1
|
Mukhi D, Kolligundla LP, Doke T, Silva MA, Liu H, Palmer M, Susztak K. The actin and microtubule network regulator WHAMM is identified as a key kidney disease risk gene. Cell Rep 2025; 44:115462. [PMID: 40138314 DOI: 10.1016/j.celrep.2025.115462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/23/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Nearly 850 million people suffer from kidney disease worldwide. Genome-wide association studies identify genetic variations at more than 800 loci associated with kidney dysfunction; however, the target genes, cell types, and mechanisms remain poorly understood. Here, we show that nucleotide variants on chromosome 15 are not only associated with kidney dysfunction but also regulate the expression of Wasp homolog associated with actin, membranes, and microtubules (WHAMM). WHAMM expression is higher in mice and patients with chronic and acute kidney disease. Mice with genetic deletion of Whamm appear healthy at baseline but develop less injury following cisplatin, folic acid, and unilateral ureteral obstruction. In vitro cell studies indicate that WHAMM controls cell death by regulating actin-mediated cytochrome c release from mitochondria and the formation of ASC speck. Pharmacological inhibition of actin dynamics mitigates kidney disease in experimental models. In summary, our study identifies a key role of WHAMM in the development of kidney disease.
Collapse
Affiliation(s)
- Dhanunjay Mukhi
- Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA; Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Lakshmi Prasanna Kolligundla
- Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA; Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomohito Doke
- Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA; Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Philadelphia, PA, USA; Department of Nephrology, Nagoya University, Nagoya, Japan
| | - Magaiver Andrade- Silva
- Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA; Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Philadelphia, PA, USA; Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Hongbo Liu
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Matthew Palmer
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA; Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Philadelphia, PA, USA; Institute for Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Lindberg K, Ovchinnikova O, Moor MB, Pirault J, Ketelhuth DF, Olauson H, Hansson GK, Larsson TE. Fgf23 expression increases atherosclerotic plaque burden in male ApoE deficient mice. Atherosclerosis 2025; 403:119158. [PMID: 40054115 DOI: 10.1016/j.atherosclerosis.2025.119158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/30/2025] [Accepted: 02/26/2025] [Indexed: 04/20/2025]
Abstract
INTRODUCTION Components of both the innate and adaptive immune system impact on arterial walls in atherosclerosis. Fibroblast growth factor-23 (FGF23) is a phosphate regulating hormone linked to cardiovascular disease (CVD) in patients with and without chronic renal disease. However, it remains controversial whether FGF23 is merely a biomarker or contributes to CVD. Here, we overexpressed Fgf23 in ApoE-/-mice to delineate the role of FGF23 in atherogenesis. METHODS AND RESULTS 10-week old ApoE-/- mice received a hydrodynamic tail vein with a plasmid encoding for Fgf23, and were sacrificed 10 weeks later. FGF23 concentrations increased more than 400-fold in the Fgf23 treated group, remaining high throughout the experiment. Mice in the Fgf23 group developed hypophosphatemia, secondary hyperparathyroidism and a moderate increase in plasma creatinine concentrations. Male ApoE-/- mice exposed to high Fgf23 developed larger atherosclerotic lesions compared to controls, in two different locations of aorta, whereas no differences in plaque burden were seen between female ApoE-/- mice and controls. Serum IL-6 concentrations were increased in the Fgf23 group, associated with a vascular inflammatory response of recruited macrophages and neutrophils, and with a shift of CD4+ T effector cells from Th1 to Th17 and migration of lymphocytes to the spleen. CONCLUSION Fgf23 overexpression increases the atherosclerotic burden in male ApoE-/- mice and alters both the innate immune system and T cell subpopulations, generating an inflammatory environment that may promote adverse clinical outcomes associated with FGF23 excess.
Collapse
Affiliation(s)
- Karolina Lindberg
- Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Olga Ovchinnikova
- Department of Medicine, Division of Cardiovascular Medicine, Karolinska Institutet at Bioclinicum J8:20, Karolinska University Hospital, Visionsgatan 4, SE-171 64, Solna, Sweden
| | - Matthias B Moor
- Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Laboratory Medicine (LABMED), Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - John Pirault
- Department of Medicine, Division of Cardiovascular Medicine, Karolinska Institutet at Bioclinicum J8:20, Karolinska University Hospital, Visionsgatan 4, SE-171 64, Solna, Sweden; Department of Molecular Medicine, University of Southern Denmark, Denmark
| | - Daniel Fj Ketelhuth
- Department of Medicine, Division of Cardiovascular Medicine, Karolinska Institutet at Bioclinicum J8:20, Karolinska University Hospital, Visionsgatan 4, SE-171 64, Solna, Sweden
| | - Hannes Olauson
- Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Laboratory Medicine (LABMED), Division of Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Göran K Hansson
- Department of Medicine, Division of Cardiovascular Medicine, Karolinska Institutet at Bioclinicum J8:20, Karolinska University Hospital, Visionsgatan 4, SE-171 64, Solna, Sweden
| | - Tobias E Larsson
- Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Hu MC, Reneau JA, Shi M, Takahashi M, Chen G, Mohammadi M, Moe OW. C-terminal fragment of fibroblast growth factor 23 improves heart function in murine models of high intact fibroblast growth factor 23. Am J Physiol Renal Physiol 2024; 326:F584-F599. [PMID: 38299214 PMCID: PMC11208029 DOI: 10.1152/ajprenal.00298.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/02/2024] Open
Abstract
