1
|
Zhang X, Wang S, Qin Y, Guo H. Downregulation of microRNA‑221‑3p promotes angiogenesis of lipoprotein(a)‑injured endothelial progenitor cells by targeting silent information regulator 1 to activate the RAF/MEK/ERK signaling pathway. Mol Med Rep 2024; 30:223. [PMID: 39364751 PMCID: PMC11462396 DOI: 10.3892/mmr.2024.13347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/23/2024] [Indexed: 10/05/2024] Open
Abstract
The present study aimed to investigate the role of microRNA (miR)‑221‑3p in endothelial progenitor cells (EPCs) treated with lipoprotein(a) [LP(a)]. EPCs were identified using immunofluorescence assays and miR‑221‑3p levels were measured using reverse transcription‑quantitative PCR. EPC migration was detected using Transwell assays, proliferation was measured by staining with 5‑ethynyl‑2'‑deoxyuridine and adhesion was assessed by microscopy. Flow cytometry was used to measure apoptosis and protein expression was detected using western blotting. A dual‑luciferase reporter assay was used to confirm the target interactions. The proliferation, migration, adhesion and angiogenesis of EPCs were decreased, and apoptosis was increased after treatment with LP(a). These effects were weakened by transfection with miR‑221‑3p inhibitor. The negative effects of LP(a) on EPCs were also weakened by overexpression of silent information regulator 1 (SIRT1). Inhibition of the RAF/MEK/ERK signaling pathway blocked the effects of SIRT1 overexpression. In conclusion, miR‑221‑3p inhibitor transfection activated the RAF/MEK/ERK signaling pathway through SIRT1, promoted the proliferation, migration, adhesion and angiogenesis of EPCs, and reduced apoptosis.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Basic Medicine, Jiangsu College of Nursing, Huai'an, Jiangsu 223005, P.R. China
| | - Shizhen Wang
- Department of Basic Medicine, Jiangsu College of Nursing, Huai'an, Jiangsu 223005, P.R. China
| | - Yongting Qin
- Department of Basic Medicine, Jiangsu College of Nursing, Huai'an, Jiangsu 223005, P.R. China
| | - Hang Guo
- Department of Basic Medicine, Jiangsu College of Nursing, Huai'an, Jiangsu 223005, P.R. China
| |
Collapse
|
2
|
Tian W, Feng B, Zhang L, Dai G, Lin L, Jiang W, Wang Y. Tibial transverse transport induces mobilization of endothelial progenitor cells to accelerate angiogenesis and ulcer wound healing through the VEGFA/CXCL12 pathway. Biochem Biophys Res Commun 2024; 709:149853. [PMID: 38555838 DOI: 10.1016/j.bbrc.2024.149853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Tibial transverse transport (TTT) can promote the healing of chronic foot ulcers, but the specific cellular and molecular mechanisms by which TTT promotes wound healing remain unclear. METHODS New Zealand White rabbits were selected to induce foot ulcer models. The treatment included unilateral TTT surgery and bilateral TTT surgery. Observation of tissue neovascularization structure by HE staining and CD31 immunofluorescence detection. Collagen fiber formation was detected through the Masson staining. The mobilization of endothelial progenitor cell (EPCs) were analyzed by VEGFR2 immunofluorescence detection and flow cytometry detection of the number of VEGFR2/Tie-2-positive cells in peripheral blood. ELISA and qPCR assay were performed to detect VEGFA and CXCL12 levels. RESULTS The complete healing time of ulcer surfaces in sham, unilateral and bilateral TTT groups was about 22 days, 17 days and 13 days, respectively. TTT treatment significantly increased the deposition of granulation tissue and epithelialization of wounds. It also led to an increase in collagen fiber content and the level of the microvascular marker CD31. Furthermore, TTT treatment upregulated the levels of VEGFA and CXCL12 in peripheral blood and wound tissues, as well as increased the expression of VEGFR2 in wound tissues and the proportion of VEGFR2/Tie-2 in peripheral blood. Moreover, these effects of TTT treatment in the bilateral group was more significant than that in the unilateral group. CONCLUSIONS TTT may facilitate wound fibroblasts to release VEGFA and CXCL12, causing EPC mobilization, thus promoting angiogenesis and ulcer wound healing.
Collapse
Affiliation(s)
- Weiqing Tian
- Department of Orthopedics, Baogang Hospital of Inner Mongolia Autonomous Region, Baotou, 014000, Inner Mongolia Autonomous Region, PR China
| | - Bo Feng
- Department of Orthopedics, Baogang Hospital of Inner Mongolia Autonomous Region, Baotou, 014000, Inner Mongolia Autonomous Region, PR China
| | - Lan Zhang
- Department of Orthopedics, Baogang Hospital of Inner Mongolia Autonomous Region, Baotou, 014000, Inner Mongolia Autonomous Region, PR China
| | - Guangming Dai
- Department of Orthopedics, Baogang Hospital of Inner Mongolia Autonomous Region, Baotou, 014000, Inner Mongolia Autonomous Region, PR China
| | - Ligong Lin
- Department of Orthopedics, Baogang Hospital of Inner Mongolia Autonomous Region, Baotou, 014000, Inner Mongolia Autonomous Region, PR China
| | - Wei Jiang
- Department of Orthopedics, Baogang Hospital of Inner Mongolia Autonomous Region, Baotou, 014000, Inner Mongolia Autonomous Region, PR China
| | - Yongjun Wang
- Department of Orthopedics, Baogang Hospital of Inner Mongolia Autonomous Region, Baotou, 014000, Inner Mongolia Autonomous Region, PR China.
| |
Collapse
|
3
|
Ye G, Chen X, Zhou Y, Zhou J, Song Y, Yang X, Yang L. Prognostic Value of Endothelial Progenitor Cells in Acute Myocardial Infarction Patients. Mediators Inflamm 2023; 2023:4450772. [PMID: 37899988 PMCID: PMC10613116 DOI: 10.1155/2023/4450772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/31/2023] Open
Abstract
Objective To determine prognostic role of endothelial progenitor cells (EPCs) in intensive care patients with acute myocardial infarction (AMI). Materials and Methods From December 2018 to July 2021, a total of 91 eligible patients with AMI were consecutively examined in a single intensive care unit (ICU) in China. Patients with a history of acute coronary artery disease were excluded from the study. Samples were collected within 24 hr of onset of symptoms. EPCs, defined as coexpression of CD34+/CD133+ cells or CD133+/CD34+/KDR+, were studied using flow cytometry and categorized by quartiles. Based on the 28-days mortality outcome, the patients were further divided into two groups: death and survival. The study incorporated various variables, including cardiovascular risk factors such as body mass index, hypertension, diabetes, hypercholesterolemia, atherosclerotic burden, and medication history, as well as clinical characteristics such as APACHEⅡscore, central venous-arterial carbon dioxide difference (GAP), homocysteine, creatinine, C-reactive protein, HbAlc, and cardiac index. Cox regression analysis was employed to conduct a multivariate analysis. Results A total of 91 patients with AMI who were admitted to the ICU were deemed eligible for inclusion in the study. Among these patients, 23 (25.3%) died from various causes during the follow-up period. The counts of EPCs were found to be significantly higher in the survival group compared to the death group (P < 0.05). In the univariate analysis, it was observed that the 28-days mortality rate was associated with the several factors, including the APACHEⅡscore (P=0.00), vasoactive inotropic score (P=0.03), GAP (P=0.00), HCY (P=0.00), creatinine (P=0.00), C-reactive protein (P=0.00), HbAlc (P=0.00), CI (P=0.01), quartiles of CD34+/CD133+ cells (P=0.00), and quartiles of CD34+/CD133+/KDR+ cells (P=0.00). CD34+/CD133+/KDR+ cells retained statistical significance in Cox regression models even after controlling for clinical variables (HR: 6.258 × 10-10 and P=0.001). Nevertheless, no significant correlation was observed between CD34+/CD133+ cells and all-cause mortality. Conclusions The decreased EPCs levels, especially for CD34+/CD133+/KDR+ cells subsets, were an independent risk factor for 28-days mortality in AMI patients.
