1
|
Wang Y, Lv Z, Chen Y, Cen X, Zhang H, Chen D. A high-fat plus high-sucrose diet induces age-related macular degeneration in an experimental rabbit model. Dis Model Mech 2024; 17:dmm052015. [PMID: 39463155 PMCID: PMC11625886 DOI: 10.1242/dmm.052015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness. Metabolic disorders and diets are risk factors. We compared lipid profiles and retinal phenotypes with long-term feeding of four diets in male Chinchilla rabbits. Animals were fed a normal diet (ND), high-fat diet (HFD), high-sucrose diet (HSD) or a high-fat plus high-sucrose diet (HFSD) for 6 months. Eyes were examined using multimodal imaging modalities and electroretinograms. Retinal sections were analyzed using H&E staining, Toluidine Blue staining, immunostaining and transmission electron microscopy. Lipids and complement C3 protein (C3) in serum or aqueous humor were measured. RNA sequencing was performed to evaluate the retinal transcriptomes. HFD and HSD had minor effects on lipid profiles but, when fed concomitantly, synergistically induced severe dyslipidemia. None of the four diets caused obesity. HFSD induced retinal lesions, such as reticular pseudodrusen (RPDs) and other pigmentary abnormalities. RPD-like lesions were mainly lipid droplets around cells of the retinal pigment epithelium. HFSD also induced elevated levels of ocular C3 and reduced the density of retinal vessels. In conclusion, HFD and HSD can - when combined - induce normal-weight dyslipidemia and RPD-like retinal lesions. HFSD-fed male Chinchilla rabbits are a good model of early AMD.
Collapse
Affiliation(s)
- Yujiao Wang
- Department of Ophthalmology, Research Laboratory of Ophthalmology and Vision Sciences, Eye Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, West China-Frontier Pharma Tech Co., Ltd., Chengdu 610041, China
| | - Zhongping Lv
- Department of Ophthalmology, Research Laboratory of Ophthalmology and Vision Sciences, Eye Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongjiang Chen
- Waterloo eye institute, School of Optometry and Vision Science, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, West China-Frontier Pharma Tech Co., Ltd., Chengdu 610041, China
| | - Hui Zhang
- National Chengdu Center for Safety Evaluation of Drugs, West China-Frontier Pharma Tech Co., Ltd., Chengdu 610041, China
| | - Danian Chen
- Department of Ophthalmology, Research Laboratory of Ophthalmology and Vision Sciences, Eye Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Dolan K, Liao SM, Crowley M, Xiang C, Adams CM, Brown A, Vo N, Chen A, Delgado O, Buchanan N, Guo C, Prasanna G. Complement Factor B Inhibition or Deletion Is Not Sufficient to Prevent Neurodegeneration in a Murine Model of Glaucoma. J Ocul Pharmacol Ther 2024; 40:524-535. [PMID: 38976487 DOI: 10.1089/jop.2024.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Purpose: Activation of the classical complement pathway is thought to contribute to the development and progression of glaucoma. The role of alternative complement or amplification pathways in glaucoma is not well understood. We evaluated complement factor B (FB) expression in postmortem human ocular tissues with or without glaucoma and the effect of FB inhibition and deletion in a mouse ocular hypertensive model of glaucoma induced by photopolymerized hyaluronic acid glycidyl methacrylate (HAGM). Methods: Human CFB mRNA in human eyes was assessed by RNAscope and TaqMan. HAGM model was performed on C57BL6/J mice. The effect of FB in HAGM model was evaluated with an oral FB inhibitor and Cfb-/- mice. Complement mRNA and proteins in mouse eyes were assessed by TaqMan and western blot, respectively. Results: CFB mRNA in human glaucomatous macular neural retina and optic nerve head was upregulated. Cfb mRNA is also upregulated in the HAGM model. Oral FB inhibitor, ED-79-GX17, dosed daily at 200 mg/kg for 3 days after intraocular pressure (IOP) induction in wild-type mice showed complement inhibition in ocular tissues and significantly inhibited systemic complement levels. Daily dosing of ED-79-GX17 for 30 days or Cfb deletion was also unable to prevent retinal ganglion cell or axon loss 30 days after IOP induction in mice. Conclusion: The alternative complement component FB may not substantially contribute to RGC loss in the HAGM mouse glaucoma model despite upregulation of Cfb expression and activation of the alternative pathway. The relevance of these findings to human glaucoma remains to be determined.