Cardiovascular disease (CVD) is the major cause of death in chronic kidney disease (CKD) and is associated with high circulating fibroblast growth factor (FGF)23 levels. It is unresolved whether high circulating FGF23 is a mere biomarker or pathogenically contributes to cardiomyopathy. It is also unknown whether the C-terminal FGF23 peptide (cFGF23), a natural FGF23 antagonist proteolyzed from intact FGF23 (iFGF23), retards CKD progression and improves cardiomyopathy. We addressed these questions in three murine models with high endogenous FGF23 and cardiomyopathy. First, we examined wild-type (WT) mice with CKD induced by unilateral ischemia-reperfusion and contralateral nephrectomy followed by a high-phosphate diet. These mice were continuously treated with intraperitoneal implanted osmotic minipumps containing either iFGF23 protein to further escalate FGF23 bioactivity, cFGF23 peptide to block FGF23 signaling, vehicle, or scrambled peptide as negative controls. Exogenous iFGF23 protein given to CKD mice exacerbated pathological cardiac remodeling and CKD progression, whereas cFGF23 treatment improved heart and kidney function, attenuated fibrosis, and increased circulating soluble Klotho. WT mice without renal insult placed on a high-phosphate diet and homozygous Klotho hypomorphic mice, both of whom develop moderate CKD and clear cardiomyopathy, were treated with cFGF23 or vehicle. Mice treated with cFGF23 in both models had improved heart and kidney function and histopathology. Taken together, these data indicate high endogenous iFGF23 is not just a mere biomarker but pathogenically deleterious in CKD and cardiomyopathy. Furthermore, attenuation of FGF23 bioactivity by cFGF23 peptide is a promising therapeutic strategy to protect the kidney and heart from high FGF23 activity.NEW & NOTEWORTHY There is a strong correlation between cardiovascular morbidity and high circulating fibroblast growth factor 23 (FGF23) levels, but causality was never proven. We used a murine chronic kidney disease (CKD) model to show that intact FGF23 (iFGF23) is pathogenic and contributes to both CKD progression and cardiomyopathy. Blockade of FGF23 signaling with a natural proteolytic product of iFGF23, C-terminal FGF23, alleviated kidney and cardiac histology, and function in three separate murine models of high endogenous FGF23.
Collapse
Affiliation(s)
- Ming Chang Hu
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - James A Reneau
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Mingjun Shi
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Masaya Takahashi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Gaozhi Chen
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Moosa Mohammadi
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Orson W Moe
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
4
|
Ay B, Cyr SM, Klovdahl K, Zhou W, Tognoni CM, Iwasaki Y, Rhee EP, Dedeoglu A, Simic P, Bastepe M. Gα11 deficiency increases fibroblast growth factor 23 levels in a mouse model of familial hypocalciuric hypercalcemia. JCI Insight 2024; 9:e178993. [PMID: 38530370 PMCID: PMC11141917 DOI: 10.1172/jci.insight.178993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Fibroblast growth factor 23 (FGF23) production has recently been shown to increase downstream of Gαq/11-PKC signaling in osteocytes. Inactivating mutations in the gene encoding Gα11 (GNA11) cause familial hypocalciuric hypercalcemia (FHH) due to impaired calcium-sensing receptor signaling. We explored the effect of Gα11 deficiency on FGF23 production in mice with heterozygous (Gna11+/-) or homozygous (Gna11-/-) ablation of Gna11. Both Gna11+/- and Gna11-/- mice demonstrated hypercalcemia and mildly raised parathyroid hormone levels, consistent with FHH. Strikingly, these mice also displayed increased serum levels of total and intact FGF23 and hypophosphatemia. Gna11-/- mice showed augmented Fgf23 mRNA levels in the liver and heart, but not in bone or bone marrow, and also showed evidence of systemic inflammation with elevated serum IL-1β levels. Furin gene expression was significantly increased in the Gna11-/- liver, suggesting enhanced FGF23 cleavage despite the observed rise in circulating intact FGF23 levels. Gna11-/- mice had normal renal function and reduced serum levels of glycerol-3-phosphate, excluding kidney injury as the primary cause of elevated intact FGF23 levels. Thus, Gα11 ablation caused systemic inflammation and excess serum FGF23 in mice, suggesting that patients with FHH - at least those with GNA11 mutations - may be at risk for these complications.
Collapse
Affiliation(s)
- Birol Ay
- Endocrine Unit, Department of Medicine, and
| | | | | | - Wen Zhou
- Endocrine Unit, Department of Medicine, and
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christina M. Tognoni
- Department of Veterans Affairs, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Eugene P Rhee
- Endocrine Unit, Department of Medicine, and
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alpaslan Dedeoglu
- Department of Veterans Affairs, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Massachusetts, USA
| | - Petra Simic
- Endocrine Unit, Department of Medicine, and
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
5
|
Lair B, Lac M, Frassin L, Brunet M, Buléon M, Feuillet G, Maslo C, Marquès M, Monbrun L, Bourlier V, Montastier E, Viguerie N, Tavernier G, Laurens C, Moro C. Common mouse models of chronic kidney disease are not associated with cachexia. Commun Biol 2024; 7:346. [PMID: 38509307 PMCID: PMC10954638 DOI: 10.1038/s42003-024-06021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
The 5/6 nephrectomy and adenine-induced nephropathy mouse models have been extensively used to study Chronic Kidney Disease (CKD)-related cachexia. One common caveat of these CKD models is the cross-sectional nature of comparisons made versus controls. We here performed a comprehensive longitudinal assessment of body composition and energy metabolism in both models. The most striking finding is that weight loss is largely driven by reduced food intake which promotes rapid loss of lean and fat mass. However, in both models, mice catch up weight and lean mass a few days after the surgery or when they are switched back to standard chow diet. Muscle force and mass are fully recovered and no sign of cachexia is observed. Our data demonstrate that the time-course of kidney failure and weight loss are unrelated in these common CKD models. These data highlight the need to reconsider the relative contribution of direct and indirect mechanisms to muscle wasting observed in CKD.