Collapse
Affiliation(s)
- Gongjie Ye
- Department of Intensive Care Unit, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Xiaodan Chen
- Department of Clinical Laboratory, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yinchao Zhou
- Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jianqing Zhou
- Internal Medicine-Cardiovascular Department, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yongfei Song
- Ningbo Institute for Medicine and Biomedical Engineering Combined Innovation, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo 315000, Zhejiang, China
| | - Xiaoyong Yang
- Department of Rehabilitation, Zhenhai Longsai Hospital, Ningbo 315000, Zhejiang, China
| | - Lei Yang
- Department of Intensive Care Unit, Zhenhai Longsai Hospital, 6 Gulou West Road, Chengguan, Zhaobaoshan Street, Zhenhai District, Ningbo 315299, Zhejiang, China
| |
Collapse
|
4
|
Grabacka M, Płonka PM, Pierzchalska M. The PPARα Regulation of the Gut Physiology in Regard to Interaction with Microbiota, Intestinal Immunity, Metabolism, and Permeability. Int J Mol Sci 2022; 23:ijms232214156. [PMID: 36430628 PMCID: PMC9696208 DOI: 10.3390/ijms232214156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPARα) is expressed throughout the mammalian gut: in epithelial cells, in the villi of enterocytes and in Paneth cells of intestinal crypts, as well as in some immune cells (e.g., lamina propria macrophages, dendritic cells) of the mucosa. This review examines the reciprocal interaction between PPARα activation and intestinal microbiota. We refer to the published data confirming that microbiota products can influence PPARα signaling and, on the other hand, PPARα activation is able to affect microbiota profile, viability, and diversity. PPARα impact on the broad spectrum of events connected to metabolism, signaling (e.g., NO production), immunological tolerance to dietary antigens, immunity and permeability of the gut are also discussed. We believe that the phenomena described here play a prominent role in gut homeostasis. Therefore, in conclusion we propose future directions for research, including the application of synthetic activators and natural endogenous ligands of PPARα (i.e., endocannabinoids) as therapeutics for intestinal pathologies and systemic diseases assumed to be related to gut dysbiosis.
Collapse
Affiliation(s)
- Maja Grabacka
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Cracow, Poland
- Correspondence: ; Tel.: +48-12-662-4701
| | - Przemysław M. Płonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Cracow, Poland
| | - Małgorzata Pierzchalska
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Cracow, Poland
| |
Collapse
|
5
|
Bonora BM, Albiero M, Morieri ML, Cappellari R, Amendolagine FI, Mazzucato M, Zambon A, Iori E, Avogaro A, Fadini GP. Fenofibrate increases circulating haematopoietic stem cells in people with diabetic retinopathy: a randomised, placebo-controlled trial. Diabetologia 2021; 64:2334-2344. [PMID: 34368894 DOI: 10.1007/s00125-021-05532-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/18/2021] [Indexed: 11/27/2022]
Abstract
AIM/HYPOTHESIS In two large RCTs, fenofibrate reduced the progression of diabetic retinopathy. We investigated whether fenofibrate increases circulating haematopoietic stem/progenitor cells (HSPCs), which have vascular properties and have been shown to protect from retinopathy. METHODS We conducted a 12 week parallel-group RCT comparing fenofibrate vs placebo. Patients with diabetic retinopathy and without other conditions that would affect HSPCs were enrolled at a tertiary diabetes outpatient clinic and randomised to receive fenofibrate or placebo based on a computer-generated sequence. Patients and study staff assessing the outcomes were blinded to group assignment. The primary endpoint was the change in the levels of circulating HSPCs, defined by expression of the stem cell markers CD34 and/or CD133. Secondary endpoints were the changes in endothelial progenitor cells, lipids, soluble mediators and gene expression. We used historical data on the association between HSPCs and retinopathy outcomes to estimate the effect of fenofibrate on retinopathy progression. RESULTS Forty-two participants with diabetic retinopathy were randomised and 41 completed treatment and were analysed (20 in the placebo group and 21 in the fenofibrate group). Mean age was 57.4 years, diabetes duration was 18.2 years and baseline HbA1c was 60 mmol/mol (7.6%). When compared with placebo, fenofibrate significantly increased levels of HSPCs expressing CD34 and/or CD133. CD34+ HSPCs non-significantly declined in the placebo group (mean ± SD -44.2 ± 31.6 cells/106) and significantly increased in the fenofibrate group (53.8 ± 31.1 cells/106). The placebo-subtracted increase in CD34+ HSPCs from baseline was 30% (99.3 ± 43.3 cells/106; p = 0.027) which, projected onto the relationship between HSPC levels and retinopathy outcomes, yielded an OR of retinopathy progression of 0.67 for fenofibrate vs placebo. Endothelial differentiation of CD34+ cells, estimated by the %KDR (kinase insert domain receptor) expression, was significantly reduced by fenofibrate. Fenofibrate decreased serum triacylglycerols, but the change in triacylglycerols was unrelated to the change in HSPCs. No effect was observed for endothelial progenitor cells, cytokines/chemokines (stromal-cell derived factor-1, vascular endothelial growth factor, monocyte chemoattractant protein-1) and gene expression in peripheral blood mononuclear cells. CONCLUSIONS/INTERPRETATION Fenofibrate increased HSPC levels in participants with diabetic retinopathy and this mechanism may explain why fenofibrate reduced retinopathy progression in previous studies. TRIAL REGISTRATION ClinicalTrials.gov NCT01927315.
Collapse
Affiliation(s)
- Benedetta Maria Bonora
- Department of Medicine, University of Padova, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Mattia Albiero
- Department of Medicine, University of Padova, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | | | | | | | | | - Alberto Zambon
- Department of Medicine, University of Padova, Padua, Italy
| | | | - Angelo Avogaro
- Department of Medicine, University of Padova, Padua, Italy
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Padua, Italy.
- Veneto Institute of Molecular Medicine, Padua, Italy.
| |
Collapse
|
6
|
Escandon P, Vasini B, Whelchel AE, Nicholas SE, Matlock HG, Ma JX, Karamichos D. The role of peroxisome proliferator-activated receptors in healthy and diseased eyes. Exp Eye Res 2021; 208:108617. [PMID: 34010603 PMCID: PMC8594540 DOI: 10.1016/j.exer.2021.108617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022]
Abstract
Peroxisome Proliferator-Activated Receptors (PPARs) are a family of nuclear receptors that play essential roles in modulating cell differentiation, inflammation, and metabolism. Three subtypes of PPARs are known: PPAR-alpha (PPARα), PPAR-gamma (PPARγ), and PPAR-beta/delta (PPARβ/δ). PPARα activation reduces lipid levels and regulates energy homeostasis, activation of PPARγ results in regulation of adipogenesis, and PPARβ/δ activation increases fatty acid metabolism and lipolysis. PPARs are linked to various diseases, including but not limited to diabetes, non-alcoholic fatty liver disease, glaucoma and atherosclerosis. In the past decade, numerous studies have assessed the functional properties of PPARs in the eye and key PPAR mechanisms have been discovered, particularly regarding the retina and cornea. PPARγ and PPARα are well established in their functions in ocular homeostasis regarding neuroprotection, neovascularization, and inflammation, whereas PPARβ/δ isoform function remains understudied. Naturally, studies on PPAR agonists and antagonists, associated with ocular pathology, have also gained traction with the development of PPAR synthetic ligands. Studies on PPARs has significantly influenced novel therapeutics for diabetic eye disease, ocular neuropathy, dry eye, and age-related macular degeneration (AMD). In this review, therapeutic potentials and implications will be highlighted, as well as reported adverse effects. Further investigations are necessary before any of the PPARs ligands can be utilized, in the clinics, to treat eye diseases. Future research on the prominent role of PPARs will help unravel the complex mechanisms involved in order to prevent and treat ocular diseases.
