1
|
Quesada E, Rojas S, Campos X, Wu L. Gene therapy in neovascular age related macular degeneration: an update. Graefes Arch Clin Exp Ophthalmol 2025:10.1007/s00417-025-06837-2. [PMID: 40293479 DOI: 10.1007/s00417-025-06837-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/11/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025] Open
Abstract
Neovascular age-related macular degeneration (NV-AMD) is a leading cause of preventable blindness in the elderly. Intravitreal injections of anti-VEGF agents are currently the treatment of choice for NV-AMD. However this treatment is burdensome and fosters non-compliance which leads to inferior visual outcomes. Gene therapy has emerged as a promising therapeutic option for NV-AMD that may improve these outcomes. Potential risks of gene therapy include a potential immune response that may be elicited by the vector, accidental activation of oncogenes or inactivation of tumor suppresor genes leading to malignant transformation via insertational mutagenesis and integration of the viral DNA inserts into the host's DNA. The main strategy of current gene therapy for NV-AMD has focused on delivering transgenes that express anti-angiogenic proteins that directly or indirectly inhibit the VEGF pathway. Ixoberogene soroparvovec, RGX-314 and 4D-150 are the leading NV-AMD genetic treatment programs. Pre-clinical models suggest that genome surgery with clustered regularly interspaced short palindromic repeats (CRISPR) may be another option in the future.
Collapse
Affiliation(s)
- Erika Quesada
- Asociados de Mácula, Vítreo y Retina de Costa Rica, Primer Piso Torre Mercedes Paseo Colón, San José, Costa Rica
| | - Sofía Rojas
- Asociados de Mácula, Vítreo y Retina de Costa Rica, Primer Piso Torre Mercedes Paseo Colón, San José, Costa Rica
| | - Xiomara Campos
- Asociados de Mácula, Vítreo y Retina de Costa Rica, Primer Piso Torre Mercedes Paseo Colón, San José, Costa Rica
| | - Lihteh Wu
- Asociados de Mácula, Vítreo y Retina de Costa Rica, Primer Piso Torre Mercedes Paseo Colón, San José, Costa Rica.
| |
Collapse
|
2
|
Poulsen K, Hanna K, Nieves J, Nguyen N, Sharma P, Grishanin R, Corbau R, Kiss S. Nonclinical study of ixo-vec gene therapy for nAMD supports efficacy for a human dose of 6E10 vg/eye and staggered dosing of fellow eyes. Mol Ther Methods Clin Dev 2025; 33:101430. [PMID: 40092639 PMCID: PMC11910100 DOI: 10.1016/j.omtm.2025.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025]
Abstract
Ixoberogene soroparvovec (ixo-vec), formerly ADVM-022, is an adeno-associated virus (AAV) gene therapy using the AAV.7m8 capsid for intravitreal delivery (IVT) to transduce retinal tissue and produce sustained intraocular aflibercept for treating neovascular age-related macular degeneration (nAMD). Non-clinical studies show that aflibercept production by ixo-vec is less than dose proportional, while intraocular inflammation (IOI) increases with dose, suggesting that lower doses could yield effective aflibercept levels with reduced IOI risk. Our evaluation confirmed that doses as low as 3E10 vg (vector genome)/eye (6E10 vg/eye human equivalent) maintained effective aflibercept production. The concept behind ADVM-022 is supported by clinical studies OPTIC (NCT03748784) and LUNA (NCT05536973), where a single IVT administration eliminated or significantly reduced the need for additional anti-VEGF injections in patients. Moreover, LUNA confirmed the clinical efficacy of a 6E10-vg/eye dose, demonstrating robust and sustained aflibercept levels. Additionally, we evaluated staggered dosing in contralateral eyes to treat asynchronous disease development. Staggered dosing, administered 2 months apart, did not exacerbate IOI, and both eyes maintained therapeutic aflibercept levels. These findings support the tolerability and efficacy of staggered dosing, indicating the potential for bilaterally relevant aflibercept levels with ixo-vec, due to immune response confinement to the dosed eye.
Collapse
Affiliation(s)
- Kris Poulsen
- Adverum Biotechnologies, Redwood City, CA 94063, USA
| | - Kelly Hanna
- Adverum Biotechnologies, Redwood City, CA 94063, USA
| | - Julio Nieves
- Adverum Biotechnologies, Redwood City, CA 94063, USA
| | - Ngoc Nguyen
- Adverum Biotechnologies, Redwood City, CA 94063, USA
| | | | | | - Romu Corbau
- Adverum Biotechnologies, Redwood City, CA 94063, USA
| | - Szilárd Kiss
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
3
|
Schlosser A, Pilecki B, Allen C, Benest AV, Lynch AP, Hua J, Ved N, Blackley Z, Andersen TL, Hennig D, Graversen JH, Möller S, Skallerup S, Ormhøj M, Lange C, Agostini HT, Grauslund J, Heegaard S, Dacheva I, Koss M, Hu W, Iglesias B, Lawrence MS, Beck HC, Steffensen LB, Laursen NS, Andersen GR, Holmskov U, Bates DO, Sorensen GL. Pharmacological blocking of microfibrillar-associated protein 4 reduces retinal neoangiogenesis and vascular leakage. Mol Ther 2025; 33:1048-1072. [PMID: 39863929 PMCID: PMC11897753 DOI: 10.1016/j.ymthe.2025.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025] Open
Abstract
Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αVβ3/5/6 ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell types in close proximity to vascular endothelial cells, including choroidal vascular mural cells, retinal astrocytes, and Müller cells. Binding of the anti-MFAP4 antibody, hAS0326, makes MFAP4 inaccessible for integrin receptor interaction, and thereby hAS0326 blocked endothelial cell motility in vitro. Intravitreal hAS0326 inhibited retinal vascular lesion area and neovessel volume in a laser-induced choroidal neovascularization mouse model, vascular permeability in streptozotocin-induced retinopathy, and vascular leakage area in a chronic non-human primate model of DL-2-aminoadipic acid-induced retinopathy. One dose of hAS0326 showed duration of efficacy of at least 12 weeks in the latter model. Moreover, hAS0326 treatment significantly enriched Gene Ontology terms involving reduction of integrin binding. Our data suggest that hAS0326 constitutes a promising treatment of neovascularization and vascular leakage in retinal diseases.