Collapse
Affiliation(s)
- Benjamin Lair
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Marlène Lac
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Lucas Frassin
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Manon Brunet
- Team Renal Fibrosis and Chronic Kidney Diseases, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Marie Buléon
- Team Renal Fibrosis and Chronic Kidney Diseases, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Guylène Feuillet
- Team Renal Fibrosis and Chronic Kidney Diseases, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Claire Maslo
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Marie Marquès
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Laurent Monbrun
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Virginie Bourlier
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Emilie Montastier
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Nathalie Viguerie
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Geneviève Tavernier
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Claire Laurens
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Cedric Moro
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France.
| |
Collapse
|
6
|
Watanabe K, Fujii H, Okamoto K, Kono K, Goto S, Nishi S. Exploring the implications of blocking renin-angiotensin-aldosterone system and fibroblast growth factor 23 in early left ventricular hypertrophy without chronic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1276664. [PMID: 38174329 PMCID: PMC10762797 DOI: 10.3389/fendo.2023.1276664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Background Whether fibroblast growth factor 23 (FGF23) directly induces left ventricular hypertrophy (LVH) remains controversial. Recent studies showed an association between FGF23 and the renin-angiotensin-aldosterone system (RAAS). The aim of this study was to investigate changes in FGF23 levels and RAAS parameters and their influences on LVH. Methods In the first experiment, male C57BL/6J mice were divided into sham and transverse aortic constriction (TAC) groups. The TAC group underwent TAC at 8 weeks of age. At 1, 2, 3, and 4 weeks after TAC, the mice were sacrificed, and blood and urine samples were obtained. Cardiac expressions of FGF23 and RAAS-related factors were evaluated, and cardiac histological analyses were performed. In the second experiment, the sham and TAC groups were treated with vehicle, angiotensin-converting enzyme (ACE) inhibitor, or FGF receptor 4 (FGFR4) inhibitor and then evaluated in the same way as in the first experiment. Results In the early stage of LVH without chronic kidney disease, serum FGF23 levels did not change but cardiac FGF23 expression significantly increased along with LVH progression. Moreover, serum aldosterone and cardiac ACE levels were significantly elevated, and cardiac ACE2 levels were significantly decreased. ACE inhibitor did not change serum FGF23 levels but significantly decreased cardiac FGF23 levels with improvements in LVH and RAAS-related factors, while FGFR4 inhibitor did not change the values. Conclusions Not serum FGF23 but cardiac FGF23 levels and RAAS parameters significantly changed in the early stage of LVH without chronic kidney disease. RAAS blockade might be more crucial than FGF23 blockade for preventing LVH progression in this condition.
Collapse
Affiliation(s)
| | - Hideki Fujii
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | |
Collapse
|
7
|
Yang X, Liu Y, Zhu X, Chen P, Xie X, Xu T, Zhang X, Zhao Y. Vascular, valvular and kidney calcification manifested in mouse models of adenine-induced chronic kidney disease. Ren Fail 2023; 45:2228920. [PMID: 37369635 DOI: 10.1080/0886022x.2023.2228920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Ectopic calcification (EC) involves multiple organ systems in chronic kidney disease (CKD). Previous CKD-animal models primarily focused on a certain histological abnormality but did not show the correlation with calcified development among various tissues. This study compared calcified deposition in various tissues during CKD progression in mice. METHODS Male 8-week-old C57BL/6J mice were randomly allocated to the seven groups: a basic, adenine, high-phosphorus, or adenine and high-phosphorus diet for 12-16 weeks (Ctl16, A12, P16, or AP16, respectively); an adenine diet for 4-6 weeks; and a high-phosphorus or adenine and high-phosphorus diet for 10-12 weeks (A6 + P10, A4 + P12, or A4 + AP12, respectively). RESULTS Compared to the Ctl16 mice, the P16 mice only displayed a slight abnormality in serum calcium and phosphorus; the A12 mice had the most serious kidney impairment; the A4 + P12 and A6 + P10 mice had similar conditions of CKD, mineral abnormalities, and mild calcification in the kidney and aortic valves; the A4 + AP12 and AP16 groups had severe kidney impairment, mineral abnormalities and calcification in the kidneys, aortic valves and aortas. Furthermore, calcium-phosphate particles were deposited not only in the tubulointerstitial compartment but in the glomerular and tubular basement membrane. The elemental composition of EC in various tissues matched the calcification of human cardiovascular tissue as determined by energy dispersive spectroscopy. CONCLUSIONS The severity of CKD was unparalleled with the progression of mineral metabolism disorder and EC. Calcification was closely related in different tissues and observed in the glomerular and tubular basement membranes.
