1
|
Rodriguez-Lopez A, Esteban D, Domínguez-Romero AN, Gevorkian G. Tg-SwDI transgenic mice: A suitable model for Alzheimer's disease and cerebral amyloid angiopathy basic research and preclinical studies. Exp Neurol 2025; 387:115189. [PMID: 39978567 DOI: 10.1016/j.expneurol.2025.115189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/17/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and the most frequent cause of dementia. Characteristic features observed in the brain of AD patients are the accumulation of amyloid beta peptide (Aβ) aggregates, neurofibrillary tangles (NFT) composed of hyperphosphorylated Tau protein, neuronal and synaptic loss, and elevated levels of oxidative stress and inflammatory markers. Cerebral amyloid angiopathy (CAA) is another common cause of cognitive decline characterized by the accumulation of Aβ in the cerebral vasculature. The precise overlapping pathogenic mechanisms underlying the co-occurrence of AD and CAA are not very well understood. However, vascular dysfunction observed at early stages is considered a key phenomenon. Tg-SwDI transgenic mice expressing human Aβ precursor protein (AβPP) harboring the Swedish K670N/M671L and vasculotropic Dutch/Iowa E693Q/D694N mutations in the brain have been extensively used to study many pathological features observed in AD/CAA patients and to design biomarkers and therapeutic strategies. The present review summarizes studies addressing different features mimicking human disease in Tg-SwDI mice: parenchymal and cerebral vascular amyloid accumulation, neuroinflammation, complement overactivation, cerebrovascular, mitochondrial and GABAergic system dysfunction, altered NO synthesis, circadian rhythm disruptions, lead exposure effect, among others. Also, reports that evaluated anti-Aβ and anti-inflammatory strategies and compounds capable of delaying or reversing vascular dysfunction and the impairment of GABAergic transmission in Tg-SwDI mice are analyzed. This review may help researchers determine this model's appropriateness for future studies of a particular mechanism or a novel treatment protocol.
Collapse
Affiliation(s)
- Adrian Rodriguez-Lopez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Daniel Esteban
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Allan Noé Domínguez-Romero
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico.
| |
Collapse
|
2
|
Nataraj A, Blahna K, Ježek K. Insights From TgF344-AD, a Double Transgenic Rat Model in Alzheimer's Disease Research. Physiol Res 2025; 74:1-17. [PMID: 40116546 PMCID: PMC11995940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/13/2024] [Indexed: 03/23/2025] Open
Abstract
Alzheimer's disease (AD), a leading cause of dementia worldwide, is a multifactorial neurodegenerative disorder characterized by amyloid-beta plaques, tauopathy, neuronal loss, neuro-inflammation, brain atrophy, and cognitive deficits. AD manifests as familial early-onset (FAD) with specific gene mutations or sporadic late-onset (LOAD) caused by various genetic and environmental factors. Numerous transgenic rodent models have been developed to understand AD pathology development and progression. The TgF344-AD rat model is a double transgenic model that carries two human gene mutations: APP with the Swedish mutation and PSEN-1 with delta exon 9 mutations. This model exhibits a complete repertoire of AD pathology in an age-dependent manner. This review summarizes multidisciplinary research insights gained from studying TgF344-AD rats in the context of AD pathology. We explore neuropathological findings; electrophysiological assessments revealing disrupted synaptic transmission, reduced spatial coding, network-level dysfunctions, and altered sleep architecture; behavioral studies highlighting impaired spatial memory; alterations in excitatory-inhibitory systems; and molecular and physiological changes in TgF344-AD rats emphasizing their age-related effects. Additionally, the impact of various interventions studied in the model is compiled, underscoring their role in bridging gaps in understanding AD pathogenesis. The TgF344-AD rat model offers significant potential in identifying biomarkers for early detection and therapeutic interventions, providing a robust platform for advancing translational AD research. Key words Alzheimer's disease, Transgenic AD models, TgF344-AD rats, Spatial coding.
Collapse
Affiliation(s)
- A Nataraj
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| | | | | |
Collapse
|
3
|
Son HJ, Kim S, Kim SY, Jung JH, Lee SH, Kim SJ, Kim C, Hahn A. Three-Dimensional β-Amyloid Burden Correlation Between the Eye and Brain in Alzheimer's Disease Mice Using Light-Sheet Fluorescence Microscopy. Invest Ophthalmol Vis Sci 2025; 66:34. [PMID: 40100204 PMCID: PMC11932423 DOI: 10.1167/iovs.66.3.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
Purpose Recent studies have highlighted the significance of peripheral β-amyloid (Aβ) deposition, identifying the eye as a potential early detection site for Alzheimer's disease (AD). However, previous two-dimensional AD ocular studies have been unable to establish a clear correlation between the three-dimensional Aβ accumulation in the entire eyeball and brain while preserving structural integrity. This study employed a combined brain amyloid positron emission tomography/magnetic resonance (PET/MR) and light-sheet fluorescence microscopy (LSFM) platform to assess whether the three-dimensionally measured Aβ burden in the eyeball correlates with that in the brain. Methods Thirteen eyeballs (6 AD, 7 control) and 17 brains (10 AD, 7 control) were collected from ten 44-week-old 5xFAD and seven control mice. The samples underwent tissue clearing and staining with thioflavin S (Aβ), anti-CD11b (microglia), and anti-ACSA-2 (astrocytes) for LSFM imaging and quantified via 3D surface volume. Standardized uptake value ratios from [18F]Flutemetamol PET/MR were also calculated. Results AD eyeballs presented significantly greater plaque-like surface volumes (median, 51,091,002 µm³ [interquartile range, 38,488,272-64,869,828]) than controls (229,293 µm³ [115,863-311,5320]; P = 0.001). AD brains exhibited higher [18F]Flutemetamol uptake and greater plaque-like surface volumes (898,634,368 µm³ [556,263,488-1,105,326,720]) than controls (33,320,178 µm³ [26,842,538-62,716,956]; P < 0.001). A strong positive correlation was observed between the plaque-like surface volumes in the brain and that in the eyeball (r = 0.810, P = 0.001). No significant correlations were found in other morphologic parameters. Conclusions Our observation of a strong correlation between the three-dimensional Aβ burden in the whole eyeball and brain advances our understanding of the systemic nature of Aβ pathology and suggests ocular Aβ as a potential independent predictor of brain Aβ burden.
Collapse
Affiliation(s)
- Hye Joo Son
- Department of Nuclear Medicine, Dankook University Medical Center, Dankook University College of Medicine, Cheonan, Chungnam, Republic of Korea
| | - Seonok Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seog-Young Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Convergence Medicine Research Center, Asan Medical Center, Seoul, Republic of Korea
| | - Jin Hwa Jung
- Convergence Medicine Research Center, Asan Medical Center, Seoul, Republic of Korea
| | - Suk Hyun Lee
- Department of Radiology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Soo-Jong Kim
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, Saint Louis, Missouri, United States
| | - Chanwoo Kim
- Department of Nuclear Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Republic of Korea
| | - Alice Hahn
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| |
Collapse
|
4
|
Kashani AH, Koronyo-Hamaoui M, Koronyo Y, Shi H, Alluwimi M, Singer M, Sagare A, Hawes D, Tang A, Jiang X, Collazo Martinez A, Ross-Cisneros FN, Sadun AA, Ringman JM. Retinal and Optic Nerve Lesions Correspond to Amyloid in Autosomal Dominant Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.21.25319904. [PMID: 39974084 PMCID: PMC11838991 DOI: 10.1101/2025.01.21.25319904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Autosomal dominant Alzheimer's disease (ADAD) is a rare form of Alzheimer's disease (AD) in which the biology of the disease can be explored during the presymptomatic phase of the illness. The retina is an outgrowth of the central nervous system and therefore provides the opportunity for direct observation of neural tissue and its vasculature during life. Retinal thinning measured in vivo has been previously described in persons carrying ADAD mutations through fundoscopy but its pathologic correlates have not been reported. We describe retinal lesions detected using fundoscopy in vivo in a patient homozygous for the A431E mutation in PSEN1 and its pathological correlates. Retinal lesions seen with fundoscopy during life corresponded to intraretinal and prelaminar optic nerve head amyloid β 42 -protein that were surrounded by perivascular anti-11A50-B10-Aβ 40 and gliosis. We then performed a cross-sectional, observational study of forty-one Latinos in three cohorts consisting of (1) persons with ADAD causing mutations, (2) at 50% risk for, but testing negative for ADAD mutations, and (3) elderly subjects not at-risk for ADAD. Clinical exam demonstrated novel, yellow, intraretinal lesions in Cohort 1 in absence of drusen. Fifty-six percent of Cohort 1 subjects had >10 retinal lesions compared to 0% and 25% for Cohorts 2 and 3, respectively ( P < 0.04). There has been some controversy as to the detectability of Aβ in the retina of persons with AD during life and our findings verify the presence of intraretinal, prelaminar, and perivascular amyloidosis detectable during life in a subset of AD patients.
Collapse
|
5
|
Cao Q, Yang S, Wang X, Sun H, Chen W, Wang Y, Gao J, Wu Y, Yang Q, Chen X, Yuan S, Xiao M, Nedergaard M, Huo Y, Liu Q. Transport of β-amyloid from brain to eye causes retinal degeneration in Alzheimer's disease. J Exp Med 2024; 221:e20240386. [PMID: 39316084 PMCID: PMC11448872 DOI: 10.1084/jem.20240386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/03/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
The eye is closely connected to the brain, providing a unique window to detect pathological changes in the brain. In this study, we discovered β-amyloid (Aβ) deposits along the ocular glymphatic system in patients with Alzheimer's disease (AD) and 5×FAD transgenic mouse model. Interestingly, Aβ from the brain can flow into the eyes along the optic nerve through cerebrospinal fluid (CSF), causing retinal degeneration. Aβ is mainly observed in the optic nerve sheath, the neural axon, and the perivascular space, which might represent the critical steps of the Aβ transportation from the brain to the eyes. Aquaporin-4 facilitates the influx of Aβ in brain-eye transport and out-excretion of the retina, and its absence or loss of polarity exacerbates brain-derived Aβ induced damage and visual impairment. These results revealed brain-to-eye Aβ transport as a major contributor to AD retinopathy, highlighting a new therapeutic avenue in ocular and neurodegenerative disease.
Collapse
Affiliation(s)
- Qiuchen Cao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Shige Yang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaowei Wang
- Faculty of Medical and Health Sciences, Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
- Department of Neurosurgery, Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Huaiqing Sun
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weijie Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuliang Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, Nanjing Medical University, Nanjing, China
| | - Junying Gao
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Yanchi Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiuhua Yang
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Songtao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Xiao
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- Nanjing Brain Hospital, Brain Institute, Nanjing Medical University , Nanjing, China
| | - Maiken Nedergaard
- Faculty of Medical and Health Sciences, Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
- Department of Neurosurgery, Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Yuqing Huo
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Sampani K, Ness S, Tuz-Zahra F, Aytan N, Spurlock EE, Alluri S, Chen X, Siegel NH, Alosco ML, Xia W, Tripodis Y, Stein TD, Subramanian ML. Neurodegenerative biomarkers in different chambers of the eye relative to plasma: an agreement validation study. Alzheimers Res Ther 2024; 16:192. [PMID: 39187891 PMCID: PMC11346268 DOI: 10.1186/s13195-024-01556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Protein biomarkers have been broadly investigated in cerebrospinal fluid and blood for the detection of neurodegenerative diseases, yet a clinically useful diagnostic test to detect early, pre-symptomatic Alzheimer's disease (AD) remains elusive. We conducted this study to quantify Aβ40, Aβ42, total Tau (t-Tau), hyperphosphorylated Tau (ptau181), glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) in eye fluids relative to blood. METHODS In this cross-sectional study we collected vitreous humor, aqueous humor, tear fluid and plasma in patients undergoing surgery for eye disease. All six biomarkers were quantitatively measured by digital immunoassay. Spearman and Bland-Altman correlation analyses were performed to assess the agreement of levels between ocular fluids and plasma. RESULTS Seventy-nine adults underwent pars-plana vitrectomy in at least one eye. Of the 79, there were 77 vitreous, 67 blood, 56 tear fluid, and 51 aqueous samples. All six biomarkers were quantified in each bio-sample, except GFAP and NfL in tear fluid due to low sample volume. All six biomarkers were elevated in vitreous humor compared to plasma samples. T-Tau, ptau181, GFAP and NfL were higher in aqueous than in plasma, and t-Tau and ptau181 concentrations were higher in tear fluid than in plasma. Significant correlations were found between Aβ40 in plasma and tears (r = 0.5; p = 0.019), t-Tau in plasma and vitreous (r = 0.4; p = 0.004), NfL in plasma and vitreous (r = 0.3; p = 0.006) and plasma and aqueous (r = 0.5; p = 0.004). No significant associations were found for Aβ42, ptau181 and GFAP among ocular fluids relative to plasma. Bland-Altman analysis showed aqueous humor had the closest agreement to plasma across all biomarkers. Biomarker levels in ocular fluids revealed statistically significant associations between vitreous and aqueous for t-Tau (r = 0.5; p = 0.001), GFAP (r = 0.6; p < 0.001) and NfL (r = 0.7; p < 0.001). CONCLUSION AD biomarkers are detectable in greater quantities in eye fluids than in plasma and show correlations with levels in plasma. Future studies are needed to assess the utility of ocular fluid biomarkers as diagnostic and prognostic markers for AD, especially in those at risk with eye disease.
Collapse
Affiliation(s)
- Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Steven Ness
- Department of Ophthalmology, Boston Medical Center, Boston, MA, 02118, USA
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Fatima Tuz-Zahra
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Nurgul Aytan
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Elizabeth E Spurlock
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sreevardhan Alluri
- Department of Ophthalmology, Boston Medical Center, Boston, MA, 02118, USA
| | - Xuejing Chen
- Department of Ophthalmology, Boston Medical Center, Boston, MA, 02118, USA
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Nicole H Siegel
- Department of Ophthalmology, Boston Medical Center, Boston, MA, 02118, USA
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Weiming Xia
- Department of Pharmacology and Experimental Therapeutics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Geriatric Research Education and Clinical Center, Bedford Veterans Affairs Medical Center, Bedford, MA, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA.
- Department of Veterans Affairs Medical Center, VA Boston Healthcare System, Boston, MA, USA.