Collapse
Affiliation(s)
- Anders Schlosser
- Department of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Bartosz Pilecki
- Department of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Claire Allen
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2UH, UK
| | - Andrew V Benest
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2UH, UK
| | - Amy P Lynch
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2UH, UK
| | - Jing Hua
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2UH, UK
| | - Nikita Ved
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2UH, UK
| | - Zoe Blackley
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2UH, UK
| | - Thomas L Andersen
- Molecular Bone Histology Laboratory, Department of Pathology, Odense University Hospital, 5000 Odense, Denmark; Molecular Bone Histology Laboratory, Research Unit of Pathology, Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark; Danish Spatial Imaging Consortium (DanSIC), University of Southern Denmark, 5230 Odense, Denmark
| | - Dorle Hennig
- Department of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Jonas H Graversen
- Department of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Sören Möller
- OPEN - Open Patient Data Explorative Network, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Sofie Skallerup
- Department of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Maria Ormhøj
- Department of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Clemens Lange
- Ophtha-Lab, Department of Ophthalmology, St. Franziskus Hospital, 48145 Münster, Germany; Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Hansjürgen T Agostini
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jakob Grauslund
- Department of Ophthalmology, Odense University Hospital, 5000 Odense, Denmark
| | - Steffen Heegaard
- Department of Pathology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark; Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, 2600 Glostrup, Denmark
| | - Ivanka Dacheva
- Department of Ophthalmology, University of Heidelberg, 69047 Heidelberg, Germany
| | - Michael Koss
- Department of Ophthalmology, University of Heidelberg, 69047 Heidelberg, Germany
| | - Wenzheng Hu
- Virscio, Inc., 5 Science Park, New Haven, CT 06511, USA
| | | | | | - Hans Christian Beck
- Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense, Denmark
| | - Lasse Bach Steffensen
- Department of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Nick S Laursen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Uffe Holmskov
- Department of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - David O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2UH, UK
| | - Grith L Sorensen
- Department of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark.
| |
Collapse
|
4
|
Murphy R, Martin KR. Genetic engineering and the eye. Eye (Lond) 2025; 39:57-68. [PMID: 39516652 PMCID: PMC11733221 DOI: 10.1038/s41433-024-03441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 07/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The transformative potential of genetic engineering in ophthalmology is remarkable, promising new treatments for a wide range of blinding eye diseases. The eye is an attractive target organ for genetic engineering approaches, in part due to its relatively immune-privileged status, its accessibility, and the ease of monitoring of efficacy and safety. Consequently, the eye has been at the forefront of genetic engineering advances in recent years. The development of Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9), base editors, prime editors, and transposases have enabled efficient and specific gene modification. Ocular gene therapy continues to progress, with recent advances in delivery systems using viral / non-viral vectors and novel promoters and enhancers. New strategies to achieve neuroprotection and neuroregeneration are evolving, including direct in-vivo cell reprogramming and optogenetic approaches. In this review, we discuss recent advances in ocular genetic engineering, examine their current therapeutic roles, and explore their potential use in future strategies to reduce the growing burden of vision loss and blindness.
Collapse
Affiliation(s)
- Rory Murphy
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
- Department of Ophthalmology, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Keith R Martin
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia.
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Shim J, Kim Y, Bak J, Shin S, Lee K, Hwang YH, Kong HY, Han JS. Preclinical evaluation of NG101, a potential AAV gene therapy for wet age-related macular degeneration. Mol Ther Methods Clin Dev 2024; 32:101366. [PMID: 39634790 PMCID: PMC11615598 DOI: 10.1016/j.omtm.2024.101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss in individuals over the age of 55. Approximately 10%-15% of AMD patients develop choroidal neovascularization (CNV), leading to wet AMD (wAMD), which accounts for nearly 90% of AMD-related blindness. Inhibition of vascular endothelial growth factor (VEGF) is the standard treatment for wAMD. However, the frequent administration of the current treatment imposes a significant burden on wAMD patients. Therefore, there is an unmet need for treatments that require less-frequent administration. Here, we present findings on the safety and efficacy of NG101, a recombinant adeno-associated virus (rAAV) vector encoding aflibercept, an anti-VEGF agent, for wAMD therapy. A single subretinal injection of NG101 effectively reduced CNV lesion leakage and size at doses as low as 1 × 106 in mouse and 3 × 109 viral genomes per eye in cynomolgus monkeys. In cynomolgus monkeys, NG101-derived aflibercept expression in ocular tissues persisted for 1 year post-injection, indicating sustained therapeutic potential. Biodistribution analysis revealed that NG101 was primarily localized in ocular tissues. Only mild and transient ocular inflammatory responses were observed. Overall, these findings suggest that NG101, with its efficacy at low doses and sustained expression, is a promising therapeutic candidate for wAMD.
Collapse
Affiliation(s)
- Juwon Shim
- Neuracle Genetics Inc., Seoul 02841, Republic of Korea
| | - Youyoung Kim
- Neuracle Genetics Inc., Seoul 02841, Republic of Korea
| | - Jeongyun Bak
- Neuracle Genetics Inc., Seoul 02841, Republic of Korea
| | - Sunhwa Shin
- Neuracle Genetics Inc., Seoul 02841, Republic of Korea
| | - Kyungwon Lee
- Neuracle Genetics Inc., Seoul 02841, Republic of Korea
| | | | | | - Joo Seok Han
- Neuracle Genetics Inc., Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
Xu P, Zou W, Yin W, Chen G, Gao G, Zhong X. Ion channels research in hPSC-RPE cells: bridging benchwork to clinical applications. J Transl Med 2024; 22:1073. [PMID: 39604931 PMCID: PMC11600670 DOI: 10.1186/s12967-024-05769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Ion channels in retinal pigment epithelial (RPE) cells are crucial for retinal health and vision functions. Defects in such channels are intricately associated with the development of various retinopathies that cause blindness. Human pluripotent stem cells (hPSC)-derived RPE cells, including those from human-induced pluripotent stem cells (hiPSC) and human embryonic stem cells (hESC), have been used as in vitro models for investigating pathogenic mechanisms and screening potential therapeutic strategies for retinopathies. Therefore, the cellular status of hPSC-RPE cells, including maturity and physiologic functions, have been widely explored. Particularly, research on ion channels in hPSC-RPE cells can lead to the development of more stable models upon which robust investigations and clinical safety assessments can be performed. Moreover, the use of patient-specific hiPSC-RPE cells has significantly accelerated the clinical translation of gene therapy for retinal channelopathies, such as bestrophinopathies. This review consolidates current research on ion channels in hPSC-RPE cells, specifically Kir7.1, Bestrophin-1, CLC-2, and CaV1.3, providing a foundation for future research.