Collapse
Affiliation(s)
- Katie Dolan
- Ophthalmology, Novartis BioMedical Research (NBR), Cambridge, Massachusetts
| | - Sha-Mei Liao
- Ophthalmology, Novartis BioMedical Research (NBR), Cambridge, Massachusetts
| | - Maura Crowley
- Ophthalmology, Novartis BioMedical Research (NBR), Cambridge, Massachusetts
| | - Chuanxi Xiang
- Ophthalmology, Novartis BioMedical Research (NBR), Cambridge, Massachusetts
| | - Christopher M Adams
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research NBR, Cambridge, Massachusetts
| | - Ann Brown
- Discovery/Bioanalytics, Translational Medicine, Novartis Institutes for Biomedical Research NBR, Cambridge, Massachusetts
| | - Nhi Vo
- Ophthalmology, Novartis BioMedical Research (NBR), Cambridge, Massachusetts
| | - Amy Chen
- Ophthalmology, Novartis BioMedical Research (NBR), Cambridge, Massachusetts
| | - Omar Delgado
- Ophthalmology, Novartis BioMedical Research (NBR), Cambridge, Massachusetts
| | - Natasha Buchanan
- Ophthalmology, Novartis BioMedical Research (NBR), Cambridge, Massachusetts
| | - Chenying Guo
- Ophthalmology, Novartis BioMedical Research (NBR), Cambridge, Massachusetts
| | - Ganesh Prasanna
- Ophthalmology, Novartis BioMedical Research (NBR), Cambridge, Massachusetts
| |
Collapse
|
3
|
Carozza G, Zerti D, Tisi A, Ciancaglini M, Maccarrone M, Maccarone R. An overview of retinal light damage models for preclinical studies on age-related macular degeneration: identifying molecular hallmarks and therapeutic targets. Rev Neurosci 2024; 35:303-330. [PMID: 38153807 DOI: 10.1515/revneuro-2023-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/19/2023] [Indexed: 12/30/2023]
Abstract
Age-related macular degeneration (AMD) is a complex, multifactorial disease leading to progressive and irreversible retinal degeneration, whose pathogenesis has not been fully elucidated yet. Due to the complexity and to the multiple features of the disease, many efforts have been made to develop animal models which faithfully reproduce the overall AMD hallmarks or that are able to mimic the different AMD stages. In this context, light damage (LD) rodent models of AMD represent a suitable and reliable approach to mimic the different AMD forms (dry, wet and geographic atrophy) while maintaining the time-dependent progression of the disease. In this review, we comprehensively reported how the LD paradigms reproduce the main features of human AMD. We discuss the capability of these models to broaden the knowledge in AMD research, with a focus on the mechanisms and the molecular hallmarks underlying the pathogenesis of the disease. We also critically revise the remaining challenges and future directions for the use of LD models.
Collapse
Affiliation(s)
- Giulia Carozza
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Darin Zerti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Marco Ciancaglini
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Rita Maccarone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
4
|
Lim RR, Shirali S, Rowlan J, Engel AL, Nazario, M, Gonzalez K, Tong A, Neitz J, Neitz M, Chao JR. CFH Haploinsufficiency and Complement Alterations in Early-Onset Macular Degeneration. Invest Ophthalmol Vis Sci 2024; 65:43. [PMID: 38683564 PMCID: PMC11059804 DOI: 10.1167/iovs.65.4.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
Purpose Complement dysregulation is a key component in the pathogenesis of age-related macular degeneration (AMD) and related diseases such as early-onset macular drusen (EOMD). Although genetic variants of complement factor H (CFH) are associated with AMD risk, the impact of CFH and factor H-like protein 1 (FHL-1) expression on local complement activity in human retinal pigment epithelium (RPE) remains unclear. Methods We identified a novel CFH variant in a family with EOMD and generated patient induced pluripotent stem cell (iPSC)-derived RPE cells. We assessed CFH and FHL-1 co-factor activity through C3b breakdown assays and measured complement activation by immunostaining for membrane attack complex (MAC) formation. Expression of CFH, FHL-1, local alternative pathway (AP) components, and regulators of complement activation (RCA) in EOMD RPE cells was determined by quantitative PCR, western blot, and immunostaining. Isogenic EOMD (cEOMD) RPE was generated using CRISPR/Cas9 gene editing. Results The CFH variant (c.351-2A>G) resulted in loss of CFH and FHL-1 expression and significantly reduced CFH and FHL-1 protein expression (∼50%) in EOMD iPSC RPE cells. These cells exhibited increased MAC deposition upon exposure to normal human serum. Under inflammatory or oxidative stress conditions, CFH and FHL-1 expression in EOMD RPE cells paralleled that of controls, whereas RCA expression, including MAC formation inhibitors, was elevated. CRISPR/Cas9 correction restored CFH/FHL-1 expression and mitigated alternative pathway complement activity in cEOMD RPE cells. Conclusions Identification of a novel CFH variant in patients with EOMD resulting in reduced CFH and FHL-1 and increased local complement activity in EOMD iPSC RPE supports the involvement of CFH haploinsufficiency in EOMD pathogenesis.
Collapse
Affiliation(s)
- Rayne R. Lim
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Sharlene Shirali
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Jessica Rowlan
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Abbi L. Engel
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Institute, Seattle, Washington, United States
| | - Marcos Nazario,
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Kelie Gonzalez
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Aspen Tong
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Jennifer R. Chao
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
- Roger and Angie Karalis Johnson Retina Center, University of Washington School of Medicine, Seattle, Washington, United States
| |
Collapse
|
5
|
Hristodorov D, Lohoff T, Luneborg N, Mulder GJ, Clark SJ. Investing in vision: Innovation in retinal therapeutics and the influence on venture capital investment. Prog Retin Eye Res 2024; 99:101243. [PMID: 38218527 DOI: 10.1016/j.preteyeres.2024.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Since the groundbreaking approval of the first anti-VEGF therapy in 2004, the retinal therapeutics field has undergone a remarkable transformation, witnessing a surge in novel, disease-modifying therapeutics for a broad spectrum of retinal diseases, extending beyond exudative VEGF-driven conditions. The surge in scientific advancement and the pressing, unmet, medical need have captured the attention of venture capital investors, who have collectively invested close to $10 billion in research and development of new retinal therapeutics between 2004 and 2023. Notably, the field of exudative diseases has gradually shifted away from trying to outcompete anti-VEGF therapeutics towards lowering the overall treatment burden by reducing injection frequency. Simultaneously, a new era has emerged in the non-exudative field, targeting prevalent conditions like dry AMD and rare indications such as Retinitis pigmentosa. This has led to promising drug candidates in development, culminating in the landmark approval of Luxturna for a rare form of Retinitis pigmentosa. The validation of new mechanisms, such as the complement pathway in dry AMD has paved the way for the approvals of Syvovre (Apellis) and Izervay (Iveric/Astellas), marking the first two therapies for this condition. In this comprehensive review, we share our view on the cumulative lessons from the past two decades in developing retinal therapeutics, covering both positive achievements and challenges. We also contextualize the investments, strategic partnering deals, and acquisitions of biotech companies, pharmaceutical companies venture capital investors in retinal therapeutics, respectively. Finally, we provide an outlook and potentially a forward-looking roadmap on novel retinal therapeutics, highlighting the emergence of potential new intervention strategies, such as cell-based therapies, gene editing, and combination therapies. We conclude that upcoming developments have the potential to further stimulate venture capital investments, which ultimately could facilitate the development and delivery of new therapies to patients in need.