- Department of Veterans Affairs Medical Center, VA Bedford Healthcare System, Bedford, MA, USA.
| | - Manju L Subramanian
- Department of Ophthalmology, Boston Medical Center, Boston, MA, 02118, USA.
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
7
|
Gaire BP, Koronyo Y, Fuchs DT, Shi H, Rentsendorj A, Danziger R, Vit JP, Mirzaei N, Doustar J, Sheyn J, Hampel H, Vergallo A, Davis MR, Jallow O, Baldacci F, Verdooner SR, Barron E, Mirzaei M, Gupta VK, Graham SL, Tayebi M, Carare RO, Sadun AA, Miller CA, Dumitrascu OM, Lahiri S, Gao L, Black KL, Koronyo-Hamaoui M. Alzheimer's disease pathophysiology in the Retina. Prog Retin Eye Res 2024; 101:101273. [PMID: 38759947 PMCID: PMC11285518 DOI: 10.1016/j.preteyeres.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
The retina is an emerging CNS target for potential noninvasive diagnosis and tracking of Alzheimer's disease (AD). Studies have identified the pathological hallmarks of AD, including amyloid β-protein (Aβ) deposits and abnormal tau protein isoforms, in the retinas of AD patients and animal models. Moreover, structural and functional vascular abnormalities such as reduced blood flow, vascular Aβ deposition, and blood-retinal barrier damage, along with inflammation and neurodegeneration, have been described in retinas of patients with mild cognitive impairment and AD dementia. Histological, biochemical, and clinical studies have demonstrated that the nature and severity of AD pathologies in the retina and brain correspond. Proteomics analysis revealed a similar pattern of dysregulated proteins and biological pathways in the retina and brain of AD patients, with enhanced inflammatory and neurodegenerative processes, impaired oxidative-phosphorylation, and mitochondrial dysfunction. Notably, investigational imaging technologies can now detect AD-specific amyloid deposits, as well as vasculopathy and neurodegeneration in the retina of living AD patients, suggesting alterations at different disease stages and links to brain pathology. Current and exploratory ophthalmic imaging modalities, such as optical coherence tomography (OCT), OCT-angiography, confocal scanning laser ophthalmoscopy, and hyperspectral imaging, may offer promise in the clinical assessment of AD. However, further research is needed to deepen our understanding of AD's impact on the retina and its progression. To advance this field, future studies require replication in larger and diverse cohorts with confirmed AD biomarkers and standardized retinal imaging techniques. This will validate potential retinal biomarkers for AD, aiding in early screening and monitoring.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ron Danziger
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jean-Philippe Vit
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jonah Doustar
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Miyah R Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ousman Jallow
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Filippo Baldacci
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | | | - Ernesto Barron
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia; Department of Clinical Medicine, Macquarie University, Sydney, NSW, Australia
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Roxana O Carare
- Department of Clinical Neuroanatomy, University of Southampton, Southampton, UK
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Carol A Miller
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Shouri Lahiri
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Liang Gao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Nakamura S, Ueda E, Ohara T, Hata J, Honda T, Fujiwara K, Furuta Y, Shibata M, Hashimoto S, Nakazawa T, Nakao T, Kitazono T, Sonoda KH, Ninomiya T. Association between retinopathy and risk of dementia in a general Japanese population: the Hisayama Study. Sci Rep 2024; 14:12017. [PMID: 38797729 PMCID: PMC11128440 DOI: 10.1038/s41598-024-62688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
We investigated the association of retinopathy with the risk of dementia in a general older Japanese population. A total of 1709 population-based residents aged 60 years or older without dementia were followed prospectively for 10 years (2007-2017). They underwent color fundus photography in 2007. Retinopathy was graded according to the Modified Airlie House Classification. Main outcome was the Incidence of dementia. A Cox proportional hazards model was used to estimate the hazard ratios (HRs) and their 95% confidence intervals (CIs) for the risk of dementia by the presence of retinopathy. During the follow-up period, 374 participants developed all-cause dementia. The cumulative incidence of dementia was significantly higher in those with retinopathy than those without (p < 0.05). Individuals with retinopathy had significantly higher risk of developing dementia than those without after adjustment for potential confounding factors (HR 1.64, 95% CI 1.19-2.25). Regarding the components of retinopathy, the presence of microaneurysms was significantly associated with a higher multivariable-adjusted HR for incident dementia (HR 1.94, 95% CI 1.37-2.74). Our findings suggest that, in addition to systemic risk factors, retinal microvascular signs from fundus photography provide valuable information for estimating the risk of developing dementia.
Collapse
Affiliation(s)
- Shun Nakamura
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Emi Ueda
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Tomoyuki Ohara
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Hata
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanori Honda
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohta Fujiwara
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yoshihiko Furuta
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mao Shibata
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sawako Hashimoto
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Taro Nakazawa
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Goerdt L, Holz FG, Finger RP. [Retinal optical coherence tomography biomarkers in dementia]. DIE OPHTHALMOLOGIE 2024; 121:84-92. [PMID: 37847375 DOI: 10.1007/s00347-023-01947-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Due to the general aging of society, the prevalence and incidence of dementia are expected to increase considerably. In order to timely identify patients and assess their need for treatment and/or supportive measures, comprehensive and easy access screening methods are required, which, however, are yet to be developed. To date, several biomarkers for the presence of dementia on high-resolution spectral domain optical coherence tomography (OCT) and OCT angiography (OCT-A) images were identified. AIM To summarize previously identified OCT biomarkers in dementia and to assess their suitability for comprehensive screening examinations. MATERIAL AND METHODS A literature search was conducted on PubMed until March 2023 for the keywords "dementia", "mild cognitive impairment", "OCT", "OCT angiography" and "retinal biomarkers". Relevant publications were identified and summarized. RESULTS Numerous unspecific alterations on OCT imaging and OCT‑A were identified in patients with (predementia) dementia according to many population and clinical studies. These include a reduced thickness of the peripapillary retinal nerve fiber layer, the ganglion cell complex and the central retinal region. Additionally, a reduced vascular density and an enlarged foveal avascular zone (FAZ) were identified on OCT‑A imaging. CONCLUSION The currently known OCT biomarkers are too unspecific, and there is to date no OCT or OCT-A-based signature distinguishing between different types of dementia. Further longitudinal studies with larger sample sizes are warranted to develop and evaluate such distinct OCT signatures for different types of dementia and their respective early disease stages and to assess their prognostic value. Only then is the inclusion in comprehensive screening investigations feasible.
Collapse
Affiliation(s)
- L Goerdt
- Universitäts-Augenklinik Bonn, Ernst-Abbe-Str. 2, 53127, Bonn, Deutschland.
| | - F G Holz
- Universitäts-Augenklinik Bonn, Ernst-Abbe-Str. 2, 53127, Bonn, Deutschland
| | - R P Finger
- Universitäts-Augenklinik Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Deutschland
| |
Collapse
|
10
|
Kelly L, Brown C, Michalik D, Hawkes CA, Aldea R, Agarwal N, Salib R, Alzetani A, Ethell DW, Counts SE, de Leon M, Fossati S, Koronyo‐Hamaoui M, Piazza F, Rich SA, Wolters FJ, Snyder H, Ismail O, Elahi F, Proulx ST, Verma A, Wunderlich H, Haack M, Dodart JC, Mazer N, Carare RO. Clearance of interstitial fluid (ISF) and CSF (CLIC) group-part of Vascular Professional Interest Area (PIA), updates in 2022-2023. Cerebrovascular disease and the failure of elimination of Amyloid-β from the brain and retina with age and Alzheimer's disease: Opportunities for therapy. Alzheimers Dement 2024; 20:1421-1435. [PMID: 37897797 PMCID: PMC10917045 DOI: 10.1002/alz.13512] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/30/2023]
Abstract
This editorial summarizes advances from the Clearance of Interstitial Fluid and Cerebrospinal Fluid (CLIC) group, within the Vascular Professional Interest Area (PIA) of the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment (ISTAART). The overarching objectives of the CLIC group are to: (1) understand the age-related physiology changes that underlie impaired clearance of interstitial fluid (ISF) and cerebrospinal fluid (CSF) (CLIC); (2) understand the cellular and molecular mechanisms underlying intramural periarterial drainage (IPAD) in the brain; (3) establish novel diagnostic tests for Alzheimer's disease (AD), cerebral amyloid angiopathy (CAA), retinal amyloid vasculopathy, amyloid-related imaging abnormalities (ARIA) of spontaneous and iatrogenic CAA-related inflammation (CAA-ri), and vasomotion; and (4) establish novel therapies that facilitate IPAD to eliminate amyloid β (Aβ) from the aging brain and retina, to prevent or reduce AD and CAA pathology and ARIA side events associated with AD immunotherapy.
Collapse
Affiliation(s)
- Louise Kelly
- Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | | | - Daniel Michalik
- Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | | | - Roxana Aldea
- Roche Pharma Research & Early DevelopmentRoche Innovation Center BaselBaselSwitzerland
| | - Nivedita Agarwal
- Neuroradiology sectionScientific Institute IRCCS Eugenio MedeaBosisio Parini, LCItaly
| | - Rami Salib
- Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | - Aiman Alzetani
- Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | | | - Scott E. Counts
- Dept. Translational NeuroscienceDept. Family MedicineMichigan State UniversityGrand RapidsMichiganUSA
| | - Mony de Leon
- Brain Health Imaging InstituteDepartment of RadiologyWeill Cornell MedicineNew YorkNew YorkUSA
| | | | - Maya Koronyo‐Hamaoui
- Departments of NeurosurgeryNeurology, and Biomedical SciencesMaxine Dunitz Neurosurgical Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | | | | | | | - Heather Snyder
- Alzheimer's AssociationMedical & Scientific RelationsChicagoIllinoisUSA
| | - Ozama Ismail
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Fanny Elahi
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Ajay Verma
- Formation Venture Engineering FoundryTopsfieldMassachusettsUSA
| | | | | | | | | | - Roxana O. Carare
- Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| |
Collapse
|
11
|
Yoon JM, Lim CY, Noh H, Nam SW, Jun SY, Kim MJ, Song MY, Jang H, Kim HJ, Seo SW, Na DL, Chung MJ, Ham DI, Kim K. Enhancing foveal avascular zone analysis for Alzheimer's diagnosis with AI segmentation and machine learning using multiple radiomic features. Sci Rep 2024; 14:1841. [PMID: 38253722 PMCID: PMC10810355 DOI: 10.1038/s41598-024-51612-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
We propose a hybrid technique that employs artificial intelligence (AI)-based segmentation and machine learning classification using multiple features extracted from the foveal avascular zone (FAZ)-a retinal biomarker for Alzheimer's disease-to improve the disease diagnostic performance. Imaging data of optical coherence tomography angiography from 37 patients with Alzheimer's disease and 48 healthy controls were investigated. The presence or absence of brain amyloids was confirmed using amyloid positron emission tomography. In the superficial capillary plexus of the angiography scans, the FAZ was automatically segmented using an AI method to extract multiple biomarkers (area, solidity, compactness, roundness, and eccentricity), which were paired with clinical data (age and sex) as common correction variables. We used a light-gradient boosting machine (a light-gradient boosting machine is a machine learning algorithm based on trees utilizing gradient boosting) to diagnose Alzheimer's disease by integrating the corresponding multiple radiomic biomarkers. Fivefold cross-validation was applied for analysis, and the diagnostic performance for Alzheimer's disease was determined by the area under the curve. The proposed hybrid technique achieved an area under the curve of [Formula: see text]%, outperforming the existing single-feature (area) criteria by over 13%. Furthermore, in the holdout test set, the proposed technique exhibited a 14% improvement compared to single features, achieving an area under the curve of 72.0± 4.8%. Based on these facts, we have demonstrated the effectiveness of our technology in achieving significant performance improvements in FAZ-based Alzheimer's diagnosis research through the use of multiple radiomic biomarkers (area, solidity, compactness, roundness, and eccentricity).
Collapse
Affiliation(s)
- Je Moon Yoon
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Chae Yeon Lim
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Hoon Noh
- Hangil Eye Hospital, 35 Bupyeong-daero, Bupyeong-gu, Incheon, 21388, Republic of Korea
| | - Seung Wan Nam
- Hangil Eye Hospital, 35 Bupyeong-daero, Bupyeong-gu, Incheon, 21388, Republic of Korea
- Department of Ophthalmology, Catholic Kwandong University College of Medicine, 35 Bupyeong-daero, Bupyeong-gu, Incheon, 21388, Republic of Korea
| | - Sung Yeon Jun
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Min Ji Kim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Mi Yeon Song
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Hyemin Jang
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hee Jin Kim
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Sang Won Seo
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Duk L Na
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
- Happymind Clinic, Seoul, Republic of Korea
| | - Myung Jin Chung
- Department of Data Convergence and Future Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
- Department of Radiology and AI Research Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Don-Il Ham
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
| | - Kyungsu Kim
- Medical AI Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, Republic of Korea.
- Department of Data Convergence and Future Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
12
|
Alber J, Bouwman F, den Haan J, Rissman RA, De Groef L, Koronyo‐Hamaoui M, Lengyel I, Thal DR. Retina pathology as a target for biomarkers for Alzheimer's disease: Current status, ophthalmopathological background, challenges, and future directions. Alzheimers Dement 2024; 20:728-740. [PMID: 37917365 PMCID: PMC10917008 DOI: 10.1002/alz.13529] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
There is emerging evidence that amyloid beta protein (Aβ) and tau-related lesions in the retina are associated with Alzheimer's disease (AD). Aβ and hyperphosphorylated (p)-tau deposits have been described in the retina and were associated with small amyloid spots visualized by in vivo imaging techniques as well as degeneration of the retina. These changes correlate with brain amyloid deposition as determined by histological quantification, positron emission tomography (PET) or clinical diagnosis of AD. However, the literature is not coherent on these histopathological and in vivo imaging findings. One important reason for this is the variability in the methods and the interpretation of findings across different studies. In this perspective, we indicate the critical methodological deviations among different groups and suggest a roadmap moving forward on how to harmonize (i) histopathologic examination of retinal tissue; (ii) in vivo imaging among different methods, devices, and interpretation algorithms; and (iii) inclusion/exclusion criteria for studies aiming at retinal biomarker validation.