Collapse
Affiliation(s)
- Ping Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Weisheng Zou
- Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, 510080, China
| | - Wenjing Yin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Guifu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Guanjie Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiufeng Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
7
|
Sánchez-Martínez C, Grueso E, Calvo-López T, Martinez-Ortega J, Ruiz A, Almendral JM. VEGF-Virus Interactions: Pathogenic Mechanisms and Therapeutic Applications. Cells 2024; 13:1815. [PMID: 39513922 PMCID: PMC11545703 DOI: 10.3390/cells13211815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Many types of viruses directly or indirectly target the vascular endothelial growth factor (VEGF) system, which is a central regulator of vasculogenesis and angiogenesis in physiological homeostasis, causing diverse pathologies. Other viruses have been developed into effective therapeutic tools for VEGF modulation in conditions such as cancer and eye diseases. Some viruses may alter the levels of VEGF in the pathogenesis of respiratory syndromes, or they may encode VEGF-like factors, promoting vascular disruption and angiogenesis to enable viruses' systemic spread. Oncogenic viruses may express interactive factors that perturb VEGF's functional levels or downstream signaling, which increases the neovascularization and metastasis of tumors. Furthermore, many viruses are being developed as therapeutic vectors for vascular pathologies in clinical trials. Major examples are those viral vectors that inhibit the role of VEGF in the neovascularization required for cancer progression; this is achieved through the induction of immune responses, by exposing specific peptides that block signaling or by expressing anti-VEGF and anti-VEGF receptor-neutralizing antibodies. Other viruses have been engineered into effective pro- or anti-angiogenesis multitarget vectors for neovascular eye diseases, paving the way for therapies with improved safety and minimal side effects. This article critically reviews the large body of literature on these issues, highlighting those contributions that describe the molecular mechanisms, thus expanding our understanding of the VEGF-virus interactions in disease and therapy. This could facilitate the clinical use of therapeutic virus vectors in precision medicine for the VEGF system.
Collapse
Affiliation(s)
- Cristina Sánchez-Martínez
- Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain; (C.S.-M.); (E.G.)
| | - Esther Grueso
- Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain; (C.S.-M.); (E.G.)
| | - Tania Calvo-López
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain or (T.C.-L.); (J.M.-O.); (A.R.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Department of Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jorge Martinez-Ortega
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain or (T.C.-L.); (J.M.-O.); (A.R.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Ana Ruiz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain or (T.C.-L.); (J.M.-O.); (A.R.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José M. Almendral
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain or (T.C.-L.); (J.M.-O.); (A.R.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
8
|
Huang C, Kaur A, Ji L, Tian H, Webster KA, Li W. Suppression of matrigel-induced choroidal neovascularization by AAV delivery of a novel anti-Scg3 antibody. Gene Ther 2024; 31:587-593. [PMID: 39333408 PMCID: PMC11720169 DOI: 10.1038/s41434-024-00491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Efforts to develop gene therapy for long-term treatment of neovascular disease are hampered by ongoing concerns that biologics against vascular endothelial growth factor (VEGF) inhibit both physiological and pathological angiogenesis and are therefore at elevated risk of adverse side effects. A potential solution is to develop disease-targeted gene therapy. Secretogranin III (Scg3), a unique disease-restricted angiogenic factor described by our group, contributes significantly to ocular neovascular disease. We have shown that Scg3 blockade with a monoclonal antibody Fab fragment (Fab) stringently inhibits pathological angiogenesis without affecting healthy vessels. Here we tested the therapeutic efficacy of adeno-associated virus (AAV)-anti-Scg3Fab to block choroidal neovascularization (CNV) induced by subretinal injection of Matrigel in a mouse model. Intravitreal AAV-anti-Scg3Fab significantly reduced CNV and suppressed CNV-associated leukocyte infiltration and macrophage activation. The efficacy and anti-inflammatory effects were equivalent to those achieved by positive control AAV-aflibercept against VEGF. Efficacies of AAV-anti-Scg3Fab and AAV-aflibercept were sustained over 4 months post AAV delivery. The findings support development of AAV-anti-Scg3 as an alternative to AAV-anti-VEGF with equivalent efficacy and potentially safer mechanism of action.
Collapse
Affiliation(s)
- Chengchi Huang
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Avinash Kaur
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Liyang Ji
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hong Tian
- Everglades Biopharma, LLC, Houston, TX, 77098, USA
| | - Keith A Webster
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
- Everglades Biopharma, LLC, Houston, TX, 77098, USA
- Department of Pharmacology, Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Wei Li
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Torkashvand A, Izadian A, Hajrasouliha A. Advances in ophthalmic therapeutic delivery: A comprehensive overview of present and future directions. Surv Ophthalmol 2024; 69:967-983. [PMID: 38986847 PMCID: PMC11392635 DOI: 10.1016/j.survophthal.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Ophthalmic treatment demands precision and consistency in delivering therapeutic agents over extended periods to address many conditions, from common eye disorders to complex diseases. This diversity necessitates a range of delivery strategies, each tailored to specific needs. We delve into various delivery cargos that are pivotal in ophthalmic care. These cargos encompass biodegradable implants that gradually release medication, nonbiodegradable implants for sustained drug delivery, refillable tools allowing flexibility in treatment, hydrogels capable of retaining substances while maintaining ocular comfort, and advanced nanotechnology devices that precisely target eye tissues. Within each cargo category, we explore cutting-edge research-level approaches and FDA-approved methods, providing a thorough overview of the current state of ophthalmic drug delivery. In particular, our focus on nanotechnology reveals the promising potential for gene delivery, cell therapy administration, and the implantation of active devices directly into the retina. These advancements hold the key to more effective, personalized, and minimally- invasive ophthalmic treatments, revolutionizing the field of eye care.
Collapse
Affiliation(s)
- Ali Torkashvand
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Afshin Izadian
- Electrical and Computer Engineering Technology, Purdue University, West Lafayette, IN, United States
| | - Amir Hajrasouliha
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
10
|
Singh M, Negi R, Alka, Vinayagam R, Kang SG, Shukla P. Age-Related Macular Degeneration (AMD): Pathophysiology, Drug Targeting Approaches, and Recent Developments in Nanotherapeutics. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1647. [PMID: 39459435 PMCID: PMC11509623 DOI: 10.3390/medicina60101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024]
Abstract
The most prevalent reason for vision impairment in aging inhabitants is age-related macular degeneration (AMD), a posterior ocular disease with a poor understanding of the anatomic, genetic, and pathophysiological progression of the disease. Recently, new insights exploring the role of atrophic changes in the retinal pigment epithelium, extracellular drusen deposits, lysosomal lipofuscin, and various genes have been investigated in the progression of AMD. Hence, this review explores the incidence and risk factors for AMD, such as oxidative stress, inflammation, the complement system, and the involvement of bioactive lipids and their role in angiogenesis. In addition to intravitreal anti-vascular endothelial growth factor (VEGF) therapy and other therapeutic interventions such as oral kinase inhibitors, photodynamic, gene, and antioxidant therapy, as well as their benefits and drawbacks as AMD treatment options, strategic drug delivery methods, including drug delivery routes with a focus on intravitreal pharmacokinetics, are investigated. Further, the recent advancements in nanoformulations such as polymeric and lipid nanocarriers, liposomes, etc., intended for ocular drug delivery with pros and cons are too summarized. Therefore, the purpose of this review is to give new researchers an understanding of AMD pathophysiology, with an emphasis on angiogenesis, inflammation, the function of bioactive lipids, and therapy options. Additionally, drug delivery options that focus on the development of drug delivery system(s) via several routes of delivery can aid in the advancement of therapeutic choices.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Riyakshi Negi
- Department of Pharmaceutical Sciences, School of Heath Sciences and Technology, UPES, Dehradun 246008, India; (R.N.); (A.)