Collapse
Affiliation(s)
- Xin Yang
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yuqiu Liu
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Xiaodong Zhu
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Pingsheng Chen
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Xiaotong Xie
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Tian Xu
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Xiaoliang Zhang
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yu Zhao
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
8
|
Li X, Lozovatsky L, Tommasini SM, Fretz J, Finberg KE. Bone marrow sinusoidal endothelial cells are a site of Fgf23 upregulation in a mouse model of iron deficiency anemia. Blood Adv 2023; 7:5156-5171. [PMID: 37417950 PMCID: PMC10480544 DOI: 10.1182/bloodadvances.2022009524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/08/2023] Open
Abstract
Iron deficiency is a potent stimulator of fibroblast growth factor 23 (FGF23), a hormonal regulator of phosphate and vitamin D metabolism, that is classically thought to be produced by bone-embedded osteocytes. Here, we show that iron-deficient transmembrane serine protease 6 knockout (Tmprss6-/-) mice exhibit elevated circulating FGF23 and Fgf23 messenger RNA (mRNA) upregulation in the bone marrow (BM) but not the cortical bone. To clarify sites of Fgf23 promoter activity in Tmprss6-/- mice, we introduced a heterozygous enhanced green fluorescent protein (eGFP) reporter allele at the endogenous Fgf23 locus. Heterozygous Fgf23 disruption did not alter the severity of systemic iron deficiency or anemia in the Tmprss6-/- mice. Tmprss6-/-Fgf23+/eGFP mice showed green fluorescence in the vascular regions of BM sections and showed a subset of BM endothelial cells that were GFPbright by flow cytometry. Mining of transcriptomic data sets from mice with normal iron balance revealed higher Fgf23 mRNA in BM sinusoidal endothelial cells (BM-SECs) than that in other BM endothelial cell populations. Anti-GFP immunohistochemistry of fixed BM sections from Tmprss6-/-Fgf23+/eGFP mice revealed GFP expression in BM-SECs, which was more intense than in nonanemic controls. In addition, in mice with intact Tmprss6 alleles, Fgf23-eGFP reporter expression increased in BM-SECs following large-volume phlebotomy and also following erythropoietin treatment both ex vivo and in vivo. Collectively, our results identified BM-SECs as a novel site for Fgf23 upregulation in both acute and chronic anemia. Given the elevated serum erythropoietin in both anemic models, our findings raise the possibility that erythropoietin may act directly on BM-SECs to promote FGF23 production during anemia.
Collapse
Affiliation(s)
- Xiuqi Li
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | | | - Steven M. Tommasini
- Department of Orthopaedics & Rehabilitation, Yale School of Medicine, New Haven, CT
| | - Jackie Fretz
- Department of Orthopaedics & Rehabilitation, Yale School of Medicine, New Haven, CT
| | | |
Collapse
|
9
|
Kitase Y, Prideaux M. Regulation of the Osteocyte Secretome with Aging and Disease. Calcif Tissue Int 2023; 113:48-67. [PMID: 37148298 DOI: 10.1007/s00223-023-01089-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
As the most numerous and long-lived of all bone cells, osteocytes have essential functions in regulating skeletal health. Through the lacunar-canalicular system, secreted proteins from osteocytes can reach cells throughout the bone. Furthermore, the intimate connectivity between the lacunar-canalicular system and the bone vasculature allows for the transport of osteocyte-secreted factors into the circulation to reach the entire body. Local and endocrine osteocyte signaling regulates physiological processes such as bone remodeling, bone mechanoadaptation, and mineral homeostasis. However, these processes are disrupted by impaired osteocyte function induced by aging and disease. Dysfunctional osteocyte signaling is now associated with the pathogenesis of many disorders, including chronic kidney disease, cancer, diabetes mellitus, and periodontitis. In this review, we focus on the targeting of bone and extraskeletal tissues by the osteocyte secretome. In particular, we highlight the secreted osteocyte proteins, which are known to be dysregulated during aging and disease, and their roles during disease progression. We also discuss how therapeutic or genetic targeting of osteocyte-secreted proteins can improve both skeletal and systemic health.
Collapse
Affiliation(s)
- Yukiko Kitase
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Matthew Prideaux
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
10
|
Portales-Castillo I, Rieg T, Khalid SB, Nigwekar SU, Neyra JA. Physiopathology of Phosphate Disorders. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:177-188. [PMID: 36868732 PMCID: PMC10565570 DOI: 10.1053/j.akdh.2022.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 03/05/2023]
Abstract
Intracellular phosphate is critical for cellular processes such as signaling, nucleic acid synthesis, and membrane function. Extracellular phosphate (Pi) is an important component of the skeleton. Normal levels of serum phosphate are maintained by the coordinated actions of 1,25-dihydroxyvitamin D3, parathyroid hormone and fibroblast growth factor-23, which intersect in the proximal tubule to control the reabsorption of phosphate via the sodium-phosphate cotransporters Npt2a and Npt2c. Furthermore, 1,25-dihydroxyvitamin D3 participates in the regulation of dietary phosphate absorption in the small intestine. Clinical manifestations associated with abnormal serum phosphate levels are common and occur as a result of genetic or acquired conditions affecting phosphate homeostasis. For example, chronic hypophosphatemia leads to osteomalacia in adults and rickets in children. Acute severe hypophosphatemia can affect multiple organs leading to rhabdomyolysis, respiratory dysfunction, and hemolysis. Patients with impaired kidney function, such as those with advanced CKD, have high prevalence of hyperphosphatemia, with approximately two-thirds of patients on chronic hemodialysis in the United States having serum phosphate levels above the recommended goal of 5.5 mg/dL, a cutoff associated with excess risk of cardiovascular complications. Furthermore, patients with advanced kidney disease and hyperphosphatemia (>6.5 mg/dL) have almost one-third excess risk of death than those with phosphate levels between 2.4 and 6.5 mg/dL. Given the complex mechanisms that regulate phosphate levels, the interventions to treat the various diseases associated with hypophosphatemia or hyperphosphatemia rely on the understanding of the underlying pathobiological mechanisms governing each patient condition.