Collapse
Affiliation(s)
- Jessica Alber
- George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical SciencesUniversity of Rhode IslandKingstonRhode IslandUSA
- Butler Hospital Memory & Aging ProgramProvidenceRhode IslandUSA
| | - Femke Bouwman
- Amsterdam UMC, location VUmcAlzheimer Center, Department of NeurologyAmsterdamThe Netherlands
| | - Jurre den Haan
- Amsterdam UMC, location VUmcAlzheimer Center, Department of NeurologyAmsterdamThe Netherlands
| | - Robert A. Rissman
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Lies De Groef
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of BiologyLeuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Maya Koronyo‐Hamaoui
- Departments of Neurosurgery, Neurology, and Biomedical SciencesMaxine Dunitz Neurosurgical Research Institute, Cedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Imre Lengyel
- The Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical ScienceQueen's University BelfastBelfastUK
| | - Dietmar Rudolf Thal
- Laboratory of NeuropathologyDepartment of Imaging and Pathology, and Leuven Brain Institute, KU LeuvenLeuvenBelgium
- Department of PathologyUZ LeuvenLeuvenBelgium
| | | |
Collapse
|
13
|
Shen L, Tang X, Zhang H, Zhuang H, Lin J, Zhao Y, Liu X. Targeted Metabolomic Analysis of the Eye Tissue of Triple Transgenic Alzheimer's Disease Mice at an Early Pathological Stage. Mol Neurobiol 2023; 60:7309-7328. [PMID: 37553545 DOI: 10.1007/s12035-023-03533-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 07/22/2023] [Indexed: 08/10/2023]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disease in older people. Despite some consensus on pathogenesis of AD established by previous researches, further elucidation is still required for better understanding. This study analyzed the eye tissues of 2- and 6-month-old triple transgenic AD (3 × Tg-AD) male mice and age-sex-matched wild-type (WT) mice using a targeted metabolomics approach. Compared with WT mice, 20 and 44 differential metabolites were identified in 2- and 6-month-old AD mice, respectively. They were associated with purine metabolism, pantothenate and CoA biosynthesis, pyruvate metabolism, lysine degradation, glycolysis/gluconeogenesis, and pyrimidine metabolism pathways. Among them, 8 metabolites presented differences in both the two groups, and 5 of them showed constant trend of change. The results indicated that the eye tissues of 3 × Tg-AD mice underwent changes in the early stages of the disease, with changes in metabolites observed at 2 months of age and more pronounced at 6 months of age, which is consistent with our previous studies on hippocampal targeted metabolomics in 3 × Tg-AD mice. Therefore, a joint analysis of data from this study and previous hippocampal study was performed, and the differential metabolites and their associated mechanisms were similar in eye and hippocampal tissues, but with tissue specificity.
Collapse
Affiliation(s)
- Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Xueyuan Ave 1688, Shenzhen, 518060, People's Republic of China
- Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, People's Republic of China
- Shenzhen Key Laboratory of Marine, Biotechnology, and Ecology, Shenzhen, People's Republic of China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Xueyuan Ave 1688, Shenzhen, 518060, People's Republic of China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Xueyuan Ave 1688, Shenzhen, 518060, People's Republic of China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Xueyuan Ave 1688, Shenzhen, 518060, People's Republic of China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Xueyuan Ave 1688, Shenzhen, 518060, People's Republic of China
| | - Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Xueyuan Ave 1688, Shenzhen, 518060, People's Republic of China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Xueyuan Ave 1688, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
14
|
Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduct Target Ther 2023; 8:248. [PMID: 37386015 PMCID: PMC10310781 DOI: 10.1038/s41392-023-01484-7] [Citation(s) in RCA: 287] [Impact Index Per Article: 143.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
Amyloid β protein (Aβ) is the main component of neuritic plaques in Alzheimer's disease (AD), and its accumulation has been considered as the molecular driver of Alzheimer's pathogenesis and progression. Aβ has been the prime target for the development of AD therapy. However, the repeated failures of Aβ-targeted clinical trials have cast considerable doubt on the amyloid cascade hypothesis and whether the development of Alzheimer's drug has followed the correct course. However, the recent successes of Aβ targeted trials have assuaged those doubts. In this review, we discussed the evolution of the amyloid cascade hypothesis over the last 30 years and summarized its application in Alzheimer's diagnosis and modification. In particular, we extensively discussed the pitfalls, promises and important unanswered questions regarding the current anti-Aβ therapy, as well as strategies for further study and development of more feasible Aβ-targeted approaches in the optimization of AD prevention and treatment.
Collapse
Affiliation(s)
- Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Huaqiu Chen
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| |
Collapse
|
15
|
Latina V, Atlante A, Malerba F, La Regina F, Balzamino BO, Micera A, Pignataro A, Stigliano E, Cavallaro S, Calissano P, Amadoro G. The Cleavage-Specific Tau 12A12mAb Exerts an Anti-Amyloidogenic Action by Modulating the Endocytic and Bioenergetic Pathways in Alzheimer's Disease Mouse Model. Int J Mol Sci 2023; 24:ijms24119683. [PMID: 37298634 DOI: 10.3390/ijms24119683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Beyond deficits in hippocampal-dependent episodic memory, Alzheimer's Disease (AD) features sensory impairment in visual cognition consistent with extensive neuropathology in the retina. 12A12 is a monoclonal cleavage specific antibody (mAb) that in vivo selectively neutralizes the AD-relevant, harmful N-terminal 20-22 kDa tau fragment(s) (i.e., NH2htau) without affecting the full-length normal protein. When systemically injected into the Tg2576 mouse model overexpressing a mutant form of Amyloid Precursor Protein (APP), APPK670/671L linked to early onset familial AD, this conformation-specific tau mAb successfully reduces the NH2htau accumulating both in their brain and retina and, thus, markedly alleviates the phenotype-associated signs. By means of a combined biochemical and metabolic experimental approach, we report that 12A12mAb downregulates the steady state expression levels of APP and Beta-Secretase 1 (BACE-1) and, thus, limits the Amyloid beta (Aβ) production both in the hippocampus and retina from this AD animal model. The local, antibody-mediated anti-amyloidogenic action is paralleled in vivo by coordinated modulation of the endocytic (BIN1, RIN3) and bioenergetic (glycolysis and L-Lactate) pathways. These findings indicate for the first time that similar molecular and metabolic retino-cerebral pathways are modulated in a coordinated fashion in response to 12A12mAb treatment to tackle the neurosensorial Aβ accumulation in AD neurodegeneration.
Collapse
Affiliation(s)
- Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Francesca Malerba
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Federico La Regina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Bijorn Omar Balzamino
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo 6, 00184 Rome, Italy
| | - Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo 6, 00184 Rome, Italy
| | - Annabella Pignataro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Egidio Stigliano
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
16
|
Ashraf G, McGuinness M, Khan MA, Obtinalla C, Hadoux X, van Wijngaarden P. Retinal imaging biomarkers of Alzheimer's disease: A systematic review and meta-analysis of studies using brain amyloid beta status for case definition. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12421. [PMID: 37250908 PMCID: PMC10210353 DOI: 10.1002/dad2.12421] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 05/31/2023]
Abstract
Introduction We performed a systematic review and meta-analysis of the association between retinal imaging parameters and Alzheimer's disease (AD). Methods PubMed, EMBASE, and Scopus were systematically searched for prospective and observational studies. Included studies had AD case definition based on brain amyloid beta (Aβ) status. Study quality assessment was performed. Random-effects meta-analyses of standardized mean difference, correlation, and diagnostic accuracy were conducted. Results Thirty-eight studies were included. There was weak evidence of peripapillary retinal nerve fiber layer thinning on optical coherence tomography (OCT) (p = 0.14, 11 studies, n = 828), increased foveal avascular zone area on OCT-angiography (p = 0.18, four studies, n = 207), and reduced arteriole and venule vessel fractal dimension on fundus photography (p < 0.001 and p = 0.08, respectively, three studies, n = 297) among AD cases. Discussion Retinal imaging parameters appear to be associated with AD. Small study sizes and heterogeneity in imaging methods and reporting make it difficult to determine utility of these changes as AD biomarkers. Highlights We performed a systematic review on retinal imaging and Alzheimer's disease (AD).We only included studies in which cases were based on brain amyloid beta status.Several retinal biomarkers were associated with AD but clinical utility is uncertain.Studies should focus on biomarker-defined AD and use standardized imaging methods.
Collapse
Affiliation(s)
- Gizem Ashraf
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVictoriaAustralia
| | - Myra McGuinness
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Muhammad Azaan Khan
- Faculty of Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Czarina Obtinalla
- Discipline of OrthopticsSchool of Allied HealthHuman Services & SportCollege of ScienceHealth & EngineeringLa Trobe UniversityMelbourneVictoriaAustralia
| | - Xavier Hadoux
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
| | - Peter van Wijngaarden
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
17
|
Bac B, Hicheri C, Weiss C, Buell A, Vilcek N, Spaeni C, Geula C, Savas JN, Disterhoft JF. The TgF344-AD rat: behavioral and proteomic changes associated with aging and protein expression in a transgenic rat model of Alzheimer's disease. Neurobiol Aging 2023; 123:98-110. [PMID: 36657371 PMCID: PMC10118906 DOI: 10.1016/j.neurobiolaging.2022.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
Animal models of Alzheimer's Disease (AD) are attractive tools for preclinical, prodromal drug testing. The TgF344-AD (Tg) rat exhibits cognitive deficits and 5 major hallmarks of AD. Here we show that spatial water maze (WMZ) memory deficits and proteomic differences in dorsal CA1 were present in young Tg rats. Aged learning-unimpaired (AU) and aged learning-impaired (AI) proteome associated changes were identified and differed by sex. Levels of phosphorylated tau, reactive astrocytes and microglia were significantly increased in aged Tg rats and correlated with the WMZ learning index (LI); in contrast, no significant correlation was present between amyloid plaques or insoluble Aβ levels and LI. Neuroinflammatory markers were also significantly correlated with LI and increased in female Tg rats. The anti-inflammatory marker, triggering receptor expressed on myeloid cells-2 (TREM2), was significantly reduced in aged impaired Tg rats and correlated with LI. Identifying and understanding mechanisms that allow for healthy aging by overcoming genetic drivers for AD, and/or promoting drivers for successful aging, are important for developing successful therapeutics against AD.
Collapse
Affiliation(s)
- Birsu Bac
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cheima Hicheri
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Craig Weiss
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amelia Buell
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Natalia Vilcek
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Claudia Spaeni
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - John F Disterhoft
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
18
|
Xia X, Qin Q, Peng Y, Wang M, Yin Y, Tang Y. Retinal Examinations Provides Early Warning of Alzheimer's Disease. J Alzheimers Dis 2022; 90:1341-1357. [PMID: 36245377 DOI: 10.3233/jad-220596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with Alzheimer's disease have difficulty maintaining independent living abilities as the disease progresses, causing an increased burden of care on family caregivers and the healthcare system and related financial strain. This patient group is expected to continue to expand as life expectancy climbs. Current diagnostics for Alzheimer's disease are complex, unaffordable, and invasive without regard to diagnosis quality at early stages, which urgently calls for more technical improvements for diagnosis specificity. Optical coherence tomography or tomographic angiography has been shown to identify retinal thickness loss and lower vascular density present earlier than symptom onset in these patients. The retina is an extension of the central nervous system and shares anatomic and functional similarities with the brain. Ophthalmological examinations can be an efficient tool to offer a window into cerebral pathology with the merit of easy operation. In this review, we summarized the latest observations on retinal pathology in Alzheimer's disease and discussed the feasibility of retinal imaging in diagnostic prediction, as well as limitations in current retinal examinations for Alzheimer's disease diagnosis.
Collapse
Affiliation(s)
- Xinyi Xia
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qi Qin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yankun Peng
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Meng Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yunsi Yin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Morisset C, Dizeux A, Larrat B, Selingue E, Boutin H, Picaud S, Sahel JA, Ialy-Radio N, Pezet S, Tanter M, Deffieux T. Retinal functional ultrasound imaging (rfUS) for assessing neurovascular alterations: a pilot study on a rat model of dementia. Sci Rep 2022; 12:19515. [PMID: 36376408 PMCID: PMC9663720 DOI: 10.1038/s41598-022-23366-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Fifty million people worldwide are affected by dementia, a heterogeneous neurodegenerative condition encompassing diseases such as Alzheimer's, vascular dementia, and Parkinson's. For them, cognitive decline is often the first marker of the pathology after irreversible brain damage has already occurred. Researchers now believe that structural and functional alterations of the brain vasculature could be early precursors of the diseases and are looking at how functional imaging could provide an early diagnosis years before irreversible clinical symptoms. In this preclinical pilot study, we proposed using functional ultrasound (fUS) on the retina to assess neurovascular alterations non-invasively, bypassing the skull limitation. We demonstrated for the first time the use of functional ultrasound in the retina and applied it to characterize the retinal hemodynamic response function in vivo in rats following a visual stimulus. We then demonstrated that retinal fUS could measure robust neurovascular coupling alterations between wild-type rats and TgF344-AD rat models of Alzheimer's disease. We observed an average relative increase in blood volume of 21% in the WT versus 37% for the TG group (p = 0.019). As a portable, non-invasive and inexpensive technique, rfUS is a promising functional screening tool in clinics for dementia years before symptoms.