Collapse
Affiliation(s)
| | | | | | | | - Simon J Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, University Medical Center, Eberhard Karls University of Tübingen, Tübingen, Germany; University Eye Clinic, University Hospital Tübingen, Tübingen, Germany; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Biber J, Jabri Y, Glänzer S, Dort A, Hoffelner P, Schmidt CQ, Bludau O, Pauly D, Grosche A. Gliosis-dependent expression of complement factor H truncated variants attenuates retinal neurodegeneration following ischemic injury. J Neuroinflammation 2024; 21:56. [PMID: 38388518 PMCID: PMC10885619 DOI: 10.1186/s12974-024-03045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Inherited, age-related, and acute retinal diseases are often exacerbated by an aberrant or excessive activity of the complement system. Consequently, cells not directly affected by an acute event or genetic variants may degenerate, resulting in enhanced visual impairment. The therapeutic potential of supplementation of complement factor H (FH), a key regulator of the complement cascade, is therefore particularly promising in the context of retinal diseases caused by complement activation. In this study, we engineered adeno-associated viruses (AAVs) containing sequences of two truncated human FH variants. The expression of these variants was regulated by the glial fibrillary acidic protein (GFAP) promoter, which is selectively active in gliotic Müller cells. Both FH variants consisted of FH domains 19-20, which were connected to domains 1-4 and 1-7, respectively, by a polyglycine linker. These AAVs were intravitreally injected following ischemic injury of C57BL/6J mouse retinas. We observed transgene expression in gliotic Müller cells and to some extent in astrocytes. The expression correlated directly with damage severity. Interventions resulted in decreased complement activation, accelerated normalization of microglia activity and morphological improvements. Reduced levels of C3 transcripts and C3d protein in conjunction with higher transcript levels of inhibitory regulators like Cfi and Cfh, hinted at attenuated complement activity. This study demonstrates the great potential of complement regulatory gene addition therapy. With further in vivo testing it could be applied to treat a wide range of retinal diseases where no causative therapies are available.
Collapse
Affiliation(s)
- Josef Biber
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Yassin Jabri
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Sarah Glänzer
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Aaron Dort
- Experimental Ophthalmology, University of Marburg, Marburg, Germany
| | - Patricia Hoffelner
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Christoph Q Schmidt
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
- Institute of Pharmacy, Biochemical Pharmacy Group, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Oliver Bludau
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Diana Pauly
- Experimental Ophthalmology, University of Marburg, Marburg, Germany.
| | - Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
7
|
Deng X, Hu Z, Zhou S, Wu Y, Fu M, Zhou C, Sun J, Gao X, Huang Y. Perspective from single-cell sequencing: Is inflammation in acute ischemic stroke beneficial or detrimental? CNS Neurosci Ther 2024; 30:e14510. [PMID: 37905592 PMCID: PMC10805403 DOI: 10.1111/cns.14510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Acute ischemic stroke (AIS) is a common cerebrovascular event associated with high incidence, disability, and poor prognosis. Studies have shown that various cell types, including microglia, astrocytes, oligodendrocytes, neurons, and neutrophils, play complex roles in the early stages of AIS and significantly affect its prognosis. Thus, a comprehensive understanding of the mechanisms of action of these cells will be beneficial for improving stroke prognosis. With the rapid development of single-cell sequencing technology, researchers have explored the pathophysiological mechanisms underlying AIS at the single-cell level. METHOD We systematically summarize the latest research on single-cell sequencing in AIS. RESULT In this review, we summarize the phenotypes and functions of microglia, astrocytes, oligodendrocytes, neurons, neutrophils, monocytes, and lymphocytes, as well as their respective subtypes, at different time points following AIS. In particular, we focused on the crosstalk between microglia and astrocytes, oligodendrocytes, and neurons. Our findings reveal diverse and sometimes opposing roles within the same cell type, with the possibility of interconversion between different subclusters. CONCLUSION This review offers a pioneering exploration of the functions of various glial cells and cell subclusters after AIS, shedding light on their regulatory mechanisms that facilitate the transformation of detrimental cell subclusters towards those that are beneficial for improving the prognosis of AIS. This approach has the potential to advance the discovery of new specific targets and the development of drugs, thus representing a significant breakthrough in addressing the challenges in AIS treatment.
