1
|
Yuan Z, Czerpak CA, Kashaf MS, Quigley HA, Nguyen TD. Biomechanical Strain Responses in the Sclera, Choroid, and Retina in Glaucoma Patients After Intraocular Pressure Lowering. J Biomech Eng 2025; 147:051008. [PMID: 40079568 PMCID: PMC11977571 DOI: 10.1115/1.4068155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
This study measured the strain response to intraocular pressure (IOP) change in the sclera, choroid, and retina of glaucoma patients whose optic nerve head region was imaged by optical coherence tomography (OCT) before and after IOP-lowering by laser suturelysis following trabeculectomy surgery. The strain response was calculated from digital volume correlation of the prior and after images. The strain response of the sclera, choroid, and retina were compared to those previously published for the anterior lamina cribrosa (ALC). Mean strains were lowest in the retina and highest in the prelaminar neural tissue (PLNT). Maximum principal and maximum shear strains were significantly increased with greater IOP decrease in all five eye regions. Maximum principal and maximum shear strains in the anterior lamina cribrosa and the sclera were significantly related (p = 0.0094). Strain in the radial direction was negative in the ALC and PLNT, but positive in the sclera (p = 0.017). In conclusion, the strain response of the sclera, choroid, and retina is related to the magnitude of IOP change and is smaller than those of the ALC. The strain response of the ALC and sclera are significantly related to each other.
Collapse
Affiliation(s)
- Zhuochen Yuan
- Wilmer Ophthalmological Institute, Johns Hopkins University School of Medicine, Wilmer 120, 400 North Broadway, Baltimore, MD 21287
| | - Cameron A. Czerpak
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218
| | - Michael Saheb Kashaf
- Wilmer Ophthalmological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- University of California San Diego Medical Center
| | - Harry A. Quigley
- Wilmer Ophthalmological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Thao D. Nguyen
- Wilmer Ophthalmological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287; Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
2
|
Lee EJ, Park DY, Han JC, Kee C. Earliest location of glaucomatous retinal nerve fibre layer damage is determined by intact baseline RNFL thickness profile. Br J Ophthalmol 2025; 109:572-581. [PMID: 39542709 DOI: 10.1136/bjo-2024-325630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND/AIMS To identify whether an intact retinal nerve fibre layer (RNFL) thickness profile could determine the location of the earliest RNFL defect in glaucoma. METHODS Retrospective longitudinal cohort study of patients with initial unilateral glaucoma who eventually developed new glaucoma in the fellow eye. Guided progression analysis (GPA) of serial optical coherence tomography (OCT) examinations was used to identify the angular locations of the earliest RNFL defect, peak and temporal edge of the baseline RNFL profile and major vessels based on the peripapillary OCT scan circle. RESULTS We identified 112 new RNFL defects in 109 fellow eyes of 109 consecutive patients. The locations of new defects were superotemporal (22 eyes), inferotemporal (87 eyes) and papillomacular bundle (3 eyes), respectively. Overall, the midpoint location of the earliest RNFL defect strongly coincided with the RNFL peak (p<0.001). Specifically, the location was mildly (4.3±12.0°) temporal to, rather than at the peak thickness, particularly in eyes with a focal thinning pattern of arcuate bundles (7.8±10.8°). The close topographical relationship was consistent regardless of the interindividual variability in the RNFL profile and vessels, as well as hemispheric locations, and after adjusting for potential factors including age, refractive error, baseline intraocular pressure, tilt ratio, tilt axis and glaucoma diagnosis. CONCLUSION The location of the earliest RNFL defect in glaucoma showed a close relationship with the intact RNFL profile within the same eye, regardless of variations in RNFL, hemispheric location and vessel distribution. In addition, the earliest defect was located mildly temporal to, rather than at, the peak RNFL thickness. The baseline RNFL profile may have a significant role in the regional vulnerability of glaucoma.
Collapse
Affiliation(s)
- Eun Jung Lee
- Samsung Medical Center, Department of Ophthalmology, Sungkyunkwan University School of Medicine, Seoul, Korea (the Republic of)
| | - Do Young Park
- Samsung Medical Center, Department of Ophthalmology, Sungkyunkwan University School of Medicine, Seoul, Korea (the Republic of)
| | - Jong Chul Han
- Samsung Medical Center, Department of Ophthalmology, Sungkyunkwan University School of Medicine, Seoul, Korea (the Republic of)
| | - Changwon Kee
- Kim's Eye Hospital, Seoul, Korea (the Republic of)
| |
Collapse
|
3
|
Czerpak CA, Kashaf MS, Zimmerman BK, Mirville R, Gasquet NC, Quigley HA, Nguyen TD. The Strain Response to Intraocular Pressure Increase in the Lamina Cribrosa of Control Subjects and Glaucoma Patients. Transl Vis Sci Technol 2024; 13:7. [PMID: 39630437 PMCID: PMC11627119 DOI: 10.1167/tvst.13.12.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
Purpose The purpose of this study was to measure biomechanical strains in the lamina cribrosa (LC) of living human eyes undergoing intraocular pressure (IOP) increase. Methods Healthy control subjects and patients with glaucoma underwent optical coherence tomographic (OCT) imaging of the LC before and after wearing of swim goggles that increased IOP (57 image pairs, 39 persons). Digital volume correlation was used to measure biomechanical strains in optic nerve head tissue and change in depth of the anterior border of the LC. Results The mean IOP increase in both glaucoma and control eyes was 7.1 millimeters of mercury (mm Hg) after application of the goggles. Among glaucoma eyes, strains that were significant were: contractile Ezz (average = -0.33%, P = 0.0005), contractile Eθθ (average = -0.23%, P = 0.03), Emax (average = 0.83%, P < 0.0001), and Γmax (average = 0.95%, P < 0.0001), whereas the average anterior LC depth (ALD) decreased by 2.39 µm (anterior; P = 0.0002). In glaucoma eyes, shear strain Ezθ was greater with worse mean deviation (MD) and visual function index (P = 0.044 and P = 0.006, respectively, multivariate models). Strain compliance for Erθ, Ezθ, and Eθθ all increased with greater MD worsening prior to imaging (P = 0.04, P = 0.007, and P = 0.03). Conclusions LC strains were measurable 20 minutes after IOP increase, producing axial compression and greater peripheral strain than centrally. Some strain compliances were greater with worse existing visual field loss or with more progressive past field loss. Translational Relevance Biomechanical strains are related to measures of glaucoma damage, supporting the hypothesis that optic nerve head biomechanical responses represent a noninvasive biomarker for glaucoma.
Collapse
Affiliation(s)
- Cameron A. Czerpak
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Michael Saheb Kashaf
- Wilmer Ophthalmological Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brandon K. Zimmerman
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | | | - Nicolas C. Gasquet
- Wilmer Ophthalmological Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harry A. Quigley
- Wilmer Ophthalmological Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thao D. Nguyen
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, USA
- Wilmer Ophthalmological Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Chuangsuwanich T, Tun TA, Braeu FA, Chong RS, Wang X, Ho CL, Aung T, Girard MJA, Hoang QV. Comparing IOP-Induced Scleral Deformations in the Myopic and Myopic Glaucoma Spectrums. Invest Ophthalmol Vis Sci 2024; 65:54. [PMID: 39585674 PMCID: PMC11601134 DOI: 10.1167/iovs.65.13.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/07/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose To compare changes in macular curvature following acute IOP elevation across a range of myopic conditions. Methods We studied 328 eyes from 184 subjects, comprising 32 emmetropic controls (between +2.75 and -2.75 diopters), 50 eyes with high myopia (<-5 diopters; HM), 108 highly myopic with glaucoma (HMG) and 105 pathologic myopia (PM) eyes, and 33 PM with staphyloma (PM+S) eyes. For each eye, we imaged the macula using optical coherence tomography (OCT) under the baseline condition and under acute IOP elevation (to ∼40 mm Hg) achieved through ophthalmodynamometry. We manually aligned the scans (baseline and IOP elevation) using three vascular landmarks in the macula tissue. We then automatically segmented the sclera and the choroid tissues using a deep learning algorithm and extracted the sclera-choroid interface. We calculated the macula curvatures, determined by the radius of curvature of the sclera-choroid interface in the nasal-temporal and superior-inferior direction. Differences in macula curvatures between baseline and elevated IOP scans were calculated at corresponding locations, and the mean curvature difference was reported for each eye. Results IOP elevation resulted in a significantly higher macula curvature change along the nasal-temporal direction in the PM+S (13.5 ± 8.2 × 10-5 µm-1), PM (9.0 ± 7.9 × 10-5 µm-1), and HMG (5.2 ± 5.1 × 10-5 µm-1) eyes as compared to HM (3.1 ± 2.7 × 10-5 µm-1) eyes (all P < 0.05). Interestingly, HM and HMG eyes had the same curvature change in the nasal-temporal direction as emmetropic control eyes (4.2 ± 4.3 × 10-5 µm-1). Conclusions Our findings indicate that the macula in HMG, PM, and PM+S eyes showed greater curvature changes under IOP elevation compared to HM and emmetropic eyes. These preliminary results suggest that HM eyes with conditions such as glaucoma or staphyloma are more sensitive to acute IOP elevation.
