR (moderate NPDR or worse). Binary and multinomial logistic regression models were used to estimate the risk ratio (RR) and 95% confidence interval (CI) between ChE and DR. RESULTS Among the 1133 participants, 72 (6.4%) cases of DR occurred. The multivariable binary logistic regression showed that the highest tertile of ChE (≥ 422 U/L) was associated with a 2.01-fold higher risk of incident DR (RR 2.01, 95%CI 1.01-4.00; P for trend < 0.05) than the lowest tertile (< 354 U/L). The multivariable binary and multinomial logistic regression showed that the risk of DR increased by 41% (RR 1.41, 95%CI 1.05-1.90), and the risk of incident referable DR was almost 2-fold higher than no DR (RR 1.99, 95%CI 1.24-3.18) with per 1-SD increase of loge-transformed ChE. Furthermore, multiplicative interactions were found between ChE and elderly participants (aged 60 and older; P for interaction = 0.003) and men (P for interaction = 0.044) on the risk of DR. CONCLUSIONS In this study, ChE was associated with the incidence of DR, especially referable DR. ChE was a potential biomarker for predicting the incident DR.
Collapse
Affiliation(s)
- Rong Yu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Xiaoqi Ye
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Xiangning Wang
- Department of Ophthalmology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Wu
- Department of Ophthalmology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Jia
- Department of Ophthalmology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keqing Dong
- General Practitioner Teams in Community Health Service Center of Nicheng, Pudong New District, Shanghai, China
| | - Zhijun Zhu
- General Practitioner Teams in Community Health Service Center of Nicheng, Pudong New District, Shanghai, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Xuhong Hou
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China.
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China.
| |
Collapse
|
7
|
Chronopoulos P, Manicam C, Zadeh JK, Laspas P, Unkrig JC, Göbel ML, Musayeva A, Pfeiffer N, Oelze M, Daiber A, Li H, Xia N, Gericke A. Effects of Resveratrol on Vascular Function in Retinal Ischemia-Reperfusion Injury. Antioxidants (Basel) 2023; 12:antiox12040853. [PMID: 37107227 PMCID: PMC10135068 DOI: 10.3390/antiox12040853] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Ischemia-reperfusion (I/R) events are involved in the development of various ocular pathologies, e.g., retinal artery or vein occlusion. We tested the hypothesis that resveratrol is protective against I/R injury in the murine retina. Intraocular pressure (IOP) was elevated in anaesthetized mice to 110 mm Hg for 45 min via a micropipette placed in the anterior chamber to induce ocular ischemia. In the fellow eye, which served as control, IOP was kept at a physiological level. One group received resveratrol (30 mg/kg/day p.o. once daily) starting one day before the I/R event, whereas the other group of mice received vehicle solution only. On day eight after the I/R event, mice were sacrificed and retinal wholemounts were prepared and immuno-stained using a Brn3a antibody to quantify retinal ganglion cells. Reactivity of retinal arterioles was measured in retinal vascular preparations using video microscopy. Reactive oxygen species (ROS) and nitrogen species (RNS) were quantified in ocular cryosections by dihydroethidium and anti-3-nitrotyrosine staining, respectively. Moreover, hypoxic, redox and nitric oxide synthase gene expression was quantified in retinal explants by PCR. I/R significantly diminished retinal ganglion cell number in vehicle-treated mice. Conversely, only a negligible reduction in retinal ganglion cell number was observed in resveratrol-treated mice following I/R. Endothelial function and autoregulation were markedly reduced, which was accompanied by increased ROS and RNS in retinal blood vessels of vehicle-exposed mice following I/R, whereas resveratrol preserved vascular endothelial function and autoregulation and blunted ROS and RNS formation. Moreover, resveratrol reduced I/R-induced mRNA expression for the prooxidant enzyme, nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2). Our data provide evidence that resveratrol protects from I/R-induced retinal ganglion cell loss and endothelial dysfunction in the murine retina by reducing nitro-oxidative stress possibly via suppression of NOX2 upregulation.
Collapse
Affiliation(s)
- Panagiotis Chronopoulos
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Jenia Kouchek Zadeh
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
- AbbVie Germany GmbH & Co., KG, 65189 Wiesbaden, Germany
| | - Panagiotis Laspas
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Johanna Charlotte Unkrig
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Marie Luise Göbel
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Aytan Musayeva
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St, Boston, MA 02114, USA
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Matthias Oelze
- Department of Cardiology, Cardiology 1, University Medical Center, Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology 1, University Medical Center, Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Huige Li
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
8
|
Böhm EW, Pfeiffer N, Wagner FM, Gericke A. Methods to measure blood flow and vascular reactivity in the retina. Front Med (Lausanne) 2023; 9:1069449. [PMID: 36714119 PMCID: PMC9877427 DOI: 10.3389/fmed.2022.1069449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Disturbances of retinal perfusion are involved in the onset and maintenance of several ocular diseases, including diabetic retinopathy, glaucoma, and retinal vascular occlusion. Hence, knowledge on ocular vascular anatomy and function is highly relevant for basic research studies and for clinical judgment and treatment. The retinal vasculature is composed of the superficial, intermediate, and deep vascular layer. Detection of changes in blood flow and vascular diameter especially in smaller vessels is essential to understand and to analyze vascular diseases. Several methods to evaluate blood flow regulation in the retina have been described so far, but no gold standard has been established. For highly reliable assessment of retinal blood flow, exact determination of vessel diameter is necessary. Several measurement methods have already been reported in humans. But for further analysis of retinal vascular diseases, studies in laboratory animals, including genetically modified mice, are important. As for mice, the small vessel size is challenging requiring devices with high optic resolution. In this review, we recapitulate different methods for retinal blood flow and vessel diameter measurement. Moreover, studies in humans and in experimental animals are described.
Collapse
|
9
|
Intraocular Pressure-Induced Endothelial Dysfunction of Retinal Blood Vessels Is Persistent, but Does Not Trigger Retinal Ganglion Cell Loss. Antioxidants (Basel) 2022; 11:antiox11101864. [PMID: 36290587 PMCID: PMC9598728 DOI: 10.3390/antiox11101864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 12/02/2022] Open
Abstract
Research has been conducted into vascular abnormalities in the pathogenesis of glaucoma, but conclusions remain controversial. Our aim was to test the hypothesis that retinal endothelial dysfunction induced by elevated intraocular pressure (IOP) persists after IOP normalization, further triggering retinal ganglion cell (RGC) loss. High intraocular pressure (HP) was induced in mice by episcleral vein occlusion (EVO). Retinal vascular function was measured via video microscopy in vitro. The IOP, RGC and their axons survival, levels of oxidative stress and inflammation as well as vascular pericytes coverage, were determined. EVO caused HP for two weeks, which returned to baseline afterwards. Mice with HP exhibited endothelial dysfunction in retinal arterioles, reduced density of RGC and their axons, and loss of pericytes in retinal arterioles. Notably, these values were similar to those of mice with recovered IOP (RP). Levels of oxidative stress and inflammation were increased in HP mice but went back to normal in the RP mice. Our data demonstrate that HP induces persistent endothelial dysfunction in retinal arterioles, which persists one month after RP. Oxidative stress, inflammation, and loss of pericytes appear to be involved in triggering vascular functional deficits. Our data also suggest that retinal endothelial dysfunction does not affect RGC and their axon survival.
Collapse
|
10
|
In utero hypoxia attenuated acetylcholine-mediated vasodilatation via CHRM3/p-NOS3 in fetal sheep MCA: role of ROS/ERK1/2. Hypertens Res 2022; 45:1168-1182. [PMID: 35585170 DOI: 10.1038/s41440-022-00935-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/08/2022]
Abstract
Hypoxia can lead to adult middle cerebral artery (MCA) dysfunction and increase the risk of cerebrovascular diseases. It is largely unknown whether intrauterine hypoxia affects fetal MCA vasodilatation. This study investigated the effects and mechanisms of intrauterine hypoxia on fetal MCA vasodilatation. Near-term fetal sheep were exposed to intrauterine hypoxia. Human umbilical vein endothelial cells (HUVECs) were exposed to hypoxia in cellular experiments. Vascular tone measurement, molecular analysis, and transmission electron microscope (TEM) were utilized to determine vascular functions, tissue anatomy, and molecular pathways in fetal MCA. In fetal MCA, acetylcholine (ACh) induced reliable relaxation, which was markedly attenuated by intrauterine hypoxia. Atropine, P-F-HHSiD, L-NAME, and u0126 blocked most ACh-mediated dilation, while AF-DX 116 and tropicamide partially inhibited the dilation. Indomethacin and SB203580 did not significantly change ACh-mediated dilation. Tempol and PS-341 could restore the attenuated ACh-mediated vasodilatation following intrauterine hypoxia. The mRNA expression levels of CHRM2 and CHRM3 and the protein levels of CHRM3, p-NOS3, SOD2, ERK1/2, p-ERK1/2, MAPK14, and p-MAPK14 were significantly reduced by intrauterine hypoxia. The dihydroethidium assay showed that the production of ROS was increased under intrauterine hypoxia. TEM analysis revealed endothelial cells damaged by intrauterine hypoxia. In HUVECs, hypoxia increased ROS formation and decreased the expression of CHRM3, p-NOS3, SOD1, SOD2, SOD3, ERK1/2, p-ERK1/2, and p-MAPK14, while tempol and PS-341 potentiated p-NOS3 protein expression. In conclusion, in utero hypoxia reduced ACh-mediated vasodilatation in ovine MCA predominantly via decreased CHRM3 and p-NOS3, and the decreased NOS3 bioactivities might be attributed to ROS and ERK1/2.
