1
|
Ma L, Shi M, Zhang X, Liu Y, Jin H, Li D, Zhang H, Feng L, Zuo J, Wang Y, Liu J, Han J. Circulating microbiome DNA features and its effect on predicting clinicopathological characteristics of patients with colorectal cancer. J Transl Med 2025; 23:178. [PMID: 39948576 PMCID: PMC11827206 DOI: 10.1186/s12967-025-06164-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) presents a complex tumor microenvironment influenced by genetic and microbial factors. Microbial DNA from the gut and tumor microenvironment can translocate into the bloodstream, forming a circulating microbiome associated with prognosis and clinicopathological features. This study investigates the peripheral venous blood microbiome in CRC patients using 2bRAD-M sequencing and evaluates its clinical significance. METHODS Peripheral venous blood samples from 29 CRC patients (19 males, 10 females; mean age 57 years) and 10 healthy controls were analyzed to assess microbial diversity. Additionally, 20 tumor tissue samples from CRC patients were examined via RT-qPCR to validate blood-tumor microbial correlations. Statistical analyses evaluated associations between microbial abundance and clinical features, including metastasis and PD-L1 Combined Positive Score (CPS). Comparative analyses between CRC patients and healthy controls were performed to identify disease-specific microbial signatures. RESULTS A total of 270 microbial species were identified, with dominant phyla including Actinomycetota, Bacillota, Bacteroidota, and Pseudomonadota. Bosea lupini was significantly associated with metastasis stage (p = 0.034), while Mycobacterium tuberculosis (p = 0.022), Porphyromonas pasteri (p = 0.017), and Bosea lupini (p = 0.045) correlated with CPS. Microbes such as Bosea lupini, Ralstonia mannitolilytica, and Porphyromonas pasteri suggested potential tumor-derived translocation into the bloodstream. CONCLUSION This study identifies a distinct peripheral venous blood microbiome in CRC patients, highlighting specific microbes associated with clinicopathological features and disease progression. These findings suggest the potential of blood microbiomes as noninvasive biomarkers for CRC prognosis and therapeutic targets, warranting further investigation in larger cohorts.
Collapse
Affiliation(s)
- Liang Ma
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mingliang Shi
- Department of Oncology, Jinan People's Hospital, Jinan, China
| | - Xue Zhang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Liu
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Jin
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dan Li
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Zhang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Feng
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Zuo
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yudong Wang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiayin Liu
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Han
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
2
|
Yu J, Gao Y, Bi H, Zhang Y, Tang K, Guo D, Xie X. Preliminary exploration of metagenomic sequencing for pathogenic identification in infectious uveitis. J Ophthalmic Inflamm Infect 2024; 14:70. [PMID: 39739208 DOI: 10.1186/s12348-024-00449-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/20/2024] [Indexed: 01/02/2025] Open
Abstract
PURPOSE To evaluate the advantages and clinical utility of metagenomic sequencing (MGS) in diagnosing infectious uveitis pathogens. METHODS A retrospective study was conducted on 20 infectious uveitis patients (20 eyes) who received treatments at the Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine from May 2020 to February 2021. Anterior aqueous humor of the patients was collected and analyzed using MGS. Then, pathogenic microorganisms that cause uveitis were identified through bioinformatic analyses based on the sequencing data of MGS. Finally, the pathogens identified by MGS were verified using both enzyme-linked immune sorbent assay (ELISA) and quantitative PCR (qPCR). RESULTS MGS was used to detect viral pathogens in four patients, bacterial pathogens in two patients, and viral and bacterial pathogens in one patient. Among these seven subjects, five were verified by either ELISA or qPCR. CONCLUSIONS MGS holds significant value and promising potential in diagnosing infectious uveitis pathogens. However, it cannot completely replace the traditional diagnostic techniques and still needs to be integrated with conventional methods to enhance the sensitivity and specificity of pathogen detection. As a pioneering technology, MGS will advance the field of pathogen diagnosis in infectious uveitis.
Collapse
Affiliation(s)
- Jinxia Yu
- Department of Ophthalmology, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
- Department of Ophthalmology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Yane Gao
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Jinan, 250002, China
| | - Hongsheng Bi
- Department of Ophthalmology, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Jinan, 250002, China
| | - Youhua Zhang
- Department of Ophthalmology, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Kai Tang
- Department of Ophthalmology, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Jinan, 250002, China.
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| | - Xiaofeng Xie
- Department of Ophthalmology, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
3
|
Zhao Y, Zhang W, Zhang X. Application of metagenomic next-generation sequencing in the diagnosis of infectious diseases. Front Cell Infect Microbiol 2024; 14:1458316. [PMID: 39619659 PMCID: PMC11604630 DOI: 10.3389/fcimb.2024.1458316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/31/2024] [Indexed: 12/11/2024] Open
Abstract
Metagenomic next-generation sequencing (mNGS) is a transformative approach in the diagnosis of infectious diseases, utilizing unbiased high-throughput sequencing to directly detect and characterize microbial genomes from clinical samples. This review comprehensively outlines the fundamental principles, sequencing workflow, and platforms utilized in mNGS technology. The methodological backbone involves shotgun sequencing of total nucleic acids extracted from diverse sample types, enabling simultaneous detection of bacteria, viruses, fungi, and parasites without prior knowledge of the infectious agent. Key advantages of mNGS include its capability to identify rare, novel, or unculturable pathogens, providing a more comprehensive view of microbial communities compared to traditional culture-based methods. Despite these strengths, challenges such as data analysis complexity, high cost, and the need for optimized sample preparation protocols remain significant hurdles. The application of mNGS across various systemic infections highlights its clinical utility. Case studies discussed in this review illustrate its efficacy in diagnosing respiratory tract infections, bloodstream infections, central nervous system infections, gastrointestinal infections, and others. By rapidly identifying pathogens and their genomic characteristics, mNGS facilitates timely and targeted therapeutic interventions, thereby improving patient outcomes and infection control measures. Looking ahead, the future of mNGS in infectious disease diagnostics appears promising. Advances in bioinformatics tools and sequencing technologies are anticipated to streamline data analysis, enhance sensitivity and specificity, and reduce turnaround times. Integration with clinical decision support systems promises to further optimize mNGS utilization in routine clinical practice. In conclusion, mNGS represents a paradigm shift in the field of infectious disease diagnostics, offering unparalleled insights into microbial diversity and pathogenesis. While challenges persist, ongoing technological advancements hold immense potential to consolidate mNGS as a pivotal tool in the armamentarium of modern medicine, empowering clinicians with precise, rapid, and comprehensive pathogen detection capabilities.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Urology Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Wenhui Zhang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xin Zhang
- Department of Urology Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Zhou Y, Shen N, Luo L, Liu Y, Cao Q. Clinical and metagenomic characteristics of lymphadenopathy related to fever of unknown origin in children. Pediatr Res 2024; 96:1037-1044. [PMID: 38678116 PMCID: PMC11502501 DOI: 10.1038/s41390-024-03187-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Diagnosis of fever of unknown origin remains challenge for pediatricians. Lymphadenopathy is a separate entity that mainly originates from infection or malignancy. METHODS 168 patients with FUO accompanied by lymphadenectasis were reviewed. 33 lymph node tissue samples were examined by mNGS. Differences in clinical characteristics were compared among different disease groups. The value of mNGS in diagnosing and improving the clinical situation was assessed. RESULTS Multivariate analysis revealed that hepatosplenomegaly and LDH levels were associated with infectious diseases. Arthralgia was correlated with non-infectious inflammatory diseases. Weight loss and a node located in supraclavicular region may indicate neoplastic diseases. mNGS-positive rate was 60.60%, higher than that obtained with traditional methods. Treatment for 3/4 patients was adjusted according to the pathogen detected by mNGS, and antibiotics uses was discontinued or degraded in over 1/2 of the patients according to mNGS results. CONCLUSIONS Clinical characteristics of children with lymphadenopathy related to FUO have limited diagnostic value for distinguishing different kinds of diseases, while mNGS of lymph node tissue serves as a useful tool for identifying infectious diseases, especially those caused by rare pathogens. mNGS results can lead to not only adjustments in targeted treatment but also further confirmation of underlying diseases. IMPACT STATEMENT 1. The clinical features of children with FUO and lymphadenopathy differ according to disease group,although multivariate analysis indicated little diagnostic value for these features. 2. mNGS on lymph node tissue from children with FUO may serve as a efficient tool for distinguishing infectious diseases from other diseases. This is especially useful when a diagnosis cannot be determined with traditional methods. 3. mNGS targeted treatment can be administered in a timely manner and some underlying diseases can be indicated.
Collapse
Affiliation(s)
- Yajuan Zhou
- Department of Infectious Diseases, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Shen
- Department of Infectious Diseases, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lijuan Luo
- Department of Infectious Diseases, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yandi Liu
- Department of Infectious Diseases, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Cao
- Department of Infectious Diseases, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Heinz JM, Lu J, Huebner LK, Salzberg SL, Sommer M, Rosales SM. Novel metagenomics analysis of stony coral tissue loss disease. G3 (BETHESDA, MD.) 2024; 14:jkae137. [PMID: 38900914 PMCID: PMC11304949 DOI: 10.1093/g3journal/jkae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Stony coral tissue loss disease (SCTLD) has devastated coral reefs off the coast of Florida and continues to spread throughout the Caribbean. Although a number of bacterial taxa have consistently been associated with SCTLD, no pathogen has been definitively implicated in the etiology of SCTLD. Previous studies have predominantly focused on the prokaryotic community through 16S rRNA sequencing of healthy and affected tissues. Here, we provide a different analytical approach by applying a bioinformatics pipeline to publicly available metagenomic sequencing samples of SCTLD lesions and healthy tissues from 4 stony coral species. To compensate for the lack of coral reference genomes, we used data from apparently healthy coral samples to approximate a host genome and healthy microbiome reference. These reads were then used as a reference to which we matched and removed reads from diseased lesion tissue samples, and the remaining reads associated only with disease lesions were taxonomically classified at the DNA and protein levels. For DNA classifications, we used a pathogen identification protocol originally designed to identify pathogens in human tissue samples, and for protein classifications, we used a fast protein sequence aligner. To assess the utility of our pipeline, a species-level analysis of a candidate genus, Vibrio, was used to demonstrate the pipeline's effectiveness. Our approach revealed both complementary and unique coral microbiome members compared with a prior metagenome analysis of the same dataset.