Collapse
Affiliation(s)
- Clementine Morisset
- grid.440907.e0000 0004 1784 3645Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Alexandre Dizeux
- grid.440907.e0000 0004 1784 3645Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Benoit Larrat
- grid.457334.20000 0001 0667 2738NeuroSpin, Institut Des Sciences du Vivant Frédéric Joliot, Commissariat À L’Energie Atomique Et Aux Energies Alternatives (CEA), CNRS, Université Paris-Saclay, 91191 Gif-Sur-Yvette, France
| | - Erwan Selingue
- grid.457334.20000 0001 0667 2738NeuroSpin, Institut Des Sciences du Vivant Frédéric Joliot, Commissariat À L’Energie Atomique Et Aux Energies Alternatives (CEA), CNRS, Université Paris-Saclay, 91191 Gif-Sur-Yvette, France
| | - Herve Boutin
- grid.5379.80000000121662407Faculty of Biology, Medicine and Health, School of Biological Sciences Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, M13 9PL UK ,grid.5379.80000000121662407Wolfson Molecular Imaging Centre, University of Manchester, 27 Palatine Road, Manchester, M20 3LJ UK ,grid.462482.e0000 0004 0417 0074Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester, UK
| | - Serge Picaud
- grid.418241.a0000 0000 9373 1902Institut de La Vision, Sorbonne Université, INSERM, CNRS, 17 Rue Moreau, 75012 Paris, France
| | - Jose-Alain Sahel
- grid.418241.a0000 0000 9373 1902Institut de La Vision, Sorbonne Université, INSERM, CNRS, 17 Rue Moreau, 75012 Paris, France ,grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ,grid.417888.a0000 0001 2177 525XDepartment of Ophthalmology and Vitreo-Retinal Diseases, Fondation Ophtalmologique Rothschild, 75019 Paris, France
| | - Nathalie Ialy-Radio
- grid.440907.e0000 0004 1784 3645Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Sophie Pezet
- grid.440907.e0000 0004 1784 3645Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Mickael Tanter
- grid.440907.e0000 0004 1784 3645Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Thomas Deffieux
- grid.440907.e0000 0004 1784 3645Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| |
Collapse
|
20
|
Bai J, Wan Z, Wang M, Wu X, Wang T, Zhang Y, Xue Y, Xu H, Peng Q. Association of cognitive function with Neurofilament light chain in the aqueous humor of human eye. Front Aging Neurosci 2022; 14:1027705. [PMID: 36408096 PMCID: PMC9671656 DOI: 10.3389/fnagi.2022.1027705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/11/2022] [Indexed: 01/26/2024] Open
Abstract
Objectives To evaluate the predictive clinical role of neurofilament light chain (NfL), amyloid-β (Aβ), glial fibrillary acidic protein (GFAP), and phosphorylated tau at threonine 181 (p-tau181) proteins in human aqueous humor (AH) and quantify the retinal macular microvascular parameters by optical coherence tomography angiography (OCTA) as early diagnostic markers of Alzheimer's disease (AD). Methods This prospective, single-site, cross-sectional, cohort study enrolled 55 participants, including 38 patients with neovascular age-related macular degeneration (nAMD) and 17 individuals with senile cataracts. The single-molecule array platform was used to quantitatively measure the levels of AH NfL, Aβ40, Aβ42, GFAP, and p-tau181 proteins in AH. The mini-mental state examination (MMSE) score was used to assess the global cognitive function. OCTA scan with 6 × 6 mm macular area was used to quantify the retinal thickness and microvascular densities of superficial retinal capillary plexuses and deep retinal capillary plexuses. Results NfL, Aβ40, Aβ42, GFAP, and p-tau181 were detected in all AH samples by Simoa platform. Individuals with cataract had higher concentrations of NfL and p-tau181 but lower Aβ40 and Aβ42 and similar GFAP compared to those with nAMD. Lower MMSE scores showed a negative correlation with NfL concentration of AH not only in the nAMD group (p = 0.043), but also in the cataract group (p = 0.032). However, the MMSE scores were not associated with the levels of Aβ40, Aβ42, GFAP, or p-Tau181. Further analysis found that the Aβ40 and Aβ42 concentrations showed a strong positive correlation (p < 0.0001). In addition, the NfL concentration showed a mild positive correlation with that of GFAP in the cataract group (p = 0.021). Although it has not reached statistical significance, there was a correlation between the levels of NfL and Aβ42 in the nAMD group (p = 0.051). Moreover, the macular superficial vessel density values had a negative correlation with the concentration of NfL (p = 0.004) but a positive correlation with MMSE scores (p = 0.045). The macular deep vessel density values were negatively correlated with the concentration of p-tau181 (p = 0.031) and positively correlated with MMSE scores (p = 0.020). Conclusion The examination of AD-related biomarkers in human AH and OCTA may improve the ocular-based AD detection methods and contribute to forestalling the progression of preclinical AD.
Collapse
Affiliation(s)
- Jianhao Bai
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Zhongqi Wan
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Minli Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Xue Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tianyu Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Yuanyuan Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Yawen Xue
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Hong Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Peng
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Spatio-temporal metabolic rewiring in the brain of TgF344-AD rat model of Alzheimer's disease. Sci Rep 2022; 12:16958. [PMID: 36216838 PMCID: PMC9550832 DOI: 10.1038/s41598-022-20962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
Brain damage associated with Alzheimer's disease (AD) occurs even decades before the symptomatic onset, raising the need to investigate its progression from prodromal stages. In this context, animal models that progressively display AD pathological hallmarks (e.g. TgF344-AD) become crucial. Translational technologies, such as magnetic resonance spectroscopy (MRS), enable the longitudinal metabolic characterization of this disease. However, an integrative approach is required to unravel the complex metabolic changes underlying AD progression, from early to advanced stages. TgF344-AD and wild-type (WT) rats were studied in vivo on a 7 Tesla MRI scanner, for longitudinal quantitative assessment of brain metabolic profile changes using MRS. Disease progression was investigated at 4 time points, from 9 to 18 months of age, and in 4 regions: cortex, hippocampus, striatum, and thalamus. Compared to WT, TgF344-AD rats replicated common findings in AD patients, including decreased N-acetylaspartate in the cortex, hippocampus and thalamus, and decreased glutamate in the thalamus and striatum. Different longitudinal evolution of metabolic concentration was observed between TgF344-AD and WT groups. Namely, age-dependent trajectories differed between groups for creatine in the cortex and thalamus and for taurine in cortex, with significant decreases in Tg344-AD animals; whereas myo-inositol in the thalamus and striatum showed greater increase along time in the WT group. Additional analysis revealed divergent intra- and inter-regional metabolic coupling in each group. Thus, in cortex, strong couplings of N-acetylaspartate and creatine with myo-inositol in WT, but with taurine in TgF344-AD rats were observed; whereas in the hippocampus, myo-inositol, taurine and choline compounds levels were highly correlated in WT but not in TgF344-AD animals. Furthermore, specific cortex-hippocampus-striatum metabolic crosstalks were found for taurine levels in the WT group but for myo-inositol levels in the TgF344-AD rats. With a systems biology perspective of metabolic changes in AD pathology, our results shed light into the complex spatio-temporal metabolic rewiring in this disease, reported here for the first time. Age- and tissue-dependent imbalances between myo-inositol, taurine and other metabolites, such as creatine, unveil their role in disease progression, while pointing to the inadequacy of the latter as an internal reference for quantification.
Collapse
|
22
|
Shi H, Yin Z, Koronyo Y, Fuchs DT, Sheyn J, Davis MR, Wilson JW, Margeta MA, Pitts KM, Herron S, Ikezu S, Ikezu T, Graham SL, Gupta VK, Black KL, Mirzaei M, Butovsky O, Koronyo-Hamaoui M. Regulating microglial miR-155 transcriptional phenotype alleviates Alzheimer's-induced retinal vasculopathy by limiting Clec7a/Galectin-3 + neurodegenerative microglia. Acta Neuropathol Commun 2022; 10:136. [PMID: 36076283 PMCID: PMC9461176 DOI: 10.1186/s40478-022-01439-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Single cell RNA sequencing studies identified novel neurodegeneration-associated microglial (MGnD/DAM) subtypes activated around cerebral amyloid plaques. Micro-RNA (miR)-155 of the TREM2-APOE pathway was shown to be a key transcriptional regulator of MGnD microglial phenotype. Despite growing interest in studying manifestations of Alzheimer's disease (AD) in the retina, a CNS organ accessible to noninvasive high-resolution imaging, to date MGnD microglia have not been studied in the AD retina. Here, we discovered the presence and increased populations of Clec7a+ and Galectin-3+ MGnD microglia in retinas of transgenic APPSWE/PS1L166P AD-model mice. Conditionally targeting MGnD microglia by miR-155 ablation via the tamoxifen-inducible CreERT2 system in APPSWE/PS1L166P mice diminished retinal Clec7a+ and Galectin-3+ microglial populations while increasing homeostatic P2ry12+ microglia. Retinal MGnD microglia were often adhering to microvessels; their depletion protected the inner blood-retina barrier and reduced vascular amyloidosis. Microglial miR-155 depletion further limits retinal inflammation. Mass spectrometry analysis revealed enhanced retinal PI3K-Akt signaling and predicted IL-8 and Spp1 decreases in mice with microglia-specific miR-155 knockout. Overall, this study identified MGnD microglia in APPSWE/PS1L166P mouse retina. Transcriptional regulation of these dysfunctional microglia mitigated retinal inflammation and vasculopathy. The protective effects of microglial miR-155 ablation should shed light on potential treatments for retinal inflammation and vascular damage during AD and other ocular diseases.
Collapse
Affiliation(s)
- Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, A6212, USA
| | - Zhuoran Yin
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, A6212, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, A6212, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, A6212, USA
| | - Miyah R Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, A6212, USA
| | - Jered W Wilson
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, A6212, USA
| | - Milica A Margeta
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Kristen M Pitts
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Shawn Herron
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Seiko Ikezu
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Stuart L Graham
- Department of Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Department of Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, A6212, USA
| | - Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Department of Clinical Medicine, Department of Molecular Sciences and Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, A6212, USA.
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
23
|
den Haan J, Hart de Ruyter FJ, Lochocki B, Kroon MA, Kemper EM, Teunissen CE, van Berckel B, Scheltens P, Hoozemans JJ, van de Kreeke A, Verbraak FD, de Boer JF, Bouwman FH. No difference in retinal fluorescence after oral curcumin intake in amyloid-proven AD cases compared to controls. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12347. [PMID: 35991218 PMCID: PMC9376971 DOI: 10.1002/dad2.12347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/11/2022]
Abstract
Introduction Previous work has showed the in vivo presence of retinal amyloid in Alzheimer's disease (AD) patients using curcumin. We aimed to replicate these findings in an amyloid biomarker-confirmed cohort. Methods Twenty-six patients with AD (age 66 [+9], Mini-Mental Status Examination [MMSE] ≥17) and 14 controls (age 71 [+12]) used one of three curcumin formulations: Longvida, Theracurmin, and Novasol. Plasma levels were determined and pre- and post-curcumin retinal fluorescence scans were assessed visually in all cases and quantitatively assessed in a subset. Results Visual assessment showed no difference between AD patients and controls for pre- and post-curcumin images. This was confirmed by quantitative analyses on a subset. Mean conjugated plasma curcumin levels were 198.7 nM (Longvida), 576.6 nM (Theracurmin), and 1605.8 nM (Novasol). Discussion We found no difference in retinal fluorescence between amyloid-confirmed AD cases and control participants, using Longvida and two additional curcumin formulations. Additional replication studies in amyloid-confirmed cohorts are needed to assess the diagnostic value of retinal fluorescence as an AD biomarker.
Collapse
Affiliation(s)
- Jurre den Haan
- Amsterdam UMC, location VUmcAlzheimer CenterNeurologyAmsterdamThe Netherlands
| | | | | | - Maurice A.G.M. Kroon
- Amsterdam UMC, location AMCDepartment of Pharmacy and Clinical PharmacologyAmsterdamThe Netherlands
| | - E. Marleen Kemper
- Amsterdam UMC, location AMCDepartment of Pharmacy and Clinical PharmacologyAmsterdamThe Netherlands
| | - Charlotte E. Teunissen
- Amsterdam UMC, location VUmcNeurochemistry LabDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Bart van Berckel
- Amsterdam UMC, location VUmcDepartment of Nuclear MedicineAmsterdamThe Netherlands
| | - Philip Scheltens
- Amsterdam UMC, location VUmcAlzheimer CenterNeurologyAmsterdamThe Netherlands
| | - Jeroen J. Hoozemans
- Amsterdam UMClocation VUmcDepartment of PathologyAmsterdam NeuroscienceAmsterdamThe Netherlands
| | | | - Frank D. Verbraak
- Amsterdam UMClocation VUmcOphthalmology DepartmentAmsterdamThe Netherlands
| | | | - Femke H. Bouwman
- Amsterdam UMC, location VUmcAlzheimer CenterNeurologyAmsterdamThe Netherlands
| |
Collapse
|
24
|
Boneva SK, Wolf J, Wieghofer P, Sebag J, Lange CAK. Hyalocyte functions and immunology. EXPERT REVIEW OF OPHTHALMOLOGY 2022. [DOI: 10.1080/17469899.2022.2100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Stefaniya K Boneva
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Wolf
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Wieghofer
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - J Sebag
- Doheny Eye Institute, UCLA, Pasadena, CA, USA
- UCLA Geffen School of Medicine, Los Angeles, CA, USA
- VMR Institute for Vitreous Macula Retina, Huntington Beach, California, USA
| | - Clemens AK Lange
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Ophtha-Lab, Department of Ophthalmology at St. Franziskus Hospital, Muenster, Germany
| |
Collapse
|
25
|
Rai H, Gupta S, Kumar S, Yang J, Singh SK, Ran C, Modi G. Near-Infrared Fluorescent Probes as Imaging and Theranostic Modalities for Amyloid-Beta and Tau Aggregates in Alzheimer's Disease. J Med Chem 2022; 65:8550-8595. [PMID: 35759679 DOI: 10.1021/acs.jmedchem.1c01619] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A person suspected of having Alzheimer's disease (AD) is clinically diagnosed for the presence of principal biomarkers, especially misfolded amyloid-beta (Aβ) and tau proteins in the brain regions. Existing radiotracer diagnostic tools, such as PET imaging, are expensive and have limited availability for primary patient screening and pre-clinical animal studies. To change the status quo, small-molecular near-infrared (NIR) probes have been rapidly developed, which may serve as an inexpensive, handy imaging tool to comprehend the dynamics of pathogenic progression in AD and assess therapeutic efficacy in vivo. This Perspective summarizes the biochemistry of Aβ and tau proteins and then focuses on structurally diverse NIR probes with coverages of their spectroscopic properties, binding affinity toward Aβ and tau species, and theranostic effectiveness. With the summarized information and perspective discussions, we hope that this paper may serve as a guiding tool for designing novel in vivo imaging fluoroprobes with theranostic capabilities in the future.