Collapse
|
11
|
Chronic social defeat stress causes retinal vascular dysfunction. Exp Eye Res 2021; 213:108853. [PMID: 34800481 DOI: 10.1016/j.exer.2021.108853] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE The roles of vascular dysfunction and chronic stress have been extensively discussed in the pathophysiology of glaucoma. Our aim was to test whether chronic stress causes retinal vascular dysfunction and therewith induces retinal ganglion cells (RGCs) loss. METHODS Twelve mice underwent chronic social defeat (CSD) stress, while 12 mice received control treatment only. Intraocular pressure (IOP) was measured with a rebound tonometer. Blood plasma corticosterone concentration and adrenal gland weight were used to assess stress levels. Brn-3a staining in retinas and PPD staining in optic nerve cross sections were conducted to assess the survival of RGCs and axons respectively. The ET-1 and α-SMA levels were determined in retina. Retinal vascular autoregulation, functional response to various vasoactive agents and vascular mechanics were measured using video microscopy. RESULTS No significant difference in IOP levels was observed during and after CSD between CSD mice and controls. CSD stress caused hypercortisolemia 2 days post-CSD. However, increased corticosterone levels went back to normal 8 months after CSD. CSD-exposed mice developed adrenal hyperplasia 3 days post-CSD, which was normalized by 8 months. RGC and axon survival were similar between CSD mice and controls. However, CSD stress caused irreversible, impaired autoregulation and vascular dysfunction of retinal arterioles in CSD mice. In addition, impaired maximal dilator capacity of retinal arterioles was observed 8 months post-CSD rather than 3 days post-CSD. Remarkably, ET-1 levels were increased 3 days post-CSD while α-SMA levels were decreased 8 months post-CSD. CONCLUSIONS We found that CSD stress does not cause IOP elevation, nor loss of RGCs and their axons. However, it strikingly causes irreversible impaired autoregulation and endothelial function in murine retinal arterioles. In addition, CSD changed vascular mechanics on a long-term basis. Increased ET-1 levels and loss of pericytes in retina vessels may involve in this process.
Collapse
|
12
|
Musayeva A, Unkrig JC, Zhutdieva MB, Manicam C, Ruan Y, Laspas P, Chronopoulos P, Göbel ML, Pfeiffer N, Brochhausen C, Daiber A, Oelze M, Li H, Xia N, Gericke A. Betulinic Acid Protects from Ischemia-Reperfusion Injury in the Mouse Retina. Cells 2021; 10:cells10092440. [PMID: 34572088 PMCID: PMC8469383 DOI: 10.3390/cells10092440] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022] Open
Abstract
Ischemia/reperfusion (I/R) events are involved in the pathophysiology of numerous ocular diseases. The purpose of this study was to test the hypothesis that betulinic acid protects from I/R injury in the mouse retina. Ocular ischemia was induced in mice by increasing intraocular pressure (IOP) to 110 mm Hg for 45 min, while the fellow eye served as a control. One group of mice received betulinic acid (50 mg/kg/day p.o. once daily) and the other group received the vehicle solution only. Eight days after the I/R event, the animals were killed and the retinal wholemounts and optic nerve cross-sections were prepared and stained with cresyl blue or toluidine blue, respectively, to count cells in the ganglion cell layer (GCL) of the retina and axons in the optic nerve. Retinal arteriole responses were measured in isolated retinas by video microscopy. The levels of reactive oxygen species (ROS) were assessed in retinal cryosections and redox gene expression was determined in isolated retinas by quantitative PCR. I/R markedly reduced cell number in the GCL and axon number in the optic nerve of the vehicle-treated mice. In contrast, only a negligible reduction in cell and axon number was observed following I/R in the betulinic acid-treated mice. Endothelial function was markedly reduced and ROS levels were increased in retinal arterioles of vehicle-exposed eyes following I/R, whereas betulinic acid partially prevented vascular endothelial dysfunction and ROS formation. Moreover, betulinic acid boosted mRNA expression for the antioxidant enzymes SOD3 and HO-1 following I/R. Our data provide evidence that betulinic acid protects from I/R injury in the mouse retina. Improvement of vascular endothelial function and the reduction in ROS levels appear to contribute to the neuroprotective effect.
Collapse
Affiliation(s)
- Aytan Musayeva
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.M.); (J.C.U.); (M.B.Z.); (C.M.); (Y.R.); (P.L.); (P.C.); (M.L.G.); (N.P.)
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Johanna C. Unkrig
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.M.); (J.C.U.); (M.B.Z.); (C.M.); (Y.R.); (P.L.); (P.C.); (M.L.G.); (N.P.)
| | - Mayagozel B. Zhutdieva
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.M.); (J.C.U.); (M.B.Z.); (C.M.); (Y.R.); (P.L.); (P.C.); (M.L.G.); (N.P.)
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.M.); (J.C.U.); (M.B.Z.); (C.M.); (Y.R.); (P.L.); (P.C.); (M.L.G.); (N.P.)
| | - Yue Ruan
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.M.); (J.C.U.); (M.B.Z.); (C.M.); (Y.R.); (P.L.); (P.C.); (M.L.G.); (N.P.)
| | - Panagiotis Laspas
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.M.); (J.C.U.); (M.B.Z.); (C.M.); (Y.R.); (P.L.); (P.C.); (M.L.G.); (N.P.)
| | - Panagiotis Chronopoulos
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.M.); (J.C.U.); (M.B.Z.); (C.M.); (Y.R.); (P.L.); (P.C.); (M.L.G.); (N.P.)
| | - Marie L. Göbel
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.M.); (J.C.U.); (M.B.Z.); (C.M.); (Y.R.); (P.L.); (P.C.); (M.L.G.); (N.P.)
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.M.); (J.C.U.); (M.B.Z.); (C.M.); (Y.R.); (P.L.); (P.C.); (M.L.G.); (N.P.)
| | - Christoph Brochhausen
- Institute of Pathology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Andreas Daiber
- Department of Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center, Johannes Gutenberg University Mainz, Building 605, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.D.); (M.O.)
| | - Matthias Oelze
- Department of Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center, Johannes Gutenberg University Mainz, Building 605, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.D.); (M.O.)
| | - Huige Li
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (H.L.); (N.X.)
| | - Ning Xia
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (H.L.); (N.X.)
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.M.); (J.C.U.); (M.B.Z.); (C.M.); (Y.R.); (P.L.); (P.C.); (M.L.G.); (N.P.)
- Correspondence: ; Tel.: +49-613-117-8276
| |
Collapse
|
13
|
Eckrich J, Frenis K, Rodriguez-Blanco G, Ruan Y, Jiang S, Bayo Jimenez MT, Kuntic M, Oelze M, Hahad O, Li H, Gericke A, Steven S, Strieth S, von Kriegsheim A, Münzel T, Ernst BP, Daiber A. Aircraft noise exposure drives the activation of white blood cells and induces microvascular dysfunction in mice. Redox Biol 2021; 46:102063. [PMID: 34274810 PMCID: PMC8313840 DOI: 10.1016/j.redox.2021.102063] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Epidemiological studies showed that traffic noise has a dose-dependent association with increased cardiovascular morbidity and mortality. Whether microvascular dysfunction contributes significantly to the cardiovascular health effects by noise exposure remains to be established. The connection of inflammation and immune cell interaction with microvascular damage and functional impairment is also not well characterized. Male C57BL/6J mice or gp91phox−/y mice with genetic deletion of the phagocytic NADPH oxidase catalytic subunit (gp91phox or NOX-2) were used at the age of 8 weeks, randomly instrumented with dorsal skinfold chambers and exposed or not exposed to aircraft noise for 4 days. Proteomic analysis (using mass spectrometry) revealed a pro-inflammatory phenotype induced by noise exposure that was less pronounced in noise-exposed gp91phox−/y mice. Using in vivo fluorescence microscopy, we found a higher number of adhesive leukocytes in noise-exposed wild type mice. Dorsal microvascular diameter (by trend), red blood cell velocity, and segmental blood flow were also decreased by noise exposure indicating microvascular constriction. All adverse effects on functional parameters were normalized or improved at least by trend in noise-exposed gp91phox−/y mice. Noise exposure also induced endothelial dysfunction in cerebral microvessels, which was associated with higher oxidative stress burden and inflammation, as measured using video microscopy. We here establish a link between a pro-inflammatory phenotype of plasma, activation of circulating leukocytes and microvascular dysfunction in mice exposed to aircraft noise. The phagocytic NADPH oxidase was identified as a central player in the underlying pathophysiological mechanisms. Noise exposure induces a pro-thrombo-inflammatory phenotype in mouse plasma. Aircraft noise increases leukocyte-endothelium interactions in dorsal microvessels. Noise decreases segmental blood flow/red blood cell velocity in dorsal microvessels. Noise increases cerebral microvascular dysfunction and oxidative stress. Nox2 deficiency (gp91phox-/y) improves noise-induced adverse effects.