Collapse
Affiliation(s)
- Jakob M Heinz
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Jennifer Lu
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD 21218, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Lindsay K Huebner
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL 33701, USA
| | - Steven L Salzberg
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD 21218, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Markus Sommer
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Stephanie M Rosales
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL 33149, USA
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanographic and Atmospheric Administration, Miami, FL 33149, USA
| |
Collapse
|
6
|
Rolando JC, Melkonian AV, Walt DR. The Present and Future Landscapes of Molecular Diagnostics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:459-474. [PMID: 38360553 DOI: 10.1146/annurev-anchem-061622-015112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Nucleic acid testing is the cornerstone of modern molecular diagnostics. This review describes the current status and future directions of molecular diagnostics, focusing on four major techniques: polymerase chain reaction (PCR), next-generation sequencing (NGS), isothermal amplification methods such as recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP), and clustered regularly interspaced short palindromic repeats (CRISPR)-based detection methods. We explore the advantages and limitations of each technique, describe how each overlaps with or complements other techniques, and examine current clinical offerings. This review provides a broad perspective into the landscape of molecular diagnostics and highlights potential future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Justin C Rolando
- 1Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA;
- 2Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- 3Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Arek V Melkonian
- 1Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA;
- 2Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- 3Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - David R Walt
- 1Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA;
- 2Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- 3Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Dong G, Hao Z, Zhang C, Deng A. Unveiling challenging corneal infections: a comprehensive etiological diagnosis through metagenomic next-generation sequencing (mNGS) of corneal tissue samples. Int Ophthalmol 2024; 44:246. [PMID: 38907102 DOI: 10.1007/s10792-024-03201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024]
Abstract
PURPOSE The objective of this study was to assess the clinical diagnostic value of metagenomic next-generation sequencing (mNGS) in cases of challenging corneal infections using corneal tissue samples. METHODS This retrospective study involved 42 patients with corneal infections, where conventional diagnostic techniques failed to identify the causative pathogen. Corneal tissue specimens underwent mNGS, followed by microbial culture for validation. Sensitivity-guided antimicrobial therapy was administered upon identification of the pathogen. The diagnostic and therapeutic efficacy of mNGS was analyzed to evaluate its clinical utility. RESULTS A total of 42 patients were included in this study, with mNGS detection results obtained for 38 cases (90.48%). Among them, 30 cases (71.43%) were clinically significant, eight cases (19.05%) had low clinical relevance, and four cases (9.52%) showed no detection. Following corresponding antimicrobial treatment, 30 patients exhibited significant improvement, resulting in a treatment effectiveness of 71.43%. The prognosis of mNGS-positive patients was superior to that of mNGS-negative patients, with statistically significant differences observed (P < 0.001). CONCLUSIONS Corneal tissue mNGS facilitated the rapid identification of causative agents in challenging corneal infections with unclear clinical diagnoses. It could be seamlessly integrated with traditional diagnostic methods to guide the diagnosis and treatment of corneal diseases.
Collapse
Affiliation(s)
- Guangguo Dong
- Department of Ophthalmology, Jinan Second People's Hospital, Jinan, 250200, China
| | - Zhongkai Hao
- Department of Ophthalmology, Jinan Second People's Hospital, Jinan, 250200, China
- Department of Ophthalmology, School of Clinical Medicine, Weifang Medical University, Weifang, 261000, China
| | - Chenming Zhang
- Department of Ophthalmology, Jinan Second People's Hospital, Jinan, 250200, China.
- Department of Ophthalmology, School of Clinical Medicine, Weifang Medical University, Weifang, 261000, China.
| | - Aijun Deng
- Department of Ophthalmology, School of Clinical Medicine, Weifang Medical University, Weifang, 261000, China.
| |
Collapse
|
8
|
Musa M, Enaholo E, Aluyi-Osa G, Atuanya GN, Spadea L, Salati C, Zeppieri M. Herpes simplex keratitis: A brief clinical overview. World J Virol 2024; 13:89934. [PMID: 38616855 PMCID: PMC11008405 DOI: 10.5501/wjv.v13.i1.89934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 03/11/2024] Open
Abstract
The aim of our minireview is to provide a brief overview of the diagnosis, clinical aspects, treatment options, management, and current literature available regarding herpes simplex keratitis (HSK). This type of corneal viral infection is caused by the herpes simplex virus (HSV), which can affect several tissues, including the cornea. One significant aspect of HSK is its potential to cause recurrent episodes of inflammation and damage to the cornea. After the initial infection, the HSV can establish a latent infection in the trigeminal ganglion, a nerve cluster near the eye. The virus may remain dormant for extended periods. Periodic reactivation of the virus can occur, leading to recurrent episodes of HSK. Factors triggering reactivation include stress, illness, immunosuppression, or trauma. Recurrent episodes can manifest in different clinical patterns, ranging from mild epithelial involvement to more severe stromal or endothelial disease. The severity and frequency of recurrences vary among individuals. Severe cases of HSK, especially those involving the stroma and leading to scarring, can result in vision impairment or even blindness in extreme cases. The cornea's clarity is crucial for good vision, and scarring can compromise this, potentially leading to visual impairment. The management of HSK involves not only treating acute episodes but also implementing long-term strategies to prevent recurrences and attempt repairs of corneal nerve endings via neurotization. Antiviral medications, such as oral Acyclovir or topical Ganciclovir, may be prescribed for prophylaxis. The immune response to the virus can contribute to corneal damage. Inflammation, caused by the body's attempt to control the infection, may inadvertently harm the corneal tissues. Clinicians should be informed about triggers and advised on measures to minimize the risk of reactivation. In summary, the recurrent nature of HSK underscores the importance of both acute and long-term management strategies to preserve corneal health and maintain optimal visual function.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin 300283, Nigeria
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
| | - Ehimare Enaholo
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
- Department of Ophthalmology, Centre for Sight Africa, Nkpor 434101, Nigeria
| | - Gladness Aluyi-Osa
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
| | | | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
9
|
Ghenciu LA, Faur AC, Bolintineanu SL, Salavat MC, Maghiari AL. Recent Advances in Diagnosis and Treatment Approaches in Fungal Keratitis: A Narrative Review. Microorganisms 2024; 12:161. [PMID: 38257986 PMCID: PMC10820712 DOI: 10.3390/microorganisms12010161] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Fungal keratitis represents a potentially sight-threatening infection associated with poor prognosis, as well as financial burden. Novel diagnostic methods include polymerase-chain-reaction (PCR)-based approaches, metagenomic deep sequences, in vivo confocal microscopy, and antifungal susceptibility testing. The ideal therapeutic approaches and outcomes have been widely discussed in recent times, with early therapy being of the utmost importance for the preservation of visual acuity, minimizing corneal damage and reducing the scar size. However, combination therapy can be more efficacious compared to monotherapy. Understanding the pathogenesis, early diagnosis, and prevention strategies can be of great importance. In this narrative, we discuss the recent progress that may aid our understanding of the diagnosis, treatment, and prevention of mycotic keratitis.
Collapse
Affiliation(s)
- Laura Andreea Ghenciu
- Department III Functional Sciences, Victor Babes University of Medicine and Pharmacy, E. Murgu Sq., no. 2, 300041 Timisoara, Romania;
- Department IX Surgery, Discipline of Ophtalmology, Victor Babes University of Medicine and Pharmacy, E. Murgu Sq., no. 2, 300041 Timisoara, Romania;
| | - Alexandra Corina Faur
- Department of Anatomy and Embryology, Victor Babes University of Medicine and Pharmacy, E. Murgu Sq., no. 2, 300041 Timisoara, Romania; (S.L.B.); (A.L.M.)
| | - Sorin Lucian Bolintineanu
- Department of Anatomy and Embryology, Victor Babes University of Medicine and Pharmacy, E. Murgu Sq., no. 2, 300041 Timisoara, Romania; (S.L.B.); (A.L.M.)
| | - Madalina Casiana Salavat
- Department IX Surgery, Discipline of Ophtalmology, Victor Babes University of Medicine and Pharmacy, E. Murgu Sq., no. 2, 300041 Timisoara, Romania;
| | - Anca Laura Maghiari
- Department of Anatomy and Embryology, Victor Babes University of Medicine and Pharmacy, E. Murgu Sq., no. 2, 300041 Timisoara, Romania; (S.L.B.); (A.L.M.)
| |
Collapse
|
10
|
Bendlin A, Gemensky-Metzler AJ, Diaz-Campos D, Newbold GM, Miller EJ, Chandler HL. Evaluation of a commercial NGS service for detection of bacterial and fungal pathogens in infectious ulcerative keratitis. Vet Ophthalmol 2023; 26:500-513. [PMID: 36943705 DOI: 10.1111/vop.13069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 01/16/2023] [Accepted: 01/28/2023] [Indexed: 03/23/2023]
Abstract
OBJECTIVES To compare results from a commercial next-generation sequencing (NGS) service to corneal cytology and culture for identification of causative organisms in veterinary patients presenting for infectious ulcerative keratitis (IUK). PROCEDURE Swabs for corneal aerobic and fungal cultures and DNA swabs for NGS were submitted for canine and equine normal controls (n = 11 and n = 4, respectively) and IUK patients (n = 22 and n = 8, respectively) for which microbrush cytology specimens confirmed the presence of infectious organisms. The sensitivity of the NGS results was compared with bacterial and fungal culture results. Concordance between the NGS and culture results was determined. RESULTS The NGS results were positive for bacterial and fungal organisms in 5 and 1 normal and 18 and 1 IUK cases, respectively. Bacterial and fungal cultures were positive for 7 and 2 normal and 20 and 5 IUK cases, respectively. Sensitivity of NGS was 82.14% (95% confidence interval (CI), 63.11% to 93.94%) and specificity was 76.47% (95% CI, 50.10% to 93.19%). Concordance (complete and partial) between identified bacterial and fungal organisms was found in 79% and 100% of cases, respectively. NGS identified organisms in 3 culture-negative IUK samples. CONCLUSION A commercial NGS service may be useful in the identification of causative agents in IUK cases with a sensitivity greater than the sensitivity previously reported for aerobic culture. Further testing is needed to determine the clinical significance of additional organisms isolated by NGS from infected cases, as well as organisms isolated from normal corneas.
Collapse
Affiliation(s)
- Ashley Bendlin
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA
| | | | - Dubraska Diaz-Campos
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Georgina M Newbold
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Eric J Miller
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Heather L Chandler
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA
- College of Optometry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
11
|
Gihawi A, Ge Y, Lu J, Puiu D, Xu A, Cooper CS, Brewer DS, Pertea M, Salzberg SL. Major data analysis errors invalidate cancer microbiome findings. mBio 2023; 14:e0160723. [PMID: 37811944 PMCID: PMC10653788 DOI: 10.1128/mbio.01607-23] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/21/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Recent reports showing that human cancers have a distinctive microbiome have led to a flurry of papers describing microbial signatures of different cancer types. Many of these reports are based on flawed data that, upon re-analysis, completely overturns the original findings. The re-analysis conducted here shows that most of the microbes originally reported as associated with cancer were not present at all in the samples. The original report of a cancer microbiome and more than a dozen follow-up studies are, therefore, likely to be invalid.
Collapse
Affiliation(s)
- Abraham Gihawi
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Yuchen Ge
- Center for Computational Biology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jennifer Lu
- Center for Computational Biology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniela Puiu
- Center for Computational Biology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Amanda Xu
- Center for Computational Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Colin S. Cooper
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Daniel S. Brewer
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Mihaela Pertea
- Center for Computational Biology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Steven L. Salzberg
- Center for Computational Biology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Azzopardi M, Chong YJ, Ng B, Recchioni A, Logeswaran A, Ting DSJ. Diagnosis of Acanthamoeba Keratitis: Past, Present and Future. Diagnostics (Basel) 2023; 13:2655. [PMID: 37627913 PMCID: PMC10453105 DOI: 10.3390/diagnostics13162655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Acanthamoeba keratitis (AK) is a painful and sight-threatening parasitic corneal infection. In recent years, the incidence of AK has increased. Timely and accurate diagnosis is crucial during the management of AK, as delayed diagnosis often results in poor clinical outcomes. Currently, AK diagnosis is primarily achieved through a combination of clinical suspicion, microbiological investigations and corneal imaging. Historically, corneal scraping for microbiological culture has been considered to be the gold standard. Despite its technical ease, accessibility and cost-effectiveness, the long diagnostic turnaround time and variably low sensitivity of microbiological culture limit its use as a sole diagnostic test for AK in clinical practice. In this review, we aim to provide a comprehensive overview of the diagnostic modalities that are currently used to diagnose AK, including microscopy with staining, culture, corneal biopsy, in vivo confocal microscopy, polymerase chain reaction and anterior segment optical coherence tomography. We also highlight emerging techniques, such as next-generation sequencing and artificial intelligence-assisted models, which have the potential to transform the diagnostic landscape of AK.