Collapse
Affiliation(s)
- Himanshu Rai
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P.-221005, India
| | - Sarika Gupta
- Molecular Science Laboratory, National Institute of Immunology, New Delhi-110067, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Jian Yang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Sushil K Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P.-221005, India
| | - Chongzhao Ran
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P.-221005, India
| |
Collapse
|
26
|
Smith LA, Goodman AM, McMahon LL. Dentate Granule Cells Are Hyperexcitable in the TgF344-AD Rat Model of Alzheimer's Disease. Front Synaptic Neurosci 2022; 14:826601. [PMID: 35685246 PMCID: PMC9171068 DOI: 10.3389/fnsyn.2022.826601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
The dentate gyrus is both a critical gatekeeper for hippocampal signal processing and one of the first brain regions to become dysfunctional in Alzheimer's disease (AD). Accordingly, the appropriate balance of excitation and inhibition through the dentate is a compelling target for mechanistic investigation and therapeutic intervention in early AD. Previously, we reported an increased long-term potentiation (LTP) magnitude at medial perforant path-dentate granule cell (MPP-DGC) synapses in slices from both male and acutely ovariectomized female TgF344-AD rats compared with wild type (Wt) as early as 6 months of age that is accompanied by an increase in steady-state postsynaptic depolarization during the high-frequency stimulation used to induce plasticity. Subsequently, we found that heightened function of β-adrenergic receptors (β-ARs) drives the increase in the LTP magnitude, but the increase in steady-state depolarization was only partially due to β-AR activation. As we previously reported no detectable difference in spine density or presynaptic release probability, we entertained the possibility that DGCs themselves might have modified passive or active membrane properties, which may contribute to the significant increase in charge transfer during high-frequency stimulation. Using brain slice electrophysiology from 6-month-old female rats acutely ovariectomized to eliminate variability due to fluctuating plasma estradiol, we found significant changes in passive membrane properties and active membrane properties leading to increased DGC excitability in TgF344-AD rats. Specifically, TgF344-AD DGCs have an increased input resistance and decreased rheobase, decreased sag, and increased action potential (AP) spike accommodation. Importantly, we found that for the same amount of depolarizing current injection, DGCs from TgF344-AD compared with Wt rats have a larger magnitude voltage response, which was accompanied by a decreased delay to fire the first action potential, indicating TgF344-AD DGCs membranes are more excitable. Taken together, DGCs in TgF344-AD rats are more excitable, which likely contributes to the heightened depolarization during high-frequency synaptic activation.
Collapse
|
27
|
Zhang J, Shi L, Shen Y. The retina: A window in which to view the pathogenesis of Alzheimer's disease. Ageing Res Rev 2022; 77:101590. [PMID: 35192959 DOI: 10.1016/j.arr.2022.101590] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/14/2022] [Accepted: 02/12/2022] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is the most familiar type of dementia affecting elderly populations worldwide. Studies of AD patients and AD transgenic mice have revealed alterations in the retina similar to alterations which occur in the AD brain. Moreover, AD retinal pathology occurs even earlier than AD brain pathology. Importantly, non-invasive imaging techniques can be utilized for retinal observation due to the unique optical transparency of the eye, which acts as a convenient window in which preclinical pathology in the AD brain can be monitored. In this review, we overview the existing literature covering different forms of AD retinal pathology and propose a basis for the clinical application of using the retina as a window to view AD during preclinical and clinical stages.
Collapse
Affiliation(s)
- Jie Zhang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disorder Research Center, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Lei Shi
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disorder Research Center, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disorder Research Center, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China; Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
28
|
López-de-Eguileta A, López-García S, Lage C, Pozueta A, García-Martínez M, Kazimierczak M, Bravo M, Irure J, López-Hoyos M, Muñoz-Cacho P, Rodríguez-Perez N, Tordesillas-Gutiérrez D, Goikoetxea A, Nebot C, Rodríguez-Rodríguez E, Casado A, Sánchez-Juan P. The retinal ganglion cell layer reflects neurodegenerative changes in cognitively unimpaired individuals. Alzheimers Res Ther 2022; 14:57. [PMID: 35449033 PMCID: PMC9022357 DOI: 10.1186/s13195-022-00998-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 04/04/2022] [Indexed: 12/22/2022]
Abstract
Background To evaluate a wide range of optical coherence tomography (OCT) parameters for possible application as a screening tool for cognitively healthy individuals at risk of Alzheimer’s disease (AD), assessing the potential relationship with established cerebrospinal fluid (CSF) core AD biomarkers and magnetic resonance imaging (MRI). Methods We studied 99 participants from the Valdecilla Study for Memory and Brain Aging. This is a prospective cohort for multimodal biomarker discovery and validation that includes participants older than 55 years without dementia. Participants received a comprehensive neuropsychological battery and underwent structural 3-T brain MRI, lumbar puncture for CSF biomarkers (phosphorylated-181-Tau (pTau), total Tau (tTau), beta-amyloid 1–42 (Aβ 1–42), and beta-amyloid 1–40 (Aβ 1–40)). All individuals underwent OCT to measure the retinal ganglion cell layer (GCL), the retinal nerve fiber layer (RFNL), the Bruch’s membrane opening-minimum rim width (BMO-MRW), and choroidal thickness (CT). In the first stage, we performed a univariate analysis, using Student’s t-test. In the second stage, we performed a multivariate analysis including only those OCT parameters that discriminated at a nominal level, between positive/negative biomarkers in stage 1. Results We found significant differences between the OCT measurements of pTau- and tTau-positive individuals compared with those who were negative for these markers, most notably that the GCL and the RNFL were thinner in the former. In stage 2, our dependent variables were the quantitative values of CSF markers and the hippocampal volume. The Aβ 1–42/40 ratio did not show a significant correlation with OCT measurements while the associations between pTau and tTau with GCL were statistically significant, especially in the temporal region of the macula. Besides, the multivariate analysis showed a significant correlation between hippocampal volume with GCL and RNFL. However, after false discovery rate correction, only the associations with hippocampal volume remained significant. Conclusions We found a significant correlation between Tau (pTau) and neurodegeneration biomarkers (tTau and hippocampus volume) with GCL degeneration and, to a lesser degree, with damage in RFNL. OCT analysis constitutes a non-invasive and unexpensive biomarker that allows the detection of neurodegeneration in cognitively asymptomatic individuals. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-00998-6.
Collapse
Affiliation(s)
- Alicia López-de-Eguileta
- Department of Ophthalmology, 'Marqués de Valdecilla' University Hospital, Institute for Research 'Marqués de Valdecilla' Santander, University of Cantabria, Santander, Spain.
| | - Sara López-García
- Cognitive Impairment Unit, Neurology Service and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 'Marqués de Valdecilla' University Hospital, Institute for Research 'Marqués de Valdecilla' (IDIVAL), University of Cantabria, Santander, Spain
| | - Carmen Lage
- Cognitive Impairment Unit, Neurology Service and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 'Marqués de Valdecilla' University Hospital, Institute for Research 'Marqués de Valdecilla' (IDIVAL), University of Cantabria, Santander, Spain
| | - Ana Pozueta
- Cognitive Impairment Unit, Neurology Service and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 'Marqués de Valdecilla' University Hospital, Institute for Research 'Marqués de Valdecilla' (IDIVAL), University of Cantabria, Santander, Spain
| | - María García-Martínez
- Cognitive Impairment Unit, Neurology Service and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 'Marqués de Valdecilla' University Hospital, Institute for Research 'Marqués de Valdecilla' (IDIVAL), University of Cantabria, Santander, Spain
| | - Martha Kazimierczak
- Cognitive Impairment Unit, Neurology Service and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 'Marqués de Valdecilla' University Hospital, Institute for Research 'Marqués de Valdecilla' (IDIVAL), University of Cantabria, Santander, Spain
| | - María Bravo
- Cognitive Impairment Unit, Neurology Service and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 'Marqués de Valdecilla' University Hospital, Institute for Research 'Marqués de Valdecilla' (IDIVAL), University of Cantabria, Santander, Spain
| | - Juan Irure
- Department of Immunology, 'Marqués de Valdecilla' University Hospital of Cantabria, Institute for Research 'Marqués de Valdecilla', Santander, Spain
| | - Marcos López-Hoyos
- Department of Immunology, 'Marqués de Valdecilla' University Hospital of Cantabria, Institute for Research 'Marqués de Valdecilla', Santander, Spain
| | - Pedro Muñoz-Cacho
- Department of Medicina Familiar y Comunitaria, IDIVAL, Santander, Spain
| | | | | | | | - Claudia Nebot
- Department of Ophthalmology, 'Marqués de Valdecilla' University Hospital, Institute for Research 'Marqués de Valdecilla' Santander, University of Cantabria, Santander, Spain
| | - Eloy Rodríguez-Rodríguez
- Cognitive Impairment Unit, Neurology Service and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 'Marqués de Valdecilla' University Hospital, Institute for Research 'Marqués de Valdecilla' (IDIVAL), University of Cantabria, Santander, Spain
| | - Alfonso Casado
- Department of Ophthalmology, 'Marqués de Valdecilla' University Hospital, Institute for Research 'Marqués de Valdecilla' Santander, University of Cantabria, Santander, Spain
| | - Pascual Sánchez-Juan
- Cognitive Impairment Unit, Neurology Service and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 'Marqués de Valdecilla' University Hospital, Institute for Research 'Marqués de Valdecilla' (IDIVAL), University of Cantabria, Santander, Spain
| |
Collapse
|
29
|
Klyucherev TO, Olszewski P, Shalimova AA, Chubarev VN, Tarasov VV, Attwood MM, Syvänen S, Schiöth HB. Advances in the development of new biomarkers for Alzheimer's disease. Transl Neurodegener 2022; 11:25. [PMID: 35449079 PMCID: PMC9027827 DOI: 10.1186/s40035-022-00296-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a complex, heterogeneous, progressive disease and is the most common type of neurodegenerative dementia. The prevalence of AD is expected to increase as the population ages, placing an additional burden on national healthcare systems. There is a large need for new diagnostic tests that can detect AD at an early stage with high specificity at relatively low cost. The development of modern analytical diagnostic tools has made it possible to determine several biomarkers of AD with high specificity, including pathogenic proteins, markers of synaptic dysfunction, and markers of inflammation in the blood. There is a considerable potential in using microRNA (miRNA) as markers of AD, and diagnostic studies based on miRNA panels suggest that AD could potentially be determined with high accuracy for individual patients. Studies of the retina with improved methods of visualization of the fundus are also showing promising results for the potential diagnosis of the disease. This review focuses on the recent developments of blood, plasma, and ocular biomarkers for the diagnosis of AD.
Collapse
Affiliation(s)
- Timofey O Klyucherev
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Pawel Olszewski
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Alena A Shalimova
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir N Chubarev
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Misty M Attwood
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
30
|
Abstract
ABSTRACT Alzheimer disease (AD) is a significant cause of morbidity and mortality worldwide, with limited treatment options and considerable diagnostic challenges. Identification and validation of retinal changes that correlate with clinicopathologic features of AD could provide a noninvasive method of screening and monitoring progression of disease, with notable implications for developing new therapies, particularly in its preclinical stages. Retinal biomarkers that have been studied to date include structural changes in neurosensory retinal layers, alterations in vascular architecture and function, and pathologic deposition of proteins within the retina, which have all demonstrated variable correlation with the presence of preclinical or clinical AD. Evolution of specialized retinal imaging modalities and advances in artificial intelligence hold great promise for future study in this burgeoning field. The current status of research in retinal biomarkers, and some of the challenges that will need to be addressed in future work, are reviewed herein.
Collapse
Affiliation(s)
- Yuan Amy
- Department of Ophthalmology, University of Washington, Seattle WA, US
| | - Cecilia S. Lee
- Department of Ophthalmology, University of Washington, Seattle WA, US
- Karalis Johnson Retina Center, Seattle WA, US
| |
Collapse
|
31
|
Little K, Llorián-Salvador M, Scullion S, Hernández C, Simó-Servat O, Del Marco A, Bosma E, Vargas-Soria M, Carranza-Naval MJ, Van Bergen T, Galbiati S, Viganò I, Musi CA, Schlingemann R, Feyen J, Borsello T, Zerbini G, Klaassen I, Garcia-Alloza M, Simó R, Stitt AW. Common pathways in dementia and diabetic retinopathy: understanding the mechanisms of diabetes-related cognitive decline. Trends Endocrinol Metab 2022; 33:50-71. [PMID: 34794851 DOI: 10.1016/j.tem.2021.10.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/06/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes (T2D) is associated with multiple comorbidities, including diabetic retinopathy (DR) and cognitive decline, and T2D patients have a significantly higher risk of developing Alzheimer's disease (AD). Both DR and AD are characterized by a number of pathological mechanisms that coalesce around the neurovascular unit, including neuroinflammation and degeneration, vascular degeneration, and glial activation. Chronic hyperglycemia and insulin resistance also play a significant role, leading to activation of pathological mechanisms such as increased oxidative stress and the accumulation of advanced glycation end-products (AGEs). Understanding these common pathways and the degree to which they occur simultaneously in the brain and retina during diabetes will provide avenues to identify T2D patients at risk of cognitive decline.
Collapse
Affiliation(s)
- Karis Little
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - María Llorián-Salvador
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Sarah Scullion
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Cristina Hernández
- Vall d'Hebron Research Institute and CIBERDEM (ISCIII), Barcelona, Spain
| | - Olga Simó-Servat
- Vall d'Hebron Research Institute and CIBERDEM (ISCIII), Barcelona, Spain
| | - Angel Del Marco
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | - Esmeralda Bosma
- Ocular Angiogenesis Group, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria Vargas-Soria
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | - Maria Jose Carranza-Naval
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | | | - Silvia Galbiati
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ilaria Viganò
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Clara Alice Musi
- Università Degli Studi di Milano and Istituto di Ricerche Farmacologiche Mario Negri- IRCCS, Milano, Italy
| | - Reiner Schlingemann
- Ocular Angiogenesis Group, University of Amsterdam, Amsterdam, The Netherlands; Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Lausanne, Switzerland
| | | | - Tiziana Borsello
- Università Degli Studi di Milano and Istituto di Ricerche Farmacologiche Mario Negri- IRCCS, Milano, Italy
| | - Gianpaolo Zerbini
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, University of Amsterdam, Amsterdam, The Netherlands
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | - Rafael Simó
- Vall d'Hebron Research Institute and CIBERDEM (ISCIII), Barcelona, Spain.