Collapse
Affiliation(s)
- Jonas Eckrich
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Katie Frenis
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | | | - Yue Ruan
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Subao Jiang
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | | | - Marin Kuntic
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Matthias Oelze
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | | | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | | | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
14
|
Heitzer M, Brockhaus J, Kniha K, Merkord F, Peters F, Hölzle F, Goloborodko E, Modabber A. Mechanical strength and hydrostatic testing of VIVO adhesive in sutureless microsurgical anastomoses: an ex vivo study. Sci Rep 2021; 11:13598. [PMID: 34193930 PMCID: PMC8245481 DOI: 10.1038/s41598-021-92998-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/15/2021] [Indexed: 11/09/2022] Open
Abstract
Conventional anastomoses with interrupted sutures are challenging and inevitably associated with trauma to the vessel walls. The goal of this study was to evaluate a novel alternative adhesive-based suture-free anastomosis technique that uses an intraluminal stent. Overall, 120 porcine coronary vessels were analyzed in an ex vivo model and were examined for their mechanical (n = 20 per cohort) and hydrostatic strength (n = 20 per cohort). Anastomoses were made using the novel VIVO adhesive with an additional intraluminal nitinol stent and was compared to interrupted suture anastomosis and to native vessels. Sutureless anastomoses withstood pressures 299 ± 4.47 [mmHg] comparable to native vessels. They were performed significantly faster 553.8 ± 82.44 [sec] (p ≤ 0.001) and withstood significantly higher pressures (p ≤ 0.001) than sutured anastomoses. We demonstrate that the adhesive-based anastomosis can also resist unphysiologically high longitudinal tensile forces with a mean of 1.33 [N]. Within the limitations of an in vitro study adhesive-based suture-free anastomosis technique has the biomechanical potential to offer a seamless alternative to sutured anastomosis because of its stability, and faster handling. In vivo animal studies are needed to validate outcomes and confirm safety.
Collapse
Affiliation(s)
- Marius Heitzer
- Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 13, 52074, Aachen, Germany.
| | - Julia Brockhaus
- Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 13, 52074, Aachen, Germany
| | - Kristian Kniha
- Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 13, 52074, Aachen, Germany
| | - Felix Merkord
- Institute of Textile Technology, RWTH Aachen University, Aachen, Germany
| | - Florian Peters
- Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 13, 52074, Aachen, Germany
| | - Frank Hölzle
- Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 13, 52074, Aachen, Germany
| | - Evgeny Goloborodko
- Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 13, 52074, Aachen, Germany
| | - Ali Modabber
- Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 13, 52074, Aachen, Germany
| |
Collapse
|
15
|
Ruan Y, Patzak A, Pfeiffer N, Gericke A. Muscarinic Acetylcholine Receptors in the Retina-Therapeutic Implications. Int J Mol Sci 2021; 22:4989. [PMID: 34066677 PMCID: PMC8125843 DOI: 10.3390/ijms22094989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) belong to the superfamily of G-protein-coupled receptors (GPCRs). The family of mAChRs is composed of five subtypes, M1, M2, M3, M4 and M5, which have distinct expression patterns and functions. In the eye and its adnexa, mAChRs are widely expressed and exert multiple functions, such as modulation of tear secretion, regulation of pupil size, modulation of intraocular pressure, participation in cell-to-cell signaling and modula-tion of vascular diameter in the retina. Due to this variety of functions, it is reasonable to assume that abnormalities in mAChR signaling may contribute to the development of various ocular diseases. On the other hand, mAChRs may offer an attractive therapeutic target to treat ocular diseases. Thus far, non-subtype-selective mAChR ligands have been used in ophthalmology to treat dry eye disease, myopia and glaucoma. However, these drugs were shown to cause various side-effects. Thus, the use of subtype-selective ligands would be useful to circumvent this problem. In this review, we give an overview on the localization and on the functional role of mAChR subtypes in the eye and its adnexa with a special focus on the retina. Moreover, we describe the pathophysiological role of mAChRs in retinal diseases and discuss potential therapeutic approaches.
Collapse
Affiliation(s)
- Yue Ruan
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (N.P.); (A.G.)
| | - Andreas Patzak
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (N.P.); (A.G.)
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (N.P.); (A.G.)
| |
Collapse
|
16
|
Frenis K, Helmstädter J, Ruan Y, Schramm E, Kalinovic S, Kröller-Schön S, Bayo Jimenez MT, Hahad O, Oelze M, Jiang S, Wenzel P, Sommer CJ, Frauenknecht KBM, Waisman A, Gericke A, Daiber A, Münzel T, Steven S. Ablation of lysozyme M-positive cells prevents aircraft noise-induced vascular damage without improving cerebral side effects. Basic Res Cardiol 2021; 116:31. [PMID: 33929610 PMCID: PMC8087569 DOI: 10.1007/s00395-021-00869-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/13/2021] [Indexed: 12/17/2022]
Abstract
Aircraft noise induces vascular and cerebral inflammation and oxidative stress causing hypertension and cardiovascular/cerebral dysfunction. With the present studies, we sought to determine the role of myeloid cells in the vascular vs. cerebral consequences of exposure to aircraft noise. Toxin-mediated ablation of lysozyme M+ (LysM+) myeloid cells was performed in LysMCreiDTR mice carrying a cre-inducible diphtheria toxin receptor. In the last 4d of toxin treatment, the animals were exposed to noise at maximum and mean sound pressure levels of 85 and 72 dB(A), respectively. Flow cytometry analysis revealed accumulation of CD45+, CD11b+, F4/80+, and Ly6G-Ly6C+ cells in the aortas of noise-exposed mice, which was prevented by LysM+ cell ablation in the periphery, whereas brain infiltrates were even exacerbated upon ablation. Aircraft noise-induced increases in blood pressure and endothelial dysfunction of the aorta and retinal/mesenteric arterioles were almost completely normalized by ablation. Correspondingly, reactive oxygen species in the aorta, heart, and retinal/mesenteric vessels were attenuated in ablated noise-exposed mice, while microglial activation and abundance in the brain was greatly increased. Expression of phagocytic NADPH oxidase (NOX-2) and vascular cell adhesion molecule-1 (VCAM-1) mRNA in the aorta was reduced, while NFκB signaling appeared to be activated in the brain upon ablation. In sum, we show dissociation of cerebral and peripheral inflammatory reactions in response to aircraft noise after LysM+ cell ablation, wherein peripheral myeloid inflammatory cells represent a dominant part of the pathomechanism for noise stress-induced cardiovascular effects and their central nervous counterparts, microglia, as key mediators in stress responses.
Collapse
Affiliation(s)
- Katie Frenis
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Johanna Helmstädter
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Yue Ruan
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Eva Schramm
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sanela Kalinovic
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Swenja Kröller-Schön
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Matthias Oelze
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Subao Jiang
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Philip Wenzel
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Clemens J Sommer
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Katrin B M Frauenknecht
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Thomas Münzel
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Sebastian Steven
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
17
|
Hwang JS, Shin YJ. Role of Choline in Ocular Diseases. Int J Mol Sci 2021; 22:4733. [PMID: 33946979 PMCID: PMC8124599 DOI: 10.3390/ijms22094733] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022] Open
Abstract
Choline is essential for maintaining the structure and function of cells in humans. Choline plays an important role in eye health and disease. It is a precursor of acetylcholine, a neurotransmitter of the parasympathetic nervous system, and it is involved in the production and secretion of tears by the lacrimal glands. It also contributes to the stability of the cells and tears on the ocular surface and is involved in retinal development and differentiation. Choline deficiency is associated with retinal hemorrhage, glaucoma, and dry eye syndrome. Choline supplementation may be effective for treating these diseases.