Collapse
Affiliation(s)
- Paulina Escandon
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Brenda Vasini
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Amy E Whelchel
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L Young, Oklahoma City, OK, USA
| | - Sarah E Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - H Greg Matlock
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L Young, Oklahoma City, OK, USA
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L Young, Oklahoma City, OK, USA; Harold Hamm Oklahoma Diabetes Center, 1000 N Lincoln Blvd, Oklahoma City, OK, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
7
|
Feng X, Gao X, Wang S, Huang M, Sun Z, Dong H, Yu H, Wang G. PPAR-α Agonist Fenofibrate Prevented Diabetic Nephropathy by Inhibiting M1 Macrophages via Improving Endothelial Cell Function in db/db Mice. Front Med (Lausanne) 2021; 8:652558. [PMID: 34268320 PMCID: PMC8275839 DOI: 10.3389/fmed.2021.652558] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/02/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Diabetic nephropathy (DN) is one of the major diabetic microvascular complications, and macrophage polarization plays a key role in the development of DN. Endothelial cells regulate macrophage polarization. Peroxisome proliferator-activated receptor (PPAR)-α agonists were demonstrated to prevent DN and improve endothelial function. In this study, we aimed to investigate whether PPAR-α agonists prevented DN through regulating macrophage phenotype via improving endothelial cell function. Methods: Eight-week-old male C57BLKS/J db/m and db/db mice were given fenofibrate or 1% sodium carboxyl methylcellulose by gavage for 12 weeks. Results: Db/db mice presented higher urinary albumin-to-creatinine ratio (UACR) than db/m mice, and fenofibrate decreased UACR in db/db mice. Fibrosis and collagen I were elevated in db/db mouse kidneys compared with db/m mouse kidneys; however, they were decreased after fenofibrate treatment in db/db mouse kidneys. Apoptosis and cleaved caspase-3 were enhanced in db/db mouse kidneys compared to db/m mouse kidneys, while fenofibrate decreased them in db/db mouse kidneys. Db/db mice had a suppression of p-endothelial nitric oxide synthase (eNOS)/t-eNOS and nitric oxide (NO), and an increase of angiopoietin-2 and reactive oxygen species (ROS) in kidneys compared with db/m mice, and fenofibrate increased p-eNOS/t-eNOS and NO, and decreased angiopoietin-2 and ROS in db/db mouse kidneys. Hypoxia-inducible factor (HIF)-1α and Notch1 were promoted in db/db mouse kidneys compared with db/m mouse kidneys, and were reduced after fenofibrate treatment in db/db mouse kidneys. Furthermore, the immunofluorescence staining indicated that M1 macrophage recruitment was enhanced in db/db mouse kidneys compared to db/m mouse kidneys, and this was accompanied by a significant increase of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in kidneys and in serum of db/db mice compared with db/m mice. However, fenofibrate inhibited the renal M1 macrophage recruitment and cytokines associated with M1 macrophages in db/db mice. Conclusions: Our study indicated that M1 macrophage recruitment due to the upregulated HIF-1α/Notch1 pathway induced by endothelial cell dysfunction involved in type 2 diabetic mouse renal injury, and PPAR-α agonist fenofibrate prevented DN by reducing M1 macrophage recruitment via inhibiting HIF-1α/Notch1 pathway regulated by endothelial cell function in type 2 diabetic mouse kidneys.
Collapse
Affiliation(s)
- Xiaomeng Feng
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xia Gao
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuo Wang
- Department of Infectious Diseases, Beijing Traditional Chinese Medical Hospital, Capital Medical University, Beijing, China
| | - Mengxiu Huang
- Department of Hepatobiliary, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhencheng Sun
- Department of Osteology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hengbei Dong
- Department of Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Haitian Yu
- Education Division, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Lee D, Tomita Y, Miwa Y, Jeong H, Mori K, Tsubota K, Kurihara T. Fenofibrate Protects against Retinal Dysfunction in a Murine Model of Common Carotid Artery Occlusion-Induced Ocular Ischemia. Pharmaceuticals (Basel) 2021; 14:ph14030223. [PMID: 33799938 PMCID: PMC7999063 DOI: 10.3390/ph14030223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/01/2023] Open
Abstract
Ocular ischemia is a common cause of blindness and plays a detrimental role in various diseases such as diabetic retinopathy, occlusion of central retinal arteries, and ocular ischemic syndrome. Abnormalities of neuronal activities in the eye occur under ocular ischemic conditions. Therefore, protecting their activities may prevent vision loss. Previously, peroxisome proliferator-activated receptor alpha (PPARα) agonists were suggested as promising drugs in ocular ischemia. However, the potential therapeutic roles of PPARα agonists in ocular ischemia are still unknown. Thus, we attempted to unravel systemic and ocular changes by treatment of fenofibrate, a well-known PPARα agonist, in a new murine model of ocular ischemia. Adult mice were orally administered fenofibrate (60 mg/kg) for 4 days once a day, followed by induction of ocular ischemia by unilateral common carotid artery occlusion (UCCAO). After UCCAO, fenofibrate was continuously supplied to mice once every 2 days during the experiment period. Electroretinography was performed to measure retinal functional changes. Furthermore, samples from the retina, liver, and blood were subjected to qPCR, Western blot, or ELISA analysis. We found that fenofibrate boosted liver function, increased serum levels of fibroblast growth factor 21 (FGF21), one of the neuroprotective molecules in the central nervous system, and protected against UCCAO-induced retinal dysfunction. Our current data suggest a promising fenofibrate therapy in ischemic retinopathies.
Collapse
Affiliation(s)
- Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.T.); (Y.M.); (H.J.); (K.M.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yohei Tomita
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.T.); (Y.M.); (H.J.); (K.M.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Boston Children’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Yukihiro Miwa
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.T.); (Y.M.); (H.J.); (K.M.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Animal Eye Care, Tokyo Animal Eye Clinic, Tokyo 158-0093, Japan
| | - Heonuk Jeong
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.T.); (Y.M.); (H.J.); (K.M.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kiwako Mori
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.T.); (Y.M.); (H.J.); (K.M.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Tsubota Laboratory, Inc., Tokyo 160-0016, Japan
- Correspondence: (K.T.); (T.K.); Tel.: +81-3-5636-3269 (K.T.); +81-3-5636-3204 (T.K.)