Collapse
Affiliation(s)
- Xinpeng Deng
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Ziliang Hu
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Shengjun Zhou
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Yiwen Wu
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Menglin Fu
- School of Economics and ManagementChina University of GeosciencesWuhanChina
| | - Chenhui Zhou
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Jie Sun
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Xiang Gao
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Yi Huang
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| |
Collapse
|
8
|
Rathi S, Hasan R, Ueffing M, Clark SJ. Therapeutic targeting of the complement system in ocular disease. Drug Discov Today 2023; 28:103757. [PMID: 37657753 DOI: 10.1016/j.drudis.2023.103757] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
The complement system is involved in the pathogenesis of several ocular diseases, providing a rationale for the investigation of complement-targeting therapeutics for these conditions. Dry age-related macular degeneration, as characterised by geographic atrophy (GA), is currently the most active area of research for complement-targeting therapeutics, with a complement C3 inhibitor approved in the United States earlier this year marking the first approved therapy for GA. This review discusses the role of complement in ocular disease, provides an overview of the complement-targeting agents currently under development for ocular conditions, and reflects on the lessons that can be learned from the preclinical investigations and clinical trials conducted in this field to date.
Collapse
Affiliation(s)
- Sonika Rathi
- Institute for Ophthalmic Research, Department for Ophthalmology, University Medical Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | | | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, University Medical Center, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Simon J Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, University Medical Center, Eberhard Karls University of Tübingen, Tübingen, Germany; University Eye Clinic, University Hospital Tübingen, Tübingen, Germany; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
9
|
Evers CD, Chen L, Messinger JD, Killingsworth M, Freund KB, Curcio CA. HISTOLOGY, DIMENSIONS, AND FLUORESCEIN STAINING CHARACTERISTICS OF NODULAR AND CUTICULAR DRUSEN IN AGE-RELATED MACULAR DEGENERATION. Retina 2023; 43:1708-1716. [PMID: 37399252 PMCID: PMC10527195 DOI: 10.1097/iae.0000000000003871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
PURPOSE To enable in vivo analysis of drusen composition and lifecycle, the macular nodular and cuticular drusen were assessed using histology. METHODS Median and interquartile range of base widths of single (nonconfluent) nodular drusen in three sources were determined histologically: 43 eyes of 43 clinically undocumented donors, in an online resource; one eye with punctate hyperfluorescence in fluorescein angiography; and two eyes of one patient with bilateral "starry sky" cuticular drusen. All tissues were processed for high-resolution epoxy-resin histology and for cuticular drusen, transmission electron microscopy. RESULTS All drusen localized between the retinal pigment epithelium basal lamina and inner collagenous layer of the Bruch membrane. They were solid, globular, homogeneously stained with toluidine blue, and uncovered by basal laminar deposit and basal mounds. Median base widths were 13.0 µ m (Source 1, N = 128 drusen, interquartile range 7.7, 20.0 µ m), 15.3 µ m (Source 2, N = 87, interquartile range 10.6, 20.5 µ m), and 7.3 µ m (Source 3, N = 78, interquartile range 3.9, 14.1 µ m). CONCLUSION In three samples, >90% of solitary nodular drusen were <30 µ m, the visibility threshold in color fundus photography; these drusen are hyperfluorescent in fluorescein angiography. Whether these progress to soft drusen, known as high-risk from epidemiology studies and hypofluorescent, may be determinable from multimodal imaging datasets that include fluorescein angiography.
Collapse
Affiliation(s)
- Charles D. Evers
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham Alabama, USA
| | - Ling Chen
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham Alabama, USA
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, China
| | - Jeffrey D. Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham Alabama, USA
| | - Murray Killingsworth
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia
- Faculty of Medicine, South West Sydney Clinical Campus, University of New South Wales, Sydney, Australia
- NSW Health Pathology and Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - K. Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, NY, USA
- Department of Ophthalmology, Grossman New York University School of Medicine, New York, NY, USA
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham Alabama, USA
| |
Collapse
|
10
|
Wu J, Jiang Y, Sun J, Sun X. Identification and Validation of an Aging-Associated circRNA-miRNA-mRNA Network in Neovascular Age-Related Macular Degeneration. Gerontology 2023; 69:1218-1231. [PMID: 37604141 PMCID: PMC10614246 DOI: 10.1159/000531287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/22/2023] [Indexed: 08/23/2023] Open
Abstract
INTRODUCTION Neovascular age-related macular degeneration (NVAMD) is a leading cause of severe vision impairment in the elderly. Aging is one of the most pivotal underlying molecular mechanisms of NVAMD. METHODS In this study, we identified the potential aging-related genes involved in NVAMD. Considering that noncoding RNAs are vital regulators of NVAMD progression, we further explored and constructed an aging-originated circRNA-miRNA-mRNA network of NVAMD. Differential expression of 23 aging-associated genes was identified based on sequencing data and the Human Aging Genomic Resources tool at a threshold of p < 0.05, and log2|fold change| > 1. RESULTS We screened 12 microRNAs (miRNAs) using public datasets and miRNet database. A total of 13 circRNAs were subsequently mined using the starBase tool. Merging these 13 circRNAs, 12 miRNAs, and 15 genes together, we obtained 281 pairs of circRNA-miRNA and 30 pairs of miRNA-mRNA. CONCLUSION We created an aging-related circRNA-miRNA-mRNA network, which could be a promising target for future AMD treatments.