Collapse
Affiliation(s)
| | - Young-Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Korea;
| |
Collapse
|
18
|
Ivanova E, Bianchimano P, Corona C, Eleftheriou CG, Sagdullaev BT. Optogenetic Stimulation of Cholinergic Amacrine Cells Improves Capillary Blood Flow in Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2021; 61:44. [PMID: 32841313 PMCID: PMC7452855 DOI: 10.1167/iovs.61.10.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Purpose Disruption in blood supply to active retinal circuits is the earliest hallmark of diabetic retinopathy (DR) and has been primarily attributed to vascular deficiency. However, accumulating evidence supports an early role for a disrupted neuronal function in blood flow impairment. Here, we tested the hypothesis that selectively stimulating cholinergic neurons could restore neurovascular signaling to preserve the capillary circulation in DR. Methods We used wild type (wt) and choline acetyltransferase promoter (ChAT)-channelrhodopsin-2 (ChR2) mice expressing ChR2 exclusively in cholinergic cells. Mice were made diabetic by streptozotocin (STZ) injections. Two to 3 months after the last STZ injection, the rate of capillary blood flow was measured in vivo within each retinal vascular layer using high speed two-photon imaging. Measurements were done at baseline and following ChR2-driven activation of retinal cholinergic interneurons, the sole source of the vasodilating neurotransmitter acetylcholine. After recordings, retinas were collected and assessed for physiological and structural features. Results In retinal explants from ChAT-ChR2 mice, we found that channelrhodopsin2 was selectively expressed in all cholinergic amacrine cells. Its direct activation by blue light led to dilation of adjacent retinal capillaries. In living diabetic ChAT-ChR2 animals, basal capillary blood flow was significantly higher than in diabetic mice without channelrhodopsin. However, optogenetic stimulation with blue light did not result in flickering light-induced functional hyperemia, suggesting a necessity for a concerted neurovascular interaction. Conclusions These findings provide direct support to the utility and efficacy of an optogenetic approach for targeting selective retinal circuits to treat DR and its complications.
Collapse
Affiliation(s)
- Elena Ivanova
- Burke Neurological Institute, White Plains, New York, United States.,Department of Neuroscience, Weill Cornell Medicine, New York, United States
| | | | - Carlo Corona
- Burke Neurological Institute, White Plains, New York, United States
| | | | - Botir T Sagdullaev
- Burke Neurological Institute, White Plains, New York, United States.,Department of Ophthalmology, Weill Cornell Medicine, New York, United States
| |
Collapse
|
19
|
Abstract
Diabetic retinopathy (DR) is a frequent complication of diabetes mellitus and an increasingly common cause of visual impairment. Blood vessel damage occurs as the disease progresses, leading to ischemia, neovascularization, blood-retina barrier (BRB) failure and eventual blindness. Although detection and treatment strategies have improved considerably over the past years, there is room for a better understanding of the pathophysiology of the diabetic retina. Indeed, it has been increasingly realized that DR is in fact a disease of the retina's neurovascular unit (NVU), the multi-cellular framework underlying functional hyperemia, coupling neuronal computations to blood flow. The accumulating evidence reveals that both neurochemical (synapses) and electrical (gap junctions) means of communications between retinal cells are affected at the onset of hyperglycemia, warranting a global assessment of cellular interactions and their role in DR. This is further supported by the recent data showing down-regulation of connexin 43 gap junctions along the vascular relay from capillary to feeding arteriole as one of the earliest indicators of experimental DR, with rippling consequences to the anatomical and physiological integrity of the retina. Here, recent advancements in our knowledge of mechanisms controlling the retinal neurovascular unit will be assessed, along with their implications for future treatment and diagnosis of DR.
Collapse
|
20
|
Li Z, Zhang Y, Bickerstaff E, Yang Z, Nakamura S. Roles of vacuolar H +-ATPase in mice treated with norepinephrine and acetylcholine. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:1300-1312. [PMID: 32661466 PMCID: PMC7344003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Norepinephrine (NE) is widely used to treat cardiac arrest and profound hypotension. A prolonged vasoconstriction of blood vessel could cause ischemia and hypoxia which results in a decrease in intracellular pH. V-ATPases pump protons across the plasma membranes of numerous cell types. V-ATPases-mediated intracellular regulation in the ischemic kidney is incompletely studied; we sought to determine the roles of V-ATPases in mice treated with NE causing vasoconstriction or acetylcholine causing vasodilatation to enable comparison of its relative contributions to the affected mice. Mice were divided into 5 groups. Histology and immunohistochemistry were performed to examine pathologic changes in nephron segments. The expression of V-ATPases B1, B2 subunits were examined by Q-PCR and western blotting correlated with the transcription and translation of V-ATPase. All NE treated mice exhibited pronounced renal tubular degradation. However, the tubular pathologies were reversed by ACh. In immunohistochemical studies, NE treated mice showed a higher density of staining in the collecting ducts. These changes were gradually diminished by the treatment with Ach after NE. In Q-PCR, V-ATPase B1 subunit showed a fair expression in all subsets. Western blotting analysis has shown V-ATPase B1 statistical significance in multiple groups treated by NE alone or ACh post to NE. The overdosage of norepinephrine in clinical treatment is harmful to the kidney by vasoconstriction caused hypoxia and acidosis. Our data demonstrated that acetylcholine as a vasodilating agent could aid the cells recovery from hypoxic condition. V-ATPase plays a role by removing H+ allowing cells to recover from cellular acidosis. These findings also help us understand the pathophysiology of renal tubular disorders.
Collapse
Affiliation(s)
- Zhihong Li
- Department of Anatomy, Shanghai University of Medicine & Health SciencesShanghai, China
| | - Ying Zhang
- College of Basic Medicine, Shanghai University of Medicine & Health SciencesShanghai, China
| | - Elliot Bickerstaff
- Department of Biological Sciences, Murray State UniversityMurray, KY, USA
| | - Zhifang Yang
- College of Basic Medicine, Shanghai University of Medicine & Health SciencesShanghai, China
| | - Suguru Nakamura
- Department of Biological Sciences, Murray State UniversityMurray, KY, USA
| |
Collapse
|
21
|
Elevated Intraocular Pressure Causes Abnormal Reactivity of Mouse Retinal Arterioles. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9736047. [PMID: 31976030 PMCID: PMC6954472 DOI: 10.1155/2019/9736047] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/27/2019] [Accepted: 11/27/2019] [Indexed: 11/20/2022]
Abstract
Objective Glaucoma is a leading cause of severe visual impairment and blindness. Although high intraocular pressure (IOP) is an established risk factor for the disease, the role of abnormal ocular vessel function in the pathophysiology of glaucoma gains more and more attention. We tested the hypothesis that elevated intraocular pressure (IOP) causes vascular dysfunction in the retina. Methods High IOP was induced in one group of mice by unilateral cauterization of three episcleral veins. The other group received sham surgery only. Two weeks later, retinal vascular preparations were studied by video microscopy in vitro. Reactive oxygen species (ROS) levels and expression of hypoxia markers and of prooxidant and antioxidant redox genes as well as of inflammatory cytokines were determined. Results Strikingly, responses of retinal arterioles to stepwise elevation of perfusion pressure were impaired in the high-IOP group. Moreover, vasodilation responses to the endothelium-dependent vasodilator, acetylcholine, were markedly reduced in mice with elevated IOP, while no differences were seen in response to the endothelium-independent nitric oxide donor, sodium nitroprusside. Remarkably, ROS levels were increased in the retinal ganglion cell layer including blood vessels. Expression of the NADPH oxidase isoform, NOX2, and of the inflammatory cytokine, TNF-α, was increased at the mRNA level in retinal explants. Expression of NOX2, but not of the hypoxic markers, HIF-1α and VEGF-A, was increased in the retinal ganglion cell layer and in retinal blood vessels at the protein level. Conclusion Our data provide first-time evidence that IOP elevation impairs autoregulation and induces endothelial dysfunction in mouse retinal arterioles. Oxidative stress and inflammation, but not hypoxia, appear to be involved in this process.