Collapse
Affiliation(s)
- Matthew Azzopardi
- Department of Ophthalmology, Royal London Hospital, London E1 1BB, UK;
| | - Yu Jeat Chong
- Birmingham and Midland Eye Centre, Birmingham B18 7QH, UK; (B.N.); (A.R.)
| | - Benjamin Ng
- Birmingham and Midland Eye Centre, Birmingham B18 7QH, UK; (B.N.); (A.R.)
| | - Alberto Recchioni
- Birmingham and Midland Eye Centre, Birmingham B18 7QH, UK; (B.N.); (A.R.)
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Darren S. J. Ting
- Birmingham and Midland Eye Centre, Birmingham B18 7QH, UK; (B.N.); (A.R.)
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
13
|
Gihawi A, Ge Y, Lu J, Puiu D, Xu A, Cooper CS, Brewer DS, Pertea M, Salzberg SL. Major data analysis errors invalidate cancer microbiome findings. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.550993. [PMID: 37577699 PMCID: PMC10418105 DOI: 10.1101/2023.07.28.550993] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
We re-analyzed the data from a recent large-scale study that reported strong correlations between microbial organisms and 33 different cancer types, and that created machine learning predictors with near-perfect accuracy at distinguishing among cancers. We found at least two fundamental flaws in the reported data and in the methods: (1) errors in the genome database and the associated computational methods led to millions of false positive findings of bacterial reads across all samples, largely because most of the sequences identified as bacteria were instead human; and (2) errors in transformation of the raw data created an artificial signature, even for microbes with no reads detected, tagging each tumor type with a distinct signal that the machine learning programs then used to create an apparently accurate classifier. Each of these problems invalidates the results, leading to the conclusion that the microbiome-based classifiers for identifying cancer presented in the study are entirely wrong. These flaws have subsequently affected more than a dozen additional published studies that used the same data and whose results are likely invalid as well.
Collapse
Affiliation(s)
- Abraham Gihawi
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Yuchen Ge
- Center for Computational Biology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jennifer Lu
- Center for Computational Biology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniela Puiu
- Center for Computational Biology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Amanda Xu
- Center for Computational Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Colin S. Cooper
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Daniel S. Brewer
- Norwich Medical School, University of East Anglia, Norwich, UK
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, UK
| | - Mihaela Pertea
- Center for Computational Biology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Steven L. Salzberg
- Center for Computational Biology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Ung L, Chodosh J. Urgent unmet needs in the care of bacterial keratitis: An evidence-based synthesis. Ocul Surf 2023; 28:378-400. [PMID: 34461290 PMCID: PMC10721114 DOI: 10.1016/j.jtos.2021.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/21/2022]
Abstract
Bacterial corneal infections, or bacterial keratitis (BK), are ophthalmic emergencies that frequently lead to irreversible visual impairment. Though increasingly recognized as a major cause of global blindness, modern paradigms of evidence-based care in BK have remained at a diagnostic and therapeutic impasse for over half a century. Current standards of management - based on the collection of corneal cultures and the application of broad-spectrum topical antibiotics - are beset by important yet widely underrecognized limitations, including approximately 30% of all patients who will develop moderate to severe vision loss in the affected eye. Though recent advances have involved a more clearly defined role for adjunctive topical corticosteroids, and novel therapies such as corneal crosslinking, overall progress to improve patient and population-based outcomes remains incommensurate to the chronic morbidity caused by this disease. Recognizing that the care of BK is guided by the clinical axiom, "time equals vision", this chapter offers an evidence-based synthesis for the clinical management of these infections, underscoring critical unmet needs in disease prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Lawson Ung
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Zhang Y, Xu X, Wei Z, Cao K, Zhang Z, Liang Q. The global epidemiology and clinical diagnosis of Acanthamoeba keratitis. J Infect Public Health 2023; 16:841-852. [PMID: 37030037 DOI: 10.1016/j.jiph.2023.03.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 04/10/2023] Open
Abstract
Acanthamoeba keratitis is a rare parasitic infection of the cornea that can lead to permanent blindness if not diagnosed and treated promptly. We collected data on the incidences of Acanthamoeba keratitis from 20 countries and calculated an annual incidence of 23,561 cases, with the lowest rates in Tunisia and Belgium, and the highest in India. We analyzed 3755 Acanthamoeba sequences from the GenBank database across Asia, Europe, North America, South America, and Oceania and genotyped them into T1, T2, T3, T4, T5, T10, T11, T12, and T15. Many genotypes possess different characteristics, yet T4 is the most prevalent genotype. As efficient treatment against Acanthamoeba remains lacking, prevention from early diagnosis via staining, PCR, or in vivo confocal microscopy (IVCM) becomes significant for the condition's prognosis. IVCM is the most recommended approach for the early detection of Acanthamoeba. If IVCM is unavailable, PCR should be used as an alternative.
Collapse
Affiliation(s)
- Yuheng Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China
| | - Xizhan Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China
| | - Zhenyu Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China
| | - Kai Cao
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China
| | - Zijun Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China
| | - Qingfeng Liang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China.
| |
Collapse
|
16
|
Tan CL, Sheorey H, Allen PJ, Dawkins RCH. Endophthalmitis: Microbiology and Organism Identification Using Current and Emerging Techniques. Ocul Immunol Inflamm 2023; 31:393-401. [PMID: 35201917 DOI: 10.1080/09273948.2022.2027468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Endophthalmitis is an ophthalmological emergency requiring timely and appropriate diagnosis and treatment. Microbiological methods of microscopy (Gram's staining) and culture are the current gold standard for organism identification. However, a significant proportion of endophthalmitis remains culture-negative-perhaps the inflammation is non-infectious in origin, results from a novel organism are unidentifiable or because the causative organism is non-culturable often due to pre-treatment with antibiotics. This review outlines the microbiological profile of endophthalmitis, current clinically used methods for organism identification, and the newer molecular techniques of polymerase chain reaction (PCR) and next-generation sequencing (NGS) technology as diagnostic tools for endophthalmitis. They offer the potential to improve organism identification rates and clinical outcomes in infectious diseases, representing an exciting future direction for organism identification in endophthalmitis. Based on the largest ophthalmic hospital in Australia, we highlight the key practical challenges faced by Australian diagnostic laboratories for their use in a clinical setting.
Collapse
Affiliation(s)
- Christine L Tan
- Macular Research Unit, Centre for Eye Research Australia, East Melbourne, Australia.,Department of Ophthalmology, The University of Melbourne, Parkville, Australia
| | - Harsha Sheorey
- Department of Microbiology, St Vincent's Hospital, Fitzroy, Australia
| | - Penelope J Allen
- Macular Research Unit, Centre for Eye Research Australia, East Melbourne, Australia.,Department of Ophthalmology, The University of Melbourne, Parkville, Australia.,Vitreo-retinal Unit, The Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Rosie C H Dawkins
- Macular Research Unit, Centre for Eye Research Australia, East Melbourne, Australia.,Department of Ophthalmology, The University of Melbourne, Parkville, Australia.,Vitreo-retinal Unit, The Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| |
Collapse
|
17
|
Borroni D, Bonzano C, Sánchez-González JM, Rachwani-Anil R, Zamorano-Martín F, Pereza-Nieves J, Traverso CE, García Lorente M, Rodríguez-Calvo-de-Mora M, Esposito A, Godin F, Rocha-de-Lossada C. Shotgun metagenomic sequencing in culture negative microbial keratitis. Eur J Ophthalmol 2023:11206721221149077. [PMID: 36617769 DOI: 10.1177/11206721221149077] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE To evaluate the microbiota of culture negative Corneal Impression Membrane (CIM) microbial keratitis samples with the use of shotgun metagenomics analysis. METHODS DNA of microbial keratitis samples were collected with CIM and extracted using the MasterPure™ Complete DNA and RNA Purification Kit (Epicentre). DNA was fragmented by sonication into fragments of 300 to 400 base pairs (bp) using Bioruptor® (Diagenode, Belgium) and then used as a template for library preparation. DNA libraries were sequenced on Illumina® HiSeq2500. The resulting reads were quality controlled, trimmed and mapped against the human reference genome. The unmapped reads were taxonomically classified using the Kraken software. RESULTS 18 microbial keratitis samples were included in the study. Brevundimonas diminuta was found in 5 samples while 6 samples showed the presence of viral infections. Cutibacterium acnes, Staphylococcus aureus, Moraxella lacunata and Pseudomonas alcaligenes were also identified as the presumed putative cause of the infection in 7 samples. CONCLUSIONS Shotgun sequencing can be used as a diagnostic tool in microbial keratitis samples. This diagnostic method expands the available tests to diagnose eye infections and could be clinically significant in culture negative samples.
Collapse
Affiliation(s)
- Davide Borroni
- Department of Ophthalmology, Riga Stradins University, Riga, Latvia
| | - Chiara Bonzano
- DiNOGMI, University of Genoa and IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | | | | | | | | | - Carlo Enrico Traverso
- DiNOGMI, University of Genoa and IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | | | | | - Alfonso Esposito
- 18470International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Fernando Godin
- Department of Ophthalmology, Universidad El Bosque, Bogotá, Colombia
| | - Carlos Rocha-de-Lossada
- Qvision, Opththalmology Department, VITHAS Almería Hospital, Almería, Spain.,Ophthalmology Department, VITHAS Málaga, Málaga, Spain.,Hospital Regional Universitario de Málaga, Plaza del Hospital Civil, Málaga, Spain.,Departamento de Cirugía, Universidad de Sevilla, Área de Oftalmología, Doctor Fedriani, Seville, Spain
| |
Collapse
|
18
|
Lu J, Rincon N, Wood DE, Breitwieser FP, Pockrandt C, Langmead B, Salzberg SL, Steinegger M. Metagenome analysis using the Kraken software suite. Nat Protoc 2022; 17:2815-2839. [PMID: 36171387 PMCID: PMC9725748 DOI: 10.1038/s41596-022-00738-y] [Citation(s) in RCA: 219] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 06/16/2022] [Indexed: 01/19/2023]
Abstract
Metagenomic experiments expose the wide range of microscopic organisms in any microbial environment through high-throughput DNA sequencing. The computational analysis of the sequencing data is critical for the accurate and complete characterization of the microbial community. To facilitate efficient and reproducible metagenomic analysis, we introduce a step-by-step protocol for the Kraken suite, an end-to-end pipeline for the classification, quantification and visualization of metagenomic datasets. Our protocol describes the execution of the Kraken programs, via a sequence of easy-to-use scripts, in two scenarios: (1) quantification of the species in a given metagenomics sample; and (2) detection of a pathogenic agent from a clinical sample taken from a human patient. The protocol, which is executed within 1-2 h, is targeted to biologists and clinicians working in microbiome or metagenomics analysis who are familiar with the Unix command-line environment.