Collapse
Affiliation(s)
- Jiali Wu
- School of Medicine, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China,
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China,
| | - Yuxin Jiang
- School of Medicine, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Junran Sun
- School of Medicine, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xiaodong Sun
- School of Medicine, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
11
|
Dreismann AK, Hallam TM, Tam LC, Nguyen CV, Hughes JP, Ellis S, Harris CL. Gene targeting as a therapeutic avenue in diseases mediated by the complement alternative pathway. Immunol Rev 2023; 313:402-419. [PMID: 36369963 PMCID: PMC10099504 DOI: 10.1111/imr.13149] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The complement alternative pathway (AP) is implicated in numerous diseases affecting many organs, ranging from the rare hematological disease paroxysmal nocturnal hemoglobinuria (PNH), to the common blinding disease age-related macular degeneration (AMD). Critically, the AP amplifies any activating trigger driving a downstream inflammatory response; thus, components of the pathway have become targets for drugs of varying modality. Recent validation from clinical trials using drug modalities such as inhibitory antibodies has paved the path for gene targeting of the AP or downstream effectors. Gene targeting in the complement field currently focuses on supplementation or suppression of complement regulators in AMD and PNH, largely because the eye and liver are highly amenable to drug delivery through local (eye) or systemic (liver) routes. Targeting the liver could facilitate treatment of numerous diseases as this organ generates most of the systemic complement pool. This review explains key concepts of RNA and DNA targeting and discusses assets in clinical development for the treatment of diseases driven by the alternative pathway, including the RNA-targeting therapeutics ALN-CC5, ARO-C3, and IONIS-FB-LRX, and the gene therapies GT005 and HMR59. These therapies are but the spearhead of potential drug candidates that might revolutionize the field in coming years.
Collapse
|
12
|
Sim RZH, Tham YC, Betzler BK, Zhou L, Wang X, Sabanayagam C, Cheung GCM, Wong TY, Cheng CY, Nusinovici S. Relationships between Lipid-Related Metabolites and Age-Related Macular Degeneration Vary with Complement Genotype. OPHTHALMOLOGY SCIENCE 2022; 2:100211. [PMID: 36531576 PMCID: PMC9755028 DOI: 10.1016/j.xops.2022.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVE Lipid dysregulation and complement system (CS) activation are 2 important pathophysiology pathways for age-related macular degeneration (AMD). We hypothesized that the relationship between lipids and AMD may also differ according to CS genotype profile. Thus, the objective was to investigate the relationships between lipid-related metabolites and AMD according to CS genotypes. DESIGN Population-based cross-sectional study. PARTICIPANTS A total of 6947 participants from Singapore Epidemiology of Eye Diseases study with complete relevant data were included. METHODS We investigated a total of 32 blood lipid-related metabolites from nuclear magnetic resonance metabolomics data including lipoproteins and their subclasses, cholesterols, glycerides, and phospholipids, as well as 4 CS single nucleotide polymorphisms (SNPs): rs10922109 (complement factor H), rs10033900 (complement factor I), rs116503776 (C2-CFB-SKIV2L), and rs2230199 (C3). We first investigated the associations between AMD and the 32 lipid-related metabolites using multivariable logistic regression models. Then, to investigate whether the effect of lipid-related metabolites on AMD differ according to the CS SNPs, we tested the possible interactions between the CS SNPs and the lipid-related metabolites. MAIN OUTCOME MEASURES Age-related macular degeneration was defined using the Wisconsin grading system. RESULTS Among the 6947 participants, the prevalence of AMD was 6.1%, and the mean age was 58.3 years. First, higher levels of cholesterol in high-density lipoprotein (HDL) and medium and large HDL particles were associated with an increased risk of AMD, and higher levels of serum total triglycerides (TG) and several very-low-density lipoprotein subclass particles were associated with a decreased risk of AMD. Second, these lipids had significant interaction effects on AMD with 2 CS SNPs: rs2230199 and rs116503776 (after correction for multiple testing). For rs2230199, in individuals without risk allele, higher total cholesterol in HDL2 was associated with an increased AMD risk (odds ratio [OR] per standard deviation increase, 1.20; 95% confidence interval (CI), 1.06-1.37; P = 0.005), whereas, in individuals with at least 1 risk allele, higher levels of these particles were associated with a decreased AMD risk (OR, 0.69; 95% CI, 0.45-1.05; P = 0.079). Conversely, for rs116503776, in individuals without risk allele, higher serum total TG were associated with a decreased AMD risk (OR, 0.84; 95% CI, 0.74-0.95; P = 0.005), whereas, in individuals with 2 risk alleles, higher levels of these particles were associated with an increased risk of AMD (OR, 2.3, 95% CI, 0.99-5.39, P = 0.054). CONCLUSIONS Lipid-related metabolites exhibit opposite directions of effects on AMD according to CS genotypes. This indicates that lipid metabolism and CS may have synergistic interplay in the AMD pathogenesis.