Collapse
|
22
|
Apolipoprotein E Deficiency Causes Endothelial Dysfunction in the Mouse Retina. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5181429. [PMID: 31781340 PMCID: PMC6875001 DOI: 10.1155/2019/5181429] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/25/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
Abstract
Objective Atherogenic lipoproteins may impair vascular reactivity consecutively causing tissue damage in multiple organs via abnormal perfusion and excessive reactive oxygen species generation. We tested the hypothesis that chronic hypercholesterolemia causes endothelial dysfunction and cell loss in the retina. Methods Twelve-month-old apolipoprotein E-deficient (ApoE-/-) mice and age-matched wild-type controls were used in this study (n = 8 per genotype for each experiment). Intraocular pressure, blood pressure, and ocular perfusion pressure were determined. Retinal arteriole responses were studied in vitro, and reactive oxygen and nitrogen species were quantified in the retinal and optic nerve cryosections. The expression of the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and the NADPH oxidase isoforms, NOX1, NOX2, and NOX4, were determined in retinal cryosections by immunofluorescence microscopy. Pro- and antioxidant redox genes were quantified in retinal explants by PCR. Moreover, cell number in the retinal ganglion cell layer and axon number in the optic nerve was calculated. Results Responses to the endothelium-dependent vasodilator, acetylcholine, were markedly impaired in retinal arterioles of ApoE-/- mice (P < 0.01). LOX-1 (P = 0.0007) and NOX2 (P = 0.0027) expressions as well as levels of reactive oxygen species (P = 0.0022) were increased in blood vessels but not in other retinal structures. In contrast, reactive nitrogen species were barely detectable in both mouse genotypes. Messenger RNA for HIF-1α, VEGF-A, NOX1, and NOX2, but also for various antioxidant redox genes was elevated in the retina of ApoE-/- mice. Total cell number in the retinal ganglion cell layer did not differ between ApoE-/- and wild-type mice (P = 0.2171). Also, axon number in the optic nerve did not differ between ApoE-/- and wild-type mice (P = 0.6435). Conclusion Apolipoprotein E deficiency induces oxidative stress and endothelial dysfunction in retinal arterioles, which may trigger hypoxia in the retinal tissue. Oxidative stress in nonvascular retinal tissue appears to be prevented by the upregulation of antioxidant redox enzymes, resulting in neuron preservation.
Collapse
|
23
|
The M 1 muscarinic acetylcholine receptor subtype is important for retinal neuron survival in aging mice. Sci Rep 2019; 9:5222. [PMID: 30914695 PMCID: PMC6435680 DOI: 10.1038/s41598-019-41425-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/04/2019] [Indexed: 01/19/2023] Open
Abstract
Muscarinic acetylcholine receptors have been implicated as potential neuroprotective targets for glaucoma. We tested the hypothesis that the lack of a single muscarinic receptor subtype leads to age-dependent neuron reduction in the retinal ganglion cell layer. Mice with targeted disruption of single muscarinic acetylcholine receptor subtype genes (M1 to M5) and wild-type controls were examined at two age categories, 5 and 15 months, respectively. We found no differences in intraocular pressure between individual mouse groups. Remarkably, in 15-month-old mice devoid of the M1 receptor, neuron number in the retinal ganglion cell layer and axon number in the optic nerve were markedly reduced. Moreover, mRNA expression for the prooxidative enzyme, NOX2, was increased, while mRNA expression for the antioxidative enzymes, SOD1, GPx1 and HO-1, was reduced in aged M1 receptor-deficient mice compared to age-matched wild-type mice. In line with these findings, the reactive oxygen species level was also elevated in the retinal ganglion cell layer of aged M1 receptor-deficient mice. In conclusion, M1 receptor deficiency results in retinal ganglion cell loss in aged mice via involvement of oxidative stress. Based on these findings, activation of M1 receptor signaling may become therapeutically useful to promote retinal ganglion cell survival.
Collapse
|
24
|
Gericke A, Wolff I, Musayeva A, Zadeh JK, Manicam C, Pfeiffer N, Li H, Xia N. Retinal arteriole reactivity in mice lacking the endothelial nitric oxide synthase (eNOS) gene. Exp Eye Res 2019; 181:150-156. [PMID: 30716330 DOI: 10.1016/j.exer.2019.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/17/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022]
Abstract
Dysfunctional vascular endothelial nitric oxide synthase (eNOS) has been proposed to play a main pathophysiological role in various ocular diseases. The aim of the present study was to test the hypothesis that the chronic lack of eNOS impairs endothelium-dependent vasodilation in retinal arterioles. The relevance of eNOS for mediating vascular responses was studied in retinal vascular preparations from eNOS-deficient mice (eNOS-/-) and wild-type controls in vitro. Changes in luminal diameter in response to vasoactive agents were measured by videomicroscopy. The thromboxane mimetic, U46619, induced similar concentration-dependent constriction of retinal arterioles in eNOS-/- and wild-type mice. Responses to the endothelium-independent vasodilator, nitroprusside, did not differ between both mouse genotypes, either. In contrast, responses to the endothelium-dependent vasodilator, acetylcholine, were blunted in eNOS-/- mice. Non-isoform-selective blockade of either nitric oxide synthase (NOS) or cyclooxygenase (COX) alone did not affect responses to acetylcholine. However, combined blockade of both enzyme families markedly attenuated cholinergic vasodilation. Also, combined blockade of COX and neuronal NOS (nNOS) blunted acetylcholine-induced vasodilation, while combined COX and inducible NOS (iNOS) inhibition had no effect. Simultaneous NOS and COX-1 blockade did not affect cholinergic vasodilation, whereas combined NOS and COX-2 inhibition markedly reduced vasodilation to acetylcholine. These findings are the first to demonstrate that the chronic lack of eNOS is associated with moderate endothelial dysfunction in retinal arterioles. However, eNOS-deficiency is partially compensated by nNOS and COX-2 metabolites, which are reciprocally regulated.
Collapse
Affiliation(s)
- Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Ismael Wolff
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Aytan Musayeva
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Jenia Kouchek Zadeh
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55131, Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55131, Mainz, Germany
| |
Collapse
|
25
|
Christiansen AT, Sørensen NB, Haanes KA, Blixt FW, la Cour M, Warfvinge K, Klemp K, Woldbye DPD, Kiilgaard JF. Neuropeptide Y treatment induces retinal vasoconstriction and causes functional and histological retinal damage in a porcine ischaemia model. Acta Ophthalmol 2018; 96:812-820. [PMID: 30218483 DOI: 10.1111/aos.13806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/04/2018] [Indexed: 01/10/2023]
Abstract
PURPOSE To investigate the effects of intravitreal neuropeptide Y (NPY) treatment following acute retinal ischaemia in an in vivo porcine model. In addition, we evaluated the vasoconstrictive potential of NPY on porcine retinal arteries ex vivo. METHODS Twelve pigs underwent induced retinal ischaemia by elevated intraocular pressure clamping the ocular perfusion pressure at 5 mmHg for 2 hr followed by intravitreal injection of NPY or vehicle. After 4 weeks, retinas were evaluated functionally by standard and global-flash multifocal electroretinogram (mfERG) and histologically by thickness of retinal layers and number of ganglion cells. Additionally, the vasoconstrictive effects of NPY and its involved receptors were tested using wire myographs and NPY receptor antagonists on porcine retinal arteries. RESULTS Intravitreal injection of NPY after induced ischaemia caused a significant reduction in the mean induced component (IC) amplitude ratio (treated/normal eye) compared to vehicle-treated eyes. This reduction was accompanied by histological damage, where NPY treatment reduced the mean thickness of inner retinal layers and number of ganglion cells. In retinal arteries, NPY-induced vasoconstriction to a plateau of approximately 65% of potassium-induced constriction. This effect appeared to be mediated via Y1 and Y2, but not Y5. CONCLUSION In seeming contrast to previous in vitro studies, intravitreal NPY treatment caused functional and histological damage compared to vehicle after a retinal ischaemic insult. Furthermore, we showed for the first time that NPY induces Y1- and Y2- but not Y5-mediated vasoconstriction in retinal arteries. This constriction could explain the worsening in vivo effect induced by NPY treatment following an ischaemic insult and suggests that future studies on exploring the neuroprotective effects of NPY might focus on other receptors than Y1 and Y2.