Collapse
Affiliation(s)
- Jennifer Lu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Natalia Rincon
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Derrick E Wood
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Florian P Breitwieser
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Christopher Pockrandt
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ben Langmead
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Steven L Salzberg
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Martin Steinegger
- School of Biological Sciences and Institute of Molecular Biology & Genetics, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Frickmann H, Weinreich F, Loderstädt U, Poppert S, Tannich E, Bull J, Kreikemeyer B, Barrantes I. Metagenomic Sequencing for the Diagnosis of Plasmodium spp. with Different Levels of Parasitemia in EDTA Blood of Malaria Patients-A Proof-of-Principle Assessment. Int J Mol Sci 2022; 23:11150. [PMID: 36232449 PMCID: PMC9569645 DOI: 10.3390/ijms231911150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Molecular diagnostic approaches are increasingly included in the diagnostic workup and even in the primary diagnosis of malaria in non-endemic settings, where it is difficult to maintain skillful microscopic malaria detection due to the rarity of the disease. Pathogen-specific nucleic acid amplification, however, bears the risk of overlooking other pathogens associated with febrile illness in returnees from the tropics. Here, we assessed the discriminatory potential of metagenomic sequencing for the identification of different Plasmodium species with various parasitemia in EDTA blood of malaria patients. Overall, the proportion of Plasmodium spp.-specific sequence reads in the assessed samples showed a robust positive correlation with parasitemia (Spearman r = 0.7307, p = 0.0001) and a robust negative correlation with cycle threshold (Ct) values of genus-specific real-time PCR (Spearman r = -0.8626, p ≤ 0.0001). Depending on the applied bioinformatic algorithm, discrimination on species level was successful in 50% (11/22) to 63.6% (14/22) instances. Limiting factors for the discrimination on species level were very low parasitemia, species-depending lacking availability of reliable reference genomes, and mixed infections with high variance of the proportion of the infecting species. In summary, metagenomic sequencing as performed in this study is suitable for the detection of malaria in human blood samples, but the diagnostic detection limit for a reliable discrimination on species level remains higher than for competing diagnostic approaches like microscopy and PCR.
Collapse
Affiliation(s)
- Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Felix Weinreich
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany
| | - Ulrike Loderstädt
- Department of Hospital Hygiene & Infectious Diseases, University Medicine Göttingen, 37075 Goettingen, Germany
| | - Sven Poppert
- Bernhard Nocht Institute for Tropical Medicine Hamburg, 20359 Hamburg, Germany
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine Hamburg, 20359 Hamburg, Germany
| | - Jana Bull
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Bernd Kreikemeyer
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Israel Barrantes
- Research Group Translational Bioinformatics, Institute for Biostatistics and Informatics in Medicine und Aging Research, University Medicine Rostock, 18057 Rostock, Germany
| |
Collapse
|
20
|
Gueudry J, Bodaghi B. Advances in the microbiological diagnosis of herpetic retinitis. FRONTIERS IN OPHTHALMOLOGY 2022; 2:990240. [PMID: 38983563 PMCID: PMC11182275 DOI: 10.3389/fopht.2022.990240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/24/2022] [Indexed: 07/11/2024]
Abstract
Viral retinitis associated with herpesvirus is one of the most severe forms of uveitis and is a potentially sight-threatening ophthalmologic disease. The prognosis is poor and a rapid and aggressive management is necessary to improve the visual and sometimes vital prognosis of these patients. The treatments used are not without side effects, while many differential diagnoses exist, such as toxoplasmic retinochoroiditis, syphilitic retinitis, endogenous endophthalmitis and intraocular lymphoma. Causatives viruses are herpes simplex virus, varicella-zoster virus, and cytomegalovirus, which require rapid detection in ocular fluid, mainly aqueous humor. However, only a small amount of intraocular fluid is available for analysis. Advances in microbiological diagnostic techniques therefore were key factors in improving the management of these diseases. Historically, the diagnosis was based on immunological tests but more recently advances in molecular biology, in particular polymerase chain reaction, have played a crucial role to obtain a reliable and rapid diagnosis of viral retinitis associated with herpesvirus, as discussed in this review.
Collapse
Affiliation(s)
- Julie Gueudry
- Department of Ophthalmology - Charles Nicolle University Hospital, CHU Charles Nicolle, Rouen, France
| | - Bahram Bodaghi
- Department of Ophthalmology, DHU ViewRestore, Sorbonne Université, Pitié Salpêtrière Hospital, Paris, France
| |
Collapse
|
21
|
Pei Y, Chen X, Tan Y, Liu X, Duan F, Wu K. Microbiological Profiles of Ocular Fungal Infection at an Ophthalmic Referral Hospital in Southern China: A Ten-Year Retrospective Study. Infect Drug Resist 2022; 15:3267-3276. [PMID: 35769550 PMCID: PMC9234316 DOI: 10.2147/idr.s367083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Yinhui Pei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, People’s Republic of China
| | - Xiaoling Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, People’s Republic of China
| | - Yiwei Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, People’s Republic of China
| | - Xiuping Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, People’s Republic of China
| | - Fang Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, People’s Republic of China
- Fang Duan, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yan-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, People’s Republic of China, Email
| | - Kaili Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, People’s Republic of China
- Correspondence: Kaili Wu, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yan-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, People’s Republic of China, Email
| |
Collapse
|
22
|
Zhu J, Xia H, Tang R, Ng TK, Yao F, Liao X, Zhang Q, Ke X, Shi T, Chen H. METAGENOMIC NEXT-GENERATION SEQUENCING DETECTS PATHOGENS IN ENDOPHTHALMITIS PATIENTS. Retina 2022; 42:992-1000. [PMID: 35019890 DOI: 10.1097/iae.0000000000003406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE To investigate the utility of metagenomic next-generation sequencing (mNGS) in identifying the pathogens in endophthalmitis. METHODS In this prospective study, 36 cases of endophthalmitis were recruited. All patients received surgical treatment and intraocular drug lavage. The samples of vitreous or aqueous humor were extracted for mNGS and microbiological culture. The diagnostic performance of pathogens was compared between mNGS and culture. RESULTS The positive rates of mNGS and culture were 88.89% (32/36) and 27.78% (10/36), respectively. There was a statistically significant difference between mNGS and culture (Chi-square = 27.657; P < 0.01). Staphylococcus epidermidis, Streptococcus pneumoniae, and Klebsiella pneumoniae were the most pathogenic bacteria in traumatic, postoperative, and endogenous endophthalmitis, respectively. The concordance of pathogen identified by mNGS and culture was 70% for culture-positive cases. Antibiotic resistance genes were identified in 9 cases. There was a marginal correlation between the final visual acuity and the microbial sequence read (Spearman correlation coefficient = 0.498; P = 0.05). CONCLUSION Metagenomic next-generation sequencing has a higher positive rate of identifying pathogens in endophthalmitis than in culture. It can also provide information on antibiotic resistance and visual prognosis. However, caution must be taken when interpreting the results of mNGS because they may not be concordant with culture.
Collapse
Affiliation(s)
- Junfeng Zhu
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Honghe Xia
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Ruqing Tang
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Fen Yao
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Xulong Liao
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Qi Zhang
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Xixuan Ke
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Tingkun Shi
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Haoyu Chen
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| |
Collapse
|
23
|
Evidence-based Management of Culture-negative Microbial Keratitis. Int Ophthalmol Clin 2022; 62:111-124. [PMID: 35325914 DOI: 10.1097/iio.0000000000000411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Miao S, Lin Q, Li X, Zhao L, Pan Z. Possible association between viral infection and poor survival of the corneal graft after penetrating keratoplasty in patients with congenital corneal opacity: a cohort study. Br J Ophthalmol 2022; 107:763-768. [PMID: 35027353 DOI: 10.1136/bjophthalmol-2021-320031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/03/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Congenital corneal opacity (CCO) is a rare disorder. Penetrating keratoplasty (PK) is the main surgical option for CCO, but many factors affect graft survival. Therefore, this study aimed to perform a virological examination of CCO specimens after PK to explore the relationship between virological factors and graft survival after PK. METHODS This prospective study included consecutive patients (<6 months of age) diagnosed with CCO and treated with PK at Beijing Tongren Hospital from August 2017 to January 2018. Next-generation sequencing was used to detect viral DNA in the CCO specimens. The survival of the primary graft was analysed using the Kaplan-Meier method. RESULTS Overall, 24 eyes of 24 infants were treated with PK during the study period. The mean age at surgery was 4.8±1.1 months. Epstein-Barr virus DNA was detected in two specimens, varicella-zoster virus DNA in one specimen, herpes simplex virus DNA in three specimens and cytomegalovirus DNA in one specimen. In the virus-positive group, only one (14.3%) graft remained clear during follow-up. In contrast, in the virus-negative group (n=17), 13 (76.5%) grafts were still clear at the last follow-up. The mean survival of the grafts in the virus-positive group was significantly shorter than in the virus-negative group (11.0±9.8 months vs 27.1±7.7, p<0.001). CONCLUSION The presence of viral DNA in CCO specimens might be associated with poor graft survival after PK.
Collapse
Affiliation(s)
- Sen Miao
- Department of Ophthalmology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qi Lin
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xu Li
- Department of Ophthalmology, Beijing Ophthalmology and Visual Science Key laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical Unversity, Beijing, China
| | - Lu Zhao
- Department of Ophthalmology, Beijing Ophthalmology and Visual Science Key laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical Unversity, Beijing, China
| | - Zhiqiang Pan
- Department of Ophthalmology, Beijing Ophthalmology and Visual Science Key laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical Unversity, Beijing, China
| |
Collapse
|
25
|
Tuft S, Somerville TF, Li JPO, Neal T, De S, Horsburgh MJ, Fothergill JL, Foulkes D, Kaye S. Bacterial keratitis: identifying the areas of clinical uncertainty. Prog Retin Eye Res 2021; 89:101031. [PMID: 34915112 DOI: 10.1016/j.preteyeres.2021.101031] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022]
Abstract
Bacterial keratitis is a common corneal infection that is treated with topical antimicrobials. By the time of presentation there may already be severe visual loss from corneal ulceration and opacity, which may persist despite treatment. There are significant differences in the associated risk factors and the bacterial isolates between high income and low- or middle-income countries, so that general management guidelines may not be appropriate. Although the diagnosis of bacterial keratitis may seem intuitive there are multiple uncertainties about the criteria that are used, which impacts the interpretation of investigations and recruitment to clinical studies. Importantly, the concept that bacterial keratitis can only be confirmed by culture ignores the approximately 50% of cases clinically consistent with bacterial keratitis in which investigations are negative. The aetiology of these culture-negative cases is unknown. Currently, the estimation of bacterial susceptibility to antimicrobials is based on data from systemic administration and achievable serum or tissue concentrations, rather than relevant corneal concentrations and biological activity in the cornea. The provision to the clinician of minimum inhibitory concentrations of the antimicrobials for the isolated bacteria would be an important step forward. An increase in the prevalence of antimicrobial resistance is a concern, but the effect this has on disease outcomes is yet unclear. Virulence factors are not routinely assessed although they may affect the pathogenicity of bacteria within species and affect outcomes. New technologies have been developed to detect and kill bacteria, and their application to bacterial keratitis is discussed. In this review we present the multiple areas of clinical uncertainty that hamper research and the clinical management of bacterial keratitis, and we address some of the assumptions and dogma that have become established in the literature.