Collapse
Key Words
- AMD, age-related macular degeneration
- Age-related macular degeneration
- CFH, complement factor H
- CS, complement system
- Complement system
- HDL, high-density lipoprotein
- Lipids
- Metabolites
- NMR, nuclear magnetic resonance
- OR, odds ratio
- RPE, retinal pigment epithelium
- SNP, single nucleotide polymorphism
- TG, triglycerides
- VLDL, very-low–density lipoprotein
Collapse
Affiliation(s)
- Ralene Zi Hui Sim
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Yih-Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
| | | | - Lei Zhou
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
| | - Xiaomeng Wang
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
| | - Gemmy Chiu Ming Cheung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Simon Nusinovici
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
| |
Collapse
|
13
|
Wong JHC, Ma JYW, Jobling AI, Brandli A, Greferath U, Fletcher EL, Vessey KA. Exploring the pathogenesis of age-related macular degeneration: A review of the interplay between retinal pigment epithelium dysfunction and the innate immune system. Front Neurosci 2022; 16:1009599. [PMID: 36408381 PMCID: PMC9670140 DOI: 10.3389/fnins.2022.1009599] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/12/2022] [Indexed: 07/30/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss in the older population. Classical hallmarks of early and intermediate AMD are accumulation of drusen, a waste deposit formed under the retina, and pigmentary abnormalities in the retinal pigment epithelium (RPE). When the disease progresses into late AMD, vision is affected due to death of the RPE and the light-sensitive photoreceptors. The RPE is essential to the health of the retina as it forms the outer blood retinal barrier, which establishes ocular immune regulation, and provides support for the photoreceptors. Due to its unique anatomical position, the RPE can communicate with the retinal environment and the systemic immune environment. In AMD, RPE dysfunction and the accumulation of drusen drive the infiltration of retinal and systemic innate immune cells into the outer retina. While recruited endogenous or systemic mononuclear phagocytes (MPs) contribute to the removal of noxious debris, the accumulation of MPs can also result in chronic inflammation and contribute to AMD progression. In addition, direct communication and indirect molecular signaling between MPs and the RPE may promote RPE cell death, choroidal neovascularization and fibrotic scarring that occur in late AMD. In this review, we explore how the RPE and innate immune cells maintain retinal homeostasis, and detail how RPE dysfunction and aberrant immune cell recruitment contribute to AMD pathogenesis. Evidence from AMD patients will be discussed in conjunction with data from preclinical models, to shed light on future therapeutic targets for the treatment of AMD.
Collapse
|
14
|
Boyer DD, Ko YP, Podos SD, Cartwright ME, Gao X, Wiles JA, Huang M. Danicopan, an Oral Complement Factor D Inhibitor, Exhibits High and Sustained Exposure in Ocular Tissues in Preclinical Studies. Transl Vis Sci Technol 2022; 11:37. [DOI: 10.1167/tvst.11.10.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Ya-Ping Ko
- Alexion, AstraZeneca Rare Disease, New Haven, CT, USA
| | | | | | - Xiang Gao
- Alexion, AstraZeneca Rare Disease, New Haven, CT, USA
| | | | - Mingjun Huang
- Alexion, AstraZeneca Rare Disease, New Haven, CT, USA
| |
Collapse
|
15
|
Crowley MA, Garland DL, Sellner H, Banks A, Fan L, Rejtar T, Buchanan N, Delgado O, Xu YY, Jose S, Adams CM, Mogi M, Wang K, Bigelow CE, Poor S, Anderson K, Jaffee BD, Prasanna G, Grosskreutz C, Fernandez-Godino R, Pierce EA, Dryja TP, Liao SM. Complement factor B is critical for sub-RPE deposit accumulation in a model of Doyne honeycomb retinal dystrophy with features of age-related macular degeneration. Hum Mol Genet 2022; 32:204-217. [PMID: 35943778 PMCID: PMC9840207 DOI: 10.1093/hmg/ddac187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 01/19/2023] Open
Abstract
EFEMP1 R345W is a dominant mutation causing Doyne honeycomb retinal dystrophy/malattia leventinese (DHRD/ML), a rare blinding disease with clinical pathology similar to age-related macular degeneration (AMD). Aged Efemp1 R345W/R345W knock-in mice (Efemp1ki/ki) develop microscopic deposits on the basal side of retinal pigment epithelial cells (RPE), an early feature in DHRD/ML and AMD. Here, we assessed the role of alternative complement pathway component factor B (FB) in the formation of these deposits. RNA-seq analysis of the posterior eyecups revealed increased unfolded protein response, decreased mitochondrial function in the neural retina (by 3 months of age) and increased inflammatory pathways in both neural retina and posterior eyecups (at 17 months of age) of Efemp1ki/ki mice compared with wild-type littermate controls. Proteomics analysis of eye lysates confirmed similar dysregulated pathways as detected by RNA-seq. Complement activation was increased in aged Efemp1ki/ki eyes with an approximately 2-fold elevation of complement breakdown products iC3b and Ba (P < 0.05). Deletion of the Cfb gene in female Efemp1ki/ki mice partially normalized the above dysregulated biological pathway changes and oral dosing of a small molecule FB inhibitor from 10 to 12 months of age reduced sub-RPE deposits by 65% (P = 0.029). In contrast, male Efemp1ki/ki mice had fewer sub-RPE deposits than age-matched females, no elevation of ocular complement activation and no effect of FB inhibition on sub-RPE deposits. The effects of FB deletion or inhibition on Efemp1ki/ki mice supports systemic inhibition of the alternative complement pathway as a potential treatment of dry AMD and DHRD/ML.