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| | | |
Collapse
|
32
|
Dumitrascu OM, Rosenberry R, Sherman DS, Khansari MM, Sheyn J, Torbati T, Sherzai A, Sherzai D, Johnson KO, Czeszynski AD, Verdooner S, Black KL, Frautschy S, Lyden PD, Shi Y, Cheng S, Koronyo Y, Koronyo-Hamaoui M. Retinal Venular Tortuosity Jointly with Retinal Amyloid Burden Correlates with Verbal Memory Loss: A Pilot Study. Cells 2021; 10:cells10112926. [PMID: 34831149 PMCID: PMC8616417 DOI: 10.3390/cells10112926] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/21/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction: Retinal imaging is a non-invasive tool to study both retinal vasculature and neurodegeneration. In this exploratory retinal curcumin-fluorescence imaging (RFI) study, we sought to determine whether retinal vascular features combined with retinal amyloid burden correlate with the neurocognitive status. Methods: We used quantitative RFI in a cohort of patients with cognitive impairment to automatically compute retinal amyloid burden. Retinal blood vessels were segmented, and the vessel tortuosity index (VTI), inflection index, and branching angle were quantified. We assessed the correlations between retinal vascular and amyloid parameters, and cognitive domain Z-scores using linear regression models. Results: Thirty-four subjects were enrolled and twenty-nine (55% female, mean age 64 ± 6 years) were included in the combined retinal amyloid and vascular analysis. Eleven subjects had normal cognition and 18 had impaired cognition. Retinal VTI was discriminated among cognitive scores. The combined proximal mid-periphery amyloid count and venous VTI index exhibited significant differences between cognitively impaired and cognitively normal subjects (0.49 ± 1.1 vs. 0.91 ± 1.4, p = 0.006), and correlated with both the Wechsler Memory Scale-IV and SF-36 mental component score Z-scores (p < 0.05). Conclusion: This pilot study showed that retinal venular VTI combined with the proximal mid-periphery amyloid count could predict verbal memory loss. Future research is needed to finesse the clinical application of this retinal imaging-based technology.
Collapse
Affiliation(s)
- Oana M. Dumitrascu
- Department of Neurology, Mayo Clinic, Scottsdale, AZ 85251, USA
- Correspondence: (O.M.D.); (M.K.-H.); Tel.: +480-301-8100 (O.M.D.); Fax: +480-301-9494 (O.M.D.)
| | - Ryan Rosenberry
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.R.); (S.C.)
| | - Dale S. Sherman
- Department of Neuropsychology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Maziyar M. Khansari
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90007, USA; (M.M.K.); (Y.S.)
| | - Julia Sheyn
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (J.S.); (T.T.); (K.L.B.); (Y.K.)
| | - Tania Torbati
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (J.S.); (T.T.); (K.L.B.); (Y.K.)
| | - Ayesha Sherzai
- Department of Neurology, Loma Linda University, Loma Linda, CA 92350, USA; (A.S.); (D.S.)
| | - Dean Sherzai
- Department of Neurology, Loma Linda University, Loma Linda, CA 92350, USA; (A.S.); (D.S.)
| | - Kenneth O. Johnson
- NeuroVision Imaging Inc., Sacramento, CA 95833, USA; (K.O.J.); (A.D.C.); (S.V.)
| | - Alan D. Czeszynski
- NeuroVision Imaging Inc., Sacramento, CA 95833, USA; (K.O.J.); (A.D.C.); (S.V.)
| | - Steven Verdooner
- NeuroVision Imaging Inc., Sacramento, CA 95833, USA; (K.O.J.); (A.D.C.); (S.V.)
| | - Keith L. Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (J.S.); (T.T.); (K.L.B.); (Y.K.)
| | - Sally Frautschy
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Patrick D. Lyden
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Yonggang Shi
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90007, USA; (M.M.K.); (Y.S.)
| | - Susan Cheng
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.R.); (S.C.)
| | - Yosef Koronyo
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (J.S.); (T.T.); (K.L.B.); (Y.K.)
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (J.S.); (T.T.); (K.L.B.); (Y.K.)
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Correspondence: (O.M.D.); (M.K.-H.); Tel.: +480-301-8100 (O.M.D.); Fax: +480-301-9494 (O.M.D.)
| |
Collapse
|
33
|
Shi H, Koronyo Y, Rentsendorj A, Fuchs DT, Sheyn J, Black KL, Mirzaei N, Koronyo-Hamaoui M. Retinal Vasculopathy in Alzheimer's Disease. Front Neurosci 2021; 15:731614. [PMID: 34630020 PMCID: PMC8493243 DOI: 10.3389/fnins.2021.731614] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
The retina has been increasingly investigated as a site of Alzheimer’s disease (AD) manifestation for over a decade. Early reports documented degeneration of retinal ganglion cells and their axonal projections. Our group provided the first evidence of the key pathological hallmarks of AD, amyloid β-protein (Aβ) plaques including vascular Aβ deposits, in the retina of AD and mild cognitively impaired (MCI) patients. Subsequent studies validated these findings and further identified electroretinography and vision deficits, retinal (p)tau and inflammation, intracellular Aβ accumulation, and retinal ganglion cell-subtype degeneration surrounding Aβ plaques in these patients. Our data suggest that the brain and retina follow a similar trajectory during AD progression, probably due to their common embryonic origin and anatomical proximity. However, the retina is the only CNS organ feasible for direct, repeated, and non-invasive ophthalmic examination with ultra-high spatial resolution and sensitivity. Neurovascular unit integrity is key to maintaining normal CNS function and cerebral vascular abnormalities are increasingly recognized as early and pivotal factors driving cognitive impairment in AD. Likewise, retinal vascular abnormalities such as changes in vessel density and fractal dimensions, blood flow, foveal avascular zone, curvature tortuosity, and arteriole-to-venule ratio were described in AD patients including early-stage cases. A rapidly growing number of reports have suggested that cerebral and retinal vasculopathy are tightly associated with cognitive deficits in AD patients and animal models. Importantly, we recently identified early and progressive deficiency in retinal vascular platelet-derived growth factor receptor-β (PDGFRβ) expression and pericyte loss that were associated with retinal vascular amyloidosis and cerebral amyloid angiopathy in MCI and AD patients. Other studies utilizing optical coherence tomography (OCT), retinal amyloid-fluorescence imaging and retinal hyperspectral imaging have made significant progress in visualizing and quantifying AD pathology through the retina. With new advances in OCT angiography, OCT leakage, scanning laser microscopy, fluorescein angiography and adaptive optics imaging, future studies focusing on retinal vascular AD pathologies could transform non-invasive pre-clinical AD diagnosis and monitoring.
Collapse
Affiliation(s)
- Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
34
|
Proskauer Pena SL, Mallouppas K, Oliveira AMG, Zitricky F, Nataraj A, Jezek K. Early Spatial Memory Impairment in a Double Transgenic Model of Alzheimer's Disease TgF-344 AD. Brain Sci 2021; 11:brainsci11101300. [PMID: 34679365 PMCID: PMC8533693 DOI: 10.3390/brainsci11101300] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Before the course of Alzheimer’s disease fully manifests itself and largely impairs a patient’s cognitive abilities, its progression has already lasted for a considerable time without being noticed. In this project, we mapped the development of spatial orientation impairment in an active place avoidance task—a highly sensitive test for mild hippocampal damage. We tested vision, anxiety and spatial orientation performance at four age levels of 4, 6, 9, and 12 months across male and female TgF-344 AD rats carrying human genes for presenilin-1 and amyloid precursor protein. We found a progressive deterioration of spatial navigation in transgenic animals, beginning already at the age of 4 months, that fully developed at 6 months of age across both male and female groups, compared to their age-matched controls. In addition, we described the gradual vision impairment that was accentuated in females at the age of 12 months. These results indicate a rather early onset of cognitive impairment in the TgF-344 AD Alzheimer’s disease model, starting earlier than shown to date, and preceding the reported development of amyloid plaques.
Collapse
|
35
|
Lee MJ, Bhattarai D, Jang H, Baek A, Yeo IJ, Lee S, Miller Z, Lee S, Hong JT, Kim DE, Lee W, Kim KB. Macrocyclic Immunoproteasome Inhibitors as a Potential Therapy for Alzheimer's Disease. J Med Chem 2021; 64:10934-10950. [PMID: 34309393 PMCID: PMC10913540 DOI: 10.1021/acs.jmedchem.1c00291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previously, we reported that immunoproteasome (iP)-targeting linear peptide epoxyketones improve cognitive function in mouse models of Alzheimer's disease (AD) in a manner independent of amyloid β. However, these compounds' clinical prospect for AD is limited due to potential issues, such as poor brain penetration and metabolic instability. Here, we report the development of iP-selective macrocyclic peptide epoxyketones prepared by a ring-closing metathesis reaction between two terminal alkenes attached at the P2 and P3/P4 positions of linear counterparts. We show that a lead macrocyclic compound DB-60 (20) effectively inhibits the catalytic activity of iP in ABCB1-overexpressing cells (IC50: 105 nM) and has metabolic stability superior to its linear counterpart. DB-60 (20) also lowered the serum levels of IL-1α and ameliorated cognitive deficits in Tg2576 mice. The results collectively suggest that macrocyclic peptide epoxyketones have improved CNS drug properties than their linear counterparts and offer promising potential as an AD drug candidate.
Collapse
Affiliation(s)
- Min Jae Lee
- Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, KY 40536-0596, USA
| | - Deepak Bhattarai
- Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, KY 40536-0596, USA
| | - Hyeryung Jang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ahreum Baek
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Seongsoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Zachary Miller
- Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, KY 40536-0596, USA
| | - Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung Bo Kim
- Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, KY 40536-0596, USA
| |
Collapse
|
36
|
Cao KJ, Kim JH, Kroeger H, Gaffney PM, Lin JH, Sigurdson CJ, Yang J. ARCAM-1 Facilitates Fluorescence Detection of Amyloid-Containing Deposits in the Retina. Transl Vis Sci Technol 2021; 10:5. [PMID: 34096989 PMCID: PMC8185402 DOI: 10.1167/tvst.10.7.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose To investigate the use of an amyloid-targeting fluorescent probe, ARCAM-1, to identify amyloid-containing deposits in the retina of a transgenic mouse model of Alzheimer's disease (AD) and in human postmortem AD patients. Methods Aged APP/PS1 transgenic AD and wild-type (WT) mice were given an intraperitoneal (IP) injection of ARCAM-1 and their retinas imaged in vivo using a fluorescence ophthalmoscope. Eyes were enucleated and dissected for ex vivo inspection of retinal amyloid deposits. Additionally, formalin-fixed eyes from human AD and control patients were dissected, and the retinas were stained using ARCAM-1 or with an anti-amyloid-β antibody. Confocal microscopy was used to image amyloid-containing deposits stained with ARCAM-1 or with immunostaining. Results Four out of eight APP/PS1 mice showed the presence of amyloid aggregates in the retina during antemortem imaging. Retinas from three human AD patients stained with ARCAM-1 showed an apparent increased density of fluorescently labeled amyloid-containing deposits compared to the retinas from two healthy, cognitively normal (CN) patients. Immunolabeling confirmed the presence of amyloid deposits in both the retinal neuronal layers and in retinal vasculature. Conclusions ARCAM-1 facilitates antemortem detection of amyloid aggregates in the retina of a mouse model for AD, and postmortem detection of amyloid-containing deposits in human retinal tissues from AD patients. These results support the hypothesis of AD pathology manifesting in the eye and highlight a novel area for fluorophore development for the optical detection of retinal amyloid in AD patients. Translational Relevance This paper represents an initial examination for potential translation of an amyloid-targeting fluorescent probe to a retinal imaging agent for aiding in the diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Kevin J Cao
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - John H Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Heike Kroeger
- Departments of Pathology and Medicine, University of California, San Diego, La Jolla, CA, USA.,Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Patricia M Gaffney
- Departments of Pathology and Medicine, University of California, San Diego, La Jolla, CA, USA.,Department of Disease Investigations, San Diego Zoo Wildlife Alliance, San Diego, CA, USA
| | - Jonathan H Lin
- Departments of Pathology and Medicine, University of California, San Diego, La Jolla, CA, USA.,Departments of Pathology and Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Christina J Sigurdson
- Departments of Pathology and Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
37
|
Schultz N, Byman E, Wennström M. Levels of Retinal Amyloid-β Correlate with Levels of Retinal IAPP and Hippocampal Amyloid-β in Neuropathologically Evaluated Individuals. J Alzheimers Dis 2021; 73:1201-1209. [PMID: 31884473 PMCID: PMC7081096 DOI: 10.3233/jad-190868] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background: Previous studies have used immunohistology to demonstrate Alzheimer’s disease (AD) characteristic accumulation of amyloid-β (Aβ) in the retina of AD patients, a finding indicating retina examination as a potential diagnostic tool for AD pathology. Objective: To further explore this idea by investigating whether levels of Aβ42 and Aβ40 in retina are associated with corresponding levels in hippocampus, neuropathological assessments, apolipoprotein E (APOE) genotype, and levels of islet amyloid polypeptide (IAPP). Methods: Levels of high molecular weight (HMW) Aβ42, Aβ40, and IAPP in ultra-centrifuged homogenates of retina and hippocampus from patients with AD, multiple sclerosis, AD with Lewy bodies, and non-demented controls were analyzed using Mesoscale Discovery electrochemiluminescence technology employing immunoassay and enzyme-linked immunosorbent assay. Results: Higher levels of retinal and hippocampal Aβ42-HMW, Aβ40-HMW, and IAPP-HMW were found in individuals with high neuropathological scores of Aβ plaques and in individuals carrying the APOEɛ4 allele. The retinal levels of Aβ42-HMW and Aβ40-HMW correlated with corresponding levels in hippocampus as well as with neurofibrillary tangles (NFT) and Aβ scores. Retinal IAPP-HMW correlated with retinal levels of Aβ42-HMW and with NFT and Aβ scores. Conclusion: These results show that different isoforms of Aβ can be detected in the human retina and moreover support the growing number of studies indicating that AD-related pathological changes occurring in the brain could be reflected in the retina.