Collapse
Affiliation(s)
- Anders T. Christiansen
- Laboratory of Neural Plasticity; Department of Neuroscience; University of Copenhagen; Copenhagen Denmark
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Nina B. Sørensen
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Kristian A. Haanes
- Department of Clinical Experimental Research; Glostrup Research Institute; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Frank W. Blixt
- Department of Clinical Sciences; Division of Experimental Vascular Research; Lund University; Lund Sweden
| | - Morten la Cour
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research; Glostrup Research Institute; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Kristian Klemp
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - David P. D. Woldbye
- Laboratory of Neural Plasticity; Department of Neuroscience; University of Copenhagen; Copenhagen Denmark
| | - Jens F. Kiilgaard
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| |
Collapse
|
26
|
Gericke A, Goloborodko E, Pfeiffer N, Manicam C. Preparation Steps for Measurement of Reactivity in Mouse Retinal Arterioles Ex Vivo. J Vis Exp 2018. [PMID: 29806833 DOI: 10.3791/56199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Vascular insufficiency and alterations in normal retinal perfusion are among the major factors for the pathogenesis of various sight-threatening ocular diseases, such as diabetic retinopathy, hypertensive retinopathy, and possibly glaucoma. Therefore, retinal microvascular preparations are pivotal tools for physiological and pharmacological studies to delineate the underlying pathophysiological mechanisms and to design therapies for the diseases. Despite the wide use of mouse models in ophthalmic research, studies on retinal vascular reactivity are scarce in this species. A major reason for this discrepancy is the challenging isolation procedures owing to the small size of these retinal blood vessels, which is ~ ≤ 30 µm in luminal diameter. To circumvent the problem of direct isolation of these retinal microvessels for functional studies, we established an isolation and preparation technique that enables ex vivo studies of mouse retinal vasoactivity under near-physiological conditions. Although the present experimental preparations will specifically refer to the mouse retinal arterioles, this methodology can readily be employed to microvessels from rats.
Collapse
Affiliation(s)
- Adrian Gericke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz;
| | - Evgeny Goloborodko
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz
| |
Collapse
|
27
|
Sokolov AY, Murzina AA, Osipchuk AV, Lyubashina OA, Amelin AV. Cholinergic mechanisms of headaches. NEUROCHEM J+ 2017. [DOI: 10.1134/s1819712417020131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Radu BM, Osculati AMM, Suku E, Banciu A, Tsenov G, Merigo F, Di Chio M, Banciu DD, Tognoli C, Kacer P, Giorgetti A, Radu M, Bertini G, Fabene PF. All muscarinic acetylcholine receptors (M 1-M 5) are expressed in murine brain microvascular endothelium. Sci Rep 2017; 7:5083. [PMID: 28698560 PMCID: PMC5506046 DOI: 10.1038/s41598-017-05384-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/30/2017] [Indexed: 12/25/2022] Open
Abstract
Clinical and experimental studies indicate that muscarinic acetylcholine receptors are potential pharmacological targets for the treatment of neurological diseases. Although these receptors have been described in human, bovine and rat cerebral microvascular tissue, a subtype functional characterization in mouse brain endothelium is lacking. Here, we show that all muscarinic acetylcholine receptors (M1-M5) are expressed in mouse brain microvascular endothelial cells. The mRNA expression of M2, M3, and M5 correlates with their respective protein abundance, but a mismatch exists for M1 and M4 mRNA versus protein levels. Acetylcholine activates calcium transients in brain endothelium via muscarinic, but not nicotinic, receptors. Moreover, although M1 and M3 are the most abundant receptors, only a small fraction of M1 is present in the plasma membrane and functions in ACh-induced Ca2+ signaling. Bioinformatic analyses performed on eukaryotic muscarinic receptors demonstrate a high degree of conservation of the orthosteric binding site and a great variability of the allosteric site. In line with previous studies, this result indicates muscarinic acetylcholine receptors as potential pharmacological targets in future translational studies. We argue that research on drug development should especially focus on the allosteric binding sites of the M1 and M3 receptors.
Collapse
Affiliation(s)
- Beatrice Mihaela Radu
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy.,Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, 050095, Romania
| | | | - Eda Suku
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Adela Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, 050095, Romania.,Engineering Faculty, Constantin Brancusi' University, Calea Eroilor 30, Targu Jiu, 210135, Romania
| | - Grygoriy Tsenov
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
| | - Flavia Merigo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
| | - Marzia Di Chio
- Department of Public Health and Community Medicine, University of Verona, Verona, 37134, Italy
| | - Daniel Dumitru Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, 050095, Romania
| | - Cristina Tognoli
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
| | - Petr Kacer
- National Institute of Mental Health, Klecany, 25067, Czech Republic
| | | | - Mihai Radu
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy. .,Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, Reactorului 30, Magurele, 077125, Romania.
| | - Giuseppe Bertini
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
| | - Paolo Francesco Fabene
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
| |
Collapse
|
29
|
Ivanova E, Yee CW, Sagdullaev BT. Leveraging Optogenetic-Based Neurovascular Circuit Characterization for Repair. Neurotherapeutics 2016; 13:341-7. [PMID: 26758692 PMCID: PMC4824015 DOI: 10.1007/s13311-015-0419-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Optogenetic techniques are a powerful tool for determining the role of individual functional components within complex neural circuits. By genetically targeting specific cell types, neural mechanisms can be actively manipulated to gain a better understanding of their origin and function, both in health and disease. The potential of optogenetics is not limited to answering biological questions, as it is also a promising therapeutic approach for neurological diseases. An important prerequisite for this approach is to have an identified target with a uniquely defined role within a given neural circuit. Here, we examine the retinal neurovascular unit, a circuit that incorporates neurons and vascular cells to control blood flow in the retina. We highlight the role of a specific cell type, the cholinergic amacrine cell, in modulating vascular cells, and demonstrate how this can be targeted and controlled with optogenetics. A better understanding of these mechanisms will not only extend our understanding of neurovascular interactions in the brain, but ultimately may also provide new targets to treat vision loss in a variety of retinal diseases.
Collapse
Affiliation(s)
- Elena Ivanova
- Department of Ophthalmology, Brain and Mind Research Institute, Weill Cornell Medical College, Burke Medical Research Institute, White Plains, NY, 10605, USA
| | - Christopher W Yee
- Department of Ophthalmology, Brain and Mind Research Institute, Weill Cornell Medical College, Burke Medical Research Institute, White Plains, NY, 10605, USA
| | - Botir T Sagdullaev
- Department of Ophthalmology, Brain and Mind Research Institute, Weill Cornell Medical College, Burke Medical Research Institute, White Plains, NY, 10605, USA.
| |
Collapse
|
30
|
Muscarinic acetylcholine receptor M1 and M3 subtypes mediate acetylcholine-induced endothelium-independent vasodilatation in rat mesenteric arteries. J Pharmacol Sci 2016; 130:24-32. [PMID: 26825997 DOI: 10.1016/j.jphs.2015.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/15/2015] [Accepted: 12/20/2015] [Indexed: 11/21/2022] Open
Abstract
The present study investigated pharmacological characterizations of muscarinic acetylcholine receptor (AChR) subtypes involving ACh-induced endothelium-independent vasodilatation in rat mesenteric arteries. Changes in perfusion pressure to periarterial nerve stimulation and ACh were measured before and after the perfusion of Krebs solution containing muscarinic receptor antagonists. Distributions of muscarinic AChR subtypes in mesenteric arteries with an intact endothelium were studied using Western blotting. The expression level of M1 and M3 was significantly greater than that of M2. Endothelium removal significantly decreased expression levels of M2 and M3, but not M1. In perfused mesenteric vascular beds with intact endothelium and active tone, exogenous ACh (1, 10, and 100 nmol) produced concentration-dependent and long-lasting vasodilatations. In endothelium-denuded preparations, relaxation to ACh (1 nmol) disappeared, but ACh at 10 and 100 nmol caused long-lasting vasodilatations, which were markedly blocked by the treatment of pirenzepine (M1 antagonist) or 4-DAMP (M1 and M3 antagonist) plus hexamethonium (nicotinic AChR antagonist), but not methoctramine (M2 and M4 antagonist). These results suggest that muscarinic AChR subtypes, mainly M1, distribute throughout the rat mesenteric arteries, and that activation of M1 and/or M3 which may be located on CGRPergic nerves releases CGRP, causing an endothelium-independent vasodilatation.
Collapse
|
31
|
Kovacevic I, Müller M, Kojonazarov B, Ehrke A, Randriamboavonjy V, Kohlstedt K, Hindemith T, Schermuly RT, Fleming I, Hoffmeister M, Oess S. The F-BAR Protein NOSTRIN Dictates the Localization of the Muscarinic M3 Receptor and Regulates Cardiovascular Function. Circ Res 2015; 117:460-9. [DOI: 10.1161/circresaha.115.306187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/10/2015] [Indexed: 12/16/2022]
Abstract
Rationale:
Endothelial dysfunction is an early event in cardiovascular disease and characterized by reduced production of nitric oxide (NO). The F-BAR protein NO synthase traffic inducer (NOSTRIN) is an interaction partner of endothelial NO synthase and modulates its subcellular localization, but the role of NOSTRIN in pathophysiology in vivo is unclear.
Objective:
We analyzed the consequences of deleting the
NOSTRIN
gene in endothelial cells on NO production and cardiovascular function in vivo using NOSTRIN knockout mice.