| | - Alka
- Department of Pharmaceutical Sciences, School of Heath Sciences and Technology, UPES, Dehradun 246008, India; (R.N.); (A.)
| | - Ramachandran Vinayagam
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Prashant Shukla
- Department of Pharmaceutical Sciences, School of Heath Sciences and Technology, UPES, Dehradun 246008, India; (R.N.); (A.)
| |
Collapse
|
11
|
Xu X, Han N, Zhao F, Fan R, Guo Q, Han X, Liu Y, Luo G. Inefficacy of anti-VEGF therapy reflected in VEGF-mediated photoreceptor degeneration. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102176. [PMID: 38689803 PMCID: PMC11059333 DOI: 10.1016/j.omtn.2024.102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/19/2024] [Indexed: 05/02/2024]
Abstract
Retinal neovascularization (RNV) is primarily driven by vascular endothelial growth factor (VEGF). However, current anti-VEGF therapies are limited by short half-lives and repeated injections, which reduce patient quality of life and increase medical risks. Additionally, not all patients benefit from anti-VEGF monotherapy, and some problems, such as unsatisfactory vision recovery, persist after long-term treatment. In this study, we constructed a recombinant adeno-associated virus (AAV), AAV2-SPLTH, which encodes an anti-VEGF antibody similar to bevacizumab, and assessed its effects in a doxycycline-induced Tet-opsin-VEGFA mouse model of RNV. AAV2-SPLTH effectively inhibited retinal leakage, RNV progression, and photoreceptor apoptosis in a Tet-opsin-VEGF mouse model. However, proteomic sequencing showed that AAV2-SPLTH failed to rescue the expression of phototransduction-related genes, which corresponded to reduced photoreceptor cell numbers. This study suggests that anti-VEGF monotherapy can significantly inhibit RNV to some extent but may not be enough to save visual function in the long term.
Collapse
Affiliation(s)
- Xin Xu
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Ni Han
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110005, China
| | - Ruoyue Fan
- Bionce Biotechnology, Co., Ltd, Nanjing 210061, China
| | - Qingguo Guo
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| | - Xuefei Han
- Bionce Biotechnology, Co., Ltd, Nanjing 210061, China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| | - Guangzuo Luo
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
- Bionce Biotechnology, Co., Ltd, Nanjing 210061, China
| |
Collapse
|
12
|
Kumar A, Ferro Desideri L, Ting MYL, Anguita R. Perspectives on the currently available pharmacotherapy for wet macular degeneration. Expert Opin Pharmacother 2024; 25:755-767. [PMID: 38738427 DOI: 10.1080/14656566.2024.2354921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
INTRODUCTION Wet age-related macular degeneration (w-AMD) is a leading cause of visual impairment globally, with its prevalence expected to rise alongside increasing life expectancy. The current standard treatment involves frequent intravitreal injections of anti-VEGF agents, which although revolutionary, pose significant burdens on both patients and healthcare services. AREAS COVERED This review explores current and emerging pharmaceutical treatments for w-AMD, focusing on their pharmacokinetics, pharmacodynamics, efficacy, and safety. Promising developments include extending treatment intervals with newer anti-VEGF agents like brolucizumab and faricimab, biosimilars offering cost-effective options, and exploring innovative drug delivery methods such as subretinal gene therapy. Combination therapies, gene therapies, and novel agents like KSI-301 and OPT-302 show potential for improving treatment outcomes and reducing treatment burden. EXPERT OPINION While current treatments for w-AMD have significantly advanced with the advent of anti-VEGF therapies, their limitations in terms of treatment burden and incomplete responses have spurred research into diverse alternative approaches. These innovative strategies offer hope for improving patient outcomes and reducing healthcare burdens, suggesting a promising future for w-AMD management.
Collapse
Affiliation(s)
- Aneeta Kumar
- Royal Free London Hospital NHS Foundation Trust, London, UK
| | - Lorenzo Ferro Desideri
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Bern Photographic Reading Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Rodrigo Anguita
- Bern Photographic Reading Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
13
|
Blasiak J, Pawlowska E, Ciupińska J, Derwich M, Szczepanska J, Kaarniranta K. A New Generation of Gene Therapies as the Future of Wet AMD Treatment. Int J Mol Sci 2024; 25:2386. [PMID: 38397064 PMCID: PMC10888617 DOI: 10.3390/ijms25042386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Age-related macular degeneration (AMD) is an eye disease and the most common cause of vision loss in the Western World. In its advanced stage, AMD occurs in two clinically distinguished forms, dry and wet, but only wet AMD is treatable. However, the treatment based on repeated injections with vascular endothelial growth factor A (VEGFA) antagonists may at best stop the disease progression and prevent or delay vision loss but without an improvement of visual dysfunction. Moreover, it is a serious mental and financial burden for patients and may be linked with some complications. The recent first success of intravitreal gene therapy with ADVM-022, which transformed retinal cells to continuous production of aflibercept, a VEGF antagonist, after a single injection, has opened a revolutionary perspective in wet AMD treatment. Promising results obtained so far in other ongoing clinical trials support this perspective. In this narrative/hypothesis review, we present basic information on wet AMD pathogenesis and treatment, the concept of gene therapy in retinal diseases, update evidence on completed and ongoing clinical trials with gene therapy for wet AMD, and perspectives on the progress to the clinic of "one and done" therapy for wet AMD to replace a lifetime of injections. Gene editing targeting the VEGFA gene is also presented as another gene therapy strategy to improve wet AMD management.
Collapse
Affiliation(s)
- Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-402 Plock, Poland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (E.P.); (M.D.); (J.S.)
| | - Justyna Ciupińska
- Clinical Department of Infectious Diseases and Hepatology, H. Bieganski Hospital, 91-347 Lodz, Poland;
| | - Marcin Derwich
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (E.P.); (M.D.); (J.S.)
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (E.P.); (M.D.); (J.S.)