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.T.); (Y.M.); (H.J.); (K.M.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Correspondence: (K.T.); (T.K.); Tel.: +81-3-5636-3269 (K.T.); +81-3-5636-3204 (T.K.)
| |
Collapse
|
9
|
Dai Q, Fan X, Meng X, Sun S, Su Y, Ling X, Chen X, Wang K, Dai X, Zhang C, Da S, Zhang G, Gu C, Chen H, He J, Hu H, Yu L, Pan X, Tan Y, Yan X. FGF21 promotes ischaemic angiogenesis and endothelial progenitor cells function under diabetic conditions in an AMPK/NAD+-dependent manner. J Cell Mol Med 2021; 25:3091-3102. [PMID: 33599110 PMCID: PMC7957202 DOI: 10.1111/jcmm.16369] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetic vascular complications are closely associated with long‐term vascular dysfunction and poor neovascularization. Endothelial progenitor cells (EPCs) play pivotal roles in maintaining vascular homeostasis and triggering angiogenesis, and EPC dysfunction contributes to defective angiogenesis and resultant diabetic vascular complications. Fibroblast growth factor 21 (FGF21) has received substantial attention as a potential therapeutic agent for diabetes via regulating glucose and lipid metabolism. However, the effects of FGF21 on diabetic vascular complications remain unclear. In the present study, the in vivo results showed that FGF21 efficiently improved blood perfusion and ischaemic angiogenesis in both type 1 and type 2 diabetic mice, and these effects were accompanied by enhanced EPC mobilization and infiltration into ischaemic muscle tissues and increases in plasma stromal cell–derived factor‐1 concentration. The in vitro results revealed that FGF21 directly prevented EPC damage induced by high glucose, and the mechanistic studies demonstrated that nicotinamide adenine dinucleotide (NAD+) was dramatically decreased in EPCs challenged with high glucose, whereas FGF21 treatment significantly increased NAD+ content in an AMPK‐dependent manner, resulting in improved angiogenic capability of EPCs. These results indicate that FGF21 promotes ischaemic angiogenesis and the angiogenic ability of EPCs under diabetic conditions by activating the AMPK/NAD+ pathway.
Collapse
Affiliation(s)
- Qiaoxia Dai
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Xia Fan
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Xue Meng
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Shiyue Sun
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yue Su
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiao Ling
- Department of Pharmacy, The People's Hospital of YuHuan, Taizhou, China
| | - Xiangjuan Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kai Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozhen Dai
- School of Biomedicine, Chengdu Medical College, Chengdu, China
| | - Chi Zhang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sun Da
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Guigui Zhang
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Chunjie Gu
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Hui Chen
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Junhong He
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Haiqi Hu
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, China
| | - Lechu Yu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaohong Pan
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yi Tan
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Xiaoqing Yan
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Huang WP, Yin WH, Chen JS, Huang PH, Chen JW, Lin SJ. Fenofibrate attenuates doxorubicin-induced cardiac dysfunction in mice via activating the eNOS/EPC pathway. Sci Rep 2021; 11:1159. [PMID: 33441969 PMCID: PMC7806979 DOI: 10.1038/s41598-021-80984-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
Endothelial progenitor cells (EPCs) improve endothelial impairment, which in turn restores endothelial function in patients with heart failure (HF). In the present study, we tested whether fenofibrate, with its anti-inflammatory and vasoprotective effects, could improve myocardial function by activating EPCs through the eNOS pathway in a doxorubicin (DOX)-induced cardiomyopathy mouse model. Wild-type mice were divided into 4 groups and treated with vehicle, DOX + saline, DOX + fenofibrate, and DOX + fenofibrate + L-NAME (N(ω)-nitro-L-arginine methyl ester). DOX-induced cardiac atrophy, myocardial dysfunction, the number of circulating EPCs and tissue inflammation were analyzed. Mice in the DOX + fenofibrate group had more circulating EPCs than those in the DOX + saline group (2% versus 0.5% of total events, respectively) after 4 weeks of treatment with fenofibrate. In addition, the inhibition of eNOS by L-NAME in vivo further abolished the fenofibrate-induced suppression of DOX-induced cardiotoxic effects. Protein assays revealed that, after DOX treatment, the differential expression of MMP-2 (matrix metalloproteinase-2), MMP-9 (matrix metalloproteinase-9), TNF-α (tumor necrosis factor-α), and NT-pro-BNP (N-terminal pro-B-type natriuretic peptide) between saline- and DOX-treated mice was involved in the progression of HF. Mechanistically, fenofibrate promotes Akt/eNOS and VEGF (vascular endothelial growth factor), which results in the activation of EPC pathways, thereby ameliorating DOX-induced cardiac toxicity.
Collapse
Affiliation(s)
- Wen-Pin Huang
- Division of Cardiology, Cheng-Hsin Rehabilitation Medical Centre, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Hsian Yin
- Division of Cardiology, Cheng-Hsin Rehabilitation Medical Centre, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jia-Shiong Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. .,Department of Critical Care Medicine, Taipei Veterans General Hospital, 112, No. 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan. .,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Jaw-Wen Chen
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. .,Healthcare and Management Center, Taipei Veterans General Hospital, Taipei, Taiwan. .,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
11
|
PPARα Agonist Oral Therapy in Diabetic Retinopathy. Biomedicines 2020; 8:biomedicines8100433. [PMID: 33086679 PMCID: PMC7589723 DOI: 10.3390/biomedicines8100433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy (DR) is an eye condition that develops after chronically poorly-managed diabetes, and is presently the main cause for blindness on a global scale. Current treatments for DR such as laser photocoagulation, topical injection of corticosteroids, intravitreal injection of anti-vascular endothelial growth factor (VEGF) agents and vitreoretinal surgery are only applicable at the late stages of DR and there are possibilities of significant adverse effects. Moreover, the forms of treatment available for DR are highly invasive to the eyes. Safer and more effective pharmacological treatments are required for DR treatment, in particular at an early stage. In this review, we cover recently investigated promising oral pharmacotherapies, the methods of which are safer, easier to use, patient-friendly and pain-free, in clinical studies. We especially focus on peroxisome proliferator-activator receptor alpha (PPARα) agonists in which experimental evidence suggests PPARα activation may be closely related to the attenuation of vascular damages, including lipid-induced toxicity, inflammation, an excess of free radical generation, endothelial dysfunction and angiogenesis. Furthermore, oral administration of selective peroxisome proliferator-activated receptor alpha modulator (SPPARMα) agonists may induce hepatic fibroblast growth factor 21 expression, indirectly resulting in retinal protection in animal studies. Our review will enable more comprehensive approaches for understanding protective roles of PPARα for the prevention of DR development.
Collapse
|
12
|
Tomita Y, Ozawa N, Miwa Y, Ishida A, Ohta M, Tsubota K, Kurihara T. Pemafibrate Prevents Retinal Pathological Neovascularization by Increasing FGF21 Level in a Murine Oxygen-Induced Retinopathy Model. Int J Mol Sci 2019; 20:ijms20235878. [PMID: 31771164 PMCID: PMC6928689 DOI: 10.3390/ijms20235878] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/17/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Large-scale clinical trials, such as the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) and the Action to Control Cardiovascular Risk in Diabetes (ACCORD) studies, have shown that the administration of fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARα) agonist, suppresses the progression of diabetic retinopathy. In this paper, we reveal a therapeutic effect of a selective PPARα modulator (SPPARMα), pemafibrate, against pathological angiogenesis in murine models of retinopathy. Oxygen-induced retinopathy (OIR) was induced in C57BL/6J mice by exposure to 85% oxygen from postnatal day eight (P8) for 72 h. Vehicle, pemafibrate or fenofibrate was administrated by oral gavage from P12 to P16 daily. Administration of pemafibrate, but not fenofibrate, significantly reduced pathological angiogenesis in OIR. After oral pemafibrate administration, expression levels of downstream PPARα targets such as acyl-CoA oxidase 1 (Acox1), fatty acid binding protein 4 (Fabp4), and fibroblast growth factor 21 (Fgf21) were significantly increased in the liver but not in the retina. A significant increase in plasma FGF21 and reduced retinal hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor A (Vegfa) were also observed after this treatment. In an in vitro HIF-luciferase assay, a long-acting FGF21 analogue, but not pemafibrate, suppressed HIF activity. These data indicate that SPPARMα pemafibrate administration may prevent retinal pathological neovascularization by upregulating FGF21 in the liver.
Collapse
Affiliation(s)
- Yohei Tomita
- Department of Ophthalmology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; (Y.T.); (N.O.); (Y.M.); (A.I.)