Collapse
Affiliation(s)
- Stephen Tuft
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London, EC1V 2PD, UK.
| | - Tobi F Somerville
- Department of Eye and Vision Sciences, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Ji-Peng Olivia Li
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London, EC1V 2PD, UK.
| | - Timothy Neal
- Department of Clinical Microbiology, Liverpool Clinical Laboratories, Liverpool University Hospital NHS Foundation Trust, Prescot Street, Liverpool, L7 8XP, UK.
| | - Surjo De
- Department of Clinical Microbiology, University College London Hospitals NHS Foundation Trust, 250 Euston Road, London, NW1 2PG, UK.
| | - Malcolm J Horsburgh
- Department of Infection and Microbiomes, University of Liverpool, Crown Street, Liverpool, L69 7BX, UK.
| | - Joanne L Fothergill
- Department of Eye and Vision Sciences, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Daniel Foulkes
- Department of Eye and Vision Sciences, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Stephen Kaye
- Department of Eye and Vision Sciences, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
26
|
Zemba M, Dumitrescu OM, Dimirache AE, Branisteanu D, Balta F, Burcea M, Moraru A, Gradinaru S. Diagnostic methods for the etiological assessment of infectious corneal pathology (Review). Exp Ther Med 2021; 23:137. [PMID: 35069818 PMCID: PMC8756399 DOI: 10.3892/etm.2021.11060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022] Open
Abstract
Infectious keratitis is a leading cause of visual morbidity, including blindness, all across the globe, especially in developing countries. Prompt and adequate treatment is mandatory to maintain corneal integrity and to recover the best possible final visual acuity. Although in most of the cases practitioners chose to employ empirical broad-spectrum antimicrobial medication that is usually effective, in some instances, they face the need to identify the causative agent to establish the appropriate therapy. An extensive search was conducted on published literature before December 2020 concerning the main laboratory investigations used to identify the microbial agents found in infectious keratitis, their indications, advantages, and disadvantages, as well as the results reported by other studies concerning different diagnostic tools. At present, the gold standard for diagnosis is still considered to be the isolation of microorganisms in cultures, along with the examination of smears, but other newer techniques, such as polymerase chain reaction (PCR), next-generation sequencing (NGS), and in vivo confocal microscopy (IVCM) have gained popularity in the last decades. Currently, these newer methods have proved to be valuable adjuvants in making the diagnosis, but technological advances hold promise that, in the future, these methods will have increased performance and availability, and may become the new gold standard, replacing the classic cultures and smears.
Collapse
Affiliation(s)
- Mihail Zemba
- Department of Ophthalmology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Otilia-Maria Dumitrescu
- Department of Ophthalmology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Andreea-Elena Dimirache
- Department of Ophthalmology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Daniel Branisteanu
- Department of Ophthalmology, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Florian Balta
- Department of Ophthalmology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Marian Burcea
- Department of Ophthalmology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Andreea Moraru
- Department of Ophthalmology, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Sinziana Gradinaru
- Department of Ophthalmology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
27
|
Singh RB, Das S, Chodosh J, Sharma N, Zegans ME, Kowalski RP, Jhanji V. Paradox of complex diversity: Challenges in the diagnosis and management of bacterial keratitis. Prog Retin Eye Res 2021; 88:101028. [PMID: 34813978 DOI: 10.1016/j.preteyeres.2021.101028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022]
Abstract
Bacterial keratitis continues to be one of the leading causes of corneal blindness in the developed as well as the developing world, despite swift progress since the dawn of the "anti-biotic era". Although, we are expeditiously developing our understanding about the different causative organisms and associated pathology leading to keratitis, extensive gaps in knowledge continue to dampen the efforts for early and accurate diagnosis, and management in these patients, resulting in poor clinical outcomes. The ability of the causative bacteria to subdue the therapeutic challenge stems from their large genome encoding complex regulatory networks, variety of unique virulence factors, and rapid secretion of tissue damaging proteases and toxins. In this review article, we have provided an overview of the established classical diagnostic techniques and therapeutics for keratitis caused by various bacteria. We have extensively reported our recent in-roads through novel tools for accurate diagnosis of mono- and poly-bacterial corneal infections. Furthermore, we outlined the recent progress by our group and others in understanding the sub-cellular genomic changes that lead to antibiotic resistance in these organisms. Finally, we discussed in detail, the novel therapies and drug delivery systems in development for the efficacious management of bacterial keratitis.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Leiden University Medical Center, 2333, ZA Leiden, the Netherlands
| | - Sujata Das
- Cornea and Anterior Segment Services, LV Prasad Eye Institute, Bhubaneshwar, India
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Namrata Sharma
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Michael E Zegans
- Department of Ophthalmology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Regis P Kowalski
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; The Charles T Campbell Ophthalmic Microbiology Laboratory, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; The Charles T Campbell Ophthalmic Microbiology Laboratory, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
28
|
Diagnostic armamentarium of infectious keratitis: A comprehensive review. Ocul Surf 2021; 23:27-39. [PMID: 34781020 PMCID: PMC8810150 DOI: 10.1016/j.jtos.2021.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 01/23/2023]
Abstract
Infectious keratitis (IK) represents the leading cause of corneal blindness worldwide, particularly in developing countries. A good outcome of IK is contingent upon timely and accurate diagnosis followed by appropriate interventions. Currently, IK is primarily diagnosed on clinical grounds supplemented by microbiological investigations such as microscopic examination with stains, and culture and sensitivity testing. Although this is the most widely accepted practice adopted in most regions, such an approach is challenged by several factors, including indistinguishable clinical features shared among different causative organisms, polymicrobial infection, long diagnostic turnaround time, and variably low culture positivity rate. In this review, we aim to provide a comprehensive overview of the current diagnostic armamentarium of IK, encompassing conventional microbiological investigations, molecular diagnostics (including polymerase chain reaction and mass spectrometry), and imaging modalities (including anterior segment optical coherence tomography and in vivo confocal microscopy). We also highlight the potential roles of emerging technologies such as next-generation sequencing, artificial intelligence-assisted platforms. and tele-medicine in shaping the future diagnostic landscape of IK.
Collapse
|
29
|
Witney AA, Aller S, Strang BL. Metagenomic profiling of placental tissue suggests DNA virus infection of the placenta is rare. J Gen Virol 2021; 102. [PMID: 34723784 PMCID: PMC8742990 DOI: 10.1099/jgv.0.001677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is widely recognized that pathogens can be transmitted across the placenta from mother to foetus. Recent re-evaluation of metagenomic studies indicates that the placenta has no unique microbiome of commensal bacteria. However, viral transmission across the placenta, including transmission of DNA viruses such as the human herpesviruses, is possible. A fuller understanding of which DNA virus sequence can be found in the placenta is required. We employed a metagenomic analysis to identify viral DNA sequences in placental metagenomes from full-term births (20 births), pre-term births (13 births), births from pregnancies associated with antenatal infections (12 births) or pre-term births with antenatal infections (three births). Our analysis found only a small number of DNA sequences corresponding to the genomes of human herpesviruses in four of the 48 metagenomes analysed. Therefore, our data suggest that DNA virus infection of the placenta is rare and support the concept that the placenta is largely free of pathogen infection.
Collapse
Affiliation(s)
- Adam A Witney
- Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, UK
| | - Sean Aller
- Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, UK
| | - Blair L Strang
- Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, UK
| |
Collapse
|
30
|
Raj N, Vanathi M, Ahmed NH, Gupta N, Lomi N, Tandon R. Recent Perspectives in the Management of Fungal Keratitis. J Fungi (Basel) 2021; 7:jof7110907. [PMID: 34829196 PMCID: PMC8621027 DOI: 10.3390/jof7110907] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/28/2022] Open
Abstract
Mycotic keratitis is common in warm, humid regions with a varying profile of pathogenic fungi according to geographical origin, socioeconomic status, and climatic condition. Clinical diagnosis can be challenging in difficult cases and those refractory to treatment. Fungal hyphae on microscopic examination and culture isolation have been the gold standard in the laboratory diagnosis of fungal keratitis. A culture isolate of the aetiological fungus is essential to perform antifungal susceptibility testing. As the culture isolation of fungi is time-consuming, causing delays in the initiation of treatment, newer investigative modalities such as in vivo confocal microscopy and molecular diagnostic methods have recently gained popularity. Molecular diagnostic techniques now help to obtain a rapid diagnosis of fungal keratitis. Genomic approaches are based on detecting amplicons of ribosomal RNA genes, with internal transcribed spacers being increasingly adopted. Metagenomic deep sequencing allows for rapid and accurate diagnosis without the need to wait for the fungus to grow. This is also helpful in identifying new emerging strains of fungi causing mycotic keratitis. A custom-tear proteomic approach will probably play an important diagnostic role in future in the management of mycotic keratitis. Positive repeat cultures are being suggested as an important gauge indicative of a poor prognosis. Positive repeat fungal cultures help to modify a treatment regimen by increasing its frequency, providing the addition of another topical and oral antifungal agent along with close follow-up for perforation and identifying need for early therapeutic keratoplasty. The role of collagen crosslinking in the treatment of fungal keratitis is not convincingly established. Rapid detection by multiplex PCR and antifungal susceptibility testing of the pathogenic fungi, adopted into a routine management protocol of fungal keratitis, will help to improve treatment outcome. Early therapy is essential in minimizing damage to the corneal tissue, thereby providing a better outcome. The role of conventional therapy with polyenes, systemic and targeted therapy of antifungal agents, newer azoles and echinocandins in fungal keratitis has been widely studied in recent times. Combination therapy can be more efficacious in comparison to monotherapy. Given the diversity of fungal aetiology, the emergence of new corneal pathogenic fungi with varying drug susceptibilities, increasing the drug resistance to antifungal agents in some genera and species, it is perhaps time to adopt recent molecular methods for precise identification and incorporate antifungal susceptibility testing as a routine.
Collapse
Affiliation(s)
- Nimmy Raj
- Cornea, Lens & Refractive Surgery Services—Dr R P Centre for Ophthalmic Sciences, All India Institute for Medical Sciences, New Delhi 110029, India; (N.R.); (N.G.); (N.L.); (R.T.)
| | - Murugesan Vanathi
- Cornea, Lens & Refractive Surgery Services—Dr R P Centre for Ophthalmic Sciences, All India Institute for Medical Sciences, New Delhi 110029, India; (N.R.); (N.G.); (N.L.); (R.T.)
- Correspondence: ; Tel.: +91-11-26593010; Fax: +91-11-26588919
| | - Nishat Hussain Ahmed
- Ocular Microbiology Services—Dr R P Centre for Ophthalmic Sciences, All India Institute for Medical Sciences, New Delhi 110029, India;
| | - Noopur Gupta
- Cornea, Lens & Refractive Surgery Services—Dr R P Centre for Ophthalmic Sciences, All India Institute for Medical Sciences, New Delhi 110029, India; (N.R.); (N.G.); (N.L.); (R.T.)
| | - Neiwete Lomi
- Cornea, Lens & Refractive Surgery Services—Dr R P Centre for Ophthalmic Sciences, All India Institute for Medical Sciences, New Delhi 110029, India; (N.R.); (N.G.); (N.L.); (R.T.)
| | - Radhika Tandon
- Cornea, Lens & Refractive Surgery Services—Dr R P Centre for Ophthalmic Sciences, All India Institute for Medical Sciences, New Delhi 110029, India; (N.R.); (N.G.); (N.L.); (R.T.)
| |
Collapse
|
31
|
Huang C, Chen H, Ding Y, Ma X, Zhu H, Zhang S, Du W, Summah HD, Shi G, Feng Y. A Microbial World: Could Metagenomic Next-Generation Sequencing Be Involved in Acute Respiratory Failure? Front Cell Infect Microbiol 2021; 11:738074. [PMID: 34671569 PMCID: PMC8522648 DOI: 10.3389/fcimb.2021.738074] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background The usefulness of metagenomic next-generation sequencing (mNGS) in identifying pathogens is being investigated. We aimed to compare the power of microbial identification between mNGS and various methods in patients with acute respiratory failure. Methods We reviewed 130 patients with respiratory failure, and 184 specimens including blood, bronchoalveolar lavage fluid (BALF), sputum, pleural effusion, ascitic fluid, and urine were tested by mNGS and conventional methods (culture, PCR). We also enrolled 13 patients to evaluate the power of mNGS and pathogen targets NGS (ptNGS) in microbial identifications. Clinical features and microbes detected were analyzed. Results mNGS outperformed the conventional method in the positive detection rate of Mycobacterium tuberculosis (MTB) (OR, ∞; 95% CI, 1–∞; P < 0.05), bacteria (OR, 3.7; 95% CI, 2.4–5.8; P < 0.0001), fungi (OR, 4.37; 95% CI, 2.7–7.2; P < 0.0001), mycoplasma (OR, 10.5; 95% CI, 31.8–115; P = 0.005), and virus (OR, ∞; 95% CI, 180.7–∞; P < 0.0001). We showed that 20 patients (28 samples) were detected with Pneumocystis jirovecii (P. jirovecii) by mNGS, but not by the conventional method, and most of those patients were immunocompromised. Read numbers of Klebsiella pneumoniae (K. pneumoniae), Acinetobacter baumannii (A. baumannii), Pseudomonas aeruginosa (P. aeruginosa), P. jirovecii, cytomegalovirus (CMV), and Herpes simplex virus 1 (HSV1) in BALF were higher than those in other sample types, and the read number of Candida albicans (C. albicans) in blood was higher than that in BALF. We found that orotracheal intubation and type 2 diabetes mellitus (T2DM) were associated with a higher detection rate of bacteria and virus by mNGS, immunosuppression was associated with a higher detection rate of fungi and virus by mNGS, and inflammatory markers were associated with mNGS-positive detection rate of bacteria. In addition, we observed preliminary results of ptNGS. Conclusion mNGS outperformed the conventional method in the detection of MTB, bacteria, fungi, mycoplasma, and virus. Orotracheal intubation, T2DM, immunosuppression, and inflammatory markers were associated with a higher detection rate of bacteria, fungi, and virus by mNGS. In addition, ptNGS results were consistent with the detection of abundant bacteria, fungi, and mycoplasma in our specimens.