Collapse
Affiliation(s)
- Thanadet Chuangsuwanich
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Tin A. Tun
- Eye-ACP, Duke-NUS Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Fabian A. Braeu
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Rachel S. Chong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Xiaofei Wang
- Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Ching-Lin Ho
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Tin Aung
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Eye-ACP, Duke-NUS Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Michaël J. A. Girard
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Eye-ACP, Duke-NUS Medical School, Singapore, Singapore
- Institute for Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Quan V. Hoang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Eye-ACP, Duke-NUS Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Department of Ophthalmology, Columbia University, New York, United States
| |
Collapse
|
5
|
Hannay V, Czerpak C, Quigley HA, Nguyen TD. A Noninvasive Clinical Method to Measure in Vivo Mechanical Strains of the Lamina Cribrosa by OCT. OPHTHALMOLOGY SCIENCE 2024; 4:100473. [PMID: 38560276 PMCID: PMC10973664 DOI: 10.1016/j.xops.2024.100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 04/04/2024]
Abstract
Objective To measure mechanical strain of the lamina cribrosa (LC) after intraocular pressure (IOP) change produced 1 week after a change in glaucoma medication. Design Cohort study. Participants Adult glaucoma patients (23 eyes, 15 patients) prescribed a change in IOP-lowering medication. Intervention Noninvasive OCT imaging of the eye. Main Outcome Measures Deformation calculated by digital volume correlation of OCT scans of the LC before and after IOP lowering by medication. Results Among 23 eyes, 17 eyes of 12 persons had IOP lowering ≥ 3 mmHg (reduced IOP group) with tensile anterior-posterior Ezz strain = 1.0% ± 1.1% (P = 0.003) and compressive radial strain (Err) = -0.3% ± 0.5% (P = 0.012; random effects models accounting inclusion of both eyes in some persons). Maximum in-plane principal (tensile) strain and maximum shear strain in the reduced-IOP group were as follows: Emax = 1.7% ± 1.0% and Γmax = 1.4% ± 0.7%, respectively (both P < 0.0001 vs. zero). Reduced-IOP group strains Emax and Γmax were significantly larger with greater % IOP decrease (P < 0.0001 and P < 0.0001, respectively). The compliances of the Ezz, Emax, and Γmax strain responses, defined as strain normalized by the IOP decrease, were larger with more abnormal perimetric mean deviation or visual field index values (all P ≤ 0.02). Strains were unrelated to age (all P ≥ 0.088). In reduced-IOP eyes, mean LC anterior border posterior movement was only 2.05 μm posteriorly (P = 0.052) and not related to % IOP change (P = 0.94, random effects models). Only Err was significantly related to anterior lamina depth change, becoming more negative with greater posterior LC border change (P = 0.015). Conclusions Lamina cribrosa mechanical strains can be effectively measured by changes in eye drop medication using OCT and are related to degree of visual function loss in glaucoma. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Vanessa Hannay
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Cameron Czerpak
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Harry A. Quigley
- Department of Ophthalmology, Wilmer Ophthalmological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thao D. Nguyen
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland
- Department of Ophthalmology, Wilmer Ophthalmological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
6
|
Czerpak CA, Quigley HA, Nguyen TD. Long-term Remodeling Response in the Lamina Cribrosa Years after Intraocular Pressure Lowering by Suturelysis after Trabeculectomy. Ophthalmol Glaucoma 2024; 7:298-307. [PMID: 38272391 PMCID: PMC11127792 DOI: 10.1016/j.ogla.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/15/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
OBJECTIVE To measure the remodeling of the lamina cribrosa (LC) years after intraocular pressure (IOP) lowering by suturelysis. DESIGN Cohort study. PARTICIPANTS Glaucoma patients were imaged 20 minutes after laser suturelysis after trabeculectomy surgery and at their follow-up appointment 1 to 4 years later (16 image pairs; 15 persons). INTERVENTION Noninvasive OCT imaging of the eye. MAIN OUTCOME MEASURES Deformation calculated by correlating OCT scans of the LC immediately after IOP lowering by suturelysis and those acquired years later (defined as remodeling strain). RESULTS The LC anterior border moved 60.9 ± 54.6 μm into the eye (P = 0.0007), and the LC exhibited regions of large local stretch in the anterior-posterior direction on long-term, maintained IOP lowering, resulting in a mean anterior-posterior remodeling strain of 14.0% ± 21.3% (P = 0.02). This strain and the LC border movement was 14 times and 124 times larger, respectively, than the direct response to IOP lowering by suturelysis. A larger anterior LC border movement was associated with greater mean anterior-posterior remodeling strain (P = 0.004). A thinner retinal nerve fiber layer at suturelysis was also associated with greater mean anterior-posterior remodeling strain at follow-up (P = 0.05). Worsening visual field indexes during follow-up were associated with a greater mean circumferential remodeling strain (P = 0.02), due to regions of large local circumferential stretch of the LC. Eyes with a more compliant LC torsional shear strain response at lysis were associated with worse mean deviation at follow-up (P = 0.03). CONCLUSIONS Strains and LC border position changes measured years after IOP lowering are far larger than the immediate response to IOP lowering and indicate dramatic remodeling of the LC anatomical structure caused by IOP lowering and glaucoma progression. The remodeling strains indicate substantial local stretch in the anterior-posterior direction and are associated with movement of the LC anterior border into the eye. Eyes with greater direct strain response to IOP lowering, greater glaucoma damage at suturelysis, and greater worsening of visual field at follow-up experienced greater remodeling. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03267849. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Cameron A Czerpak
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland.
| | - Harry A Quigley
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Thao D Nguyen
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland; Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
7
|
Chuangsuwanich T, Tun TA, Braeu FA, Wang X, Chin ZY, Panda SK, Buist M, Milea D, Strouthidis N, Perera S, Nongpiur ME, Aung T, Girard MJA. Adduction induces large optic nerve head deformations in subjects with normal-tension glaucoma. Br J Ophthalmol 2024; 108:522-529. [PMID: 37011991 DOI: 10.1136/bjo-2022-322461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/15/2023] [Indexed: 04/05/2023]
Abstract
PURPOSE To assess intraocular pressure (IOP)-induced and gaze-induced optic nerve head (ONH) strains in subjects with high-tension glaucoma (HTG) and normal-tension glaucoma (NTG). DESIGN Clinic-based cross-sectional study. METHODS The ONH from one eye of 228 subjects (114 subjects with HTG (pre-treatment IOP≥21 mm Hg) and 114 with NTG (pre-treatment IOP<21 mm Hg)) was imaged with optical coherence tomography (OCT) under the following conditions: (1) OCT primary gaze, (2) 20° adduction from OCT primary gaze, (3) 20° abduction from OCT primary gaze and (4) OCT primary gaze with acute IOP elevation (to approximately 33 mm Hg). We then performed digital volume correlation analysis to quantify IOP-induced and gaze-induced ONH tissue deformations and strains. RESULTS Across all subjects, adduction generated high effective strain (4.4%±2.3%) in the LC tissue with no significant difference (p>0.05) with those induced by IOP elevation (4.5%±2.4%); while abduction generated significantly lower (p=0.01) effective strain (3.1%±1.9%). The lamina cribrosa (LC) of HTG subjects exhibited significantly higher effective strain than those of NTG subjects under IOP elevation (HTG: 4.6%±1.7% vs NTG: 4.1%±1.5%, p<0.05). Conversely, the LC of NTG subjects exhibited significantly higher effective strain than those of HTG subjects under adduction (NTG: 4.9%±1.9% vs HTG: 4.0%±1.4%, p<0.05). CONCLUSION We found that NTG subjects experienced higher strains due to adduction than HTG subjects, while HTG subjects experienced higher strain due to IOP elevation than NTG subjects-and that these differences were most pronounced in the LC tissue.
Collapse
Affiliation(s)
- Thanadet Chuangsuwanich
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tin A Tun
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore
- Duke-NUS Medical School, Singapore
| | - Fabian A Braeu
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore
- Singapore-MIT Alliance for Research and Technology, Singapore
| | - Xiaofei Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhi Yun Chin
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore
| | - Satish K Panda
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Martin Buist
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Dan Milea
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore
- Duke-NUS Medical School, Singapore
| | | | - Shamira Perera
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore
- Duke-NUS Medical School, Singapore
| | - Monisha Esther Nongpiur
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore
- Duke-NUS Medical School, Singapore
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Duke-NUS Medical School, Singapore
| | - Michael J A Girard
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore
- Duke-NUS Medical School, Singapore
| |
Collapse
|
8
|
Pitha I, Du L, Nguyen TD, Quigley H. IOP and glaucoma damage: The essential role of optic nerve head and retinal mechanosensors. Prog Retin Eye Res 2024; 99:101232. [PMID: 38110030 PMCID: PMC10960268 DOI: 10.1016/j.preteyeres.2023.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
There are many unanswered questions on the relation of intraocular pressure to glaucoma development and progression. IOP itself cannot be distilled to a single, unifying value, because IOP level varies over time, differs depending on ocular location, and can be affected by method of measurement. Ultimately, IOP level creates mechanical strain that affects axonal function at the optic nerve head which causes local extracellular matrix remodeling and retinal ganglion cell death - hallmarks of glaucoma and the cause of glaucomatous vision loss. Extracellular tissue strain at the ONH and lamina cribrosa is regionally variable and differs in magnitude and location between healthy and glaucomatous eyes. The ultimate targets of IOP-induced tissue strain in glaucoma are retinal ganglion cell axons at the optic nerve head and the cells that support axonal function (astrocytes, the neurovascular unit, microglia, and fibroblasts). These cells sense tissue strain through a series of signals that originate at the cell membrane and alter cytoskeletal organization, migration, differentiation, gene transcription, and proliferation. The proteins that translate mechanical stimuli into molecular signals act as band-pass filters - sensing some stimuli while ignoring others - and cellular responses to stimuli can differ based on cell type and differentiation state. Therefore, to fully understand the IOP signals that are relevant to glaucoma, it is necessary to understand the ultimate cellular targets of IOP-induced mechanical stimuli and their ability to sense, ignore, and translate these signals into cellular actions.
Collapse
Affiliation(s)
- Ian Pitha
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liya Du
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thao D Nguyen
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Harry Quigley
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Xu FY, Lam AK. Intraocular pressure variation from ocular compression in low and high myopia. Clin Exp Optom 2024; 107:213-218. [PMID: 36975202 DOI: 10.1080/08164622.2023.2191784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
CLINICAL RELEVANCE Change in intraocular pressure during acute ocular compression is related to aqueous humour dynamics. Monitoring intraocular pressure (IOP) change throughout ocular compression has potential to evaluate aqueous outflow facilities. BACKGROUND Recent studies have monitored lamina cribrosa deformation using optical coherence tomography during ocular compression. IOP was measured only once immediately after ocular compression. This study aimed to evaluate IOP changes during and after ocular compression and compare the differences between low and high myopia. METHODS Two groups of young, healthy adults were age-matched and underwent ocular compression. IOP was measured at baseline and monitored during a 2-min ocular compression followed by a 10-min recovery phase. Rebound tonometry was used and applied at 30-s intervals. RESULTS Thirty low and 30 high myopes (60 right eyes) were included in the study. They had similar baseline IOP at 14.9 mmHg. IOP was elevated to 21.7 ± 3.8 mmHg and 22.3 ± 4.2 mmHg for the low and high myopic group, respectively (p = 0.877). Low myopes had faster IOP decay during ocular compression at -3.24 mmHg/min than high myopes at -2.58 mmHg/min (p = 0.0528). The IOP dropped below the baseline level after the release of the compressive force. Low myopes had IOP that returned to baseline levels faster (at 360 s) than high myopes (at 510 s). CONCLUSION Measuring IOP once immediately after ocular compression could under-estimate the effect of IOP elevation during ocular compression. Further studies are required regarding IOP changes from ocular compression in aqueous humour dynamics.