- Laboratory of Photobiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Nobuhiro Ozawa
- Department of Ophthalmology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; (Y.T.); (N.O.); (Y.M.); (A.I.)
- Laboratory of Photobiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yukihiro Miwa
- Department of Ophthalmology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; (Y.T.); (N.O.); (Y.M.); (A.I.)
- Laboratory of Photobiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ayako Ishida
- Department of Ophthalmology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; (Y.T.); (N.O.); (Y.M.); (A.I.)
- Laboratory of Photobiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | - Kazuo Tsubota
- Laboratory of Photobiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
- Correspondence: (K.T.); (T.K.); Tel.: +81-3-3353-1211 (K.T.); +81-3-3353-1211 (T.K.)
| | - Toshihide Kurihara
- Department of Ophthalmology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; (Y.T.); (N.O.); (Y.M.); (A.I.)
- Laboratory of Photobiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
- Correspondence: (K.T.); (T.K.); Tel.: +81-3-3353-1211 (K.T.); +81-3-3353-1211 (T.K.)
| |
Collapse
|
13
|
Han X, Chen Y, Liu Y, Wang Z, Tang G, Tian W. HIF‐1α promotes bone marrow stromal cell migration to the injury site and enhances functional recovery after spinal cord injury in rats. J Gene Med 2018; 20:e3062. [PMID: 30414229 DOI: 10.1002/jgm.3062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Xiaoguang Han
- Department of Spine SurgeryBeijing Jishuitan Hospital Beijing China
| | - Yong Chen
- Orthopedic CenterKunshan Hospital of Traditional Chinese Medicine Kunshan China
| | - Yajun Liu
- Department of Spine SurgeryBeijing Jishuitan Hospital Beijing China
| | - Zhuo Wang
- Orthopedic CenterKunshan Hospital of Traditional Chinese Medicine Kunshan China
| | - Guoqing Tang
- Orthopedic CenterKunshan Hospital of Traditional Chinese Medicine Kunshan China
| | - Wei Tian
- Department of Spine SurgeryBeijing Jishuitan Hospital Beijing China
| |
Collapse
|
14
|
Wang Z, Liu CH, Huang S, Chen J. Wnt Signaling in vascular eye diseases. Prog Retin Eye Res 2018; 70:110-133. [PMID: 30513356 DOI: 10.1016/j.preteyeres.2018.11.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022]
Abstract
The Wnt signaling pathway plays a pivotal role in vascular morphogenesis in various organs including the eye. Wnt ligands and receptors are key regulators of ocular angiogenesis both during the eye development and in vascular eye diseases. Wnt signaling participates in regulating multiple vascular beds in the eye including regression of the hyaloid vessels, and development of structured layers of vasculature in the retina. Loss-of-function mutations in Wnt signaling components cause rare genetic eye diseases in humans such as Norrie disease, and familial exudative vitreoretinopathy (FEVR) with defective ocular vasculature. On the other hand, experimental studies in more prevalent vascular eye diseases, such as wet age-related macular degeneration (AMD), diabetic retinopathy (DR), retinopathy of prematurity (ROP), and corneal neovascularization, suggest that aberrantly increased Wnt signaling is one of the causations for pathological ocular neovascularization, indicating the potential of modulating Wnt signaling to ameliorate pathological angiogenesis in eye diseases. This review recapitulates the key roles of the Wnt signaling pathway during ocular vascular development and in vascular eye diseases, and pharmaceutical approaches targeting the Wnt signaling as potential treatment options.
Collapse
Affiliation(s)
- Zhongxiao Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Shuo Huang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States.
| |
Collapse
|
15
|
Yuan Z, Kang L, Wang Z, Chen A, Zhao Q, Li H. 17β-estradiol promotes recovery after myocardial infarction by enhancing homing and angiogenic capacity of bone marrow-derived endothelial progenitor cells through ERα-SDF-1/CXCR4 crosstalking. Acta Biochim Biophys Sin (Shanghai) 2018; 50:1247-1256. [PMID: 30371725 DOI: 10.1093/abbs/gmy127] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Indexed: 11/13/2022] Open
Abstract
17β-estradiol (E2) has been shown to mediate endothelial progenitor cells (EPCs) to repair infarcted myocardium. Both estrogen receptor α (ERα) and stromal derived factor-1 (SDF-1)/CXCR4 signaling pathways may play a critical role in regulating homing and angiogenesis of EPCs in this process. However, the interaction between ERα and SDF-1/CXCR4 signaling pathways remains unclear. In response to E2, the expression of SDF-1 and CXCR4 in EPCs from ovariectomized BALB/C mice was obviously up-regulated, in addition, the migration and tube formation of EPCs in vitro were also significantly enhanced. However, ERα antagonist (MMP) and CXCR4 inhibitor (AMD3100) significantly decreased the migration and tube length of EPCs, even if mediated by E2. The combined treatment of MMP and AMD3100 exerted more inhibitory effects on migration and tube formation of EPCs induced by E2. In in vivo studies, ovariectomized mice were induced acute myocardial infarction (AMI), and divided into four groups (n = 6): non-preconditioned EPCs (3 × 106) group, E2-preconditioned EPCs group, MMP + AMD3100 preconditioned EPCs group, and EPCs pretreated with E2 + MMP + AMD3100 group. E2 group displayed a greater number of homing EPCs, increased capillary density in infarcted myocardium, decreased left ventricular (LV) fibrosis. Nevertheless, these effects of E2 were almost completely blocked by the combined treatment of MMP and AMD3100. E2 can produce cardiovascular protective effects in AMI setting by enhancing homing and angiogenic capacity of EPCs through ERα and CXCR4 signaling pathways, which means that ERα and CXCR4 pathways are effective targets for the development of treatment strategies for AMI.
Collapse
Affiliation(s)
- Zhize Yuan
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Kang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhe Wang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Anqing Chen
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiang Zhao
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haiqing Li
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Shao Y, Li X, Wood JW, Ma JX. Mitochondrial dysfunctions, endothelial progenitor cells and diabetic retinopathy. J Diabetes Complications 2018; 32:966-973. [PMID: 30068485 DOI: 10.1016/j.jdiacomp.2018.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/18/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
Abstract
AIM Diabetic retinopathy (DR) is the leading cause of vision loss in the working age population. Endothelial progenitor cells (EPC) play a vital role in vascular damage repair. This article will review recent progress regarding mitochondrial and EPC dysfunction associated with DR. RESULTS EPCs represent a limited population of adult stem cells possessing vasculogenic potential postnatally; their number and function are changed in DR. Among all the function changes, mitochondrial dysfunction plays an important role in the dysregulation of EPCs, as mitochondria regulate energy balance, and cell fate determination. CONCLUSIONS Although the mechanism for the role of mitochondria dysregulation in EPC function remains elusive, mitochondria of EPCs represent a promising target for the treatment of the vasculopathy presented within DR.