Collapse
Affiliation(s)
- Chunrong Huang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Ruijin Hospital, Shanghai, China
| | - Hong Chen
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Ruijin Hospital, Shanghai, China
| | - Yongjie Ding
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Ruijin Hospital, Shanghai, China
| | - Xiaolong Ma
- Department of Respiratory and Critical Care Medicine, The First Hospital of Jiaxing, Jiaxing, China
| | - Haixing Zhu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Ruijin Hospital, Shanghai, China
| | - Shengxiong Zhang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Ruijin Hospital, Shanghai, China
| | - Wei Du
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Ruijin Hospital, Shanghai, China
| | - Hanssa Dwarka Summah
- Department of Respiratory and Critical Care Medicine, Poudre D'Or Chest Hospital, Rivière du Rempart, Mauritius
| | - Guochao Shi
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Ruijin Hospital, Shanghai, China
| | - Yun Feng
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Ruijin Hospital, Shanghai, China
| |
Collapse
|
32
|
Suryani L, Setyandriana Y, Meida NS. The Social-environmental Risk Factor for Conjunctivitis. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Conjunctivitis is one of the most common eye disorders in the worldwide. The incidence of conjunctivitis in Indonesia reached 73% of the population. Conjunctivitis cases in Yogyakarta City have increased from year to year.
AIM: This study purposed to identify the social-environmental risk factors that influence the incidence of conjunctivitis in Yogyakarta.
METHODS: Design study was an observational analytic method with a case–control research design. The population study was all the patients visited at the Eye Clinic of PKU Muhammadiyah Gamping Hospital and private hospital Yogyakarta in 2019. The total sample is 204 respondents who were divided into case and control. One hundred and four respondents were in a case while 100 were controlled. The case was a conjunctivitis patient treated at the Eye Clinic of PKU Muhammadiyah Gamping Hospital and private hospital Yogyakarta in 2019, while the control was a non-conjunctivitis patient who went to the same two hospitals as the case respondent. Data were collected by direct interviews using a structured questionnaire covering the respondents’ demographics and social-environmental conditions. Then, the data were analyzed using SPSS 15.0 univariate and bivariate using Chi-square.
RESULTS: The results of the bivariate analysis showed that age, the distance between the house and the river, the distance between the place and the temporary garbage dump, contacted from a close friend, the windows of the house were always opened every day as risk factors affecting the incidence of conjunctivitis.
CONCLUSION: The study’s decision is the social-environmental as a risk factor for conjunctivitis in Yogyakarta.
Collapse
|
33
|
Liu J, Lei ZY, Pang YH, Huang YX, Xu LJ, Zhu JY, Zheng JX, Yang XH, Lin BL, Gao ZL, Zhuo C. Rapid diagnosis of disseminated Mycobacterium mucogenicum infection in formalin-fixed, paraffin-embedded specimen using next-generation sequencing: A case report. World J Clin Cases 2021; 9:5621-5630. [PMID: 34307617 PMCID: PMC8281395 DOI: 10.12998/wjcc.v9.i20.5621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mycobacterium mucogenicum (M. mucogenicum) belongs to the group of rapidly growing Nontuberculous mycobacteria. This microorganism is associated with a wide spectrum of infectious diseases. Due to a low detection rate or the time required for conventional culture methodology, a rapid and broad-spectrum method is necessary to identify rare pathogens.
CASE SUMMARY A 12-year-old immunocompetent girl presented with painful masses for five months. The first mass was found in the right upper quadrant of the abdomen, and was about 1 cm × 1.5 cm in size, tough but pliable in texture, with an irregular margin and tenderness. An abscess gradually formed and ulcerated with suppuration of the mass. Three new masses appeared on the back one by one. Chest computed tomography showed patchy and streaky cloudy opacities in both lungs. Needle aspiration of the abscess was performed, but the smear and conventional culture were negative, and the pathological examination showed no pathogens. We then performed next-generation sequencing using a formalin-fixed, paraffin-embedded specimen to identify the pathogen. A significantly high abundance of M. mucogenicum was detected. The patient’s abscesses gradually decreased in size, while inflammation in both lungs improved following 12-wk of treatment. No recurrence was observed four months after the end of the one-year treatment period.
CONCLUSION Next-generation sequencing is a promising tool for the rapid and accurate diagnosis of rare pathogens, even when using a formalin-fixed, paraffin-embedded specimen.
Collapse
Affiliation(s)
- Jing Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Zi-Ying Lei
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Yi-Hua Pang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Ying-Xiong Huang
- Department of Emergency, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510000, Guangdong Province, China
| | - Le-Jia Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
- Department of Pharmacy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Jian-Yun Zhu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Jia-Xing Zheng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Xiao-Hua Yang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Bing-Liang Lin
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Zhi-Liang Gao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Chao Zhuo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong Province, China
| |
Collapse
|
34
|
Metagenomic Shotgun Sequencing Analysis of Canalicular Concretions in Lacrimal Canaliculitis Cases. Curr Issues Mol Biol 2021; 43:676-686. [PMID: 34287258 PMCID: PMC8928969 DOI: 10.3390/cimb43020049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022] Open
Abstract
Lacrimal canaliculitis is a rare infection of the lacrimal canaliculi with canalicular concretions formed by aggregation of organisms. Metagenomic shotgun sequencing analysis using next-generation sequencing has been used to detect pathogens directly from clinical samples. Using this technology, we report cases of successful pathogen detection of canalicular concretions in lacrimal canaliculitis cases. We investigated patients with primary lacrimal canaliculitis examined in the eye clinics of four hospitals from February 2015 to July 2017. Eighteen canalicular concretion specimens collected from 18 eyes of 17 patients were analyzed by shotgun metagenomics sequencing using the MiSeq platform (Illumina). Taxonomic classification was performed using the GenBank NT database. The canalicular concretion diversity was characterized using the Shannon diversity index. This study included 18 eyes (17 patients, 77.1 ± 6.1 years): 82.4% were women with lacrimal canaliculitis; canalicular concretions were obtained from 12 eyes using lacrimal endoscopy and six eyes using canaliculotomy with curettage. Sequencing analysis detected bacteria in all samples (Shannon diversity index, 0.05–1.47). The following genera of anaerobic bacteria (>1% abundance) were identified: Actinomyces spp. in 15 eyes, Propionibacterium spp., Parvimonas spp. in 11 eyes, Prevotella spp. in 9 eyes, Fusobacterium spp. in 6 eyes, Selenomonas spp. in 5 eyes, Aggregatibacter spp. in 3 eyes, facultative and aerobic bacteria such as Streptococcus spp. in 13 eyes, Campylobacter spp. in 6 eyes, and Haemophilus spp. in 3 eyes. The most common combinations were Actinomyces spp. and Streptococcus spp. and Parvinomonas spp. and Streptococcus spp., found in 10 cases. Pathogens were identified successfully using metagenomic shotgun sequencing analysis in patients with canalicular concretions. Canalicular concretions are polymicrobial with anaerobic and facultative, aerobic bacteria.
Collapse
|
35
|
Filkins LM, Bryson AL, Miller SA, Mitchell SL. Navigating Clinical Utilization of Direct-from-Specimen Metagenomic Pathogen Detection: Clinical Applications, Limitations, and Testing Recommendations. Clin Chem 2021; 66:1381-1395. [PMID: 33141913 DOI: 10.1093/clinchem/hvaa183] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Metagenomic next generation sequencing (mNGS) is becoming increasingly available for pathogen detection directly from clinical specimens. These tests use target-independent, shotgun sequencing to detect potentially unlimited organisms. The promise of this methodology to aid infection diagnosis is demonstrated through early case reports and clinical studies. However, the optimal role of mNGS in clinical microbiology remains uncertain. CONTENT We reviewed studies reporting clinical use of mNGS for pathogen detection from various specimen types, including cerebrospinal fluid, plasma, lower respiratory specimens, and others. Published clinical study data were critically evaluated and summarized to identify promising clinical indications for mNGS-based testing, to assess the clinical impact of mNGS for each indication, and to recognize test limitations. Based on these clinical studies, early testing recommendations are made to guide clinical utilization of mNGS for pathogen detection. Finally, current barriers to routine clinical laboratory implementation of mNGS tests are highlighted. SUMMARY The promise of direct-from-specimen mNGS to enable challenging infection diagnoses has been demonstrated through early clinical studies of patients with meningitis or encephalitis, invasive fungal infections, community acquired pneumonia, and other clinical indications. However, the proportion of patient cases with positive clinical impact due to mNGS testing is low in published studies and the cost of testing is high, emphasizing the importance of improving our understanding of 'when to test' and for which patients mNGS testing is appropriate.
Collapse
Affiliation(s)
- Laura M Filkins
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Alexandra L Bryson
- Department of Pathology, Virginia Commonwealth University Health System, Richmond, VA
| | - Steve A Miller
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA
| | - Stephanie L Mitchell
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
36
|
Abstract
Metagenomic analysis is the comprehensive study of DNA using clinical specimens of organisms including bacteria, fungi, and viruses. In this study, we investigated the efficacy of metagenomic analysis for diagnosing ocular infections, including 11 keratitis cases, four iridocyclitis cases, and one endophthalmitis case. Corneal scraping, aqueous humor, and vitreous humor, were collected respectively. Ocular specimens were used for bacterial and fungal culture, and PCR for detecting viral DNA. Shotgun metagenomic sequencing for 150 bases of single end was performed by Illumina MiSeq® System. Sequence was retrieved from the database at NCBI using a MegaBLAST search. Since Propionibacterium spp. are commensal bacteria found at the ocular surface, they were excluded from analysis. Six cases (37.5%) were positive for culture or PCR. Metagenome techniques revealed that 9 cases (56.3%) included genomes of organisms that were considered pathogenic in specimens. Five cases (31.3%) possessed genomes of organisms like themselves that were detected by culture and PCR. Six cases (37.5%) were negative for culture, PCR, and metagenome analysis. Moreover, viral pathogens (HSV-1, 2 cases; and VZV, 1 case) were detected by only metagenome analysis. Metagenome analysis using an ocular sample can detect microbial genome comprehensively, and viral pathogens, which were not detected by conventional examination.