Collapse
Affiliation(s)
- Fang-Yu Xu
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Andrew Kc Lam
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
10
|
Korneva A, Kimball EC, Johnson TV, Quillen SE, Pease ME, Quigley HA, Nguyen TD. Comparison of the Biomechanics of the Mouse Astrocytic Lamina Cribrosa Between Glaucoma and Optic Nerve Crush Models. Invest Ophthalmol Vis Sci 2023; 64:14. [PMID: 38088825 PMCID: PMC10720758 DOI: 10.1167/iovs.64.15.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Purpose The strain response of the mouse astrocytic lamina (AL) to an ex vivo mechanical test was compared between two protocols: eyes that underwent sustained intraocular pressure (IOP) increase and eyes after optic nerve crush. Methods Chronic IOP elevation was induced by microbead injection or the optic nerve was crushed in mice with widespread green fluorescence. After 3 days or 6 weeks, eyes were inflation tested by a published method of two-photon fluorescence to image the AL. Digital volume correlation was used to calculate strains. Optic nerve axon damage was also evaluated. Results In the central AL but not the peripheral AL, four strains were greater in eyes at the 3-day glaucoma time point than control (P from 0.029 to 0.049, n = 8 eyes per group). Also, at this time point, five strains were greater in the central AL compared to the peripheral AL (P from 0.041 to 0.00003). At the 6-week glaucoma time point, the strains averaged across the specimen, in the central AL, and the peripheral AL were indistinguishable from the respective controls. Strains were not significantly different between controls and eyes 3 days or 6 weeks after crush (n = 8 and 16). Conclusions We found alterations in the ex vivo mechanical behavior in eyes from mice with experimental glaucoma but not in those with crushed optic nerves. The results of this study demonstrate that significant axon injury does not directly affect mechanical behavior of the astrocytic lamina.
Collapse
Affiliation(s)
- Arina Korneva
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Elizabeth C. Kimball
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Thomas V. Johnson
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Sarah E. Quillen
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Mary E. Pease
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Harry A. Quigley
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Thao D. Nguyen
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
11
|
Girkin CA, Garner MA, Gardiner SK, Clark ME, Hubbard M, Karuppanan U, Bianco G, Bruno L, Fazio MA. Displacement of the Lamina Cribrosa With Acute Intraocular Pressure Increase in Brain-Dead Organ Donors. Invest Ophthalmol Vis Sci 2023; 64:19. [PMID: 38099735 PMCID: PMC10729839 DOI: 10.1167/iovs.64.15.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose To examine deformations of the optic nerve head (ONH) deep tissues in response to acute elevation of intraocular pressure (IOP). Methods Research-consented brain-dead organ donors underwent imaging by spectral domain optical coherence tomography (OCT). OCT imaging was repeated while the eye was sequentially maintained at manometric pressures of 10, 30, and 50 mm Hg. Radial scans of the ONH were automatically segmented by deep learning and quantified in three dimensions by a custom algorithm. Change in lamina cribrosa (LC) depth and choroidal thickness was correlated with IOP and age by linear mixed-effect models. LC depth was computed against commonly utilized reference planes. Results Twenty-six eyes from 20 brain-dead organ donors (age range, 22-62 years; median age, 43 years) were imaged and quantified. LC depth measured against a reference plane based on Bruch's membrane (BM), BM opening, and an anterior sclera canal opening plane showed both a reduction and an increase in LC depth with IOP elevation. LC depth universally increased in depth when measured against a sclera reference plane. Choroidal (-0.5222 µm/mm Hg, P < 0.001) and retinal nerve fiber layer thickness (-0.0717 µm/mm Hg, P < 0.001) significantly thinned with increasing IOP. The magnitude of LC depth change with IOP was significantly smaller with increasing age (P < 0.03 for all reference planes). Conclusions LC depth changes with IOP reduce with age and are significantly affected by the reference plane of choice, which highlights a need for standardizing LC metrics to properly follow progressive remodeling of the loadbearing tissues of the ONH by OCT imaging and for the definition of a reference database.
Collapse
Affiliation(s)
- Christopher A. Girkin
- Department of Ophthalmology, University of Alabama at Birmingham/Callahan Eye Hospital, Birmingham, Alabama, United States
| | - Mary A. Garner
- Department of Neuroscience, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | | | - Mark E. Clark
- Department of Ophthalmology, University of Alabama at Birmingham/Callahan Eye Hospital, Birmingham, Alabama, United States
| | | | - Udayakumar Karuppanan
- Department of Ophthalmology, University of Alabama at Birmingham/Callahan Eye Hospital, Birmingham, Alabama, United States
| | - Gianfranco Bianco
- Department of Ophthalmology, University of Alabama at Birmingham/Callahan Eye Hospital, Birmingham, Alabama, United States
| | - Luigi Bruno
- Department of Mechanical, Energy and Management Engineering, University of Calabria, Rende, Italy
| | - Massimo A. Fazio
- Department of Ophthalmology, University of Alabama at Birmingham/Callahan Eye Hospital, Birmingham, Alabama, United States
| |
Collapse
|
12
|
Hannay V, Czerpak CA, Quigley HA, Nguyen TD. A noninvasive clinical method to measure in vivo mechanical strains of the lamina cribrosa by optical coherence tomography. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.14.23294082. [PMID: 37645852 PMCID: PMC10462204 DOI: 10.1101/2023.08.14.23294082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Objective To measure mechanical strain of the lamina cribrosa (LC) after intraocular pressure (IOP) change produced one week after a change in glaucoma medication. Design Cohort study. Participants Adult glaucoma patients (23 eyes, 15 patients) prescribed a change in IOP-lowering medication. Intervention Non-invasive optical coherence tomography (OCT) imaging of the eye. Main Outcomes Deformation calculated by digital volume correlation of OCT scans of the LC before and after IOP lowering by medication. Results Among 23 eyes, 17 eyes of 12 persons had IOP lowering ≥ 3 mmHg (reduced IOP group) with tensile anterior-posterior E zz strain = 1.0% ± 1.1% (p = 0.003) and compressive radial strain ( E rr ) = -0.3% ± 0.5% (p=0.012; random effects models accounting inclusion of both eyes in some persons). Maximum in-plane principal (tensile) strain and maximum shear strain in the reduced IOP group were: E max = 1.7% ± 1.0% and Γ max = 1.4% ± 0.7%, respectively (both p<0.0001 versus zero). Reduced IOP group strains E max and Γ max were significantly larger with greater %IOP decrease (<0.0001, <0.0001). The compliance of the E zz , E max , and Γ max strain response, defined as strain normalized by the IOP decrease, were larger with more abnormal perimetric mean deviation or visual field index values (all p≥0.02). Strains were unrelated to age (all p≥0.088). In reduced IOP eyes, mean LC anterior border posterior movement was only 2.05 μm posteriorly (p=0.052) and not related to % IOP change (p=0.94, random effects models). Only E rr was significantly related to ALD change, becoming more negative with greater posterior LC border change (p=0.015). Conclusion LC mechanical strains can be effectively measured by changes in eye drop medication using OCT and are related to degree of visual function loss in glaucoma. Trial Registration ClinicalTrials.gov Identifier: NCT03267849.
Collapse
|
13
|
Chuangsuwanich T, Tun TA, Braeu FA, Yeoh CHY, Chong RS, Wang X, Aung T, Hoang QV, Girard MJA. How Myopia and Glaucoma Influence the Biomechanical Susceptibility of the Optic Nerve Head. Invest Ophthalmol Vis Sci 2023; 64:12. [PMID: 37552032 PMCID: PMC10411647 DOI: 10.1167/iovs.64.11.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023] Open
Abstract
PURPOSE The purpose of this study was to assess optic nerve head (ONH) deformations following acute intraocular pressure (IOP) elevations and horizontal eye movements in control eyes, highly myopic (HM) eyes, HM eyes with glaucoma (HMG), and eyes with pathologic myopia (PM) alone or PM with staphyloma (PM + S). METHODS We studied 282 eyes, comprising of 99 controls (between +2.75 and -2.75 diopters), 51 HM (< -5 diopters), 35 HMG, 21 PM, and 75 PM + S eyes. For each eye, we imaged the ONH using spectral-domain optical coherence tomography (OCT) under the following conditions: (1) primary gaze, (2) 20 degrees adduction, (3) 20 degrees abduction, and (4) primary gaze with acute IOP elevation (to ∼35 mm Hg) achieved through ophthalmodynamometry. We then computed IOP- and gaze-induced ONH displacements and effective strains. Effective strains were compared across groups. RESULTS Under IOP elevation, we found that HM eyes exhibited significantly lower strains (3.9 ± 2.4%) than PM eyes (6.9 ± 5.0%, P < 0.001), HMG eyes (4.7 ± 1.8%, P = 0.04), and PM + S eyes (7.0 ± 5.2%, P < 0.001). Under adduction, we found that HM eyes exhibited significantly lower strains (4.8% ± 2.7%) than PM + S eyes (6.0 ± 3.1%, P = 0.02). We also found that eyes with higher axial length were associated with higher strains. CONCLUSIONS Our study revealed that eyes with HMG experienced significantly greater strains under IOP compared to eyes with HM. Furthermore, eyes with PM + S had the highest strains on the ONH of all groups.
Collapse
Affiliation(s)
- Thanadet Chuangsuwanich
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Tin A. Tun
- Eye-ACP, Duke-NUS Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Fabian A. Braeu
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Clarice H. Y. Yeoh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Rachel S. Chong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Xiaofei Wang
- Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Tin Aung
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Eye-ACP, Duke-NUS Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Quan V. Hoang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Eye-ACP, Duke-NUS Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Columbia University, New York, New York, United States
| | - Michaël J. A. Girard
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Eye-ACP, Duke-NUS Medical School, Singapore, Singapore
- Institute for Molecular and Clinical Ophthalmology, Basel, Switzerland
| |
Collapse
|
14
|
Kwok S, Ma Y, Pan X, Liu J. Three-Dimensional Ultrasound Elastography Detects Age-Related Increase in Anterior Peripapillary Sclera and Optic Nerve Head Compression During IOP Elevation. Invest Ophthalmol Vis Sci 2023; 64:16. [PMID: 37289169 PMCID: PMC10257341 DOI: 10.1167/iovs.64.7.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Purpose High-frequency ultrasound elastography offers a tool to resolve the complex and heterogeneous deformation through the full thickness of the optic nerve head (ONH) and peripapillary sclera (PPS). Using this tool, we quantified the three-dimensional deformation of the ONH and PPS in human donor eyes and evaluated age-associated changes. Methods The ONH and PPS in 15 human donor globes were imaged with a 50-MHz ultrasound probe while increasing intraocular pressure (IOP) from 15 to 30 mm Hg. Tissue displacements were obtained using correlation-based ultrasound speckle tracking. Three-dimensional spherical strains (radial, circumferential, meridional, and respective shear strains) were calculated for the ONH and PPS volumes segmented from three-dimensional ultrasound images. Age-related trends of different strains in each region of interest were explored. Results The dominant form of IOP-induced deformation in the ONH and PPS was radial compression. High-magnitude localized out-of-plane shear strains were also observed in both regions. Most strains were concentrated in the anterior one-half of the ONH and PPS. The magnitude of radial and volumetric strains increased with age in the anterior ONH and anterior PPS, indicating greater radial compression and volume loss during IOP elevation in older age. Conclusions The age-associated increase of radial compression, the predominant form of IOP-induced deformation in anterior ONH and PPS, may underlie age-associated glaucoma risk. High-frequency ultrasound elastography offers a useful tool to quantify all types of deformation comprehensively in all regions of ONH and PPS, which may improve our understanding of the biomechanical factors contributing to glaucoma risk.