Collapse
Affiliation(s)
- Ignacio Portales-Castillo
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA; Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL; James A. Haley Veterans' Hospital, Tampa, FL; Center for Hypertension and Kidney Research, University of South Florida, Tampa, FL
| | - Sheikh B Khalid
- Department of Internal Medicine, The Indus Hospital, Lahore Pakistan
| | - Sagar U Nigwekar
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA
| | - Javier A Neyra
- Department of Internal Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
11
|
Fibrosis: Types, Effects, Markers, Mechanisms for Disease Progression, and Its Relation with Oxidative Stress, Immunity, and Inflammation. Int J Mol Sci 2023; 24:ijms24044004. [PMID: 36835428 PMCID: PMC9963026 DOI: 10.3390/ijms24044004] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 02/19/2023] Open
Abstract
Most chronic inflammatory illnesses include fibrosis as a pathogenic characteristic. Extracellular matrix (ECM) components build up in excess to cause fibrosis or scarring. The fibrotic process finally results in organ malfunction and death if it is severely progressive. Fibrosis affects nearly all tissues of the body. The fibrosis process is associated with chronic inflammation, metabolic homeostasis, and transforming growth factor-β1 (TGF-β1) signaling, where the balance between the oxidant and antioxidant systems appears to be a key modulator in managing these processes. Virtually every organ system, including the lungs, heart, kidney, and liver, can be affected by fibrosis, which is characterized as an excessive accumulation of connective tissue components. Organ malfunction is frequently caused by fibrotic tissue remodeling, which is also frequently linked to high morbidity and mortality. Up to 45% of all fatalities in the industrialized world are caused by fibrosis, which can damage any organ. Long believed to be persistently progressing and irreversible, fibrosis has now been revealed to be a very dynamic process by preclinical models and clinical studies in a variety of organ systems. The pathways from tissue damage to inflammation, fibrosis, and/or malfunction are the main topics of this review. Furthermore, the fibrosis of different organs with their effects was discussed. Finally, we highlight many of the principal mechanisms of fibrosis. These pathways could be considered as promising targets for the development of potential therapies for a variety of important human diseases.
Collapse
|
12
|
Noonan ML, Ni P, Solis E, Marambio YG, Agoro R, Chu X, Wang Y, Gao H, Xuei X, Clinkenbeard EL, Jiang G, Liu S, Stegen S, Carmeliet G, Thompson WR, Liu Y, Wan J, White KE. Osteocyte Egln1/Phd2 links oxygen sensing and biomineralization via FGF23. Bone Res 2023; 11:7. [PMID: 36650133 PMCID: PMC9845350 DOI: 10.1038/s41413-022-00241-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/29/2022] [Accepted: 11/03/2022] [Indexed: 01/19/2023] Open
Abstract
Osteocytes act within a hypoxic environment to control key steps in bone formation. FGF23, a critical phosphate-regulating hormone, is stimulated by low oxygen/iron in acute and chronic diseases, however the molecular mechanisms directing this process remain unclear. Our goal was to identify the osteocyte factors responsible for FGF23 production driven by changes in oxygen/iron utilization. Hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHI) which stabilize HIF transcription factors, increased Fgf23 in normal mice, as well as in osteocyte-like cells; in mice with conditional osteocyte Fgf23 deletion, circulating iFGF23 was suppressed. An inducible MSC cell line ('MPC2') underwent FG-4592 treatment and ATACseq/RNAseq, and demonstrated that differentiated osteocytes significantly increased HIF genomic accessibility versus progenitor cells. Integrative genomics also revealed increased prolyl hydroxylase Egln1 (Phd2) chromatin accessibility and expression, which was positively associated with osteocyte differentiation. In mice with chronic kidney disease (CKD), Phd1-3 enzymes were suppressed, consistent with FGF23 upregulation in this model. Conditional loss of Phd2 from osteocytes in vivo resulted in upregulated Fgf23, in line with our findings that the MPC2 cell line lacking Phd2 (CRISPR Phd2-KO cells) constitutively activated Fgf23 that was abolished by HIF1α blockade. In vitro, Phd2-KO cells lost iron-mediated suppression of Fgf23 and this activity was not compensated for by Phd1 or -3. In sum, osteocytes become adapted to oxygen/iron sensing during differentiation and are directly sensitive to bioavailable iron. Further, Phd2 is a critical mediator of osteocyte FGF23 production, thus our collective studies may provide new therapeutic targets for skeletal diseases involving disturbed oxygen/iron sensing.
Collapse
Affiliation(s)
- Megan L Noonan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Pu Ni
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Emmanuel Solis
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yamil G Marambio
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Rafiou Agoro
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiaona Chu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yue Wang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiaoling Xuei
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Erica L Clinkenbeard
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Guanglong Jiang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Steve Stegen
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000, Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000, Leuven, Belgium
| | - William R Thompson
- Department of Physical Therapy, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kenneth E White
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Departments of Medicine/Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
13
|
|
14
|
Agoro R, Nookaew I, Noonan ML, Marambio YG, Liu S, Chang W, Gao H, Hibbard LM, Metzger CE, Horan D, Thompson WR, Xuei X, Liu Y, Zhang C, Robling AG, Bonewald LF, Wan J, White KE. Single cell cortical bone transcriptomics define novel osteolineage gene sets altered in chronic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1063083. [PMID: 36777346 PMCID: PMC9910177 DOI: 10.3389/fendo.2023.1063083] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/04/2023] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION Due to a lack of spatial-temporal resolution at the single cell level, the etiologies of the bone dysfunction caused by diseases such as normal aging, osteoporosis, and the metabolic bone disease associated with chronic kidney disease (CKD) remain largely unknown. METHODS To this end, flow cytometry and scRNAseq were performed on long bone cells from Sost-cre/Ai9+ mice, and pure osteolineage transcriptomes were identified, including novel osteocyte-specific gene sets. RESULTS Clustering analysis isolated osteoblast precursors that expressed Tnc, Mmp13, and Spp1, and a mature osteoblast population defined by Smpd3, Col1a1, and Col11a1. Osteocytes were demarcated by Cd109, Ptprz1, Ramp1, Bambi, Adamts14, Spns2, Bmp2, WasI, and Phex. We validated our in vivo scRNAseq using integrative in vitro promoter occupancy via ATACseq coupled with transcriptomic analyses of a conditional, temporally differentiated MSC cell line. Further, trajectory analyses predicted osteoblast-to-osteocyte transitions via defined pathways associated with a distinct metabolic shift as determined by single-cell flux estimation analysis (scFEA). Using the adenine mouse model of CKD, at a time point prior to major skeletal alterations, we found that gene expression within all stages of the osteolineage was disturbed. CONCLUSION In sum, distinct populations of osteoblasts/osteocytes were defined at the single cell level. Using this roadmap of gene assembly, we demonstrated unrealized molecular defects across multiple bone cell populations in a mouse model of CKD, and our collective results suggest a potentially earlier and more broad bone pathology in this disease than previously recognized.