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| |
Collapse
|
14
|
Castro BFM, Steel JC, Layton CJ. AAV-Based Strategies for Treatment of Retinal and Choroidal Vascular Diseases: Advances in Age-Related Macular Degeneration and Diabetic Retinopathy Therapies. BioDrugs 2024; 38:73-93. [PMID: 37878215 PMCID: PMC10789843 DOI: 10.1007/s40259-023-00629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Age-related macular degeneration (AMD) and diabetic retinopathy (DR) are vascular diseases with high prevalence, ranking among the leading causes of blindness and vision loss worldwide. Despite being effective, current treatments for AMD and DR are burdensome for patients and clinicians, resulting in suboptimal compliance and real risk of vision loss. Thus, there is an unmet need for long-lasting alternatives with improved safety and efficacy. Adeno-associated virus (AAV) is the leading vector for ocular gene delivery, given its ability to enable long-term expression while eliciting relatively mild immune responses. Progress has been made in AAV-based gene therapies for not only inherited retinal diseases but also acquired conditions with preclinical and clinical studies of AMD and DR showing promising results. These studies have explored several pathways involved in the disease pathogenesis, as well as different strategies to optimise gene delivery. These include engineered capsids with enhanced tropism to particular cell types, and expression cassettes incorporating elements for a targeted and controlled expression. Multiple-acting constructs have also been investigated, in addition to gene silencing and editing. Here, we provide an overview of strategies employing AAV-mediated gene delivery to treat AMD and DR. We discuss preclinical efficacy studies and present the latest data from clinical trials for both diseases.
Collapse
Affiliation(s)
- Brenda F M Castro
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, QLD, 4102, Australia.
- Greenslopes Clinical School, University of Queensland School of Medicine, Brisbane, QLD, Australia.
| | - Jason C Steel
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, QLD, 4102, Australia
- Greenslopes Clinical School, University of Queensland School of Medicine, Brisbane, QLD, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Christopher J Layton
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, QLD, 4102, Australia.
- Greenslopes Clinical School, University of Queensland School of Medicine, Brisbane, QLD, Australia.
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia.
| |
Collapse
|
15
|
Khanani AM, Boyer DS, Wykoff CC, Regillo CD, Busbee BG, Pieramici D, Danzig CJ, Joondeph BC, Major JC, Turpcu A, Kiss S. Safety and efficacy of ixoberogene soroparvovec in neovascular age-related macular degeneration in the United States (OPTIC): a prospective, two-year, multicentre phase 1 study. EClinicalMedicine 2024; 67:102394. [PMID: 38152412 PMCID: PMC10751837 DOI: 10.1016/j.eclinm.2023.102394] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023] Open
Abstract
Background Gene therapy, successfully used in rare, monogenetic disorders, may prove to be a durable management approach for common, polygenetic conditions, including neovascular age-related macular degeneration (nAMD). Repeated injections, oftentimes monthly, and possibly for decades, of vascular endothelial growth factor antagonists (anti-VEGF), is the standard for nAMD. We hypothesised that an in-office, intravitreal administration of ixoberogene soroparvovec (ixo-vec, formerly ADVM-022), a single-dose gene therapy encoding for the proven anti-VEGF protein, aflibercept, would transform retinal cells to continually produce aflibercept to minimise treatment burden in nAMD. Methods In this two-year, open-label, prospective, multicentre phase 1 study, patients with nAMD responding to anti-VEGF were assigned to four cohorts differing by ixo-vec dose (2 × 1011 vs 6 × 1011 vector genomes (vg/eye)) and prophylactic steroids (oral prednisone vs topical difluprednate). The primary outcome was the type, severity, and incidence of ocular and systemic adverse events (AEs); secondary endpoints included vision, central subfield thickness (CST), and the number of supplemental injections. This study was registered with ClinicalTrials.gov, NCT03748784. Findings Thirty patients with nAMD were enrolled between November 14, 2018 and June 30, 2020 at nine study sites in the United States. No systemic ixo-vec related AEs were noted. Across both dose groups the most common adverse event was anterior chamber cell, which was reported in 11 participants in the 6 × 1011 dose group and in 7 participants in the 2 × 1011 dose group; intraocular inflammation was responsive to topical corticosteroids, with no anterior chamber cells or vitreous cells observed in 2 × 1011 vg/eye patients at the end of the study. Vision and CST remained stable throughout two years with annualised anti-VEGF injections reduced by 80% (10.0 mean annualised anti-VEGF injections to 1.9) in 2 × 1011 vg/eye and 98% (9.8 mean annualised anti-VEGF injections to 0.2) in 6 × 1011 vg/eye cohorts. Interpretation Ixo-vec was generally well-tolerated, maintained vision, and improved anatomical outcomes in nAMD, with a substantial reduction in anti-VEGF injections. A single administration of an in-office gene therapy, with vectorised protein with an already established clinical benefit, has the potential to revolutionise the management of common ocular disorders requiring ongoing, frequent therapeutic interventions. Funding Adverum Biotechnologies.
Collapse
Affiliation(s)
- Arshad M. Khanani
- Sierra Eye Associates, Reno, NV, USA
- The University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - David S. Boyer
- Retina Vitreous Associates Medical Group, Beverly Hills, CA, USA
| | - Charles C. Wykoff
- Retina Consultants of Texas, Retina Consultants of America, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Carl D. Regillo
- Mid Atlantic Retina, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | - Carl J. Danzig
- Rand Eye Institute, Deerfield Beach, FL, USA
- Florida Atlantic University, Charles E. Schmidt School of Medicine, Boca Raton, FL, USA
| | | | - James C. Major
- Retina Consultants of Texas, Retina Consultants of America, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Adam Turpcu
- Adverum Biotechnologies, Redwood City, CA, USA
| | - Szilárd Kiss
- Department of Ophthalmology, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
16
|
Luo LL, Xu J, Wang BQ, Chen C, Chen X, Hu QM, Wang YQ, Zhang WY, Jiang WX, Li XT, Zhou H, Xiao X, Zhao K, Lin S. A novel capsid-XL32-derived adeno-associated virus serotype prompts retinal tropism and ameliorates choroidal neovascularization. Biomaterials 2024; 304:122403. [PMID: 38016335 DOI: 10.1016/j.biomaterials.2023.122403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Gene therapy has been adapted, from the laboratory to the clinic, to treat retinopathies. In contrast to subretinal route, intravitreal delivery of AAV vectors displays the advantage of bypassing surgical injuries, but the viral particles are more prone to be nullified by the host neutralizing factors. To minimize such suppression of therapeutic effect, especially in terms of AAV2 and its derivatives, we introduced three serine-to-glycine mutations, based on the phosphorylation sites identified by mass spectrum analysis, to the XL32 capsid to generate a novel serotype named AAVYC5. Via intravitreal administration, AAVYC5 was transduced more effectively into multiple retinal layers compared with AAV2 and XL32. AAVYC5 also enabled successful delivery of anti-angiogenic molecules to rescue laser-induced choroidal neovascularization and astrogliosis in mice and non-human primates. Furthermore, we detected fewer neutralizing antibodies and binding IgG in human sera against AAVYC5 than those specific for AAV2 and XL32. Our results thus implicate this capsid-optimized AAVYC5 as a promising vector suitable for a wide population, particularly those with undesirable AAV2 seroreactivity.