Collapse
Affiliation(s)
- Sunny Kwok
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Yanhui Ma
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, Ohio, United States
| | - Xueliang Pan
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States
| | - Jun Liu
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
15
|
Lan G, Twa MD, Song C, Feng J, Huang Y, Xu J, Qin J, An L, Wei X. In vivo corneal elastography: A topical review of challenges and opportunities. Comput Struct Biotechnol J 2023; 21:2664-2687. [PMID: 37181662 PMCID: PMC10173410 DOI: 10.1016/j.csbj.2023.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Clinical measurement of corneal biomechanics can aid in the early diagnosis, progression tracking, and treatment evaluation of ocular diseases. Over the past two decades, interdisciplinary collaborations between investigators in optical engineering, analytical biomechanical modeling, and clinical research has expanded our knowledge of corneal biomechanics. These advances have led to innovations in testing methods (ex vivo, and recently, in vivo) across multiple spatial and strain scales. However, in vivo measurement of corneal biomechanics remains a long-standing challenge and is currently an active area of research. Here, we review the existing and emerging approaches for in vivo corneal biomechanics evaluation, which include corneal applanation methods, such as ocular response analyzer (ORA) and corneal visualization Scheimpflug technology (Corvis ST), Brillouin microscopy, and elastography methods, and the emerging field of optical coherence elastography (OCE). We describe the fundamental concepts, analytical methods, and current clinical status for each of these methods. Finally, we discuss open questions for the current state of in vivo biomechanics assessment techniques and requirements for wider use that will further broaden our understanding of corneal biomechanics for the detection and management of ocular diseases, and improve the safety and efficacy of future clinical practice.
Collapse
Affiliation(s)
- Gongpu Lan
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX 77204, United States
| | - Chengjin Song
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - JinPing Feng
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Yanping Huang
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jingjiang Xu
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jia Qin
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Lin An
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Xunbin Wei
- Biomedical Engineering Department, Peking University, Beijing 100081, China
- International Cancer Institute, Peking University, Beijing 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
16
|
Muñoz Sarmiento DM, Rodríguez Montaño ÓL, Alarcón Castiblancoa JD, Cortés Rodríguez CJ. The impact of horizontal eye movements versus intraocular pressure on optic nerve head biomechanics: A tridimensional finite element analysis study. Heliyon 2023; 9:e13634. [PMID: 36865452 PMCID: PMC9970910 DOI: 10.1016/j.heliyon.2023.e13634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023] Open
Abstract
It has been proposed that eye movements could be related to glaucoma development. This research aimed to compare the impact of intraocular pressure (IOP) versus horizontal duction on optic nerve head (ONH) strains. Thus, a tridimensional finite element model of the eye including the three tunics of the eye, all of the meninges, and the subarachnoid space (SAS) was developed using a series of medical tests and anatomical data. The ONH was divided into 22 subregions, and the model was subjected to 21 different eye pressures, as well as 24 different degrees of adduction and abduction ranging from 0.5° to 12°. Mean deformations were documented along anatomical axes and in principal directions. Additionally, the impact of tissue stiffness was assessed. The results show no statistically significant differences between the lamina cribrosa (LC) strains due to eye rotation and IOP variation. However, when assessing LC regions some experienced a reduction in principal strains following a 12° duction, while after the IOP reached 12 mmHg, all LC subzones showed an increase in strains. From an anatomical perspective, the effect on the ONH following 12° duction was opposite to that observed after a rise in IOP. Moreover, high strain dispersion inside the ONH subregions was obtained with lateral eye movements, which was not observed with increased IOP and variation. Finally, SAS and orbital fat stiffness strongly influenced ONH strains during eye movements, while SAS stiffness was also influential under ocular hypertension. Even if horizontal eye movements cause large ONH deformations, their biomechanical effect would be markedly distinct from that induced by IOP. It could be predicted that, at least in physiological conditions, their potential to cause axonal injury would not be so relevant. Thus, a causative role in glaucoma does not appear likely. By contrast, an important role of SAS would be expectable.
Collapse
Affiliation(s)
- Diana Marcela Muñoz Sarmiento
- Grupo de Investigación en Biomecánica, Universidad Nacional de Colombia, Colombia,Sociedad de Oftalmología Eduardo Arenas Archila, Colombia,Laboratorio de Anatomía y Fisiología, Grupo de Ciencias Básicas y Laboratorios, Universidad Manuela Beltrán, Colombia,Corresponding author. Grupo de Investigación en Biomecánica, Universidad Nacional de Colombia, Colombia.
| | | | | | | |
Collapse
|
17
|
Safa BN, Bleeker A, Berdahl JP, Ethier CR. The Effects of Negative Periocular Pressure on Biomechanics of the Optic Nerve Head and Cornea: A Computational Modeling Study. Transl Vis Sci Technol 2023; 12:5. [PMID: 36745441 PMCID: PMC9910383 DOI: 10.1167/tvst.12.2.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose The purpose of this study was to evaluate the effects of negative periocular pressure (NPP), and concomitant intraocular pressure (IOP) lowering, on the biomechanics of the optic nerve head (ONH) and cornea. Methods We developed a validated finite element (FE) model of the eye to compute tissue biomechanical strains induced in response to NPP delivered using the Multi-Pressure Dial (MPD) system. The model was informed by clinical measurements of IOP lowering and was based on published tissue properties. We also conducted sensitivity analyses by changing pressure loads and tissue properties. Results Application of -7.9 mmHg NPP decreased strain magnitudes in the ONH by c. 50% whereas increasing corneal strain magnitudes by c. 25%. Comparatively, a similar increase in corneal strain was predicted to occur due to an increase in IOP of 4 mmHg. Sensitivity studies indicated that NPP lowers strain in the ONH by reducing IOP and that these effects persisted over a range of tissue stiffnesses and spatial distributions of NPP. Conclusions NPP is predicted to considerably decrease ONH strain magnitudes. It also increases corneal strain but to an extent expected to be clinically insignificant. Thus, using NPP to lower IOP and hence decrease ONH mechanical strain is likely biomechanically beneficial for patients with glaucoma. Translational Relevance This study provides the first description of how NPP affects ONH biomechanics and explains the underlying mechanism of ONH strain reduction. It complements current empirical knowledge about the MPD system and guides future studies of NPP as a treatment for glaucoma.
Collapse
Affiliation(s)
- Babak N. Safa
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - Adam Bleeker
- Dean McGee Eye Institute Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - John P. Berdahl
- Equinox Ophthalmic, Newport Beach, CA, USA,Vance Thompson Vision, Sioux Falls, SD, USA
| | - C. Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| |
Collapse
|
18
|
Ma D, Pasquale LR, Girard MJA, Leung CKS, Jia Y, Sarunic MV, Sappington RM, Chan KC. Reverse translation of artificial intelligence in glaucoma: Connecting basic science with clinical applications. FRONTIERS IN OPHTHALMOLOGY 2023; 2:1057896. [PMID: 36866233 PMCID: PMC9976697 DOI: 10.3389/fopht.2022.1057896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 04/16/2023]
Abstract
Artificial intelligence (AI) has been approved for biomedical research in diverse areas from bedside clinical studies to benchtop basic scientific research. For ophthalmic research, in particular glaucoma, AI applications are rapidly growing for potential clinical translation given the vast data available and the introduction of federated learning. Conversely, AI for basic science remains limited despite its useful power in providing mechanistic insight. In this perspective, we discuss recent progress, opportunities, and challenges in the application of AI in glaucoma for scientific discoveries. Specifically, we focus on the research paradigm of reverse translation, in which clinical data are first used for patient-centered hypothesis generation followed by transitioning into basic science studies for hypothesis validation. We elaborate on several distinctive areas of research opportunities for reverse translation of AI in glaucoma including disease risk and progression prediction, pathology characterization, and sub-phenotype identification. We conclude with current challenges and future opportunities for AI research in basic science for glaucoma such as inter-species diversity, AI model generalizability and explainability, as well as AI applications using advanced ocular imaging and genomic data.
Collapse
Affiliation(s)
- Da Ma
- School of Medicine, Wake Forest University, Winston-Salem, NC, United States
- Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Louis R. Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michaël J. A. Girard
- Ophthalmic Engineering & Innovation Laboratory (OEIL), Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Institute for Molecular and Clinical Ophthalmology, Basel, Switzerland
| | | | - Yali Jia
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Marinko V. Sarunic
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Rebecca M. Sappington
- School of Medicine, Wake Forest University, Winston-Salem, NC, United States
- Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Kevin C. Chan
- Departments of Ophthalmology and Radiology, Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| |
Collapse
|
19
|
Czerpak CA, Kashaf MS, Zimmerman BK, Quigley HA, Nguyen TD. The Strain Response to Intraocular Pressure Decrease in the Lamina Cribrosa of Patients with Glaucoma. Ophthalmol Glaucoma 2023; 6:11-22. [PMID: 35863747 PMCID: PMC9849479 DOI: 10.1016/j.ogla.2022.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To measure biomechanical strains in the lamina cribrosa (LC) of living human eyes with intraocular pressure (IOP) lowering. DESIGN Cohort study. PARTICIPANTS Patients with glaucoma underwent imaging before and after laser suturelysis after trabeculectomy surgery (29 image pairs; 26 persons). INTERVENTION Noninvasive imaging of the eye. MAIN OUTCOME MEASURES Strains in optic nerve head tissue and changes in depths of the anterior border of the LC. RESULTS Intraocular pressure decreases caused the LC to expand in thickness in the anterior-posterior strain (Ezz = 0.94 ± 1.2%; P = 0.00020) and contract in radius in the radial strain (Err = - 0.19 ± 0.33%; P = 0.0043). The mean LC depth did not significantly change with IOP lowering (1.33 ± 6.26 μm; P = 0.26). A larger IOP decrease produced a larger, more tensile Ezz (P < 0.0001), greater maximum principal strain (Emax; P < 0.0001), and greater maximum shear strain (Γmax; P < 0.0001). The average LC depth change was associated with the Γmax and radial-circumferential shear strain (Erθ; P < 0.02) but was not significantly related to tensile or compressive strains. An analysis by clock hour showed that in temporal clock hours 3 to 6, a more anterior LC movement was associated with a more positive Emax, and in clock hours 3, 5, and 6, it was associated with a more positive Γmax. At 10 o'clock, a more posterior LC movement was related to a more positive Emax (P < 0.004). Greater compliance (strain/ΔIOP) of Emax (P = 0.044), Γmax (P = 0.052), and Erθ (P = 0.018) was associated with a thinner retinal nerve fiber layer. Greater compliance of Emax (P = 0.041), Γmax (P = 0.021), Erθ (P = 0.024), and in-plane shear strain (Erz; P = 0.0069) was associated with more negative mean deviations. Greater compliance of Γmax (P = 0.055), Erθ (P = 0.040), and Erz (P = 0.015) was associated with lower visual field indices. CONCLUSIONS With IOP lowering, the LC moves either into or out of the eye but, on average, expands in thickness and contracts in radius. Shear strains are nearly as substantial as in-plane strains. Biomechanical strains are more compliant in eyes with greater glaucoma damage. This work was registered at ClinicalTrials.gov as NCT03267849.