Methods and Results:
The levels of NO and cGMP were significantly reduced in mice with endothelial cell–specific deletion of the
NOSTRIN
gene resulting in diastolic heart dysfunction. In addition, systemic blood pressure was increased, and myograph measurements indicated an impaired acetylcholine-induced relaxation of isolated aortic rings and resistance arteries. We found that the muscarinic acetylcholine receptor subtype M3 (M3R) interacted directly with NOSTRIN, and the latter was necessary for correct localization of the M3R at the plasma membrane in murine aorta. In the absence of NOSTRIN, the acetylcholine-induced increase in intracellular Ca
2+
in primary endothelial cells was abolished. Moreover, the activating phosphorylation and Golgi translocation of endothelial NO synthase in response to the M3R agonist carbachol were diminished.
Conclusions:
NOSTRIN is crucial for the localization and function of the M3R and NO production. The loss of NOSTRIN in mice leads to endothelial dysfunction, increased blood pressure, and diastolic heart failure.
Collapse
Affiliation(s)
- Igor Kovacevic
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Miriam Müller
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Baktybek Kojonazarov
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Alexander Ehrke
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Voahanginirina Randriamboavonjy
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Karin Kohlstedt
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Tanja Hindemith
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Ralph Theo Schermuly
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Ingrid Fleming
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Meike Hoffmeister
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Stefanie Oess
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| |
Collapse
|
32
|
Böhmer T, Manicam C, Steege A, Michel MC, Pfeiffer N, Gericke A. The α₁B -adrenoceptor subtype mediates adrenergic vasoconstriction in mouse retinal arterioles with damaged endothelium. Br J Pharmacol 2015; 171:3858-67. [PMID: 24749494 DOI: 10.1111/bph.12743] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/22/2014] [Accepted: 04/15/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE The α₁-adrenoceptor family plays a critical role in regulating ocular perfusion by mediating responses to catecholamines. The purpose of the present study was to determine the contribution of individual α₁-adrenoceptor subtypes to adrenergic vasoconstriction of retinal arterioles using gene-targeted mice deficient in one of the three adrenoceptor subtypes (α₁A-AR(-/-), α₁B-AR(-/-) and α₁D-AR(-/-) respectively). EXPERIMENTAL APPROACH Using real-time PCR, mRNA expression for individual α₁-adrenoceptor subtypes was determined in murine retinal arterioles. To assess the functional relevance of the three α₁-adrenoceptor subtypes for mediating vascular responses, retinal vascular preparations from wild-type mice and mice deficient in individual α₁-adrenoceptor subtypes were studied in vitro using video microscopy. KEY RESULTS Retinal arterioles expressed mRNA for all three α₁-adrenoceptor subtypes. In functional studies, arterioles from wild-type mice with intact endothelium responded only negligibly to the α₁-adrenoceptor agonist phenylephrine. In endothelium-damaged arterioles from wild-type mice, phenylephrine evoked concentration-dependent constriction that was attenuated by the α₁-adrenoceptor blocker prazosin. Strikingly, phenylephrine only minimally constricted endothelium-damaged retinal arterioles from α₁B-AR(-/-) mice, whereas arterioles from α₁A -AR(-/-) and α₁D-AR(-/-) mice constricted similarly to arterioles from wild-type mice. Constriction to U46619 was similar in endothelium-damaged retinal arterioles from all four mouse genotypes. CONCLUSIONS AND IMPLICATIONS The present study is the first to demonstrate that α₁-adrenoceptor-mediated vasoconstriction in murine retinal arterioles is buffered by the endothelium. When the endothelium is damaged, a vasoconstricting role of the α₁B-adrenoceptor subtype is unveiled. Hence, the α₁B-adrenoceptor may represent a target to selectively modulate retinal blood flow in ocular diseases associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Tobias Böhmer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Effect of the M1 Muscarinic Acetylcholine Receptor on Retinal Neuron Number Studied with Gene-Targeted Mice. J Mol Neurosci 2015; 56:472-9. [PMID: 25720339 DOI: 10.1007/s12031-015-0524-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 02/11/2015] [Indexed: 01/04/2023]
Abstract
Pharmacological activation of the M1 muscarinic receptor subtype was suggested to promote the survival of retinal neurons. We examined the hypothesis that the M1 receptor is crucial for retinal neuron survival in vivo by using mice devoid of the M1 receptor gene. Muscarinic receptor gene expression was determined in the retina using real-time PCR. The amount of neurons in the retinal ganglion cell layer and of axons in the optic nerve was determined in retinal wholemounts stained with cresyl blue and in optic nerve cross-sections stained with toluidine blue, respectively. mRNA of all five muscarinic receptor subtypes (M1-M5) was detected in the retina from wild-type mice. Remarkably, M2 and M3 receptor mRNA were most abundant. In retinas from M1 receptor-deficient mice, M4 receptor mRNA expression was increased compared to that of wild-type mice, while no marked changes in the mRNA expression levels of the other muscarinic receptor subtypes were observed. The amount of cells in the retinal ganglion cell layer and the amount of axons in the optic nerve did not differ between M1 receptor-deficient and wild-type mice. The present findings suggest that the M1 receptor is not essential for the survival of retinal neurons in vivo.
Collapse
|
34
|
Role of nitric oxide synthase isoforms for ophthalmic artery reactivity in mice. Exp Eye Res 2014; 127:1-8. [PMID: 25017185 DOI: 10.1016/j.exer.2014.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 06/12/2014] [Accepted: 06/19/2014] [Indexed: 11/23/2022]
Abstract
Nitric oxide synthases (NOS) are involved in regulation of ocular vascular tone and blood flow. While endothelial NOS (eNOS) has recently been shown to mediate endothelium-dependent vasodilation in mouse retinal arterioles, the contribution of individual NOS isoforms to vascular responses is unknown in the retrobulbar vasculature. Moreover, it is unknown whether the lack of a single NOS isoform affects neuron survival in the retina. Thus, the goal of the present study was to examine the hypothesis that the lack of individual nitric oxide synthase (NOS) isoforms affects the reactivity of mouse ophthalmic arteries and neuron density in the retinal ganglion cell (RGC) layer. Mice deficient in one of the three NOS isoforms (nNOS-/-, iNOS-/- and eNOS-/-) were compared to respective wild type controls. Intraocular pressure (IOP) was measured in conscious mice using rebound tonometry. To examine the role of each NOS isoform for mediating vascular responses, ophthalmic arteries were studied in vitro using video microscopy. Neuron density in the RGC layer was calculated from retinal wholemounts stained with cresyl blue. IOP was similar in all NOS-deficient genotypes and respective wild type controls. In ophthalmic arteries, phenylephrine, nitroprusside and acetylcholine evoked concentration-dependent responses that did not differ between individual NOS-deficient genotypes and their respective controls. In all genotypes except eNOS-/- mice, vasodilation to acetylcholine was markedly reduced after incubation with L-NAME, a non-isoform-selective inhibitor of NOS. In contrast, pharmacological inhibition of nNOS and iNOS had no effect on acetylcholine-induced vasodilation in any of the mouse genotypes. Neuron density in the RGC layer was similar in all NOS-deficient genotypes and respective controls. Our findings suggest that eNOS contributes to endothelium-dependent dilation of murine ophthalmic arteries. However, the chronic lack of eNOS is functionally compensated by NOS-independent vasodilator mechanisms. The lack of a single NOS isoform does not appear to affect IOP or neuron density in the RGC layer.
Collapse
|
35
|
Impaired functional organization in the visual cortex of muscarinic receptor knock-out mice. Neuroimage 2014; 98:233-42. [PMID: 24837499 DOI: 10.1016/j.neuroimage.2014.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/09/2014] [Accepted: 05/07/2014] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine modulates maturation and neuronal activity through muscarinic and nicotinic receptors in the primary visual cortex. However, the specific contribution of different muscarinic receptor subtypes in these neuromodulatory mechanisms is not fully understood. The present study evaluates in vivo the functional organization and the properties of the visual cortex of different groups of muscarinic receptor knock-out (KO) mice. Optical imaging of intrinsic signals coupled to continuous and episodic visual stimulation paradigms was used. Retinotopic maps along elevation and azimuth were preserved among the different groups of mice. However, compared to their wild-type counterparts, the apparent visual field along elevation was larger in M2/M4-KO mice but smaller in M1-KO. There was a reduction in the estimated relative receptive field size of V1 neurons in M1/M3-KO and M1-KO mice. Spatial frequency and contrast selectivity of V1 neuronal populations were affected only in M1/M3-KO and M1-KO mice. Finally, the neuronal connectivity was altered by the absence of M2/M4 muscarinic receptors. All these effects suggest the distinct roles of different subtypes of muscarinic receptors in the intrinsic organization of V1 and a strong involvement of the muscarinic transmission in the detectability of visual stimuli.