Collapse
Affiliation(s)
- Rafiou Agoro
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Megan L. Noonan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yamil G. Marambio
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Wennan Chang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Electrical and Computer Engineering, Purdue University, Indianapolis, IN, United States
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lainey M. Hibbard
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Corinne E. Metzger
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Daniel Horan
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - William R. Thompson
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiaoling Xuei
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Electrical and Computer Engineering, Purdue University, Indianapolis, IN, United States
| | - Alexander G. Robling
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lynda F. Bonewald
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, United States
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kenneth E. White
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medicine/Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Kenneth E. White,
| |
Collapse
|
15
|
Sodium phosphate cotransporter 2a inhibitors: potential therapeutic uses. Curr Opin Nephrol Hypertens 2022; 31:486-492. [PMID: 35894284 PMCID: PMC9387751 DOI: 10.1097/mnh.0000000000000828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Targeting sodium phosphate cotransporter 2a (Npt2a) offers a novel strategy for treating hyperphosphatemia in chronic kidney disease (CKD). Here we review recent studies on the efficacy of Npt2a inhibition, its plasma phosphate (Pi)-lowering effects, as well as potential "off-target" beneficial effects on cardiovascular consequences. RECENT FINDINGS Two novel Npt2a-selective inhibitors (PF-06869206 and BAY-767) have been developed. Pharmacological Npt2a inhibition shows a significant phosphaturic effect and consequently lowers plasma Pi and parathyroid hormone (PTH) levels regardless of CKD. However, plasma fibroblast growth factor 23 (FGF23), a master regulator of Pi homeostasis, shows inconsistent responses between these two inhibitors (no effect by PF-06869206 vs. reduction by BAY-767). In addition to the effects on Pi homeostasis, Npt2a inhibition also enhances urinary excretions of Na+, Cl-, and Ca2+, which is recapitulated in animal models with reduced kidney function. The effect of Npt2a inhibition by BAY-767 on vascular calcification has been studied, with positive results showing that oral treatment with BAY-767 (10 mg kg-1) attenuated the increases in plasma Pi and Ca2+ content in the aorta under the setting of vascular calcification induced by a pan-FGF receptor inhibitor. Together, Npt2a inhibition offers a promising therapeutic approach for treating hyperphosphatemia and reducing cardiovascular complications in CKD. SUMMARY Npt2a inhibition significantly increases urinary Pi excretion and lowers plasma Pi and PTH levels; moreover, it exerts pleiotropic "off-target" effects, providing a novel treatment for hyperphosphatemia and exhibiting beneficial potential for cardiovascular complications in CKD.
Collapse
|
16
|
Yanucil C, Kentrup D, Campos I, Czaya B, Heitman K, Westbrook D, Osis G, Grabner A, Wende AR, Vallejo J, Wacker MJ, Navarro-Garcia JA, Ruiz-Hurtado G, Zhang F, Song Y, Linhardt RJ, White K, Kapiloff M, Faul C. Soluble α-klotho and heparin modulate the pathologic cardiac actions of fibroblast growth factor 23 in chronic kidney disease. Kidney Int 2022; 102:261-279. [PMID: 35513125 PMCID: PMC9329240 DOI: 10.1016/j.kint.2022.03.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 03/14/2022] [Accepted: 03/29/2022] [Indexed: 01/03/2023]
Abstract
Fibroblast growth factor (FGF) 23 is a phosphate-regulating hormone that is elevated in patients with chronic kidney disease and associated with cardiovascular mortality. Experimental studies showed that elevated FGF23 levels induce cardiac hypertrophy by targeting cardiac myocytes via FGF receptor isoform 4 (FGFR4). A recent structural analysis revealed that the complex of FGF23 and FGFR1, the physiologic FGF23 receptor in the kidney, includes soluble α-klotho (klotho) and heparin, which both act as co-factors for FGF23/FGFR1 signaling. Here, we investigated whether soluble klotho, a circulating protein with cardio-protective properties, and heparin, a factor that is routinely infused into patients with kidney failure during the hemodialysis procedure, regulate FGF23/FGFR4 signaling and effects in cardiac myocytes. We developed a plate-based binding assay to quantify affinities of specific FGF23/FGFR interactions and found that soluble klotho and heparin mediate FGF23 binding to distinct FGFR isoforms. Heparin specifically mediated FGF23 binding to FGFR4 and increased FGF23 stimulatory effects on hypertrophic growth and contractility in isolated cardiac myocytes. When repetitively injected into two different mouse models with elevated serum FGF23 levels, heparin aggravated cardiac hypertrophy. We also developed a novel procedure for the synthesis and purification of recombinant soluble klotho, which showed anti-hypertrophic effects in FGF23-treated cardiac myocytes. Thus, soluble klotho and heparin act as independent FGF23 co-receptors with opposite effects on the pathologic actions of FGF23, with soluble klotho reducing and heparin increasing FGF23-induced cardiac hypertrophy. Hence, whether heparin injections during hemodialysis in patients with extremely high serum FGF23 levels contribute to their high rates of cardiovascular events and mortality remains to be studied.