Collapse
Affiliation(s)
- Cameron A Czerpak
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland.
| | - Michael Saheb Kashaf
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Brandon K Zimmerman
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Harry A Quigley
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Thao D Nguyen
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland; Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
20
|
Chuangsuwanich T, Tun TA, Braeu FA, Wang X, Chin ZY, Panda SK, Buist M, Strouthidis N, Perera S, Nongpiur M, Aung T, Girard MJA. Differing Associations between Optic Nerve Head Strains and Visual Field Loss in Patients with Normal- and High-Tension Glaucoma. Ophthalmology 2023; 130:99-110. [PMID: 35964710 DOI: 10.1016/j.ophtha.2022.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/13/2022] [Accepted: 08/04/2022] [Indexed: 01/06/2023] Open
Abstract
PURPOSE To study the associations between optic nerve head (ONH) strains under intraocular pressure (IOP) elevation with retinal sensitivity in patients with glaucoma. DESIGN Clinic-based cross-sectional study. PARTICIPANTS Two hundred twenty-nine patients with primary open-angle glaucoma (subdivided into 115 patients with high-tension glaucoma [HTG] and 114 patients with normal-tension glaucoma [NTG]). METHODS For 1 eye of each patient, we imaged the ONH using spectral-domain OCT under the following conditions: (1) primary gaze and (2) primary gaze with acute IOP elevation (to approximately 35 mmHg) achieved through ophthalmodynamometry. A 3-dimensional strain-mapping algorithm was applied to quantify IOP-induced ONH tissue strain (i.e., deformation) in each ONH. Strains in the prelaminar tissue (PLT), the retina, the choroid, the sclera, and the lamina cribrosa (LC) were associated (using linear regression) with measures of retinal sensitivity from the 24-2 Humphrey visual field test (Carl Zeiss Meditec). This was performed globally, then locally according to a previously published regionalization scheme. MAIN OUTCOME MEASURES Associations between ONH strains and values of retinal sensitivity from visual field testing. RESULTS For patients with HTG, we found (1) significant negative linear associations between ONH strains and retinal sensitivity (P < 0.001; on average, a 1% increase in ONH strains corresponded to a decrease in retinal sensitivity of 1.1 decibels [dB]), (2) that high-strain regions colocalized with anatomically mapped regions of high visual field loss, and (3) that the strongest negative associations were observed in the superior region and in the PLT. In contrast, for patients with NTG, no significant associations between strains and retinal sensitivity were observed except in the superotemporal region of the LC. CONCLUSIONS We found significant negative associations between IOP-induced ONH strains and retinal sensitivity in a relatively large glaucoma cohort. Specifically, patients with HTG who experienced higher ONH strains were more likely to exhibit lower retinal sensitivities. Interestingly, this trend in general was less pronounced in patients with NTG, which could suggest a distinct pathophysiologic relationship between the two glaucoma subtypes.
Collapse
Affiliation(s)
- Thanadet Chuangsuwanich
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Republic of Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, Republic of Singapore.
| | - Tin A Tun
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore; Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Fabian A Braeu
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Republic of Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore
| | - Xiaofei Wang
- Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Zhi Yun Chin
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Republic of Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, Republic of Singapore
| | - Satish Kumar Panda
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Republic of Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, Republic of Singapore
| | - Martin Buist
- Department of Biomedical Engineering, National University of Singapore, Singapore, Republic of Singapore
| | - Nicholas Strouthidis
- National Institute of Health Research, Biomedical Sciences Centre, Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
| | - Shamira Perera
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore
| | - Monisha Nongpiur
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore; Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore; Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Michaël J A Girard
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Republic of Singapore; Duke-NUS Medical School, Singapore, Republic of Singapore; Institute for Molecular and Clinical Ophthalmology, Basel, Switzerland.
| |
Collapse
|
21
|
Vicic N, Guo X, Chan D, Flanagan JG, Sigal IA, Sivak JM. Evidence of an Annexin A4 mediated plasma membrane repair response to biomechanical strain associated with glaucoma pathogenesis. J Cell Physiol 2022; 237:3687-3702. [PMID: 35862065 PMCID: PMC9891715 DOI: 10.1002/jcp.30834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/03/2023]
Abstract
Glaucoma is a common neurodegenerative blinding disease that is closely associated with chronic biomechanical strain at the optic nerve head (ONH). Yet, the cellular injury and mechanosensing mechanisms underlying the resulting damage have remained critically unclear. We previously identified Annexin A4 (ANXA4) from a proteomic analyses of human ONH astrocytes undergoing pathological biomechanical strain that mimics glaucomatous conditions. Annexins are a family of calcium-dependent phospholipid binding proteins with key functions in plasma membrane repair (PMR); an active mechanism to limit and mend cellular injury that involves membrane and cytoskeletal reorganizations. However, a role for direct membrane damage and PMR has not been well studied in the context of biomechanical strain, such as that associated with glaucoma. Here we report that this moderate strain surprisingly damages cell membranes to increase permeability in a calcium-dependent manner, and induces rapid aggregation of ANXA4 at injury sites. ANXA4 loss-of-function increases permeability, while exogenous ANXA4 reduces it. Furthermore, ANXA4 aggregation is associated with F-actin dynamics in vitro, and remarkably this interaction and aggregation signature is also observed in the glaucomatous ONH in patient samples. Together these studies link moderate biomechanical strain with direct membrane damage and actin dynamics, and identify an active PMR role for ANXA4 in new model of cell injury associated with glaucoma pathogenesis.
Collapse
Affiliation(s)
- Nevena Vicic
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada,Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Xiaoxin Guo
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada,Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Darren Chan
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada,Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - John G Flanagan
- The Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, California, USA
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jeremy M. Sivak
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada,Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Glidai Y, Lucy KA, Schuman JS, Alexopoulos P, Wang B, Wu M, Liu M, Vande Geest JP, Kollech HG, Lee T, Ishikawa H, Wollstein G. Microstructural Deformations Within the Depth of the Lamina Cribrosa in Response to Acute In Vivo Intraocular Pressure Modulation. Invest Ophthalmol Vis Sci 2022; 63:25. [PMID: 35604666 PMCID: PMC9150833 DOI: 10.1167/iovs.63.5.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose The lamina cribrosa (LC) is a leading target for initial glaucomatous damage. We investigated the in vivo microstructural deformation within the LC volume in response to acute IOP modulation while maintaining fixed intracranial pressure (ICP). Methods In vivo optic nerve head (ONH) spectral-domain optical coherence tomography (OCT) scans (Leica, Chicago, IL, USA) were obtained from eight eyes of healthy adult rhesus macaques (7 animals; ages = 7.9-14.4 years) in different IOP settings and fixed ICP (8-12 mm Hg). IOP and ICP were controlled by cannulation of the anterior chamber and the lateral ventricle of the brain, respectively, connected to a gravity-controlled reservoir. ONH images were acquired at baseline IOP, 30 mm Hg (H1-IOP), and 40 to 50 mm Hg (H2-IOP). Scans were registered in 3D, and LC microstructure measurements were obtained from shared regions and depths. Results Only half of the eyes exhibited LC beam-to-pore ratio (BPR) and microstructure deformations. The maximal BPR change location within the LC volume varied between eyes. BPR deformer eyes had a significantly higher baseline connective tissue volume fraction (CTVF) and lower pore aspect ratio (P = 0.03 and P = 0.04, respectively) compared to BPR non-deformer. In all eyes, the magnitude of BPR changes in the anterior surface was significantly different (either larger or smaller) from the maximal change within the LC (H1-IOP: P = 0.02 and H2-IOP: P = 0.004). Conclusions The LC deforms unevenly throughout its depth in response to IOP modulation at fixed ICP. Therefore, analysis of merely the anterior LC surface microstructure will not fully capture the microstructure deformations within the LC. BPR deformer eyes have higher CTVF than BPR non-deformer eyes.