Collapse
|
36
|
Pekel G, Yagci R, Acer S, Cetin EN, Cevik A, Kasikci A. Effect of intracameral carbachol in phacoemulsification surgery on macular morphology and retinal vessel caliber. Cutan Ocul Toxicol 2014; 34:42-5. [PMID: 24754406 DOI: 10.3109/15569527.2014.903572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the effects of intracameral carbachol in phacoemulsification surgery on central macular thickness (CMT), total macular volume (TMV) and retinal vessel caliber (RVC). MATERIALS AND METHODS In this prospective consecutive case series, 82 patients underwent uneventful phacoemulsification and in-the-bag intraocular lens implantation. Unlike patients in the control group (43 eyes), patients in the study group (42 eyes) were injected with intracameral 0.01% carbachol during surgery. Spectral-domain optical coherence tomography (OCT) was used to analyze the parameters of CMT, TMV and RVC. RESULTS On the first postoperative day, mean CMT and TMV decreased markedly in the carbachol group, though these values did not change significantly in the control group. During follow-up visits, no statistically significant differences between the groups occurred regarding changes in mean CMT (p = 0.25, first day; p = 0.80, first week; p = 0.95, first month). However, change in mean TMV between groups on the first postoperative day was statistically significant (p = 0.01, first day; p = 0.96, first week; p = 0.68, first month). RVC values were similar on the preoperative and postoperative first days in both groups (p > 0.05). DISCUSSION Results suggest that the effect of intracameral carbachol on macular OCT is related to pharmacological effects, as well as optic events (e.g. miosis). CONCLUSION Intracameral carbachol given during cataract surgery decreases macular thickness and volume in the early postoperative period but does not exert any gross effect on RVC.
Collapse
Affiliation(s)
- Gökhan Pekel
- Department of Ophthalmology, Pamukkale University , Camlaralti Mahallesi, Denizli , Turkey and
| | | | | | | | | | | |
Collapse
|
37
|
Gericke A, Steege A, Manicam C, Böhmer T, Wess J, Pfeiffer N. Role of the M3 muscarinic acetylcholine receptor subtype in murine ophthalmic arteries after endothelial removal. Invest Ophthalmol Vis Sci 2014; 55:625-31. [PMID: 24408978 DOI: 10.1167/iovs.13-13549] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We tested the hypothesis that the M3 muscarinic acetylcholine receptor subtype mediates cholinergic responses in murine ophthalmic arteries after endothelial removal. METHODS Muscarinic receptor gene expression was determined in ophthalmic arteries with intact and with removed endothelium using real-time PCR. To examine the role of the M3 receptor in mediating vascular responses, ophthalmic arteries from M3 receptor-deficient mice (M3R(-/-)) and respective wild-type controls were studied in vitro. Functional studies were performed in nonpreconstricted arteries with either intact or removed endothelium using video microscopy. RESULTS In endothelium-intact ophthalmic arteries, mRNA for all five muscarinic receptor subtypes was detected, but M3 receptor mRNA was most abundant. In endothelium-removed ophthalmic arteries, M1, M2, and M3 receptors displayed similar mRNA expression levels, which were higher than those for M4 and M5 receptors. In functional studies, acetylcholine evoked vasoconstriction in endothelium-removed arteries from wild-type mice that was virtually abolished after incubation with the muscarinic receptor blocker atropine, indicative of the involvement of muscarinic receptors. In concentration-response experiments, acetylcholine and carbachol concentration-dependently constricted endothelium-removed ophthalmic arteries from wild-type mice, but produced only negligible responses in arteries from M3R(-/-) mice. In contrast, acetylcholine concentration-dependently dilated ophthalmic arteries with intact endothelium from wild-type mice, but not from M3R(-/-) mice. Responses to the nitric oxide donor nitroprusside and to KCl did not differ between ophthalmic arteries from wild-type and M3R(-/-) mice, neither in endothelium-intact nor in endothelium-removed arteries. CONCLUSIONS These findings provide evidence that in murine ophthalmic arteries the muscarinic M3 receptor subtype mediates cholinergic endothelium-dependent vasodilation and endothelium-independent vasoconstriction.
Collapse
Affiliation(s)
- Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Ivanova E, Toychiev AH, Yee CW, Sagdullaev BT. Intersublaminar vascular plexus: the correlation of retinal blood vessels with functional sublaminae of the inner plexiform layer. Invest Ophthalmol Vis Sci 2014; 55:78-86. [PMID: 24346172 DOI: 10.1167/iovs.13-13196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Interactions between vasculature and neurons provide important insight into the function of the nervous system, as well as into neurological diseases wherein these interactions are disrupted. This study characterizes a previously unreported retinal vascular plexus and examines potential sites of neurovascular interaction. METHODS Vascular, neuronal, and glial elements were visualized using immunohistochemical markers. The distribution of vascular layers was measured and compared across eccentricities. Intensity profiles were calculated from confocal image reconstructions to reveal the proximity of vasculature to neuronal and glial processes. RESULTS Retinal vasculature forms a plexus that coincides with the dendritic processes of OFF cholinergic amacrine cells within the inner plexiform layer. Across eccentricities, this plexus comprises approximately 8% of the total length of horizontally running blood vessels in the retina. Processes of Müller glia and OFF cholinergic amacrine cells colocalize with the blood vessels that form the intersublaminar plexus. CONCLUSIONS In the retina, vasculature lacks autonomic control, but shows efficient local regulation. Although the source of this regulation is unclear, these results suggest that cholinergic amacrine cells and Müller glia may interact with the intersublaminar plexus to influence vasomotor activity. This may indicate a key role in modulating reciprocal interactions between neuronal activity and blood flow.
Collapse
Affiliation(s)
- Elena Ivanova
- Departments of Ophthalmology and Neurology, Weill Medical College of Cornell University, Burke Medical Research Institute, White Plains, New York
| | | | | | | |
Collapse
|
39
|
Bhattacharya S, Mahavadi S, Al-Shboul O, Rajagopal S, Grider JR, Murthy KS. Differential regulation of muscarinic M2 and M3 receptor signaling in gastrointestinal smooth muscle by caveolin-1. Am J Physiol Cell Physiol 2013; 305:C334-47. [PMID: 23784544 DOI: 10.1152/ajpcell.00334.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Caveolae act as scaffolding proteins for several G protein-coupled receptor signaling molecules to regulate their activity. Caveolin-1, the predominant isoform in smooth muscle, drives the formation of caveolae. The precise role of caveolin-1 and caveolae as scaffolds for G protein-coupled receptor signaling and contraction in gastrointestinal muscle is unclear. Thus the aim of this study was to examine the role of caveolin-1 in the regulation of Gq- and Gi-coupled receptor signaling. RT-PCR, Western blot, and radioligand-binding studies demonstrated the selective expression of M2 and M3 receptors in gastric smooth muscle cells. Carbachol (CCh) stimulated phosphatidylinositol (PI) hydrolysis, Rho kinase and zipper-interacting protein (ZIP) kinase activity, induced myosin phosphatase 1 (MYPT1) phosphorylation (at Thr(696)) and 20-kDa myosin light chain (MLC20) phosphorylation (at Ser(19)) and muscle contraction, and inhibited cAMP formation. Stimulation of PI hydrolysis, Rho kinase, and ZIP kinase activity, phosphorylation of MYPT1 and MLC20, and muscle contraction in response to CCh were attenuated by methyl β-cyclodextrin (MβCD) or caveolin-1 small interfering RNA (siRNA). Similar inhibition of PI hydrolysis, Rho kinase, and ZIP kinase activity and muscle contraction in response to CCh and gastric emptying in vivo was obtained in caveolin-1-knockout mice compared with wild-type mice. Agonist-induced internalization of M2, but not M3, receptors was blocked by MβCD or caveolin-1 siRNA. Stimulation of PI hydrolysis, Rho kinase, and ZIP kinase activities in response to other Gq-coupled receptor agonists such as histamine and substance P was also attenuated by MβCD or caveolin-1 siRNA. Taken together, these results suggest that caveolin-1 facilitates signaling by Gq-coupled receptors and contributes to enhanced smooth muscle function.
Collapse
Affiliation(s)
- Sayak Bhattacharya
- Department of Physiology, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | | | | | | | |
Collapse
|
40
|
Gericke A, Goloborodko E, Sniatecki JJ, Steege A, Wojnowski L, Pfeiffer N. Contribution of nitric oxide synthase isoforms to cholinergic vasodilation in murine retinal arterioles. Exp Eye Res 2013; 109:60-6. [DOI: 10.1016/j.exer.2013.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 01/20/2013] [Accepted: 01/24/2013] [Indexed: 10/27/2022]
|