Collapse
|
37
|
Detection and Identification of Acanthamoeba and Other Nonviral Causes of Infectious Keratitis in Corneal Scrapings by Real-Time PCR and Next-Generation Sequencing-Based 16S-18S Gene Analysis. J Clin Microbiol 2021; 59:JCM.02224-20. [PMID: 33239372 PMCID: PMC8111161 DOI: 10.1128/jcm.02224-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/16/2020] [Indexed: 01/29/2023] Open
Abstract
Acanthamoeba is a free-living amoeba of extensive genetic diversity. It may cause infectious keratitis (IK), which can also be caused by bacteria, fungi, and viruses. Acanthamoeba is a free-living amoeba of extensive genetic diversity. It may cause infectious keratitis (IK), which can also be caused by bacteria, fungi, and viruses. High diagnostic sensitivity is essential to establish an early diagnosis of Acanthamoeba-associated keratitis. Here, we investigated the applicability of next-generation sequencing (NGS)-based ribosomal gene detection and differentiation (16S-18S) compared with specific real-time PCR for the detection of Acanthamoeba. Two hundred DNAs extracted from corneal scrapings and screened by Acanthamoeba-specific real-time PCR were analyzed using an in-house 16S-18S NGS assay. Of these, 24 were positive by specific real-time PCR, of which 21 were positive by the NGS assay. Compared with real-time PCR; the specificity and sensitivity of the NGS assay were 100% and 88%, respectively. Genotypes identified by the NGS assay included T4 (n = 19) and T6 (n = 2). Fungal and bacterial species of potential clinical relevance were identified in 31 of the samples negative for Acanthamoeba, exemplified by Pseudomonas aeruginosa (n = 11), Moraxella spp. (n = 6), Staphylococcus aureus (n = 2), Fusarium spp. (n = 4), and Candida albicans (n = 1). In conclusion, the 16S-18S assay was slightly less sensitive than real-time PCR in detecting Acanthamoeba-specific DNA in corneal scrapings. Robust information on genotypes was provided by the NGS assay, and other pathogens of potential clinical relevance were identified in 16% of the samples negative for Acanthamoeba. NGS-based detection of ribosomal genes in corneal scrapings could be an efficient screening method for detecting nonviral causes of IK, including Acanthamoeba.
Collapse
|
38
|
Zhong Y, Xu F, Wu J, Schubert J, Li MM. Application of Next Generation Sequencing in Laboratory Medicine. Ann Lab Med 2021; 41:25-43. [PMID: 32829577 PMCID: PMC7443516 DOI: 10.3343/alm.2021.41.1.25] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/24/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
The rapid development of next-generation sequencing (NGS) technology, including advances in sequencing chemistry, sequencing technologies, bioinformatics, and data interpretation, has facilitated its wide clinical application in precision medicine. This review describes current sequencing technologies, including short- and long-read sequencing technologies, and highlights the clinical application of NGS in inherited diseases, oncology, and infectious diseases. We review NGS approaches and clinical diagnosis for constitutional disorders; summarize the application of U.S. Food and Drug Administration-approved NGS panels, cancer biomarkers, minimal residual disease, and liquid biopsy in clinical oncology; and consider epidemiological surveillance, identification of pathogens, and the importance of host microbiome in infectious diseases. Finally, we discuss the challenges and future perspectives of clinical NGS tests.
Collapse
Affiliation(s)
- Yiming Zhong
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,
USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,
USA
| | - Feng Xu
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,
USA
| | - Jinhua Wu
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,
USA
| | - Jeffrey Schubert
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,
USA
| | - Marilyn M. Li
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,
USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,
USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA,
USA
| |
Collapse
|
39
|
Mills B, Radhakrishnan N, Karthikeyan Rajapandian SG, Rameshkumar G, Lalitha P, Prajna NV. The role of fungi in fungal keratitis. Exp Eye Res 2020; 202:108372. [PMID: 33249061 DOI: 10.1016/j.exer.2020.108372] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/07/2020] [Accepted: 11/22/2020] [Indexed: 12/20/2022]
Abstract
Fungal keratitis (FK) accounts for approximately half of the microbial keratitis encountered in low middle income countries (LMICs) and predominantly affect the working rural-poor. FK causes significant morbidity with the majority of patients left with moderate or worse visual impairment and approximately 25% requiring expensive and often unsuccessful surgical interventions. The severity of FK and the resultant corneal damage or resolution can be attributed to i) the virulence and bioburden of the fungal pathogen, ii) the host defense mechanism and immune response and iii) sub-optimal diagnostics and anti-fungal treatment strategies. This review provides a comprehensive overview of the multifaceted components that drive FK progression and resolution, highlighting where knowledge gaps exist and areas that warrant further research.
Collapse
Affiliation(s)
- Bethany Mills
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, UK
| | - Naveen Radhakrishnan
- Department of Cornea and Refractive Surgery, Aravind Eye Hospital, Madurai, India
| | | | | | - Prajna Lalitha
- Department of Ocular Microbiology, Aravind Eye Hospital, Madurai, India
| | - N Venkatesh Prajna
- Department of Cornea and Refractive Surgery, Aravind Eye Hospital, Madurai, India.
| |
Collapse
|
40
|
Recurrent microbial keratitis and endogenous site Staphylococcus aureus colonisation. Sci Rep 2020; 10:18559. [PMID: 33122810 PMCID: PMC7596706 DOI: 10.1038/s41598-020-75821-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/19/2020] [Indexed: 01/19/2023] Open
Abstract
This study investigated Staphylococcus aureus carriage in patients with microbial keratitis (MK). 215 patients with MK, 60 healthy controls and 35 patients with rheumatoid arthritis (RA) were included. Corneal scrapes were collected from patients with MK. Conjunctival, nasal and throat swabs were collected from the non-MK groups on a single occasion and from the MK group at presentation and then at 6 and 12 weeks. Samples were processed using conventional diagnostic culture. 68 (31.6%) episodes of clinically suspected MK were classed as recurrent. Patients with recurrent MK had a higher isolation rate of S. aureus from their cornea than those with a single episode (p < 0.01) and a higher isolation rate of S. aureus from their conjunctiva compared to control participants, 20.6% (14/68) versus 3% (5/60) respectively (p = 0.01). Significantly more patients with recurrent MK (12/68, 17.6%) were found to have S. aureus isolated from both their conjunctiva and nose than those with a single episode of MK (7/147, 4.8% p = 0.002) and compared to patients in the control group (3/60, 5.0% p = 0.03). The results indicate that patients with recurrent MK have higher rates of carriage of S. aureus suggesting endogenous site colonisation as a possible source of recurrent infection.
Collapse
|
41
|
Wang L, Wang Z, Ma J, Li Q, Chen X, Chen Y, Sun X. Comparison of Intraocular Antibody Measurement, Quantitative Pathogen PCR, and Metagenomic Deep Sequencing of Aqueous Humor in Secondary Glaucoma Associated with Anterior Segment Uveitis. Ocul Immunol Inflamm 2020; 30:153-159. [PMID: 32809886 DOI: 10.1080/09273948.2020.1776883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To identify viral pathogens in patients with secondary glaucoma associated with anterior segment uveitis and compare metagenomic deep sequencing (MDS) with enzyme-linked immunosorbent assay (ELISA) combined with Witmer-Desmonts coefficient (WDC) evaluation and real-time quantitative polymerase chain reaction (qPCR) on investigating pathogens in aqueous humor. METHODS Aqueous humor from 31 patients, including 22 Posner-Schlossman Syndrome and 9 other anterior uveitis, was assessed pathogens by ELISA combined with WDC evaluation, virus deoxyribonucleic acid (DNA) detection by real-time qPCR and MDS. RESULTS Viral pathogens (HCMV or VZV or RV) were detected in 19 out of 31 eyes (61.3%) by real-time qPCR or WDC evaluation. MDS revealed the presence of HCMV DNA sequences in three PSS patients. CONCLUSION Virus is an important pathogen in secondary glaucoma associated with anterior segment uveitis. MDS is a potential etiologic diagnosis tool to seek intraocular viral pathogens for secondary glaucoma associated anterior segment uveitis.
Collapse
Affiliation(s)
- Li Wang
- Department of Ophthalmology & Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Zhujian Wang
- Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinmin Ma
- Infection Disease Department, BGI-Shenzhen, Shenzhen, China
| | - Qiongfang Li
- Infection Disease Department, BGI-Shenzhen, Shenzhen, China
| | - Xueli Chen
- Department of Ophthalmology & Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Yuhong Chen
- Department of Ophthalmology & Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology & Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Larkin PMK, Lawson KL, Contreras DA, Le CQ, Trejo M, Realegeno S, Hilt EE, Chandrasekaran S, Garner OB, Fishbein GA, Yang S. Amplicon-Based Next-Generation Sequencing for Detection of Fungi in Formalin-Fixed, Paraffin-Embedded Tissues: Correlation with Histopathology and Clinical Applications. J Mol Diagn 2020; 22:1287-1293. [PMID: 32738297 DOI: 10.1016/j.jmoldx.2020.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/26/2020] [Indexed: 01/13/2023] Open
Abstract
Invasive fungal infections are increasing in prevalence because of an expanding population of immunocompromised individuals. To reduce morbidity and mortality, it is critical to accurately identify fungal pathogens to guide treatment. Current methods rely on histopathology, fungal culture, and serology, which are often insufficient for diagnosis. Herein, we describe the use of a laboratory-developed internal transcribed spacer-targeted amplicon-based next-generation sequencing (NGS) assay for the identification of fungal etiology in fungal stain-positive formalin-fixed, paraffin-embedded tissues by using Illumina MiSeq. A total of 44 specimens from 35 patients were included in this study, with varying degrees of fungal burden from multiple anatomic sites. NGS identified 20 unique species across the 54 total organisms detected, including 40 molds, 10 yeasts, and 4 dimorphic fungi. The histopathologic morphology and the organisms suspected by surgical pathologist were compared with the organisms identified by NGS, with 100% (44/44) and 93.2% (41/44) concordance, respectively. In contrast, fungal culture only provided an identification in 27.3% (12/44) of specimens. We demonstrated that NGS is a powerful method for accurate and unbiased fungal identification in formalin-fixed, paraffin-embedded tissues. A retrospective evaluation of the clinical utility of the NGS results also suggests this technology can potentially improve both the speed and the accuracy of diagnosis for invasive fungal infections.
Collapse
Affiliation(s)
- Paige M K Larkin
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Katy L Lawson
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Deisy A Contreras
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Catherine Q Le
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Marisol Trejo
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Susan Realegeno
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Evann E Hilt
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Sukantha Chandrasekaran
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Omai B Garner
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Gregory A Fishbein
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Shangxin Yang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
43
|
Mitchell SL, Simner PJ. Next-Generation Sequencing in Clinical Microbiology: Are We There Yet? Clin Lab Med 2020; 39:405-418. [PMID: 31383265 DOI: 10.1016/j.cll.2019.05.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Next-generation sequencing (NGS) applications have been transitioning from research tools to diagnostic methods and are becoming more commonplace in clinical microbiology laboratories. These applications include (1) whole-genome sequencing, (2) targeted next-generation sequencing methods, and (3) metagenomic next-generation sequencing. The introduction of these methods into the clinical microbiology laboratory has led to the theoretic question of "Will NGS-based methods supplant traditional methods for strain typing, identification, and antimicrobial susceptibility prediction?" The authors address this question and discuss where we are at now with clinical NGS applications for infectious diseases, what does the future hold, and at what cost?