Collapse
Affiliation(s)
- Nina Schultz
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Malmö, Sweden.,Department of Neurology, University of California, San Francisco, CA, USA
| | - Elin Byman
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Malmö, Sweden
| | | | - Malin Wennström
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Malmö, Sweden
| |
Collapse
|
38
|
Fereshetian S, Agranat JS, Siegel N, Ness S, Stein TD, Subramanian ML. Protein and Imaging Biomarkers in the Eye for Early Detection of Alzheimer's Disease. J Alzheimers Dis Rep 2021; 5:375-387. [PMID: 34189409 PMCID: PMC8203283 DOI: 10.3233/adr-210283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia worldwide. Although no formal curative therapy exists for the treatment of AD, considerable research has been performed to identify biomarkers for early detection of this disease, and thus improved subsequent management. Given that the eye can be examined and imaged non-invasively with relative ease, it has emerged as an exciting area of research for evidence of biomarkers and to aid in the early diagnosis of AD. This review explores the current understanding of both protein and retinal imaging biomarkers in the eye. Herein, primary findings in the literature regarding AD biomarkers associated with the lens, retina, and other ocular structures are reviewed.
Collapse
Affiliation(s)
- Shaunt Fereshetian
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
| | - Joshua S. Agranat
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
- Boston Medical Center, Boston, MA, USA
| | - Nicole Siegel
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
- Boston Medical Center, Boston, MA, USA
| | - Steven Ness
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
- Boston Medical Center, Boston, MA, USA
| | - Thor D. Stein
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Manju L. Subramanian
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
- Boston Medical Center, Boston, MA, USA
| |
Collapse
|
39
|
Biscetti L, Lupidi M, Luchetti E, Eusebi P, Gujar R, Vergaro A, Cagini C, Parnetti L. Novel noninvasive biomarkers of prodromal Alzheimer disease: The role of optical coherence tomography and optical coherence tomography-angiography. Eur J Neurol 2021; 28:2185-2191. [PMID: 33852770 DOI: 10.1111/ene.14871] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE A reduction of retinal thickness and an alteration of retinal perfusion have been found in Alzheimer disease (AD). Nowadays, retinal layers and retinal perfusion can be evaluated by means of noninvasive imaging techniques, namely, optical coherence tomography (OCT) and OCT-angiography (OCT-A). Here, we have compared the retinal thickness and the perfusion index, measured by means of OCT and OCT-A, in patients with mild cognitive impairment due to AD (MCI-AD) and in age- and sex-matched cognitively healthy controls. METHODS Twenty-four MCI-AD patients and 13 control subjects were enrolled. MCI-AD patients underwent lumbar puncture; all of them showed a cerebrospinal fluid (CSF) profile compatible with AD. OCT was used for evaluating retinal volumes and thicknesses, whereas with OCT-A we measured fractal dimension (FD), vascular perfusion density (VPD), and vessel length density (VLD) of superficial capillary plexus (SCP), intermediate capillary plexus (ICP), deep capillary plexus (DCP), and choriocapillaris. The comparisons between groups were made after adjustment for age, diabetes, and hypertension. RESULTS A significant reduction of SCP-VLD (p = 0.012), ICP-VPD (p = 0.015), ICP-VLD (p = 0.004), DCP-VPD (p = 0.012), and DCP-VLD (p = 0.009) was found in MCI-AD patients compared to controls. Conversely, FD was higher in MCI-AD than in controls (p = 0.044). CSF Aβ42/total tau negatively correlated with FD (r = -0.51, p = 0.010). CONCLUSIONS OCT-A might have a potential role in detecting new noninvasive biomarkers for early AD detection. Retinal VPD might identify amyloid angiopathy-related chronic injury, and FD could show early vessel recruitment as a compensative mechanism at disease onset. Further studies will be needed to confirm these findings.
Collapse
Affiliation(s)
- Leonardo Biscetti
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marco Lupidi
- Section of Ophthalmology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.,Macula Onlus Foundation, Di.N.O.G.Mi., University Eye Clinic, Genoa, Italy.,Odeon Center, Paris, France
| | - Elisa Luchetti
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Paolo Eusebi
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ramkailash Gujar
- Section of Ophthalmology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Andrea Vergaro
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Carlo Cagini
- Section of Ophthalmology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
40
|
Araya-Arriagada J, Bello F, Shivashankar G, Neira D, Durán-Aniotz C, Acosta ML, Escobar MJ, Hetz C, Chacón M, Palacios AG. Retinal Ganglion Cells Functional Changes in a Mouse Model of Alzheimer's Disease Are Linked with Neurotransmitter Alterations. J Alzheimers Dis 2021; 82:S5-S18. [PMID: 33749647 DOI: 10.3233/jad-201195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent form of dementia worldwide. This neurodegenerative syndrome affects cognition, memory, behavior, and the visual system, particularly the retina. OBJECTIVE This work aims to determine whether the 5xFAD mouse, a transgenic model of AD, displays changes in the function of retinal ganglion cells (RGCs) and if those alterations are correlated with changes in the expression of glutamate and gamma-aminobutyric acid (GABA) neurotransmitters. METHODS In young (2-3-month-old) and adult (6-7-month-old) 5xFAD and WT mice, we have studied the physiological response, firing rate, and burst of RGCs to various types of visual stimuli using a multielectrode array system. RESULTS The firing rate and burst response in 5xFAD RGCs showed hyperactivity at the early stage of AD in young mice, whereas hypoactivity was seen at the later stage of AD in adults. The physiological alterations observed in 5xFAD correlate well with an increase in the expression of glutamate in the ganglion cell layer in young and adults. GABA staining increased in the inner nuclear and plexiform layer, which was more pronounced in the adult than the young 5xFAD retina, altering the excitation/inhibition balance, which could explain the observed early hyperactivity and later hypoactivity in RGC physiology. CONCLUSION These findings indicate functional changes may be caused by neurochemical alterations of the retina starting at an early stage of the AD disease.
Collapse
Affiliation(s)
- Joaquín Araya-Arriagada
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Chile
| | - Felipe Bello
- Department of Engineering Informatics, Universidad de Santiago, Santiago, Chile
| | - Gaganashree Shivashankar
- School of Optometry and Vision Science; Centre for Brain Research; Brain Research New Zealand; The University of Auckland, Auckland, New Zealand
| | - David Neira
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Claudia Durán-Aniotz
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | - Mónica L Acosta
- School of Optometry and Vision Science; Centre for Brain Research; Brain Research New Zealand; The University of Auckland, Auckland, New Zealand
| | - María José Escobar
- Departamento de Electrónica, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - Max Chacón
- Department of Engineering Informatics, Universidad de Santiago, Santiago, Chile
| | - Adrián G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
41
|
Retinal hyperspectral imaging in the 5xFAD mouse model of Alzheimer's disease. Sci Rep 2021; 11:6387. [PMID: 33737550 PMCID: PMC7973540 DOI: 10.1038/s41598-021-85554-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 02/20/2021] [Indexed: 11/08/2022] Open
Abstract
Hyperspectral imaging of the retina has recently been posited as a potentially useful form of spectroscopy of amyloid-beta (Aβ) protein in the eyes of those with Alzheimer's disease (AD). The concept of using the retina as a biomarker for AD is an attractive one, as current screening tools for AD are either expensive or inaccessible. Recent studies have investigated hyperspectral imaging in Aβ models however these studies have been in younger mice. Here we characterised hyperspectral reflectance profile in 6 to 17 months old 5xFAD mice and compare this to Aβ in isolated preparations. Hyperspectral imaging was conducted across two preparations of Aβ using a custom built bench ophthalmoscope. In the in vitro condition, 1 mg of purified human Aβ42 was solubilised and left to aggregate for 72 h. This soluble/insoluble Aβ mixture was then imaged by suspending the solution at a pipette tip and compared against phosphate buffered saline (PBS) control (n = 10 ROIs / group). In the in vivo condition, a 5xFAD transgenic mouse model was used and retinae were imaged at the age of 6 (n = 9), 12 (n = 9) and 17 months (n = 8) with age matched wildtype littermates as control (n = 12, n = 13, n = 15 respectively). In the vitro condition, hyperspectral imaging of the solution showed greater reflectance compared with vehicle (p < 0.01), with the greatest differences occurring in the short visible spectrum (< 500 nm). In the in vivo preparation, 5xFAD showed greater hyperspectral reflectance at all ages (6, 12, 17 months, p < 0.01). These differences were noted most in the short wavelengths at younger ages, with an additional peak appearing at longer wavelengths (~ 550 nm) with advancing age. This study shows that the presence of Aβ (soluble/insoluble mixture) can increase the hyperspectral reflectance profile in vitro as well as in vivo. Differences were evident in the short wavelength spectrum (< 500 nm) in vitro and were preserved when imaged through the ocular media in the in vivo conditions. With advancing age a second hump around ~ 550 nm became more apparent. Hyperspectral imaging of the retina does not require the use of contrast agents and is a potentially useful and non-invasive biomarker for AD.
Collapse
|
42
|
Csincsik L, Nelson R, Walpert MJ, Peto T, Holland A, Lengyel I. Increased choroidal thickness in adults with Down syndrome. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12170. [PMID: 33748396 PMCID: PMC7967920 DOI: 10.1002/dad2.12170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION People with Down syndrome (DS) are particularly susceptible to Alzheimer's disease (AD) due to the triplication of the amyloid precursor protein (APP) gene. In this cross-sectional study, we hypothesized that choroidal thinning reported in sporadic AD (sAD) is mirrored in adults with DS. METHODS The posterior pole of the eye for 24 adults with DS and 16 age-matched controls (Ctrl) were imaged with optical coherence tomography. Choroidal thickness (ChT) was measured and analyzed in relation to cognitive status and cerebral amyloid beta (Aβ) load. RESULTS ChT was increased in people with DS (pwDS) compared to Ctrl. This increase was associated with gender differences and positively correlated with cerebral Aβ load in a small subset. There was no significant correlation detected between ChT and age or cognitive status. DISCUSSION In contrast to sAD this study found a significantly thicker choroid in pwDS. Whether these changes are related to Aβ pathology in DS needs further investigation.
Collapse
Affiliation(s)
- Lajos Csincsik
- Wellcome‐Wolfson Institute for Experimental MedicineQueen's University BelfastBelfastUK
| | - Rachel Nelson
- Wellcome‐Wolfson Institute for Experimental MedicineQueen's University BelfastBelfastUK
| | - Madeleine J. Walpert
- Department of PsychiatryUniversity of Cambridge, Cambridge Intellectual and Developmental Disabilities Research GroupCambridgeUK
| | - Tunde Peto
- Wellcome‐Wolfson Institute for Experimental MedicineQueen's University BelfastBelfastUK
| | - Anthony Holland
- Department of PsychiatryUniversity of Cambridge, Cambridge Intellectual and Developmental Disabilities Research GroupCambridgeUK
| | - Imre Lengyel
- Wellcome‐Wolfson Institute for Experimental MedicineQueen's University BelfastBelfastUK
| |
Collapse
|
43
|
Zhu J, Su T, Wang M, Li M, Liu L, Wang F. Highly Expressed Amyloid Beta-42 Of Aqueous Humor In Patients With Neovascular Macular Degeneration. Semin Ophthalmol 2021; 36:9-13. [PMID: 33587673 DOI: 10.1080/08820538.2021.1883679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Age-related macular degeneration (AMD) is a type of macular degeneration disease, and amyloid beta (aβ) is the main component of vitreous warts in AMD patients. Neovascular AMD (nAMD) is the most serious type of AMD, but its pathogenesis remains unclear. The aim of this study was to detect the expression of aβ42 in the aqueous humor of nAMD patients and to evaluate whether aβ42 expression of aqueous humor is correlated with cognitive function in these patients.Methods: A total of 70 patients were enrolled in this study, including 50 nAMD patients (nAMD group) and 20 patients with cataract (control group). The cognitive function of the patients was assessed using the Mini-Mental State Examination and Montreal Cognitive Assessment Scale, and based on their scores, 50 patients with nAMD were divided into two subgroups: the p-nAMD group (18 nAMD patients with normal cognition) and the ci-nAMD group (32 nAMD patients with cognitive impairment). An immunofluorescence microsphere probe technique was used to detect the aβ42 expression of aqueous humor in all patients. Pearson correlation analysis was used.Results: The aβ42 expression of aqueous humor was significantly higher in the nAMD group (124.56 ± 41.93 pg/mL) as compared with the control group (82.94 ± 33.75 pg/mL; P < .01). There was no significant difference in aβ42 expression of aqueous humor between the p-nAMD group (136.42 ± 51.68 pg/mL) and ci-nAMD group (117.90 ± 34.46 pg/mL; P = .14).Conclusion: In nAMD patients, aβ42 was highly expressed in the aqueous humor but was not correlated with cognitive function.
Collapse
Affiliation(s)
- Juming Zhu
- Department of Ophthalmology, the Fourth Affiliated Hospital of Nantong University, Yancheng No.1 People's Hospital, Yancheng, Jiangsu Province, China
| | - Tu Su
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Affiliate of Tongji University, School of Medicine, Shanghai, China
| | - Minli Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Affiliate of Tongji University, School of Medicine, Shanghai, China
| | - Min Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Affiliate of Tongji University, School of Medicine, Shanghai, China
| | - Lin Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Affiliate of Tongji University, School of Medicine, Shanghai, China
| | - Fang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Affiliate of Tongji University, School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Vit JP, Fuchs DT, Angel A, Levy A, Lamensdorf I, Black KL, Koronyo Y, Koronyo-Hamaoui M. Color and contrast vision in mouse models of aging and Alzheimer's disease using a novel visual-stimuli four-arm maze. Sci Rep 2021; 11:1255. [PMID: 33441984 PMCID: PMC7806734 DOI: 10.1038/s41598-021-80988-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
We introduce a novel visual-stimuli four-arm maze (ViS4M) equipped with spectrally- and intensity-controlled LED emitters and dynamic grayscale objects that relies on innate exploratory behavior to assess color and contrast vision in mice. Its application to detect visual impairments during normal aging and over the course of Alzheimer’s disease (AD) is evaluated in wild-type (WT) and transgenic APPSWE/PS1∆E9 murine models of AD (AD+) across an array of irradiance, chromaticity, and contrast conditions. Substantial color and contrast-mode alternation deficits appear in AD+ mice at an age when hippocampal-based memory and learning is still intact. Profiling of timespan, entries and transition patterns between the different arms uncovers variable AD-associated impairments in contrast sensitivity and color discrimination, reminiscent of tritanomalous defects documented in AD patients. Transition deficits are found in aged WT mice in the absence of alternation decline. Overall, ViS4M is a versatile, controlled device to measure color and contrast-related vision in aged and diseased mice.