Collapse
Affiliation(s)
- Yoav Glidai
- Department of Ophthalmology, NYU Langone Health, New York, New York, United States
| | - Katie A. Lucy
- Department of Ophthalmology, NYU Langone Health, New York, New York, United States
| | - Joel S. Schuman
- Department of Ophthalmology, NYU Langone Health, New York, New York, United States,Department of Biomedical Engineering, NYU Tandon School of Engineering, New York, New York, United States,Center for Neural Science, NYU, New York, New York, United States
| | | | - Bo Wang
- UPMC Eye Center, Eye and Ear Institute, Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Mengfei Wu
- Department of Ophthalmology, NYU Langone Health, New York, New York, United States,Division of Biostatistics, Departments of Population Health and Environmental Medicine, NYU Langone Health, New York, New York, United States
| | - Mengling Liu
- Department of Ophthalmology, NYU Langone Health, New York, New York, United States,Division of Biostatistics, Departments of Population Health and Environmental Medicine, NYU Langone Health, New York, New York, United States
| | - Jonathan P. Vande Geest
- UPMC Eye Center, Eye and Ear Institute, Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Hirut G. Kollech
- Computational Modeling and Simulation Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - TingFang Lee
- Department of Ophthalmology, NYU Langone Health, New York, New York, United States,Division of Biostatistics, Departments of Population Health and Environmental Medicine, NYU Langone Health, New York, New York, United States
| | - Hiroshi Ishikawa
- Department of Ophthalmology, NYU Langone Health, New York, New York, United States
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Langone Health, New York, New York, United States,Center for Neural Science, NYU, New York, New York, United States
| |
Collapse
|
23
|
Kim J, Gardiner SK, Ramazzotti A, Karuppanan U, Bruno L, Girkin CA, Downs JC, Fazio MA. Strain by virtual extensometers and video-imaging optical coherence tomography as a repeatable metric for IOP-Induced optic nerve head deformations. Exp Eye Res 2021; 211:108724. [PMID: 34375590 PMCID: PMC8511063 DOI: 10.1016/j.exer.2021.108724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 11/20/2022]
Abstract
PURPOSE To determine if in vivo strain response of the Optic Nerve Head (ONH) to IOP elevation visualized using Optical Coherence Tomography (OCT) video imaging and quantified using novel virtual extensometers was able to be provided repeatable measurements of tissue specific deformations. METHODS The ONHs of 5 eyes from 5 non-human primates (NHPs) were imaged by Spectralis OCT. A vertical and a horizontal B-scan of the ONH were continuously recorded for 60 s at 6 Hz (video imaging mode) during IOP elevation from 10 to 30 mmHg. Imaging was repeated over three imaging sessions. The 2D normal strain was computed by template-matching digital image correlation using virtual extensometers. ANOVA F-test (F) was used to compare inter-eye, inter-session, and inter-tissue variability for the prelaminar, Bruch's membrane opening (BMO), lamina cribrosa (LC) and choroidal regions (against variance the error term). F-test of the ratio between inter-eye to inter-session variability was used to test for strain repeatability across imaging sessions (FIS). RESULTS Variability of strain across imaging session (F = 0.7263, p = 0.4855) and scan orientation was not significant (F = 1.053, p = 0.3066). Inter session variability of strain was significantly lower than inter-eye variability (FIS = 22.63, p = 0.0428) and inter-tissue variability (FIS = 99.33 p = 0.00998). After IOP elevation, strain was highest in the choroid (-18.11%, p < 0.001), followed by prelaminar tissue (-11.0%, p < 0.001), LC (-3.79%, p < 0.001), and relative change in BMO diameter (-0.57%, p = 0.704). CONCLUSIONS Virtual extensometers applied to video-OCT were sensitive to the eye-specific and tissue-specific mechanical response of the ONH to IOP and were repeatable across imaging sessions.
Collapse
Affiliation(s)
- Jihee Kim
- Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Andrea Ramazzotti
- Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Udayakumar Karuppanan
- Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Luigi Bruno
- Department of Mechanical, Energy and Management Engineering, University of Calabria, Rende, CS, Italy
| | - Christopher A Girkin
- Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Crawford Downs
- Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Massimo A Fazio
- Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA; Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA; The Viterbi Family Department of Ophthalmology, UC San Diego, La Jolla, CA, USA.
| |
Collapse
|
24
|
Voorhees AP, Hua Y, Brazile BL, Wang B, Waxman S, Schuman JS, Sigal IA. So-Called Lamina Cribrosa Defects May Mitigate IOP-Induced Neural Tissue Insult. Invest Ophthalmol Vis Sci 2021; 61:15. [PMID: 33165501 PMCID: PMC7671862 DOI: 10.1167/iovs.61.13.15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose The prevailing theory about the function of lamina cribrosa (LC) connective tissues is that they provide structural support to adjacent neural tissues. Missing connective tissues would compromise this support and therefore are regarded as “LC defects”, despite scarce actual evidence of their role. We examined how so-called LC defects alter IOP-related mechanical insult to the LC neural tissues. Methods We built numerical models incorporating LC microstructure from polarized light microscopy images. To simulate LC defects of varying sizes, individual beams were progressively removed. We then compared intraocular pressure (IOP)-induced neural tissue deformations between models with and without defects. To better understand the consequences of defect development, we also compared neural tissue deformations between models with partial and complete loss of a beam. Results The maximum stretch of neural tissues decreased non-monotonically with defect size. Maximum stretch in the model with the largest defect decreased by 40% in comparison to the model with no defects. Partial loss of a beam increased the maximum stretch of neural tissues in its adjacent pores by 162%, compared with 63% in the model with complete loss of a beam. Conclusions Missing LC connective tissues can mitigate IOP-induced neural tissue insult, suggesting that the role of the LC connective tissues is more complex than simply fortifying against IOP. The numerical models further predict that partial loss of a beam is biomechanically considerably worse than complete loss of a beam, perhaps explaining why defects have been reported clinically but partial beams have not.
Collapse
Affiliation(s)
- Andrew P Voorhees
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Bryn L Brazile
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Joel S Schuman
- Department of Ophthalmology, NYU Langone Health, New York University Grossman School of Medicine, New York, New York, United States.,Center for Neural Science, New York University, New York, New York, United States.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States.,Department of Physiology and Neuroscience, Neuroscience Institute, NYU Langone Health, New York University Grossman School of Medicine, New York, New York, United States
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center and University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh Medical Center and University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
25
|
Wang X, Tun TA, Nongpiur ME, Htoon HM, Tham YC, Strouthidis NG, Aung T, Cheng CY, Girard MJ. Peripapillary sclera exhibits a v-shaped configuration that is more pronounced in glaucoma eyes. Br J Ophthalmol 2020; 106:491-496. [PMID: 33334817 DOI: 10.1136/bjophthalmol-2020-317900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022]
Abstract
AIMS To compare the shape of the anterior surface of the peripapillary sclera (PPS) between glaucoma and healthy subjects. METHODS 88 primary open angle glaucoma (POAG), 98 primary angle closure glaucoma (PACG) and 372 age-matched and gender-matched healthy controls were recruited in this study. The optic nerve head of one randomly selected eye of each subject was imaged with spectral domain optical coherence tomography. The shape of the PPS was measured through an angle defined between a line parallel to the nasal anterior PPS boundary and one parallel to the temporal side. A negative value indicated that the PPS followed an inverted v-shaped configuration (peak pointing towards the vitreous), whereas a positive value indicated that it followed a v-shaped configuration. RESULTS The mean PPS angle in normal controls (4.56±5.99°) was significantly smaller than that in POAG (6.60±6.37°, p=0.011) and PACG (7.90±6.87°, p<0.001). The v-shaped PPS was significantly associated with older age (β=1.79, p<0.001), poorer best-corrected visual acuity (β=3.31, p=0.047), central corneal thickness (β=-0.28, p=0.001), peripapillary choroidal thickness (β=-0.21, p<0.001) and presence of POAG (β=1.94, p<0.009) and PACG (β=2.96, p<0.001). The v-shaped configuration of the PPS significantly increased by 1.46° (p=0.001) in healthy controls for every 10-year increase in age, but not in glaucoma groups. CONCLUSIONS The v-shaped configuration of the PPS was more pronounced in glaucoma eyes than in healthy eyes. This posterior bowing of the PPS may have an impact on the biomechanical environment of the optic nerve head.
Collapse
Affiliation(s)
- Xiaofei Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Tin A Tun
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore.,Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Monisha Esther Nongpiur
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.,Duke-NUS Medical School, Singapore
| | - Hla M Htoon
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Yih Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Nicholas G Strouthidis
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.,Discipline of Clinical Ophthalmology and Eye Health, University of Sydney, Sydney, New South Wales, Australia
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.,Duke-NUS Medical School, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Michael Ja Girard
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore .,Duke-NUS Medical School, Singapore
| |
Collapse
|
26
|
Korneva A, Kimball EC, Jefferys JL, Quigley HA, Nguyen TD. Biomechanics of the optic nerve head and peripapillary sclera in a mouse model of glaucoma. J R Soc Interface 2020; 17:20200708. [PMID: 33323053 PMCID: PMC7811579 DOI: 10.1098/rsif.2020.0708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/17/2020] [Indexed: 01/09/2023] Open
Abstract
The deformation of the mouse astrocytic lamina (AL) and adjacent peripapillary sclera (PPS) was measured in response to elevated intraocular pressure. We subjected explanted mouse eyes to inflation testing, comparing control eyes to those 3 days and 6 weeks after induction of ocular hypertension (OHT) via ocular microbead injection. Laser scanning microscopy was used with second harmonic generation to image the collagenous PPS and two-photon fluorescence to image transgenic fluorescent astrocytes in the AL. Digital volume correlation was applied to calculate strains in the PPS and AL. The specimen-averaged strains were biaxial in the AL and PPS, with greater strain overall in the x- than y-direction in the AL and greater strain in the θ- than the r-direction in the PPS. Strains increased after 3-day OHT, with greater strain overall in the 3-day AL than control AL, and greater circumferential strain in the 3-day PPS than control PPS. In the 6-week OHT eyes, AL and PPS strains were similar overall to controls. This experimental glaucoma model demonstrated a dynamic change in the mechanical behaviour of the AL and PPS over time at the site of neuronal injury and remodelling in glaucoma.
Collapse
Affiliation(s)
- Arina Korneva
- Glaucoma Center of Excellence, Wilmer Eye Institute, John Hopkins University, Baltimore, MD, USA
| | - Elizabeth C. Kimball
- Glaucoma Center of Excellence, Wilmer Eye Institute, John Hopkins University, Baltimore, MD, USA
| | - Joan L. Jefferys
- Glaucoma Center of Excellence, Wilmer Eye Institute, John Hopkins University, Baltimore, MD, USA
| | - Harry A. Quigley
- Glaucoma Center of Excellence, Wilmer Eye Institute, John Hopkins University, Baltimore, MD, USA
| | - Thao D. Nguyen
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Ophthalmology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science, The Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
27
|
Hopkins AA, Murphy R, Irnaten M, Wallace DM, Quill B, O'Brien C. The role of lamina cribrosa tissue stiffness and fibrosis as fundamental biomechanical drivers of pathological glaucoma cupping. Am J Physiol Cell Physiol 2020; 319:C611-C623. [PMID: 32667866 DOI: 10.1152/ajpcell.00054.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The primary biomechanical driver of pathological glaucomatous cupping remains unknown. Finite element modeling indicates that stress and strain play key roles. In this article, primarily a review, we utilize known biomechanical data and currently unpublished results from our lab to propose a three-stage, tissue stiffness-based model to explain glaucomatous cupping occurring at variable levels of translaminar pressure (TLP). In stage 1, a short-term increase in TLP gradient induces a transient increase in lamina cribrosa (LC) strain. Beyond a critical level of strain, the tissue stiffness rises steeply provoking cellular responses via integrin-mediated mechanotransduction. This early mechanoprotective cellular contraction reduces strain, which reduces tissue stiffness by return of the posteriorly deflected LC to baseline. In stage 2 a prolonged period of TLP increase elicits extracellular matrix (ECM) production leading to fibrosis, increasing baseline tissue stiffness and strain and diminishing the contractile ability/ability to return to the baseline LC position. This is supported by our three-dimensional collagen contraction assays, which show significantly reduced capacity to contract in glaucoma compared with normal LC cells. Second, 15% cyclic strain in LC cells over 24 h elicits a typical increase in ECM profibrotic genes in normal LC cells but a highly blunted response in glaucoma LC cells. Stage 3 is characterized by persistent fibrosis causing further stiffening and inducing a feed-forward ECM production cycle. Repeated cycles of increased strain and stiffness with profibrotic ECM deposition prevent optic nerve head (ONH) recoil from the new deflected position. This incremental maladaptive modeling leads to pathological ONH cupping.