Collapse
Affiliation(s)
- Yan Shao
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin, China; Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73014, USA
| | - Xiaorong Li
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin, China
| | - John W Wood
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73014, USA
| | - Jian-Xing Ma
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73014, USA.
| |
Collapse
|
17
|
Identification of novel diabetes impaired miRNA-transcription factor co-regulatory networks in bone marrow-derived Lin-/VEGF-R2+ endothelial progenitor cells. PLoS One 2018; 13:e0200194. [PMID: 29995913 PMCID: PMC6040716 DOI: 10.1371/journal.pone.0200194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 05/04/2018] [Indexed: 02/01/2023] Open
Abstract
Endothelial progenitor cells (EPCs) are a group of rare cells that play an important role in the repair of injured vascular endothelial cells and assist in reperfusion of ischemic tissue. Decreased production and/or loss of function of EPCs are associated with diabetic vasculopathy. The molecular mechanisms by which diabetes impairs EPCs remain unclear. We conducted microarray experiments followed by integrative regulatory analysis on cells isolated from Akita diabetic mice (18-weeks after onset of diabetes) and age-matched non-diabetic controls. Two types of cells were isolated from mice bone marrow; Lin+ cells and Lin-/VEGF-R2+ EPCs. RNA was hybridized to mouse WG-6 V2 beadchips followed by comprehensive gene network analysis and computational validation of the obtained results. In total, 80 genes were exclusively DE between non-diabetic Lin-/VEGF-R2+ EPCs and diabetic Lin-/VEGF-R2+ EPCs, of which the 3 genes Clcnka, Pik3c2a, and Ptf1a are known to be associated with diabetic complications. Further analysis led to the establishment of a TF-miRNA mediated regulatory network specific to diabetic Lin-/VEGF-R2+ EPCs and to identify 11 central-hub TFs (Tbp, Ahr, Trp53, Gata1, Foxo1, Foxo4, Yy1, Max, Pparg, Myc, Cebpa), and 2 miRNAs (mir-139-5p, mir-709) that might act as putative genomic drivers of diabetic pathogenesis in Lin-/VEGF-R2+ EPCs. Moreover, we identified multiple TF-miRNA co-regulatory network motifs for which we validated their contribution to diabetic Lin-/VEGF-R2+ EPCs in terms of statistical significance and relevance to biological evidence. Our findings suggest that diabetic Lin-/VEGF-R2+ EPCs have specifically altered signature genes and miRNAs that render their capacity to proliferate and differentiate.
Collapse
|
18
|
Hsieh KF, Shih JM, Shih YM, Pai MH, Yeh SL. Arginine administration increases circulating endothelial progenitor cells and attenuates tissue injury in a mouse model of hind limb ischemia/reperfusion. Nutrition 2018; 55-56:29-35. [PMID: 29960153 DOI: 10.1016/j.nut.2018.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/12/2018] [Accepted: 02/04/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study investigated whether the administration of L-Arginine, the precursor of nitric oxide, increases the percentages of blood endothelial progenitor cells and protects against ischemia/reperfusion induced inflammatory response in a mouse model of hind-limb IR injury. METHOD C57BL/6 mice were randomized to one normal-control and four ischemia/reperfusion groups. The normal-control group did not undergo an ischemia/reperfusion procedure but mice in the ischemia/reperfusion groups were subjected to 150 min of unilateral hind-limb ischemia. The ischemia/reperfusion groups were subjected to either intravenous saline or L-Arginine (300 mg/kg body weight) administration before reperfusion and then sacrificed at either 24 h or 48 h after reperfusion. Blood and muscle tissues were collected for analysis. RESULTS Ischemia/reperfusion injury led to a significant decrease in the percentage of blood endothelial progenitor cells and plasma nitric oxide concentration but plasma interleukin-6 levels and gene expression of inflammatory cytokines in injured muscle tissue were elevated. In contrast to the saline groups, those with L-Arginine administration were able to maintain a normal level of blood endothelial progenitor cells. In addition, after reperfusion, concentrations of nitric oxide, matrix metallopeptidase-9, and vascular endothelial growth factor in plasma were upregulated but keratinocyte-derived chemokine and monocyte chemoattractant protein-1 messenger RNA expressions in muscle were attenuated 48 h after reperfusion. Histologic findings also demonstrated a significant reduction of ischemia/reperfusion-induced muscle injury when L-Arginine was administered. CONCLUSION A single dose of L-Arginine administration before reperfusion increases the percentage of endothelial progenitor cells and reduces the inflammatory reaction locally and systemically after ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Kuan-Feng Hsieh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Juey-Ming Shih
- Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Yao-Ming Shih
- Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Man-Hui Pai
- Department of Anatomy and Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sung-Ling Yeh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
19
|
Dietary glutamine supplementation enhances endothelial progenitor cell mobilization in streptozotocin-induced diabetic mice subjected to limb ischemia. J Nutr Biochem 2016; 40:86-94. [PMID: 27865159 DOI: 10.1016/j.jnutbio.2016.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 11/21/2022]
Abstract
Diabetes is a metabolic disorder with increased risk of vascular diseases. Tissue ischemia may occur with diabetic vascular complications. Bone marrow-derived endothelial progenitor cells (EPCs) constitute a reparative response to ischemic injury. This study investigated the effects of oral glutamine (GLN) supplementation on circulating EPC mobilization and expression of tissue EPC-releasing markers in diabetic mice subjected to limb ischemia. Diabetes was induced by a daily intraperitoneal injection of streptozotocin for 5 days. Diabetic mice were divided into 2 nonischemic groups and 6 ischemic groups. One of the nonischemic and 3 ischemic groups were fed the control diet, while the remaining 4 groups received diets with identical components except that part of the casein was replaced by GLN. The respective diets were fed to the mice for 3 weeks, and then the nonischemic mice were sacrificed. Unilateral hindlimb ischemia was created in the ischemic groups, and mice were sacrificed at 1, 7 or 21 days after ischemia. Their blood and ischemic muscle tissues were collected for further analyses. Results showed that plasma matrix metallopeptidase (MMP)-9 and the circulating EPC percentage increased after limb ischemia in a diabetic condition. Compared to groups without GLN, GLN supplementation up-regulated plasma stromal cell-derived factor (SDF)-1 and muscle MMP-9, SDF-1, hypoxia-inducible factor-1 and vascular endothelial growth factor gene expression. The CD31-immunoreactive intensities were also higher in the ischemic limb. These findings suggest that GLN supplementation enhanced circulating EPC mobilization that may promote endothelium repair at ischemic tissue in diabetic mice subjected to limb ischemia.
Collapse
|
20
|
Gong Y, Shao Z, Fu Z, Edin ML, Sun Y, Liegl RG, Wang Z, Liu CH, Burnim SB, Meng SS, Lih FB, SanGiovanni JP, Zeldin DC, Hellström A, Smith LEH. Fenofibrate Inhibits Cytochrome P450 Epoxygenase 2C Activity to Suppress Pathological Ocular Angiogenesis. EBioMedicine 2016; 13:201-211. [PMID: 27720395 PMCID: PMC5264653 DOI: 10.1016/j.ebiom.2016.09.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 12/19/2022] Open
Abstract
Neovascular eye diseases including retinopathy of prematurity, diabetic retinopathy and age-related-macular-degeneration are major causes of blindness. Fenofibrate treatment in type 2 diabetes patients reduces progression of diabetic retinopathy independent of its peroxisome proliferator-activated receptor (PPAR)α agonist lipid lowering effect. The mechanism is unknown. Fenofibrate binds to and inhibits cytochrome P450 epoxygenase (CYP)2C with higher affinity than to PPARα. CYP2C metabolizes ω-3 long-chain polyunsaturated fatty acids (LCPUFAs). While ω-3 LCPUFA products from other metabolizing pathways decrease retinal and choroidal neovascularization, CYP2C products of both ω-3 and ω-6 LCPUFAs promote angiogenesis. We hypothesized that fenofibrate inhibits retinopathy by reducing CYP2C ω-3 LCPUFA (and ω-6 LCPUFA) pro-angiogenic metabolites. Fenofibrate reduced retinal and choroidal neovascularization in PPARα-/-mice and augmented ω-3 LCPUFA protection via CYP2C inhibition. Fenofibrate suppressed retinal and choroidal neovascularization in mice overexpressing human CYP2C8 in endothelial cells and reduced plasma levels of the pro-angiogenic ω-3 LCPUFA CYP2C8 product, 19,20-epoxydocosapentaenoic acid. 19,20-epoxydocosapentaenoic acid reversed fenofibrate-induced suppression of angiogenesis ex vivo and suppression of endothelial cell functions in vitro. In summary fenofibrate suppressed retinal and choroidal neovascularization via CYP2C inhibition as well as by acting as an agonist of PPARα. Fenofibrate augmented the overall protective effects of ω-3 LCPUFAs on neovascular eye diseases. Fenofibrate inhibits retinal and choroidal neovascularization by inhibiting CYP2C activity as well as by activating PPARα. Fenofibrate augments the protective effects of ω-3 LCPUFAs on pathological ocular angiogenesis. Inhibition of CYP2C is a potential therapeutic approach for treatment of proliferative retinopathy and neovascular AMD.