Collapse
Affiliation(s)
- Christopher Yanucil
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dominik Kentrup
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.,Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, USA
| | - Isaac Campos
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brian Czaya
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kylie Heitman
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - David Westbrook
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gunars Osis
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexander Grabner
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Adam R. Wende
- Division of Molecular & Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julian Vallejo
- Department of Molecular Biosciences, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Michael J. Wacker
- Department of Molecular Biosciences, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Jose Alberto Navarro-Garcia
- Cardiorenal Translational Laboratory, Institute of Research, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Institute of Research, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Fuming Zhang
- Departments of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Yuefan Song
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J. Linhardt
- Departments of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Kenneth White
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael Kapiloff
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Christian Faul
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
17
|
Pro-oxidative priming but maintained cardiac function in a broad spectrum of murine models of chronic kidney disease. Redox Biol 2022; 56:102459. [PMID: 36099852 PMCID: PMC9482130 DOI: 10.1016/j.redox.2022.102459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Aims Patients with chronic kidney disease (CKD) have an increased risk of cardiovascular events and exhibit myocardial changes including left ventricular (LV) hypertrophy and fibrosis, overall referred to as ‘uremic cardiomyopathy’. Although different CKD animal models have been studied for cardiac effects, lack of consistent reporting on cardiac function and pathology complicates clear comparison of these models. Therefore, this study aimed at a systematic and comprehensive comparison of cardiac function and cardiac pathophysiological characteristics in eight different CKD models and mouse strains, with a main focus on adenine-induced CKD. Methods and results CKD of different severity and duration was induced by subtotal nephrectomy or adenine-rich diet in various strains (C57BL/6J, C57BL/6 N, hyperlipidemic C57BL/6J ApoE−/−, 129/Sv), followed by the analysis of kidney function and morphology, blood pressure, cardiac function, cardiac hypertrophy, fibrosis, myocardial calcification and inflammation using functional, histological and molecular techniques, including cardiac gene expression profiling supplemented by oxidative stress analysis. Intriguingly, despite uremia of variable degree, neither cardiac dysfunction, hypertrophy nor interstitial fibrosis were observed. However, already moderate CKD altered cardiac oxidative stress responses and enhanced oxidative stress markers in each mouse strain, with cardiac RNA sequencing revealing activation of oxidative stress signaling as well as anti-inflammatory feedback responses. Conclusion This study considerably expands the knowledge on strain- and protocol-specific differences in the field of cardiorenal research and reveals that several weeks of at least moderate experimental CKD increase oxidative stress responses in the heart in a broad spectrum of mouse models. However, this was insufficient to induce relevant systolic or diastolic dysfunction, suggesting that additional “hits” are required to induce uremic cardiomyopathy. Translational perspective Patients with chronic kidney disease (CKD) have an increased risk of cardiovascular adverse events and exhibit myocardial changes, overall referred to as ‘uremic cardiomyopathy’. We revealed that CKD increases cardiac oxidative stress responses in the heart. Nonetheless, several weeks of at least moderate experimental CKD do not necessarily trigger cardiac dysfunction and remodeling, suggesting that additional “hits” are required to induce uremic cardiomyopathy in the clinical setting. Whether the altered cardiac oxidative stress balance in CKD may increase the risk and extent of cardiovascular damage upon additional cardiovascular risk factors and/or events will be addressed in future studies. Development of a CKD mouse model with a clear cardiac functional or morphological phenotype is challenging. Cardiac oxidative stress response as well as oxidative stress markers are increased in a broad spectrum of CKD mouse models. Our findings suggest need of additional cardiovascular hits to clearly induce uremic cardiomyopathy as observed in patients.
Collapse
|
18
|
Agoro R, White KE. Anemia and fibroblast growth factor 23 elevation in chronic kidney disease: homeostatic interactions and emerging therapeutics. Curr Opin Nephrol Hypertens 2022; 31:320-325. [PMID: 35703246 PMCID: PMC9307122 DOI: 10.1097/mnh.0000000000000797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Chronic kidney disease (CKD) is a progressive disorder that is associated with development of elevated fibroblast growth factor 23 (FGF23) levels and anemia. Here, we review recent literature that extends our current knowledge on the interactions between FGF23 and anemia in CKD and the impact of anemia-targeting therapeutics on FGF23 elevation in CKD. RECENT FINDINGS The anemia of CKD is primarily driven by a lack of erythropoietin (EPO) and iron deficiency. In addition to EPO and iron replacement, novel drug classes to treat anemia have been approved or are in clinical development. A recent observational study provides supportive evidence for the hypothesis that FGF23 elevation in CKD mediates adverse effects of iron deficiency on the cardiovascular system in patients with CKD. Preclinical and clinical studies revealed that ferric citrate (FC), and hypoxia-induced factor-prolyl hydroxylase inhibitor (HIF-PHI) treatment may reduce elevated FGF23 levels in CKD, suggesting that correcting anemia in CKD could potentially lower FGF23 levels. However, as we describe, HIF-PHI have context-dependent effects. Moreover, whether a reduction in FGF23 will improve patient outcomes in patients with CKD remains to be determined. SUMMARY With the emergence of novel therapeutics to treat oxygen and iron utilization deficits in CKD, studies have investigated the impact of these new drugs on FGF23. Several of these drugs, including FC and HIF-PHIs, alleviate iron homeostasis alterations in CKD and are associated with FGF23 reduction. Herein, we review the relationships between oxygen/iron sensing and FGF23 in CKD, recent findings which link FGF23 with cardiac dysfunction, as well as future translational and clinical avenues.