Collapse
Affiliation(s)
- Alan A Hopkins
- Clinical Research Centre, Catherine McAuley Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Rory Murphy
- Clinical Research Centre, Catherine McAuley Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Mustapha Irnaten
- Clinical Research Centre, Catherine McAuley Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Deborah M Wallace
- Clinical Research Centre, Catherine McAuley Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Barry Quill
- Clinical Research Centre, Catherine McAuley Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Colm O'Brien
- Clinical Research Centre, Catherine McAuley Centre, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
28
|
Midgett D, Liu B, Ling YTT, Jefferys JL, Quigley HA, Nguyen TD. The Effects of Glaucoma on the Pressure-Induced Strain Response of the Human Lamina Cribrosa. Invest Ophthalmol Vis Sci 2020; 61:41. [PMID: 32343781 PMCID: PMC7401932 DOI: 10.1167/iovs.61.4.41] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 02/16/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose To measure the ex vivo pressure-induced strain response of the human optic nerve head and analyze for variations with glaucoma diagnosis and optic nerve axon damage. Methods The posterior sclera of 16 eyes from 8 diagnosed glaucoma donors and 10 eyes from 6 donors with no history of glaucoma were inflation tested between 5 and 45 mm Hg. The optic nerve from each donor was examined for degree of axon loss. The posterior volume of the lamina cribrosa (LC) was imaged with second harmonic generation and analyzed using volume correlation to calculate LC strains between 5 and 10 and 5 and 45 mm Hg. Results Eye length and LC area were larger in eyes diagnosed with glaucoma (P ≤ 0.03). Nasal-temporal EXX and circumferential Eθθ strains were lower in the LC of diagnosed glaucoma eyes at 10 mm Hg (P ≤ 0.05) and 45 mm Hg (P ≤ 0.07). EXX was smaller in the LC of glaucoma eyes with <25% axon loss compared with undamaged normal eyes (P = 0.01, 45 mm Hg). In general, the strains were larger in the peripheral than central LC. The ratio of the maximum principal strain Emax in the peripheral to central LC was larger in glaucoma eyes with >25% axon loss than in glaucoma eyes with milder damage (P = 0.004, 10 mm Hg). Conclusions The stiffness of the LC pressure-strain response was greater in diagnosed glaucoma eyes and varied with glaucomatous axon damage. Lower LC strains in glaucoma eyes with milder damage may represent baseline biomechanical behavior that contributes to axon loss, whereas greater LC strain and altered radial LC strain variation in glaucoma eyes with more severe damage may be caused by glaucoma-related remodeling.
Collapse
Affiliation(s)
- Dan Midgett
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Baiyun Liu
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Yik Tung Tracy Ling
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Joan L. Jefferys
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Harry A. Quigley
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Thao D. Nguyen
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States
- Department of Materials Science, The Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
29
|
Midgett DE, Jefferys JL, Quigley HA, Nguyen TD. The inflation response of the human lamina cribrosa and sclera: Analysis of deformation and interaction. Acta Biomater 2020; 106:225-241. [PMID: 32044458 PMCID: PMC8340454 DOI: 10.1016/j.actbio.2020.01.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 11/23/2022]
Abstract
This study investigated the inflation response of the lamina cribrosa (LC) and adjacent peripapillary sclera (PPS) in post-mortem human eyes with no history of glaucoma. The posterior sclera of 13 human eyes from 7 donors was subjected to controlled pressurization between 5-45 mmHg. A laser-scanning microscope (LSM) was used to image the second harmonic generation (SHG) response of collagen and the two-photon fluorescent (TPF) response of elastin within the volume of the LC and PPS at each pressure. Image volumes were analyzed using digital volume correlation (DVC) to calculate the three-dimensional (3D) deformation field between pressures. The LC exhibited larger radial strain, Err, and maximum principal strain, Emax, (p < 0.0001) and greater posterior displacement (p=0.0007) compared to the PPS between 5-45 mmHg, but had similar average circumferential strain, Eθθ, and maximum shear strain, Γmax. The Emax and Γmax were highest near the LC-PPS interface and lowest in the nasal quadrant of both tissues. Larger LC area was associated with smaller Emax in the peripheral LC and larger Emax in the central LC (p ≤ 0.01). The Emax, Γmax, and Eθθ in the inner PPS increased with increasing strain in adjacent LC regions (p ≤ 0.001). Smaller strains in the PPS were associated with a larger difference in the posterior displacement between the PPS and central LC (p < 0.0001 for Emax and Err), indicating that a stiffer pressure-strain response of the PPS is associated with greater posterior bowing of the LC. STATEMENT OF SIGNIFICANCE: Glaucoma causes vision loss through progressive damage of the retinal ganglion axons at the lamina cribrosa (LC), a connective tissue structure that supports the axons as they pass through the eye wall. It is hypothesized that strains caused by intraocular pressure may initiate this damage and that these strains are modulated by the combined deformation of the LC and adjacent peripapillary sclera (PPS). In this study we present a method to measure the pressure-induced 3D displacement and strain field in the LC and PPS simultaneously. Regional strain variation in the LC and PPS was investigated and compared and strains were analyzed for associations with age, LC area, LC strain magnitude, and LC posterior motion relative to the PPS.
Collapse
Affiliation(s)
- Dan E Midgett
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| | - Joan L Jefferys
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, MD 21287, USA
| | - Harry A Quigley
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, MD 21287, USA
| | - Thao D Nguyen
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Materials Science, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
30
|
Pardon LP, Harwerth RS, Patel NB. Neuroretinal rim response to transient changes in intraocular pressure in healthy non-human primate eyes. Exp Eye Res 2020; 193:107978. [PMID: 32081667 DOI: 10.1016/j.exer.2020.107978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/26/2020] [Accepted: 02/14/2020] [Indexed: 12/19/2022]
Abstract
Optic nerve head (ONH) neuroretinal rim thickness, quantified as minimum rim width (BMO-MRW), is a sensitive measure for assessing early glaucomatous disease. The BMO-MRW is sensitive to transient fluctuations in intraocular pressure (IOP), but the time course over which BMO-MRW decreases and recovers with changes in IOP remains unknown. The goal of this study was to investigate the dynamics of BMO-MRW changes over 2-h periods of mild or moderate IOP elevation, and subsequent recovery, in healthy non-human primate eyes. Eight non-human primates were included in the study. For each animal, in two different sessions separated by at least 2 weeks, the anterior chamber IOP of one eye was maintained at either 25 mmHg or 40 mmHg for 2 h and, subsequently, at 10 mmHg for 2 h. For the duration of anterior chamber cannulation, optical coherence tomography (OCT) radial scans centered on the ONH were acquired every 5 min and used to quantify BMO-MRW. An exponential decay or rise to maximum function was used to determine the extent and rate of structural change. Additionally, Bruch's membrane opening (BMO) area, BMO height/displacement, and BMO-referenced anterior lamina cribrosa surface depth (BMO-ALCSD) were computed from radial scans. A circular scan was used to quantify retinal nerve fiber layer thickness (RNFLT) and circumpapillary choroid thickness. The primary results demonstrated that the BMO-MRW changed over an extended duration, while BMO displacement was rapid and remained stable with sustained IOP. The mean maximum predicted BMO-MRW thinning following 2 h of IOP elevation was significantly related to pressure (34.2 ± 13.8 μm for an IOP of 25 mmHg vs 40.5 ± 12.6 μm for 40 mmHg, p = 0.03). The half-life for BMO-MRW thinning was 21.9 ± 9.2 min for 25 mmHg and 20.9 ± 4.2 min for 40 mmHg, not significantly different between IOP levels (p = 0.76). Subsequently, after 2 h of IOP at 10 mmHg, all animals exhibited partial recovery of BMO-MRW with similar degrees of persistent residual thinning for the two IOP levels (21.5 ± 13.7 vs 21.0 ± 12.3 μm, p = 0.88). Similar to BMO-MRW, choroid thickness exhibited gradual thinning with IOP elevation and residual thinning following IOP reduction. However, there was no significant change in BMO area or BMO-ALCSD in either experimental session. The RNFLT gradually decreased over the duration of IOP elevation, with continued decreases following IOP reduction for the 40 mmHg session, resulting in total changes from baseline of -2.24 ± 0.81 and -2.45 ± 1.21 μm for 25 and 40 mmHg, respectively (p < 0.001). The sum of the results demonstrate that the ONH neural tissue is sensitive to changes in IOP, the effects of which are gradual over an extended time course and different for increased vs. decreased pressure. Understanding the duration over which IOP influences BMO-MRW has important implications for studies investigating the effects of IOP on the ONH. Additionally, individual variability in ONH response to IOP may improve our understanding of the risk and progression of disease.
Collapse
Affiliation(s)
- Laura P Pardon
- University of Houston, College of Optometry, 4901 Calhoun Road, Houston, TX, 77204-2020, USA.
| | - Ronald S Harwerth
- University of Houston, College of Optometry, 4901 Calhoun Road, Houston, TX, 77204-2020, USA
| | - Nimesh B Patel
- University of Houston, College of Optometry, 4901 Calhoun Road, Houston, TX, 77204-2020, USA
| |
Collapse
|
31
|
Midgett DE, Quigley HA, Nguyen TD. In vivo characterization of the deformation of the human optic nerve head using optical coherence tomography and digital volume correlation. Acta Biomater 2019; 96:385-399. [PMID: 31279161 PMCID: PMC6717668 DOI: 10.1016/j.actbio.2019.06.050] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 01/26/2023]
Abstract
We developed a method to measure the 3-dimensional (3D) strain field in the optic nerve head (ONH) in vivo between two intraocular pressures (IOP). Radial optical coherence tomography (OCT) scans were taken of the ONH of 5 eyes from 5 glaucoma patients before and after IOP-lowering surgery and from 5 eyes from 3 glaucoma suspect patients before and after raising IOP by wearing tight-fitting swimming goggles. Scans taken at higher and lower IOP were compared using a custom digital volume correlation (DVC) algorithm to calculate strains in the anterior lamina cribrosa (ALC), retina, and choroid. Changes in anterior lamina depth (ALD) relative to Bruch's membrane were also analyzed. Average displacement error was estimated to be subpixel and strain errors were smaller than 0.37%. Suturelysis decreased IOP by 9-20 mmHg and decreased compressive anterior-posterior strain Ezz in the ALC by 0.76% (p=0.002,n=5). Goggle-wearing increased IOP by 3-4 mmHg and produced compressive Ezz in the ALC (-0.32%,p=0.001,n=5). Greater IOP decrease was associated with greater ALD change (p=0.047,n=10) and greater strains in the ALC (Ezz:p=0.002,n=10). A deepening of ALD was associated with lower IOP and greater ALC strains (p⩽0.045,n=10). A DVC-based method to measure strains from OCT images caused by IOP changes as small as 2.3 mmHg provides preliminary evidence that ALD is shallower and ALC strains are less compressive at higher IOP and that ALD change is associated with ALC strains. STATEMENT OF SIGNIFICANCE: Glaucoma causes vision loss through progressive damage of the retinal ganglion axons at the lamina cribrosa, a connective tissue structure in the optic nerve head that supports the axons as they pass through the eye wall. It is hypothesized that strains caused by intraocular pressure (IOP) may initiate this damage, but few studies have measured the strain response to pressure of the optic nerve head in patients. We present a method to measure the 3D displacement and strain field in the optic nerve head caused by IOP alteration in glaucoma patients using clinically available images. We used this method to measure strain within the optic nerve head from IOP changes caused by glaucoma surgery and wearing tight-fitting swimming goggles.