Collapse
Affiliation(s)
- Maura A Crowley
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Donita L Garland
- Ocular Genomics Institute at Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Holger Sellner
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Angela Banks
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Lin Fan
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Tomas Rejtar
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Natasha Buchanan
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Omar Delgado
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Yong Yao Xu
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Sandra Jose
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Christopher M Adams
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Muneto Mogi
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Karen Wang
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Chad E Bigelow
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Stephen Poor
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | | | - Bruce D Jaffee
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Ganesh Prasanna
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Cynthia Grosskreutz
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Rosario Fernandez-Godino
- Ocular Genomics Institute at Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Eric A Pierce
- Ocular Genomics Institute at Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | | | - Sha-Mei Liao
- To whom correspondence should be addressed at: Department of Ophthalmology, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, MA 02139, USA. Tel: +1-(617)871-4004; Fax: +1-(617)871-5748;
| |
Collapse
|
16
|
Zauhar R, Biber J, Jabri Y, Kim M, Hu J, Kaplan L, Pfaller AM, Schäfer N, Enzmann V, Schlötzer-Schrehardt U, Straub T, Hauck SM, Gamlin PD, McFerrin MB, Messinger J, Strang CE, Curcio CA, Dana N, Pauly D, Grosche A, Li M, Stambolian D. As in Real Estate, Location Matters: Cellular Expression of Complement Varies Between Macular and Peripheral Regions of the Retina and Supporting Tissues. Front Immunol 2022; 13:895519. [PMID: 35784369 PMCID: PMC9240314 DOI: 10.3389/fimmu.2022.895519] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/11/2022] [Indexed: 01/02/2023] Open
Abstract
The cellular events that dictate the initiation of the complement pathway in ocular degeneration, such as age-related macular degeneration (AMD), is poorly understood. Using gene expression analysis (single cell and bulk), mass spectrometry, and immunohistochemistry, we dissected the role of multiple retinal and choroidal cell types in determining the complement homeostasis. Our scRNA-seq data show that the cellular response to early AMD is more robust in the choroid, particularly in fibroblasts, pericytes and endothelial cells. In late AMD, complement changes were more prominent in the retina especially with the expression of the classical pathway initiators. Notably, we found a spatial preference for these differences. Overall, this study provides insights into the heterogeneity of cellular responses for complement expression and the cooperation of neighboring cells to complete the pathway in healthy and AMD eyes. Further, our findings provide new cellular targets for therapies directed at complement.
Collapse
Affiliation(s)
- Randy Zauhar
- Department of Chemistry and Biochemistry, The University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Josef Biber
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Yassin Jabri
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Mijin Kim
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jian Hu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Lew Kaplan
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Anna M. Pfaller
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Nicole Schäfer
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Regensburg, Germany
| | - Volker Enzmann
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Tobias Straub
- Bioinformatics Unit, Biomedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Stefanie M. Hauck
- Metabolomics and Proteomics Core and Research Unit Protein Science, Helmholtz-Zentrum München, Neuherberg, Germany
| | - Paul D. Gamlin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michael B. McFerrin
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeffrey Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christianne E. Strang
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nicholas Dana
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Diana Pauly
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
- Experimental Ophthalmology, University of Marburg, Marburg, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Dwight Stambolian
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
17
|
Mulfaul K, Mullin NK, Giacalone JC, Voigt AP, DeVore M, Stone EM, Tucker BA, Mullins RF. Local factor H production by human choroidal endothelial cells mitigates complement deposition: implications for macular degeneration. J Pathol 2022; 257:29-38. [PMID: 35038170 PMCID: PMC9007903 DOI: 10.1002/path.5867] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/14/2021] [Accepted: 01/12/2022] [Indexed: 11/11/2022]
Abstract
Activation of the alternative complement pathway is an initiating event in the pathology of age-related macular degeneration (AMD). Unchecked complement activation leads to the formation of a pro-lytic pore, the membrane attack complex (MAC). MAC deposition is observed on the choriocapillaris of AMD patients and likely causes lysis of choroidal endothelial cells (CECs). Complement factor H (FH, encoded by the gene CFH) is an inhibitor of complement. Both loss of function of FH and reduced choroidal levels of FH have been reported in AMD. It is plausible that reduced local FH availability promotes MAC deposition on CECs. FH is produced primarily in the liver; however, cells including the retinal pigment epithelium can produce FH locally. We hypothesized that CECs produce FH locally to protect against MAC deposition. We aimed to investigate the effect of reduced FH levels in the choroid to determine whether increasing local FH could protect CECs from MAC deposition. We demonstrated that siRNA knockdown of FH (CFH) in human immortalized CECs results in increased MAC deposition. We generated AMD iPSC-derived CECs and found that overexpression of FH protects against MAC deposition. These results suggest that local CEC-produced FH protects against MAC deposition, and that increasing local FH protein may be beneficial in limiting MAC deposition in AMD. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Kelly Mulfaul
- Institute for Vision Research, Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Nathaniel K. Mullin
- Institute for Vision Research, Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Joseph C. Giacalone
- Institute for Vision Research, Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Andrew P. Voigt
- Institute for Vision Research, Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Melette DeVore
- Institute for Vision Research, Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Edwin M. Stone
- Institute for Vision Research, Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Budd A. Tucker
- Institute for Vision Research, Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Robert F. Mullins
- Institute for Vision Research, Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
18
|
Fan W, Huang W, Chen J, Li N, Mao L, Hou S. Retinal microglia: Functions and diseases. Immunology 2022; 166:268-286. [PMID: 35403700 DOI: 10.1111/imm.13479] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Wei Fan
- The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Ophthalmology Chongqing China
- Chongqing Eye Institute Chongqing China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases Chongqing China
| | - Weidi Huang
- The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Department of Ophthalmology, Second Xiangya Hospital Central South University Changsha Hunan China
| | - Jiayi Chen
- The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Na Li
- College of Basic Medicine Chongqing Medical University Chongqing China
| | - Liming Mao
- Department of Immunology School of Medicine, Nantong University, 19 Qixiu Road Nantong Jiangsu China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Ophthalmology Chongqing China
- Chongqing Eye Institute Chongqing China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases Chongqing China
| |
Collapse
|
19
|
Ma Y, Ding X, Shao M, Qiu Y, Li S, Cao W, Xu G. Association of Serum Complement C1q and C3 Level with Age-Related Macular Degeneration in Women. J Inflamm Res 2022; 15:285-294. [PMID: 35058703 PMCID: PMC8765539 DOI: 10.2147/jir.s348539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/25/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To investigate the association between serum complement components and age-related macular degeneration (AMD). PATIENTS AND METHODS A total of 118 AMD patients and age- and sex-matched 106 control subjects were included. Demographic data and the level of serum complement component (C)1q, C3 and C4 were evaluated. Based on sex, the subjects were stratified into male and female subgroups. RESULTS The level of C1q (226.31±45.33mg/dL) was significantly higher and C3 (121.14±15.76mg/dL) was significantly lower than that in control group (200.03±38.54mg/dL) (128.42±19.81mg/dL) in the female AMD patients (p = 0.005, p = 0.045). Logistic regression showed that increased C1q (OR = 1.132, p = 0.016) and decreased C3 (OR = 0.960, p = 0.048) were independent risk factors for female AMD patients. No statistical significance was observed in the male. CONCLUSION Increased C1q and decreased C3 were associated with increased risk of AMD, suggesting that the complement classical pathway probably be involved in AMD, especially in female.