Collapse
Affiliation(s)
- Lin-Lin Luo
- Department of Ophthalmology, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Jie Xu
- Department of Ophthalmology, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Bing-Qiao Wang
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Chen Chen
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China; Belief BioMed Co., Ltd, Shanghai, China
| | - Xi Chen
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China
| | - Qiu-Mei Hu
- Department of Ophthalmology, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Yu-Qiu Wang
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China; Analytical Research Center for Organic and Biological Molecules, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wan-Yun Zhang
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Wan-Xiang Jiang
- Sichuan Greentech Bioscience Co,. Ltd, Bencao Avenue, New Economic Development Zone, Meishan, Sichuan, 620010, China
| | - Xin-Ting Li
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hu Zhou
- Analytical Research Center for Organic and Biological Molecules, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao Xiao
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China; Belief BioMed Co., Ltd, Shanghai, China.
| | - Kai Zhao
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China; Belief BioMed Co., Ltd, Shanghai, China.
| | - Sen Lin
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| |
Collapse
|
17
|
Han N, Xu X, Liu Y, Luo G. AAV2-antiVEGFscFv gene therapy for retinal neovascularization. Mol Ther Methods Clin Dev 2023; 31:101145. [PMID: 38027065 PMCID: PMC10679950 DOI: 10.1016/j.omtm.2023.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Retinal neovascularization (NV) may lead to irreversible vision impairment, the main treatment for which is the inhibition of vascular endothelial growth factor (VEGF). Existing drugs show limited clinical benefits because of their high prices and short half-lives, which increase the financial burden and medical risks to patients. Gene therapy on the basis of adeno-associated viruses is a promising approach to overcome these limitations because of the nonintegrative nature, low immunogenicity, and potential long-term gene expression of adeno-associated viruses. In this study, we constructed a novel recombinant adeno-associated virus with the single-chain fragment variable (scFv) fragment of the anti-VEGF antibody, AAV2-antiVEGFscFv, consisting of the VH and VL structural domains of IgG. AAV2-antiVEGFscFv effectively inhibited NV, retinal leakage, and retinal detachment in oxygen-induced retinopathy (OIR) mice, Tet/opsin/VEGF double-transgenic mice, and VEGF-induced rabbit NV models. AAV2-antiVEGFscFv also significantly suppressed VEGF-induced inflammation. Furthermore, we showed that AAV2-antiVEGFscFv could be sustainably expressed for a prolonged period and exhibited low immunotoxicity in vivo. This study indicates that AAV2-antiVEGFscFv could be a potential approach for NV treatment and provides strong support for preclinical research.
Collapse
Affiliation(s)
- Ni Han
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Xin Xu
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| | - Guangzuo Luo
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
- Bionce Biotechnology, Ltd., Nanjing 210061, China
| |
Collapse
|
18
|
Iqball S, Beck DK, Devarajan G, Khoo CP, O’Connor DM, Ellis S, Guzman E, Mitrophanous KA, Lad Y. Lentiviral delivered aflibercept OXB-203 for treatment of neovascular AMD. Mol Ther Methods Clin Dev 2023; 30:350-366. [PMID: 37637380 PMCID: PMC10448334 DOI: 10.1016/j.omtm.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/12/2023] [Indexed: 08/29/2023]
Abstract
Neovascular age-related macular degeneration (nAMD) is a leading cause of blindness in the aging population, with vascular endothelial growth factor (VEGF) playing a key role. Treatment with recombinant anti-VEGFs is the current standard of care; however, it is only effective for 1-2 months at a time and requires re-administration. Gene therapy could pave the way for stable, long-term expression of therapeutic anti-VEGF with a single dose, reducing the frequency of treatment and potentially improving clinical outcomes. As such, we have developed OXB-203, a lentiviral-based gene therapy encoding the anti-VEGF protein aflibercept. Aflibercept derived from OXB-203 exhibited comparable in vitro binding characteristics to VEGF as recombinant aflibercept. Furthermore, its biological potency was demonstrated by the equivalent inhibition of VEGF-induced human umbilical vein endothelial cell (HUVEC) proliferation and tubule formation as recombinant aflibercept. In a rat choroidal neovascularization (CNV) model of nAMD, a single subretinal administration of OXB-203 reduced laser-induced CNV lesion areas analogous to an intravitreal bolus of recombinant aflibercept. Finally, in a head-to-head comparative study, aflibercept derived from OXB-203 was shown to be expressed at significantly higher levels in ocular tissues than from an AAV8-aflibercept vector following a single subretinal delivery to rats. These findings support the therapeutic potential of OXB-203 for the management of nAMD.
Collapse
Affiliation(s)
- Sharifah Iqball
- Oxford Biomedica (UK) Ltd., Windrush Court, Transport Way, OX4 6LT Oxford, UK
| | - Daniel K. Beck
- Oxford Biomedica (UK) Ltd., Windrush Court, Transport Way, OX4 6LT Oxford, UK
| | - Gayathri Devarajan
- Oxford Biomedica (UK) Ltd., Windrush Court, Transport Way, OX4 6LT Oxford, UK
| | - Cheen P. Khoo
- Oxford Biomedica (UK) Ltd., Windrush Court, Transport Way, OX4 6LT Oxford, UK
| | - Deirdre M. O’Connor
- Oxford Biomedica (UK) Ltd., Windrush Court, Transport Way, OX4 6LT Oxford, UK
| | - Scott Ellis
- Oxford Biomedica (UK) Ltd., Windrush Court, Transport Way, OX4 6LT Oxford, UK
| | - Efrain Guzman
- Oxford Biomedica (UK) Ltd., Windrush Court, Transport Way, OX4 6LT Oxford, UK
| | | | - Yatish Lad
- Oxford Biomedica (UK) Ltd., Windrush Court, Transport Way, OX4 6LT Oxford, UK
| |
Collapse
|
19
|
Chiang T, Kurup SK, Hariprasad SM. Immunological and Inflammatory Side Effects of Treatments for Age-Related Macular Degeneration. Ophthalmic Surg Lasers Imaging Retina 2023; 54:440-445. [PMID: 37603784 DOI: 10.3928/23258160-20230724-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
|
20
|
Huang C, Ji L, Kaur A, Tian H, Waduge P, Webster KA, Li W. Anti-Scg3 Gene Therapy to Treat Choroidal Neovascularization in Mice. Biomedicines 2023; 11:1910. [PMID: 37509549 PMCID: PMC10377229 DOI: 10.3390/biomedicines11071910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/02/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Neovascular age-related macular degeneration (nAMD) with choroidal neovascularization (CNV) is a leading cause of blindness in the elderly in developed countries. The disease is currently treated with anti-angiogenic biologics, including aflibercept, against vascular endothelial growth factor (VEGF) but with limited efficacy, treatment resistance and requirement for frequent intravitreal injections. Although anti-VEGF gene therapy may provide sustained therapy that obviates multiple injections, the efficacy and side effects related to VEGF pathway targeting remain, and alternative strategies to block angiogenesis independently of VEGF are needed. We recently reported that secretogranin III (Scg3) induces only pathological angiogenesis through VEGF-independent pathways, and Scg3-neutralizing antibodies selectively inhibit pathological but not physiological angiogenesis in mouse proliferative retinopathy models. Anti-Scg3 antibodies synergize dose-dependently with VEGF inhibitors in a CNV model. Here, we report that an adeno-associated virus-8 (AAV8) vector expressing anti-Scg3 Fab ameliorated CNV with an efficacy similar to that of AAV-aflibercept in a mouse model. This study is the first to test an anti-angiogenic gene therapy protocol that selectively targets pathological angiogenesis via a VEGF-independent mechanism. The findings support further safety/efficacy studies of anti-Scg3 gene therapy as monotherapy or combined with anti-VEGF to treat nAMD.