Collapse
Affiliation(s)
- Jean-Philippe Vit
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.,Biobehavioral Research Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ariel Angel
- Pharmaseed Ltd., 9 Hamazmera St., 74047, Ness Ziona, Israel
| | - Aharon Levy
- Pharmaseed Ltd., 9 Hamazmera St., 74047, Ness Ziona, Israel
| | | | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA. .,Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
45
|
Song A, Johnson N, Ayala A, Thompson AC. Optical Coherence Tomography in Patients with Alzheimer's Disease: What Can It Tell Us? Eye Brain 2021; 13:1-20. [PMID: 33447120 PMCID: PMC7802785 DOI: 10.2147/eb.s235238] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Although Alzheimer's disease (AD) is a leading cause of dementia worldwide, its clinical diagnosis remains a challenge. Optical coherence tomography (OCT) and OCT with angiography (OCTA) are non-invasive ophthalmic imaging tools with the potential to detect retinal structural and microvascular changes in patients with AD, which may serve as biomarkers for the disease. In this systematic review, we evaluate whether certain OCT and OCTA parameters are significantly associated with AD and mild cognitive impairment (MCI). METHODS PubMed database was searched using a combination of MeSH terms to identify studies for review. Studies were organized by participant diagnostic groups, type of imaging modality, and OCT/OCTA parameters of interest. Participant demographic data was also collected and baseline descriptive statistics were calculated for the included studies. RESULTS Seventy-one studies were included for review, representing a total of 6757 patients (2350 AD, 793 MCI, 2902 healthy controls (HC), and 841 others with a range of other neurodegenerative diagnoses). The mean baseline ages were 72.78±3.69, 71.52±2.88, 70.55±3.85 years for AD, MCI and HC groups, respectively. The majority of studies noted significant structural and functional decline in AD patients when compared to HC. Although analysis of MCI groups yielded more mixed results, a similar pattern of decline was often noted amongst patients with MCI relative to HC. OCT and OCTA measurements were also shown to correlate with established measures of AD such as neuropsychological testing or neuroimaging. CONCLUSION OCT and OCTA show great potential as non-invasive technologies for the diagnosis of AD. However, further research is needed to determine whether there are AD-specific patterns of structural or microvascular change in the retina and optic nerve that distinguish AD from other neurodegenerative diseases. Development of sensitive and specific OCT/OCTA parameters will be necessary before they can be used to detect AD in clinical settings.
Collapse
Affiliation(s)
- Ailin Song
- Duke University School of Medicine, Durham, NC, USA
| | | | | | | |
Collapse
|
46
|
Simons ES, Smith MA, Dengler-Crish CM, Crish SD. Retinal ganglion cell loss and gliosis in the retinofugal projection following intravitreal exposure to amyloid-beta. Neurobiol Dis 2021; 147:105146. [PMID: 33122075 DOI: 10.1016/j.nbd.2020.105146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 01/07/2023] Open
Abstract
Pathological accumulations of amyloid-beta (Aβ) peptide are found in retina early in Alzheimer's disease, yet its effects on retinal neuronal structure remain unknown. To investigate this, we injected fibrillized Aβ1-42 protein into the eye of adult C57BL/6 J mice and analyzed the retina, optic nerve (ON), and the superior colliculus (SC), the primary retinal target in mice. We found that retinal Aβ exposure stimulated microglial activation and retinal ganglion cell (RGC) loss as early as 1-week post-injection. Pathology was not limited to the retina, but propagated into other areas of the central nervous system. Microgliosis spread throughout the retinal projection (retina, ON, and SC), with multiplex protein quantitation demonstrating an increase in endogenously produced Aβ in the ON and SC corresponding to the injected retinas. Surprisingly, this pathology spread to the opposite side, with unilateral Aβ eye injections driving increased Aβ levels, neuroinflammation, and RGC death in the opposite, un-injected retinal projection. As Aβ-mediated microglial activation has been shown to propagate Aβ pathology, we also investigated the role of the Aβ-binding microglial scavenger receptor CD36 in this pathology. Transgenic mice lacking the CD36 receptor were resistant to Aβ-induced inflammation and RGC death up to 2 weeks following exposure. These results indicate that Aβ pathology drives regional neuropathology in the retina and does not remain isolated to the affected eye, but spreads throughout the nervous system. Further, CD36 may serve as a promising target to prevent Aβ-mediated inflammatory damage.
Collapse
Affiliation(s)
- E S Simons
- Northeast Ohio Medical University, Rootstown, OH 44272, United States; Kent State Biomedical Sciences Graduate Program, Kent, OH 44240, United States
| | - M A Smith
- Northeast Ohio Medical University, Rootstown, OH 44272, United States; Kent State Biomedical Sciences Graduate Program, Kent, OH 44240, United States; Akron Children's Hospital, Rebecca D. Considine Research Institute, Akron, OH 44302, United States
| | - C M Dengler-Crish
- Northeast Ohio Medical University, Rootstown, OH 44272, United States; Kent State Biomedical Sciences Graduate Program, Kent, OH 44240, United States
| | - S D Crish
- Northeast Ohio Medical University, Rootstown, OH 44272, United States; Kent State Biomedical Sciences Graduate Program, Kent, OH 44240, United States.
| |
Collapse
|
47
|
Snyder PJ, Alber J, Alt C, Bain LJ, Bouma BE, Bouwman FH, DeBuc DC, Campbell MC, Carrillo MC, Chew EY, Cordeiro MF, Dueñas MR, Fernández BM, Koronyo-Hamaoui M, La Morgia C, Carare RO, Sadda SR, van Wijngaarden P, Snyder HM. Retinal imaging in Alzheimer's and neurodegenerative diseases. Alzheimers Dement 2021; 17:103-111. [PMID: 33090722 PMCID: PMC8062064 DOI: 10.1002/alz.12179] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022]
Abstract
In the last 20 years, research focused on developing retinal imaging as a source of potential biomarkers for Alzheimer's disease and other neurodegenerative diseases, has increased significantly. The Alzheimer's Association and the Alzheimer's & Dementia: Diagnosis, Assessment, Disease Monitoring editorial team (companion journal to Alzheimer's & Dementia) convened an interdisciplinary discussion in 2019 to identify a path to expedite the development of retinal biomarkers capable of identifying biological changes associated with AD, and for tracking progression of disease severity over time. As different retinal imaging modalities provide different types of structural and/or functional information, the discussion reflected on these modalities and their respective strengths and weaknesses. Discussion further focused on the importance of defining the context of use to help guide the development of retinal biomarkers. Moving from research to context of use, and ultimately to clinical evaluation, this article outlines ongoing retinal imaging research today in Alzheimer's and other brain diseases, including a discussion of future directions for this area of study.
Collapse
Affiliation(s)
- Peter J. Snyder
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | - Jessica Alber
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | - Clemens Alt
- Wellman Center for Photomedicine and Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lisa J. Bain
- Independent Science Writer, Elverson, Pennsylvania
| | - Brett E. Bouma
- Harvard Medical School, Massachusetts General Hospital and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Massachusetts
| | - Femke H. Bouwman
- Neurologist, Alzheimer Center Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Melanie C.W. Campbell
- Physics and Astronomy, Optometry and Vision Science and Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Maria C. Carrillo
- Medical & Scientific Relations, Alzheimer’s Association, Chicago, Illinois
| | - Emily Y. Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - M. Francesca Cordeiro
- Imperial College London, UCL Institute of Ophthalmology, ICORG Western Eye Hospital, London, UK
| | - Michael R. Dueñas
- Chief Public Health Officer (Ret.), American Optometric Association, Washington, D.C
| | | | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute and Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, University of Bologna, Italy
| | | | - Srinivas R. Sadda
- Doheny Eye Institute, Los Angeles, California
- Department of Ophthalmology, UCLA, Los Angeles, California
| | - Peter van Wijngaarden
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville, Australia
| | - Heather M. Snyder
- Medical & Scientific Relations, Alzheimer’s Association, Chicago, Illinois
| |
Collapse
|
48
|
Retinal capillary degeneration and blood-retinal barrier disruption in murine models of Alzheimer's disease. Acta Neuropathol Commun 2020; 8:202. [PMID: 33228786 PMCID: PMC7686701 DOI: 10.1186/s40478-020-01076-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/11/2020] [Indexed: 01/17/2023] Open
Abstract
Extensive effort has been made studying retinal pathology in Alzheimer’s disease (AD) to improve early noninvasive diagnosis and treatment. Particularly relevant are vascular changes, which appear prominent in early brain pathogenesis and could predict cognitive decline. Recently, we identified platelet-derived growth factor receptor beta (PDGFRβ) deficiency and pericyte loss associated with vascular Aβ deposition in the neurosensory retina of mild cognitively impaired (MCI) and AD patients. However, the pathological mechanisms of retinal vascular changes and their possible relationships with vascular amyloidosis, pericyte loss, and blood-retinal barrier (BRB) integrity remain unknown. Here, we evaluated the retinas of transgenic APPSWE/PS1ΔE9 mouse models of AD (ADtg mice) and wild-type mice at different ages for capillary degeneration, PDGFRβ expression, vascular amyloidosis, permeability and inner BRB tight-junction molecules. Using a retinal vascular isolation technique followed by periodic acid-Schiff or immunofluorescent staining, we discovered significant retinal capillary degeneration in ADtg mice compared to age- and sex-matched wild-type mice (P < 0.0001). This small vessel degeneration reached significance in 8-month-old mice (P = 0.0035), with males more susceptible than females. Degeneration of retinal capillaries also progressively increased with age in healthy mice (P = 0.0145); however, the phenomenon was significantly worse during AD-like progression (P = 0.0001). A substantial vascular PDGFRβ deficiency (~ 50% reduction, P = 0.0017) along with prominent vascular Aβ deposition was further detected in the retina of ADtg mice, which inversely correlated with the extent of degenerated capillaries (Pearson’s r = − 0.8, P = 0.0016). Importantly, tight-junction alterations such as claudin-1 downregulation and increased BRB permeability, demonstrated in vivo by retinal fluorescein imaging and ex vivo following injection of FITC-dextran (2000 kD) and Texas Red-dextran (3 kD), were found in ADtg mice. Overall, the identification of age- and Alzheimer’s-dependent retinal capillary degeneration and compromised BRB integrity starting at early disease stages in ADtg mice could contribute to the development of novel targets for AD diagnosis and therapy.
Collapse
|
49
|
Ocular Vascular Changes in Mild Alzheimer's Disease Patients: Foveal Avascular Zone, Choroidal Thickness, and ONH Hemoglobin Analysis. J Pers Med 2020; 10:jpm10040231. [PMID: 33203157 PMCID: PMC7712569 DOI: 10.3390/jpm10040231] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
In Alzheimer’s disease (AD), vascular changes could be caused by amyloid beta (Aβ) aggregates replacing the contractile smooth musculature of the arteriole walls. These changes happen in the brain vascular network, but also in the eye, and are related to decreased vascular density and low blood flow. In patients with Alzheimer’s disease, thinning of the choroid and the retina has been shown. The aim of this prospective study was to assess the retinal and choroidal vascular systems, analyzing the choroidal thickness with optical coherence tomography (OCT), the foveal avascular zone (FAZ) with OCT-angiography (OCTA), and the optic nerve head (ONH) hemoglobin with the Laguna ONhE program, to evaluate which of the two ocular vascular systems shows earlier changes in mild AD patients. These patients, compared to controls, showed a significantly thinner choroid at all the analyzed points, with the exception of the temporal macula (at 1000 and 1500 µm from the fovea). On the other hand, the FAZ and ONH hemoglobin did not show significant differences. In conclusion, a thinner choroid was the main ocular vascular change observed in mild AD patients, while the retinal vessels were not yet affected. Therefore, choroidal thickness could be used an early biomarker in AD.
Collapse
|
50
|
Alber J, Goldfarb D, Thompson LI, Arthur E, Hernandez K, Cheng D, DeBuc DC, Cordeiro F, Provetti-Cunha L, den Haan J, Van Stavern GP, Salloway SP, Sinoff S, Snyder PJ. Developing retinal biomarkers for the earliest stages of Alzheimer's disease: What we know, what we don't, and how to move forward. Alzheimers Dement 2020; 16:229-243. [PMID: 31914225 DOI: 10.1002/alz.12006] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/23/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
The last decade has seen a substantial increase in research focused on the identification, development, and validation of diagnostic and prognostic retinal biomarkers for Alzheimer's disease (AD). Sensitive retinal biomarkers may be advantageous because they are cost and time efficient, non-invasive, and present a minimal degree of patient risk and a high degree of accessibility. Much of the work in this area thus far has focused on distinguishing between symptomatic AD and/or mild cognitive impairment (MCI) and cognitively normal older adults. Minimal work has been done on the detection of preclinical AD, the earliest stage of AD pathogenesis characterized by the accumulation of cerebral amyloid absent clinical symptoms of MCI or dementia. The following review examines retinal structural changes, proteinopathies, and vascular alterations that have been proposed as potential AD biomarkers, with a focus on studies examining the earliest stages of disease pathogenesis. In addition, we present recommendations for future research to move beyond the discovery phase and toward validation of AD risk biomarkers that could potentially be used as a first step in a multistep screening process for AD risk detection.
Collapse
Affiliation(s)
- Jessica Alber
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA.,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Butler Hospital Memory & Aging Program, Providence, Rhode Island, USA
| | | | - Louisa I Thompson
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Butler Hospital Memory & Aging Program, Providence, Rhode Island, USA
| | - Edmund Arthur
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA.,Butler Hospital Memory & Aging Program, Providence, Rhode Island, USA
| | | | - Derrick Cheng
- Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Delia Cabrera DeBuc
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Francesca Cordeiro
- Imperial College London, London, UK.,University College London, London, UK.,Western Eye Hospital, London, UK
| | - Leonardo Provetti-Cunha
- Federal University of Juiz de Fora Medical School, Juiz de Fora, Minas Gerais, Brazil.,Juiz de Fora Eye Hospital, Juiz de Fora, Minas Gerais, Brazil.,University of São Paulo Medical School, São Paulo, Brazil
| | - Jurre den Haan
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gregory P Van Stavern
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Stephen P Salloway
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Butler Hospital Memory & Aging Program, Providence, Rhode Island, USA.,Department of Neurology, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | | | - Peter J Snyder
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA.,Department of Neurology and Department of Surgery (Ophthalmology), Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|