Collapse
Affiliation(s)
- Yingbo Ma
- Department of Clinical Laboratory, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Xueqing Ding
- Department of Clinical Laboratory, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Mingxi Shao
- Department of Clinical Laboratory, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Yichao Qiu
- Department of Clinical Laboratory, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Shengjie Li
- Department of Clinical Laboratory, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Wenjun Cao
- Department of Clinical Laboratory, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Gezhi Xu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, People's Republic of China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
20
|
Abstract
The eye presents a unique opportunity for complement component 3 (C3) therapeutics. Drugs can be delivered directly to specific parts of the eye, and growing evidence has established a pivotal role for C3 in age-related macular degeneration (AMD). Emerging data show that C3 may be important to the pathophysiology of other eye diseases as well. This article will discuss the location of C3 expression in the eye as well as the preclinical and clinical data regarding C3's functions in AMD. We will provide a comprehensive review of developing C3 inhibitors for the eye, including the Phase 2 and 3 data for the C3 inhibitor pegcetacoplan as a treatment for the geographic atrophy of AMD. Developing evidence also points toward C3 as a therapeutic target for stages of AMD preceding geographic atrophy. We will also discuss data illuminating C3's relationship to other eye diseases, such as Stargardt disease, diabetic retinopathy, and glaucoma. In addition to being a converging point and centerpiece of the complement cascade, C3 has broad effects as a multifaceted controller of opsonophagocytosis, microglia/macrophage recruitment, and downstream terminal pathway activity. C3 is a crucial player in the pathophysiology of AMD but also seems to have importance in other diseases that are major causes of blindness. Directions for further investigation will be highlighted, as culminating evidence suggests that we may be approaching an era of C3 therapeutics for the eye.
Collapse
Affiliation(s)
- Benjamin J Kim
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Tianyu Liu
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - John D Lambris
- Department of Laboratory Medicine and Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Mack HG, Colville DJ, Harraka P, Savige JA, Invernizzi A, Fraser-Bell S. Retinal findings in glomerulonephritis. Clin Exp Optom 2021; 105:474-486. [PMID: 34877922 DOI: 10.1080/08164622.2021.2003691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The complement system is part of the innate immune system activated by three distinct pathways: classical, lectin and alternative. It is also involved in retinal development and homoeostasis. Dense deposit disease is a rare renal disease associated with mutations in Complement factor H and overactivity of the alternative complement pathway. As well as glomerulonephritis, many affected individuals have retinal drusen and may be at risk of vision loss due to macular atrophy or choroidal neovascularisation. We discuss the reclassification of dense deposit disease as a type of C3 glomerulonephropathy, and hypothesise on the mechanisms of retinal abnormalities. Drusen have also been described in individuals with other types of glomerulonephritis involving abnormalities of the classical (membranoproliferative glomerulonephritis type 1) or lectin (IgA nephropathy, lupus nephritis) complement pathways. Although drusen are found in abnormalities of all three complement pathways, the age at onset, aetiology, and the threat to vision differs. This review describes drusen and other retinal abnormalities associated with the glomerulonephritides due to abnormal activation in each of the three complement activation pathways, and provides the first report of drusen occurring in a patient with the recently reclassified C3 glomerulonephritis with homozygous variant V62I in complement factor H. Optometric management of young patients presenting with retinal drusen is discussed, and complement-based therapies for visual loss are reviewed.
Collapse
Affiliation(s)
- Heather G Mack
- Department of Surgery (Ophthalmology), University of Melbourne, Melbourne, Australia.,Department of Ophthalmology, Melbourne Health, Melbourne, Australia.,Centre for Eye Research, University of Melbourne, Melbourne, Australia
| | - Deborah J Colville
- Department of Surgery (Ophthalmology), University of Melbourne, Melbourne, Australia.,Department of Ophthalmology, Melbourne Health, Melbourne, Australia
| | - Phillip Harraka
- Department of Medicine (Northern), University of Melbourne, Melbourne, Australia
| | - Judith Anne Savige
- Department of Medicine (Northern), University of Melbourne, Melbourne, Australia
| | - Alessandro Invernizzi
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy
| | | |
Collapse
|