Collapse
Affiliation(s)
- Dan E Midgett
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Harry A Quigley
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, MD 21287, USA
| | - Thao D Nguyen
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Materials Science, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
32
|
Tun TA, Wang X, Baskaran M, Nongpiur ME, Tham YC, Perera SA, Strouthidis NG, Aung T, Cheng CY, Girard MJA. Variation of Peripapillary Scleral Shape With Age. Invest Ophthalmol Vis Sci 2019; 60:3275-3282. [PMID: 31369672 PMCID: PMC6675518 DOI: 10.1167/iovs.19-26777] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/18/2019] [Indexed: 11/24/2022] Open
Abstract
Purpose To define the shape of the anterior surface of the peripapillary sclera (PPS) and evaluate its relationship with age and ocular determinants in a population-based Chinese cohort. Methods The optic nerve heads of 619 healthy Chinese subjects were imaged with spectral-domain optical coherence tomography. To assess the shape of the PPS/Bruch's membrane (BM), we measured the angle between a line parallel to the nasal anterior PPS/BM boundary and one parallel to the temporal side. A negative value indicated that the PPS/BM followed an inverted v-shaped configuration (peak pointing toward the vitreous), whereas a positive value indicated that it followed a v-shaped configuration (peak pointing toward the orbital tissues). A linear regression model was used to evaluate the relationship between the PPS angle and other ocular parameters. Results The mean PPS angle was 3.68° ± 6.73° and the BM angle was 9.69° ± 5.05°. The PPS angle increased on average by 0.233 deg/y. A v-shaped PPS was significantly associated with age (β = 0.087, P = 0.004), peripapillary choroidal thickness (β = -0.479, P < 0.001), lamina cribrosa depth (β = 0.307, P < 0.001), and BM angle (β = 0.487, P < 0.001) after adjusting for best corrected visual acuity, central corneal thickness, and axial length. Conclusions The anterior surface of PPS of an elderly adult population had a v-shaped configuration and was more pronounced with increasing age, thin peripapillary choroid, and a deep cup. Such a change in shape with age could have an impact on the biomechanical environment of the optic nerve head.
Collapse
Affiliation(s)
- Tin A. Tun
- Singapore Eye Research Institute and Singapore National Eye Centre, Singapore
- Ophthalmic Engineering & Innovation Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Xiaofei Wang
- Ophthalmic Engineering & Innovation Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Mani Baskaran
- Singapore Eye Research Institute and Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Monisha E. Nongpiur
- Singapore Eye Research Institute and Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Yih-Chung Tham
- Singapore Eye Research Institute and Singapore National Eye Centre, Singapore
| | - Shamira A. Perera
- Singapore Eye Research Institute and Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Nicholas G. Strouthidis
- Singapore Eye Research Institute and Singapore National Eye Centre, Singapore
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
- Discipline of Clinical Ophthalmology and Eye Health, University of Sydney, Sydney, New South Wales, Australia
| | - Tin Aung
- Singapore Eye Research Institute and Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute and Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michaël J. A. Girard
- Singapore Eye Research Institute and Singapore National Eye Centre, Singapore
- Ophthalmic Engineering & Innovation Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore
| |
Collapse
|
33
|
Influence of Anterior Biometry on Corneal Biomechanical Stiffness of Glaucomatous Eyes Treated With Chronic Medication or Filtration Surgery. J Glaucoma 2019; 28:626-632. [DOI: 10.1097/ijg.0000000000001247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Duan XJ, Jefferys JL, Quigley HA. Evaluation of Automated Segmentation Algorithms for Optic Nerve Head Structures in Optical Coherence Tomography Images. Invest Ophthalmol Vis Sci 2019; 59:3816-3826. [PMID: 30073355 DOI: 10.1167/iovs.18-24469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To compare the identification of optic nerve head (ONH) structures in optical coherence tomography images by observers and automated algorithms. Methods ONH images in 24 radial scan sets by optical coherence tomography were obtained in 51 eyes of 29 glaucoma patients and suspects. Masked intraobserver and interobserver comparisons were made of marked endpoints of Bruch's membrane opening (BMO) and the anterior lamina cribrosa (LC). BMO and LC positional markings were compared between observer and automated algorithm. Repeated analysis on 20 eyes by the algorithm was compared. Regional ONH data were derived from the algorithms. Results Intraobserver difference in BMO width was not significantly different from zero (P ≥ 0.32) and the difference in LC position was less than 1% different (P = 0.04). Interobserver were slightly larger than intraobserver differences, but interobserver BMO width difference was 0.36% (P = 0.63). Mean interobserver difference in LC position was 14.74 μm (P = 0.004), 3% of the typical anterior lamina depth (ALD). Between observer and algorithm, BMO width differed by 1.85% (P = 0.23) and mean LC position was not significantly different (3.77 μm, P = 0.77). Repeat algorithmic analysis had a mean difference in BMO area of 0.38% (P = 0.47) and mean ALD difference of 0.54 ± 0.72%. Regional ALD had greater variability in the horizontal ONH regions. Some individual outlier images were not validly marked by either observers or algorithm. Conclusions Automated identification of ONH structures is comparable to observer markings for BMO and anterior LC position, making BMO a practical reference plane for algorithmic analysis.
Collapse
Affiliation(s)
- Xiangyun J Duan
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Joan L Jefferys
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Harry A Quigley
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
35
|
Increased prelaminar tissue thickness in patients with open-angle glaucoma and type 2 diabetes. PLoS One 2019; 14:e0211641. [PMID: 30730917 PMCID: PMC6366732 DOI: 10.1371/journal.pone.0211641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/17/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The characteristics of the optic nerve head (ONH) in open angle glaucoma (OAG) patients with diabetes have not been reported. This study aimed to characterize the ONH structures and glaucomatous damage in diabetic OAG patients, using age-matched non-diabetic OAG patients and control subjects. METHODS The locations of visual field defects of OAG patients were classified and the prelaminar thickness and lamina cribrosa depth were measured in 64 OAG patients with type 2 diabetes (OAG+DM), 68 OAG patients without diabetes (OAG-DM), and 36 controls. All participants were scanned by spectral domain-optical coherence tomography. The anterior prelaminar depth and lamina cribrosa depth were measured at the center of the reference line (the Bruch's membrane opening plane). The prelaminar tissue thickness was obtained by subtracting the anterior prelaminar depth from the anterior lamina cribrosa depth. RESULTS The visual field defects in the OAG+DM group were more commonly found in the inferior hemifield (P = 0.010), and tended to involve the central visual field compared to the OAG-DM group (P = 0.044). In the comparison of ONH parameters, the prelaminar thickness was highest in the OAG+DM group, followed by the control subjects and the OAG-DM group (P = 0.035). Post-hoc testing showed that prelaminar thickness was significantly greater in the OAG+DM group than in the OAG-DM group (P = 0.033). The lamina cribrosa depth was deepest in the OAG+DM group, followed by the OAG-DM group and the control subjects (P = 0.006). CONCLUSIONS Diabetic and non-diabetic OAG patients exhibit different characteristics of glaucoma, particularly increased prelaminar thickening in diabetics.
Collapse
|
36
|
Xiao H, Xu XY, Zhong YM, Liu X. Age related changes of the central lamina cribrosa thickness, depth and prelaminar tissue in healthy Chinese subjects. Int J Ophthalmol 2018; 11:1842-1847. [PMID: 30450317 DOI: 10.18240/ijo.2018.11.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/21/2018] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the variation in the central lamina cribrosa thickness (cLCT), and the central anterior lamina cribrosa surface depth (cALCSD), as well as the central prelaminar tissue thickness (cPLTT) related to age in healthy Chinese subjects. METHODS A total of 96 eyes from 96 Chinese healthy subjects were recruited. According to age, the 96 cases were divided into three groups: the young group (YG, 18-39y), middle-age group (MG, 40-59y) and older-age group (OG, 60y and above). Lamina cribrosa images were obtained from all participants using radial linear protocol by enhanced depth imaging spectral-domain optical coherence tomography. The cLCT, cALCSD and cPLTT were calculated from the average value of the lamina cribrosa thickness, anterior lamina cribrosa surface depth and prelaminar tissue thickness in the optic nerve head (ONH) centre point and paracentral points (150 µm from the centre point in the horizontal and vertical directions). RESULTS For the total subjects, the mean cLCT, cALCSD and cPLTT were 235.18±41.27, 358.02±93.80 and 182.02±92.11 µm, respectively. No statistically significant differences in cLCT, cALCSD or cPLTT were found between gender and different eyes (P=0.27-0.92). The cLCT of the OG was the thickest among the three groups, while the cPLTT of the YG was the thickest among the three groups (P<0.05). Age was positively correlated with cLCT (r=0.42, P<0.001), and negatively correlated with cPLTT (r=-0.24, P=0.02). No significant correlation was found between the age and cALCSD (r=-0.06, P=0.55). And no correlation has been found between axial length and cLCT, cALCSD and cPLTT (P=0.11-0.81). CONCLUSION The impact of age on the cLCT and the cPLLTT should be taken into account when analysing glaucoma and other diseases related to lamina cribrosa.
Collapse
Affiliation(s)
- Hui Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sun University, Guangzhou 510060, Guangdong Province, China
| | - Xiao-Yu Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sun University, Guangzhou 510060, Guangdong Province, China
| | - Yi-Min Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sun University, Guangzhou 510060, Guangdong Province, China
| | - Xing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sun University, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|