Findings from clinical trials indicate that fenofibrate reduces the progression of proliferative diabetic retinopathy, but the mechanism of this effect is currently unknown. Dietary intake of ω-3 long-chain polyunsaturated fatty acids (LCPUFAs) is generally associated with a suppression of proliferative retinopathy and age-related macular degeneration acting through LCPUFA cyclooxygenase and lipoxygenase metabolites. However, cytochrome P450 epoxygenase (CYP)2C ω-3 and ω-6 LCPUFA metabolites promote retinopathy. Fenofibrate is a potent inhibitor of CYP2C. Our findings suggested that fenofibrate suppressed retinal and choroidal neovascularization via CYP2C inhibition. Combination therapy of dietary ω-3 LCPUFA supplementation with fenofibrate may be a promising approach to prevent incidence or progression of neovascular eye diseases.
Collapse
Affiliation(s)
- Yan Gong
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 01248, United States
| | - Zhuo Shao
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 01248, United States
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 01248, United States
| | - Matthew L Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - Ye Sun
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 01248, United States
| | - Raffael G Liegl
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 01248, United States
| | - Zhongxiao Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 01248, United States
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 01248, United States
| | - Samuel B Burnim
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 01248, United States
| | - Steven S Meng
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 01248, United States
| | - Fred B Lih
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - John Paul SanGiovanni
- Section on Nutritional Neurosciences, Laboratory of Membrane Biophysics and Biochemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, United States
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - Ann Hellström
- Department of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg 40530, Sweden
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 01248, United States.
| |
Collapse
|
21
|
Wang H, Yin YG, Huang H, Zhao XH, Yu J, Wang Q, Li W, Cai KY, Ding SF. Transplantation of EPCs overexpressing PDGFR-β promotes vascular repair in the early phase after vascular injury. BMC Cardiovasc Disord 2016; 16:179. [PMID: 27619504 PMCID: PMC5020463 DOI: 10.1186/s12872-016-0353-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/26/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) play important roles in the regeneration of the vascular endothelial cells (ECs). Platelet-derived growth factor receptor (PDGFR)-β is known to contribute to proliferation, migration, and angiogenesis of EPCs, this study aims to investigate effects of transplantation of EPCs overexpressing PDGFR-β on vascular regeneration. METHODS We transplanted genetically modified EPCs overexpressing PDGFR-β into a mouse model with carotid artery injury. After 3 days of EPCs transplantation, the enhanced green fluorescent protein (EGFP)-expressing cells were found at the injury site and the lining of the lumen by laser scanning confocal microscope (LSCM). At 4, 7, and 14 days of the carotid artery injury, reendothelialization was evaluated by Evans Blue staining. Neointima formation was evaluated at day 14 with hematoxylin and eosin (HE) staining by calculating the neointimal area, medial area, and neointimal/media (NI/M) ratio. Intimal cell apoptosis was evaluated using TUNEL assay. Then we tested whether PDGF-BB-induced VSMC migration and PDGF-BB's function in reducing VSMC apoptosis can be attenuated by EPCs overexpressing PDGFR-β in a transwell co-culture system. RESULTS Our results showed that EPCs overexpressing PDGFR-β accelerates reendothelialization and mitigates neointimal formation at 14 days after injury. Moreover, we found that there is great possibility that EPCs overexpressing PDGFR-β enhanc VSMC apoptosis and suppress VSMC migration by competitive consumption of PDGF-BB in the early phase after carotid artery injury in mice. CONCLUSIONS We report the first in vivo and in vitro evidence that transplantation of genetically modified EPC can have a combined effect of both amplifying the reendothelialization capacity of EPCs and inhibiting neointima formation so as to facilitate better inhibition of adverse remodeling after vascular injury.
Collapse
Affiliation(s)
- Hang Wang
- Cadre Ward Two, Wuhan General Hospital of Guangzhou Military Command, Wuhan, 430070, China
| | - Yang-Guang Yin
- Intensive Care Unit, The sixth people's hospital of Chongqing, Nan'an District, Chongqing, 400060, China
| | - Hao Huang
- Clinic center, Shenzhen Hornetcorn Biotechnology Company, Ltd, Shenzhen, 518400, China
| | - Xiao-Hui Zhao
- Institute of Cardiovascular Science, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jie Yu
- Institute of Cardiovascular Science, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Qiang Wang
- Institute of Cardiovascular Science, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Wei Li
- Institute of Cardiovascular Science, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Ke-Yin Cai
- Cadre Ward Two, Wuhan General Hospital of Guangzhou Military Command, Wuhan, 430070, China
| | - Shi-Fang Ding
- Institute of Cardiovascular Science, Wuhan General Hospital of Guangzhou Military Command, Wuhan, 430070, China.
| |
Collapse
|
22
|
Pharmacologic Activation of Wnt Signaling by Lithium Normalizes Retinal Vasculature in a Murine Model of Familial Exudative Vitreoretinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2588-600. [PMID: 27524797 DOI: 10.1016/j.ajpath.2016.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 12/12/2022]
Abstract
Familial exudative vitreoretinopathy (FEVR) is characterized by delayed retinal vascular development, which promotes hypoxia-induced pathologic vessels. In severe cases FEVR may lead to retinal detachment and visual impairment. Genetic studies linked FEVR with mutations in Wnt signaling ligand or receptors, including low-density lipoprotein receptor-related protein 5 (LRP5) gene. Here, we investigated ocular pathologies in a Lrp5 knockout (Lrp5(-/-)) mouse model of FEVR and explored whether treatment with a pharmacologic Wnt activator lithium could bypass the genetic defects, thereby protecting against eye pathologies. Lrp5(-/-) mice displayed significantly delayed retinal vascular development, absence of deep layer retinal vessels, leading to increased levels of vascular endothelial growth factor and subsequent pathologic glomeruloid vessels, as well as decreased inner retinal visual function. Lithium treatment in Lrp5(-/-) mice significantly restored the delayed development of retinal vasculature and the intralaminar capillary networks, suppressed formation of pathologic glomeruloid structures, and promoted hyaloid vessel regression. Moreover, lithium treatment partially rescued inner-retinal visual function and increased retinal thickness. These protective effects of lithium were largely mediated through restoration of canonical Wnt signaling in Lrp5(-/-) retina. Lithium treatment also substantially increased vascular tubular formation in LRP5-deficient endothelial cells. These findings suggest that pharmacologic activation of Wnt signaling may help treat ocular pathologies in FEVR and potentially other defective Wnt signaling-related diseases.