Collapse
Affiliation(s)
- Stephanie L Mitchell
- Department of Pathology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Main Hospital, Floor B, #269, Pittsburgh, PA 15224, USA
| | - Patricia J Simner
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Meyer B1-193, 600 North Wolfe Street, Baltimore, MD 21287-7093, USA.
| |
Collapse
|
44
|
Deepthi KG, Prabagaran SR. Ocular bacterial infections: Pathogenesis and diagnosis. Microb Pathog 2020; 145:104206. [PMID: 32330515 DOI: 10.1016/j.micpath.2020.104206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
The human eye is a rigid asymmetric structure with unique defence system. Despite considerable resident microbiota, eye is exposed to external environment where a range of microorganisms also inhabits. Opportunistically, some of these microorganisms could associate with eye pathogen that could contact incidentally, leading to destructive visual consequences. Among such microbiota, bacteria form the major proportion concerning ocular complications worldwide. The succession of genome based approach through 16S rRNA gene based identification tremendously augmented the knowledge on diversity of ocular surface bacteria. Such evidence suggests that while few bacteria contribute towards normal ocular functions, considerable number of bacteria play active role in pathophysiology of ocular diseases. Thus, understanding the complexity of ocular microflora not only throw light on their critical role towards normal function of the eye, but also enlighten on certain visual exigencies. Under these circumstances, development of a rapid, reliable and cost effective method is essential that eventually evolve as a routine diagnostic protocol. Such precise prognostic modalities facilitate ophthalmologists to formulate pioneering therapeutics towards challenging ocular diseases.
Collapse
|
45
|
Abstract
Background:In microbial keratitis, infection of the cornea can threaten vision through permanent corneal scarring and even perforation resulting in the loss of the eye. A literature review was conducted by Karsten, Watson and Foster (2012) to determine the spectrum of microbial keratitis. Since this publication, there have been over 2600 articles published investigating the causative pathogens of microbial keratitis.Objective:To determine the current spectrum of possible pathogens implicated in microbial keratitis relative to the 2012 study.Methods:An exhaustive literature review was conducted of all the peer-reviewed articles reporting on microbial pathogens implicated in keratitis. Databases including MEDLINE, EMBASE, Scopus and Web of Science were searched utilising their entire year limits (1950-2019).Results:Six-hundred and eighty-eight species representing 271 genera from 145 families were implicated in microbial keratitis. Fungal pathogens, though less frequent than bacteria, demonstrated the greatest diversity with 393 species from 169 genera that were found to cause microbial keratitis. There were 254 species of bacteria from 82 genera, 27 species of amoeba from 11 genera, and 14 species of virus from 9 genera, which were also identified as pathogens of microbial keratitis.Conclusion:The spectrum of pathogens implicated in microbial keratitis is extremely diverse. Bacteria were most commonly encountered and in comparison, to the review published in 2012, further 456 pathogens have been identified as causative pathogens of microbial keratitis. Therefore, the current review provides an important update on the potential spectrum of microbes, to assist clinicians in the diagnosis and treatment of microbial keratitis.
Collapse
|
46
|
Gallon P, Parekh M, Ferrari S, Fasolo A, Ponzin D, Borroni D. Metagenomics in ophthalmology: Hypothesis or real prospective? ACTA ACUST UNITED AC 2019; 23:e00355. [PMID: 31312608 PMCID: PMC6609782 DOI: 10.1016/j.btre.2019.e00355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/30/2019] [Accepted: 06/22/2019] [Indexed: 12/12/2022]
Abstract
Metagenomic analysis was originally associated with the studies of genetic material from environmental samples. But, with the advent of the Human Microbiome Project, it has now been applied in clinical practices. The ocular surface (OS) is the most exposed part of the eye, colonized by several microbial communities (both, OS and environmental) that contribute to the maintenance of the physiological state. Limited knowledge has been acquired on these microbes due to the limitations of conventional diagnostic methods. Emerging fields of research are focusing on Next Generation Sequencing (NGS) technologies to obtain reliable information on the OS microbiome. Currently only pre-specified pathogens can be detected by conventional culture-based techniques or Polymerase Chain Reaction (PCR), but there are conditions to state whether metagenomics could revolutionize the diagnosis of ocular diseases. The aim of this review is to provide an updated overview of the studies involving NGS technology for OS microbiome.
Collapse
Affiliation(s)
- Paola Gallon
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | - Mohit Parekh
- Institute of Ophthalmology, University College London, London, UK
| | | | | | - Diego Ponzin
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | - Davide Borroni
- Department of Doctoral Studies, Riga Stradins University, Riga, Latvia
| |
Collapse
|
47
|
Ma L, Jakobiec FA, Dryja TP. A Review of Next-Generation Sequencing (NGS): Applications to the Diagnosis of Ocular Infectious Diseases. Semin Ophthalmol 2019; 34:223-231. [PMID: 31170015 DOI: 10.1080/08820538.2019.1620800] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purpose: To review the value of next-generation sequencing (NGS) in identifying the pathogens which cause ocular infections, thereby facilitating prompt initiation of treatment with an optimal anti-microbial regimen. Both contemporary and futuristic approaches to identifying pathogens in ocular infections are covered in this brief overview. Methods: Review of the peer reviewed literature on conventional and advanced methods as applied to the diagnosis of infectious diseases of the eye. Conclusion: NGS is a novel technology for identifying the pathogens responsible for ocular infections with the potential to improve the accuracy and speed of diagnosis and hastening the selection of the best therapy.
Collapse
Affiliation(s)
- Lina Ma
- a David G Cogan Laboratory of Ophthalmic Pathology, Massachusetts Eye and Ear Infirmary , Harvard Medical School , Boston , MA , USA
| | - Frederick A Jakobiec
- a David G Cogan Laboratory of Ophthalmic Pathology, Massachusetts Eye and Ear Infirmary , Harvard Medical School , Boston , MA , USA
| | - Thaddeus P Dryja
- a David G Cogan Laboratory of Ophthalmic Pathology, Massachusetts Eye and Ear Infirmary , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
48
|
Ung L, Bispo PJM, Shanbhag SS, Gilmore MS, Chodosh J. The persistent dilemma of microbial keratitis: Global burden, diagnosis, and antimicrobial resistance. Surv Ophthalmol 2019; 64:255-271. [PMID: 30590103 PMCID: PMC7021355 DOI: 10.1016/j.survophthal.2018.12.003] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 01/16/2023]
Abstract
Microbial keratitis is a potentially blinding condition that must be treated emergently to preserve vision. Although long recognized as a significant cause of corneal blindness, our understanding of its true global scale, associated burden of disease, and etiological patterns remains somewhat limited. Current epidemiological data suggest that microbial keratitis may be epidemic in parts of the world-particularly within South, South-East, and East Asia-and may exceed 2 million cases per year worldwide. Etiological patterns vary between economically developed and developing countries, with bacterial predominance in the former and fungal predominance in the latter. The key to effective management lies in timely diagnosis; however, the current gold standard of stain and culture remains time consuming and often yields no clinically useful results. For this reason, there are attempts to develop highly sensitive and accurate molecular diagnostic tools to provide rapid diagnosis, inform treatment decision making, and minimize the threat of antimicrobial resistance. We provide an overview of these key areas and of avenues for further research toward the goal of more effectively addressing the problem of microbial keratitis on both an individual and public health level.
Collapse
Affiliation(s)
- Lawson Ung
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Paulo J M Bispo
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Swapna S Shanbhag
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA; Tej Kohli Cornea Institute, L. V. Prasad Eye Institute, Hyderabad, India
| | - Michael S Gilmore
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
49
|
Mahmoudi S, Masoomi A, Ahmadikia K, Tabatabaei SA, Soleimani M, Rezaie S, Ghahvechian H, Banafsheafshan A. Fungal keratitis: An overview of clinical and laboratory aspects. Mycoses 2018; 61:916-930. [PMID: 29992633 DOI: 10.1111/myc.12822] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/28/2018] [Indexed: 12/22/2022]
Abstract
Mycotic keratitis or keratomycosis is a fungal infection with global distribution. The dominant aetiology of this disease varies based on geographical origin, socioeconomic status, and climatic condition. Generally, Aspergillus spp. and Fusarium spp. are common in tropical and subtropical regions and Candida spp. are dominant in temperate areas. Demonstration of fungal elements in microscopic examination besides the isolation of fungi in culture is the gold standard of laboratory diagnosis. As the culture is a time-consuming procedure, other approaches such as in vivo confocal microscopy which produces real-time imaging of corneal tissue and molecular techniques have been developed to facilitate rapid diagnosis of fungal keratitis. The first choice of treatment is topical natamycin, although topical amphotericin B is the best choice for Aspergillus and Candida keratitis. Regarding the diversity of fungal aetiology and the emergence of drug resistance in some genera and species, proper identification using molecular methods and antifungal susceptibility testing could provide useful data. Furthermore, as the better efficacy of combination therapy in comparison to monotherapy is reported, in vitro determination of interactions between various drugs seem informative. This review aims to provide a general and updated view on the aetiology, risk factors, epidemiology, clinical and laboratory diagnosis, and management of fungal keratitis.
Collapse
Affiliation(s)
- Shahram Mahmoudi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Masoomi
- Department of Ocular Trauma and Emergency, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Ahmadikia
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Tabatabaei
- Department of Ocular Trauma and Emergency, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Soleimani
- Department of Ocular Trauma and Emergency, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sassan Rezaie
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghahvechian
- Department of Ocular Trauma and Emergency, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Banafsheafshan
- Department of Ocular Trauma and Emergency, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Lu J, Salzberg SL. Removing contaminants from databases of draft genomes. PLoS Comput Biol 2018; 14:e1006277. [PMID: 29939994 PMCID: PMC6034898 DOI: 10.1371/journal.pcbi.1006277] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/06/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022] Open
Abstract
Metagenomic sequencing of patient samples is a very promising method for the diagnosis of human infections. Sequencing has the ability to capture all the DNA or RNA from pathogenic organisms in a human sample. However, complete and accurate characterization of the sequence, including identification of any pathogens, depends on the availability and quality of genomes for comparison. Thousands of genomes are now available, and as these numbers grow, the power of metagenomic sequencing for diagnosis should increase. However, recent studies have exposed the presence of contamination in published genomes, which when used for diagnosis increases the risk of falsely identifying the wrong pathogen. To address this problem, we have developed a bioinformatics system for eliminating contamination as well as low-complexity genomic sequences in the draft genomes of eukaryotic pathogens. We applied this software to identify and remove human, bacterial, archaeal, and viral sequences present in a comprehensive database of all sequenced eukaryotic pathogen genomes. We also removed low-complexity genomic sequences, another source of false positives. Using this pipeline, we have produced a database of “clean” eukaryotic pathogen genomes for use with bioinformatics classification and analysis tools. We demonstrate that when attempting to find eukaryotic pathogens in metagenomic samples, the new database provides better sensitivity than one using the original genomes while offering a dramatic reduction in false positives. Infectious diseases afflict a majority of the human population around the world, from the common cold to the devastating malaria parasite. As technology has evolved, DNA sequencing emerged as a revolutionary and rapid method for diagnosing human infections. As part of our efforts to boost the ability of scientists to identify the source of an infection by sequencing, we present here a computational method for removing erroneous or misleading sequences from existing DNA databases. When we applied this method to a database of more than 200 eukaryotic pathogens, we were able to successfully and accurately identify the true pathogens infecting real human samples.
Collapse
Affiliation(s)
- Jennifer Lu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
- * E-mail: ,
| | - Steven L. Salzberg
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
- Departments of Computer Science and Biostatistics, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|