Collapse
Affiliation(s)
- Chengchi Huang
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liyang Ji
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Avinash Kaur
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hong Tian
- Everglades Biopharma, LLC, Houston, TX 77098, USA
| | - Prabuddha Waduge
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Keith A. Webster
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Everglades Biopharma, LLC, Houston, TX 77098, USA
- Department of Pharmacology, Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wei Li
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
21
|
Abstract
Nonhuman primates are critically important animal models in which to study complex human diseases, understand biological functions, and address the safety of new diagnostics and therapies proposed for human use. They have genetic, physiologic, immunologic, and developmental similarities when compared to humans and therefore provide important preclinical models of human health and disease. This review highlights select research areas that demonstrate the importance of nonhuman primates in translational research. These include pregnancy and developmental disorders, infectious diseases, gene therapy, somatic cell genome editing, and applications of in vivo imaging. The power of the immune system and our increasing understanding of the role it plays in acute and chronic illnesses are being leveraged to produce new treatments for a range of medical conditions. Given the importance of the human immune system in health and disease, detailed study of the immune system of nonhuman primates is essential to advance preclinical translational research. The need for nonhuman primates continues to remain a high priority, which has been acutely evident during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) global pandemic. Nonhuman primates will continue to address key questions and provide predictive models to identify the safety and efficiency of new diagnostics and therapies for human use across the lifespan.
Collapse
Affiliation(s)
- Alice F Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, University of California, Davis, California, USA;
- California National Primate Research Center, University of California, Davis, California, USA
| | - Stephen C Noctor
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, California, USA;
| | - Dennis J Hartigan-O'Connor
- California National Primate Research Center, University of California, Davis, California, USA
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California, USA;
| |
Collapse
|
22
|
Khanani AM, Thomas MJ, Aziz AA, Weng CY, Danzig CJ, Yiu G, Kiss S, Waheed NK, Kaiser PK. Review of gene therapies for age-related macular degeneration. Eye (Lond) 2022; 36:303-311. [PMID: 35017696 PMCID: PMC8807824 DOI: 10.1038/s41433-021-01842-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/25/2021] [Accepted: 11/03/2021] [Indexed: 02/03/2023] Open
Abstract
Gene therapies aim to deliver a therapeutic payload to specified tissues with underlying protein deficiency. Since the 1990s, gene therapies have been explored as potential treatments for chronic conditions requiring lifetime care and medical management. Ocular gene therapies target a range of ocular disorders, but retinal diseases are of particular importance due to the prevalence of retinal disease and the current treatment burden of such diseases on affected patients, as well as the challenge of properly delivering these therapies to the target tissue. The purpose of this review is to provide an update on the most current data available for five different retinal gene therapies currently undergoing clinical trials for use against age-related macular degeneration (AMD) and the development of novel delivery routes for the administration of such therapies. Research has been performed and compiled from PubMed and the select authors of this manuscript on the treatment and effectiveness of five current retinal gene therapies: Luxturna, ADVM-022, RGX-314, GT-005, and HMR59. We present the available data of current clinical trials for the treatment of neovascular and dry age-related macular degeneration with different AAV-based gene therapies. We also present current research on the progress of developing novel routes of administration for ocular gene therapies. Retinal gene therapies offer the potential for life-changing treatment for chronic conditions like age-related macular degeneration with a single administration. In doing so, gene therapies change the landscape of treatment options for these chronic conditions for both patient and provider.
Collapse
Affiliation(s)
- Arshad M. Khanani
- grid.492896.8Sierra Eye Associates, Reno, NV USA ,grid.266818.30000 0004 1936 914XThe University of Nevada, Reno School of Medicine, Reno, NV USA
| | - Mathew J. Thomas
- grid.266818.30000 0004 1936 914XThe University of Nevada, Reno School of Medicine, Reno, NV USA
| | - Aamir A. Aziz
- grid.492896.8Sierra Eye Associates, Reno, NV USA ,grid.266818.30000 0004 1936 914XThe University of Nevada, Reno School of Medicine, Reno, NV USA
| | - Christina Y. Weng
- grid.39382.330000 0001 2160 926XDepartment of Ophthalmology, Baylor College of Medicine, Houston, TX USA
| | - Carl J. Danzig
- Rand Eye Institute, Deerfield Beach, FL USA ,grid.255951.fFlorida Atlantic University, Charles E. Schmidt College of Medicine, Boca Raton, FL USA
| | - Glenn Yiu
- grid.27860.3b0000 0004 1936 9684Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA USA
| | - Szilárd Kiss
- grid.413734.60000 0000 8499 1112Department of Ophthalmology, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY USA
| | - Nadia K. Waheed
- grid.67033.310000 0000 8934 4045Department of Ophthalmology, Tufts University School of Medicine, Boston, MA USA
| | - Peter K. Kaiser
- grid.239578.20000 0001 0675 4725Cole Eye Institute, Cleveland Clinic, Cleveland, OH USA
| |
Collapse
|
23
|
Su W, Sun S, Tian B, Tai PWL, Luo Y, Ko J, Zhan W, Ke X, Zheng Q, Li X, Yan H, Gao G, Lin H. Efficacious, safe, and stable inhibition of corneal neovascularization by AAV-vectored anti-VEGF therapeutics. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:107-121. [PMID: 34514023 PMCID: PMC8413663 DOI: 10.1016/j.omtm.2021.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/10/2021] [Indexed: 11/29/2022]
Abstract
Corneal neovascularization (CoNV) leads to visual impairment, affecting over 1.4 million people in the United States per year. It is caused by a variety of pathologies, such as inflammation, hypoxia, and limbal barrier dysfunction. Injection of the anti-vascular endothelial growth factor (VEGF) drug KH902 (conbercept) can inhibit CoNV but requires repeated dosing that produces associated side effects, such as cornea scar. To explore more efficacious and long-lasting treatment of CoNV, we employed recombinant adeno-associated virus (rAAV)2 and rAAV8 vectors to mediate KH902 expression via a single intrastromal injection and investigated its anti-angiogenic effects and safety in both alkali-burn- and suture-induced CoNV mouse models. Our results showed that rAAV-mediated KH902 mRNA expression in the cornea was sustained for at least 3 months after a single intrastromal injection. Moreover, the expression level of rAAV8-KH902 far exceeded that of rAAV2-KH902. A single-dose rAAV8-KH902 treatment at 8 × 108 genome copies (GCs) per cornea dramatically inhibited CoNV for an extended period of time in mouse CoNV models without adverse events, whereas the inhibition of CoNV by a single intrastromal administration of the conbercept drug lasted for only 10−14 days. Overall, our study demonstrated that the treatment of CoNV with a single dose of rAAV8-KH902 via intrastromal administration was safe, effective, and long lasting, representing a novel therapeutic strategy for CoNV.