Collapse
|
23
|
Deficiency of aldose reductase attenuates inner retinal neuronal changes in a mouse model of retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol 2015; 253:1503-13. [PMID: 25921391 DOI: 10.1007/s00417-015-3024-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/08/2015] [Accepted: 04/14/2015] [Indexed: 01/02/2023] Open
Abstract
Retinopathy of prematurity (ROP) is a leading cause of childhood blindness where vascular abnormality and retinal dysfunction are reported. We showed earlier that genetic deletion of aldose reductase (AR), the rate-limiting enzyme in the polyol pathway, reduced the neovascularization through attenuating oxidative stress induction in the mouse oxygen-induced retinopathy (OIR) modeling ROP. In this study, we further investigated the effects of AR deficiency on retinal neurons in the mouse OIR. Seven-day-old wild-type and AR-deficient mice were exposed to 75 % oxygen for 5 days and then returned to room air. Electroretinography was used to assess the neuronal function at postnatal day (P) 30. On P17 and P30, retinal cytoarchitecture was examined by morphometric analysis and immunohistochemistry for calbindin, protein kinase C alpha, calretinin, Tuj1, and glial fibrillary acidic protein. In OIR, attenuated amplitudes and delayed implicit time of a-wave, b-wave, and oscillatory potentials were observed in wild-type mice, but they were not significantly changed in AR-deficient mice. The morphological changes of horizontal, rod bipolar, and amacrine cells were shown in wild-type mice and these changes were partly preserved with AR deficiency. AR deficiency attenuated the Müller cell gliosis induced in OIR. Our observations demonstrated AR deficiency preserved retinal functions in OIR and AR deficiency could partly reduce the extent of retinal neuronal histopathology. These findings suggested a therapeutic potential of AR inhibition in ROP treatment with beneficial effects on the retinal neurons.
Collapse
|
24
|
Gong X, Shao L, Fu YM, Zou Y. Effects of olmesartan on endothelial progenitor cell mobilization and function in carotid atherosclerosis. Med Sci Monit 2015; 21:1189-93. [PMID: 25913171 PMCID: PMC4422112 DOI: 10.12659/msm.892996] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Olmesartan is a type of angiotensin II receptor inhibitor that can reduce the incidence of cardiovascular events. However, its role in the function of endothelial progenitor cells in atherosclerosis patients is still unclear. Our study aimed to explore the effects and mechanism of olmesartan on endothelial progenitor cell mobilization and function in carotid atherosclerosis. MATERIAL/METHODS Forty carotid atherosclerosis patients were enrolled. Patients were administrated olmesartan 20 mg/day for 3 months. Flow cytometry was used for counting circulating endothelial progenitor cells; colorimetric method was used to measure the serum levels of endothelial nitric oxide synthase and nitric oxide. Cell migration, adhesion, and proliferation capacity, and related signaling pathway were also analyzed. Spearman rank correlation analysis was used to investigate the influence of olmesartan on endothelial progenitor cells and clinical characteristics (e.g., sex, age, blood pressure). RESULTS Compared with the control group, the number of circulating endothelial progenitor cells was significantly decreased. Olmesartan can increase circulating endothelial progenitor cells number and the serum levels of eNOS and NO. Furthermore, it can improve cell migration, adhesion, and proliferation capacities. Spearman rank correlation analysis showed there is no relationship between olmesartan promotion effects on endothelial progenitor cell mobilization and the clinical characteristics (P>0.05). P-eNOS and P-Akt expression can be unregulated by RNH-6270 treatment and blocked by LY294002. CONCLUSIONS Olmesartan can effectively promote the endothelial progenitor cells mobilization and improve their function in patients with carotid atherosclerosis, independent of basic characteristics. This process relies on the PI3K/Akt/eNOS signaling pathway.
Collapse
Affiliation(s)
- Xin Gong
- Department of Health Care, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| | - Li Shao
- Department of Health Care, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| | - Yi-Min Fu
- Department of Health Care, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| | - Yong Zou
- Department of Health Care, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| |
Collapse
|
25
|
Li YF, Ren LN, Guo G, Cannella LA, Chernaya V, Samuel S, Liu SX, Wang H, Yang XF. Endothelial progenitor cells in ischemic stroke: an exploration from hypothesis to therapy. J Hematol Oncol 2015; 8:33. [PMID: 25888494 PMCID: PMC4446087 DOI: 10.1186/s13045-015-0130-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/24/2015] [Indexed: 12/29/2022] Open
Abstract
As the population ages and lifestyles change in concordance, the number of patients suffering from ischemic stroke and its associated disabilities is increasing. Studies on determining the relationship between endothelial progenitor cells (EPCs) and ischemic stroke have become a new hot spot and have reported that EPCs may protect the brain against ischemic injury, promote neurovascular repair, and improve long-term neurobehavioral outcomes. More importantly, they introduce a new perspective for prognosis assessment and therapy of ischemic stroke. However, EPCs’ origin, function, influence factors, injury repair mechanisms, and cell-based therapy strategies remain controversial. Particularly, research conducted to date has less clinical studies than pre-clinical experiments on animals. In this review, we summarized and analyzed the current understanding of basic characteristics, influence factors, functions, therapeutic strategies, and disadvantages of EPCs as well as the regulation of inflammatory factors involved in the function and survival of EPCs after ischemic stroke. Identifying potential therapeutic effects of EPCs in ischemic stroke will be a challenging but an incredibly important breakthrough in neurology, which may bring promise for patients with ischemic stroke.
Collapse
Affiliation(s)
- Ya-Feng Li
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Department of Nephrology and Hemodialysis Center, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
| | - Li-Na Ren
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
| | - Geng Guo
- Department of Neurosurgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
| | - Lee Anne Cannella
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Valeria Chernaya
- Department of Biology, College of Science and Technology, Temple University, 1801 N. Broad St., Philadelphia, PA, 19122, USA.
| | - Sonia Samuel
- Department of Biology, College of Science and Technology, Temple University, 1801 N. Broad St., Philadelphia, PA, 19122, USA.
| | - Su-Xuan Liu
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Xiao-Feng Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
26
|
Tang YH, Ma YY, Zhang ZJ, Wang YT, Yang GY. Opportunities and challenges: stem cell-based therapy for the treatment of ischemic stroke. CNS Neurosci Ther 2015; 21:337-47. [PMID: 25676164 DOI: 10.1111/cns.12386] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 01/01/2023] Open
Abstract
Stem cell-based therapy for ischemic stroke has been widely explored in animal models and provides strong evidence of benefits. In this review, we summarize the types of stem cells, various delivery routes, and tracking tools for stem cell therapy of ischemic stroke. MSCs, EPCs, and NSCs are the most explored cell types for ischemic stroke treatment. Although the mechanisms of stem cell-based therapies are not fully understood, the most possible functions of the transplanted cells are releasing growth factors and regulating microenvironment through paracrine mechanism. Clinical application of stem cell-based therapy is still in its infancy. The next decade of stem cell research in stroke field needs to focus on combining different stem cells and different imaging modalities to fully explore the potential of this therapeutic avenue: from bench to bedside and vice versa.
Collapse
Affiliation(s)
- Yao-Hui Tang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | |
Collapse
|
27
|
Therapeutic Effects of PPAR α on Neuronal Death and Microvascular Impairment. PPAR Res 2015; 2015:595426. [PMID: 25705219 PMCID: PMC4326216 DOI: 10.1155/2015/595426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 12/30/2022] Open
Abstract
Peroxisome-proliferator activated receptor-alpha (PPARα) is a broadly expressed nuclear hormone receptor and is a transcription factor for diverse target genes possessing a PPAR response element (PPRE) in the promoter region. The PPRE is highly conserved, and PPARs thus regulate transcription of an extensive array of target genes involved in energy metabolism, vascular function, oxidative stress, inflammation, and many other biological processes. PPARα has potent protective effects against neuronal cell death and microvascular impairment, which have been attributed in part to its antioxidant and anti-inflammatory properties. Here we discuss PPARα's effects in neurodegenerative and microvascular diseases and also recent clinical findings that identified therapeutic effects of a PPARα agonist in diabetic microvascular complications.
Collapse
|