Collapse
Affiliation(s)
- Wenqi Su
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, China.,Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Shuo Sun
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, MA 01655, USA.,Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Bo Tian
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou 510642, China
| | - Jihye Ko
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Xiao Ke
- Chengdu Kanghong Pharmaceutical Group, 36 Shuxi Rd., Jinniu District, Chengdu, Sichuan 610036, China
| | - Qiang Zheng
- Chengdu Kanghong Pharmaceutical Group, 36 Shuxi Rd., Jinniu District, Chengdu, Sichuan 610036, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Haijiang Lin
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
24
|
Tozaki T, Ohnuma A, Iwai S, Kikuchi M, Ishige T, Kakoi H, Hirota K, Kusano K, Nagata S. Robustness of Digital PCR and Real-Time PCR in Transgene Detection for Gene-Doping Control. Anal Chem 2021; 93:7133-7139. [PMID: 33913315 DOI: 10.1021/acs.analchem.1c01173] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gene doping is banned in human sports, horseracing, and equestrian sports. One possible form of gene doping is to administer exogenous genes, called transgenes. Several transgene detection methods based on quantitative PCR have been developed. In this study, we investigated the robustness of digital PCR and real-time PCR in transgene detection using primers and probes that matched (P-true) or incompletely matched (P-false) the template DNA. Fluorescence intensity was significantly reduced when substituted probes were used compared to that using the matched probe in both digital and real-time PCR assays. Digital PCR yielded a similar copy number regardless of the probe (P-true: 1230.7, P-false: 1229.7), whereas real-time PCR revealed a decrease in sensitivity based on Cq values (P-true: 23.5, P-false: 29.7). When substituted primers were used, the detected copy number decreased in the digital PCR assay, and the Cq value in real-time PCR was much higher. Interestingly, digital PCR copy numbers improved by performing PCR at a low annealing temperature, even if a substituted probe was used. Thus, when primer and probe sequences did not completely match the template transgene, digital PCR was relatively robust, but real-time PCR was less sensitive. Although PCR specificity may be reduced, PCR sensitivity can be improved by lowering the annealing temperature. If the target sequence is substituted to escape doping detection, it may be desirable to set the annealing temperature lower and use a more robust method, such as digital PCR, to increase the detection of positive cases, which will also result in fewer false-negative results.
Collapse
Affiliation(s)
- Teruaki Tozaki
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Tochigi 320-0851, Japan.,Department of Healthcare and Regulatory Sciences, Showa University School of Pharmacy, 1-5-8, Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Aoi Ohnuma
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Tochigi 320-0851, Japan
| | - Shinichi Iwai
- Department of Healthcare and Regulatory Sciences, Showa University School of Pharmacy, 1-5-8, Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Mio Kikuchi
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Tochigi 320-0851, Japan
| | - Taichiro Ishige
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Tochigi 320-0851, Japan
| | - Hironaga Kakoi
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Tochigi 320-0851, Japan
| | - Keiichi Hirota
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Tochigi 320-0851, Japan
| | - Kanichi Kusano
- Equine Department, Japan Racing Association, 6-11-1, Roppongi, Minato, Tokyo 106-8401, Japan
| | - Shunichi Nagata
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Tochigi 320-0851, Japan
| |
Collapse
|
25
|
Gelfman CM, Grishanin R, Bender KO, Nguyen A, Greengard J, Sharma P, Nieves J, Kiss S, Gasmi M. Comprehensive Preclinical Assessment of ADVM-022, an Intravitreal Anti-VEGF Gene Therapy for the Treatment of Neovascular AMD and Diabetic Macular Edema. J Ocul Pharmacol Ther 2021; 37:181-190. [PMID: 33835848 PMCID: PMC8060718 DOI: 10.1089/jop.2021.0001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/10/2021] [Indexed: 02/04/2023] Open
Abstract
Inhibition of vascular endothelial growth factor is the mode of action for several approved therapies, including aflibercept, for the treatment of neovascular age-related macular degeneration (nAMD) and diabetic macular edema (DME). Lack of compliance due to the frequent intravitreal dosing requirements may result in inadequately treated disease, leading to irreversible vision impairment. To date, the majority of gene therapy clinical trials providing sustained anti-VEGF levels in the retina have been limited to subretinal injections requiring a vitrectomy. A single intravitreal injection of a gene therapy product could drastically reduce the treatment burden and improve visual outcomes. ADVM-022, an adeno-associated virus vector encoding aflibercept, has been optimized for intravitreal delivery and strong protein expression. Long-term expression and efficacy of ADVM-022-derived aflibercept were evaluated in a laser-induced choroidal neovascularization (CNV) model in non-human primates. Ocular safety was evaluated following long-term suppression of VEGF by clinical scoring (inflammatory parameters) as well as optical coherence tomography (OCT) and electroretinography (ERG). Intravitreal administration of ADVM-022 was well tolerated and resulted in sustained aflibercept levels in ocular tissues. In addition, ADVM-022 administration 13 months before laser-induced CNV prevented the occurrence of clinically relevant CNV lesions, to the same degree as a bolus of aflibercept delivered at the time of laser. These results demonstrate that a single intravitreal administration of ADVM-022 may provide a safe and effective long-term treatment option for nAMD and DME, and may ultimately improve patients' visual outcomes. Clinical trials are currently underway, evaluating safety and efficacy following a single intravitreal injection of ADVM-022.
Collapse
Affiliation(s)
| | | | | | - Aivan Nguyen
- Adverum Biotechnologies, Inc., Redwood City, California, USA
| | | | - Pallavi Sharma
- Adverum Biotechnologies, Inc., Redwood City, California, USA
| | - Julio Nieves
- Adverum Biotechnologies, Inc., Redwood City, California, USA
| | - Szilárd Kiss
- Department of Ophthalmology, Weill Cornell Medical College, New York, New York, USA
| | - Mehdi Gasmi
- Adverum Biotechnologies, Inc., Redwood City, California, USA
| |
Collapse
|