Collapse
Affiliation(s)
- Rafiou Agoro
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA 46202
| | - Kenneth E. White
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA 46202
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA 46202
| |
Collapse
|
19
|
Liesen MP, Noonan ML, Ni P, Agoro R, Hum JM, Clinkenbeard EL, Damrath JG, Wallace JM, Swallow EA, Allen MR, White KE. Segregating the effects of ferric citrate-mediated iron utilization and FGF23 in a mouse model of CKD. Physiol Rep 2022; 10:e15307. [PMID: 35656701 PMCID: PMC9163801 DOI: 10.14814/phy2.15307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/03/2022] [Indexed: 11/24/2022] Open
Abstract
Ferric citrate (FC) is an approved therapy for chronic kidney disease (CKD) patients as a phosphate (Pi) binder for dialysis-dependent CKD, and for iron deficiency anemia (IDA) in non-dialysis CKD. Elevated Pi and IDA both lead to increased FGF23, however, the roles of iron and FGF23 during CKD remain unclear. To this end, iron and Pi metabolism were tested in a mouse model of CKD (0.2% adenine) ± 0.5% FC for 6 weeks, with and without osteocyte deletion of Fgf23 (flox-Fgf23/Dmp1-Cre). Intact FGF23 (iFGF23) increased in all CKD mice but was lower in Cre+ mice with or without FC, thus the Dmp1-Cre effectively reduced FGF23. Cre+ mice fed AD-only had higher serum Pi than Cre- pre- and post-diet, and the Cre+ mice had higher BUN regardless of FC treatment. Total serum iron was higher in all mice receiving FC, and liver Tfrc, Bmp6, and hepcidin mRNAs were increased regardless of genotype; liver IL-6 showed decreased mRNA in FC-fed mice. The renal 1,25-dihydroxyvitamin D (1,25D) anabolic enzyme Cyp27b1 had higher mRNA and the catabolic Cyp24a1 showed lower mRNA in FC-fed mice. Finally, mice with loss of FGF23 had higher bone cortical porosity, whereas Raman spectroscopy showed no changes in matrix mineral parameters. Thus, FC- and FGF23-dependent and -independent actions were identified in CKD; loss of FGF23 was associated with higher serum Pi and BUN, demonstrating that FGF23 was protective of mineral metabolism. In contrast, FC maintained serum iron and corrected inflammation mediators, potentially providing ancillary benefit.
Collapse
Affiliation(s)
- Michael P. Liesen
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Department of PhysiologyMarian UniversityIndianapolisIndianaUSA
| | - Megan L. Noonan
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Pu Ni
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Rafiou Agoro
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Julia M. Hum
- Department of PhysiologyMarian UniversityIndianapolisIndianaUSA
| | - Erica L. Clinkenbeard
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - John G. Damrath
- Purdue University Weldon School of Biomedical EngineeringWest LafayetteIndianaUSA
| | - Joseph M. Wallace
- Department of Biomedical EngineeringIndiana University‐Purdue University at IndianapolisIndianapolisIndianaUSA
| | - Elizabeth A. Swallow
- Department of Anatomy, Cell Biology, and PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Matthew R. Allen
- Department of Biomedical EngineeringIndiana University‐Purdue University at IndianapolisIndianapolisIndianaUSA
- Department of Anatomy, Cell Biology, and PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
- Department of MedicineDivision of NephrologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Kenneth E. White
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Department of MedicineDivision of NephrologyIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
20
|
Kusumi K, Kremsdorf R, Kakajiwala A, Mahan JD. Pediatric Mineral and Bone Disorder of Chronic Kidney Disease and Cardiovascular Disease. Adv Chronic Kidney Dis 2022; 29:275-282. [PMID: 36084974 DOI: 10.1053/j.ackd.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 11/11/2022]
Abstract
Chronic kidney disease is common and causes significant morbidity including shortened lifespans and decrease in quality of life for patients. The major cause of mortality in chronic kidney disease is cardiovascular disease. Cardiovascular disease within the chronic kidney disease population is closely tied with disordered calcium and phosphorus metabolism and driven in part by renal bone disease. The complex nature of renal, bone, and cardiovascular diseases was renamed as mineral and bone disorder of chronic kidney disease to encompass how bone disease drives vascular calcification and contributes to the development of long-term cardiovascular disease, and recent data suggest that managing bone disease well can augment and improve cardiovascular disease status. Pediatric nephrologists have additional obstacles in optimal mineral and bone disorder of chronic kidney disease management such as linear growth and skeletal maturation. In this article, we will discuss cardiovascular and bone diseases in chronic kidney disease and end-stage kidney disease patients with a focus on pediatric issues and concerns.
Collapse
Affiliation(s)
- Kirsten Kusumi
- Department of Pediatric Nephrology, Akron Children's Hospital, Akron, OH.
| | - Robin Kremsdorf
- Pediatric Nephrology and Hypertension, Hasbro Children's Hospital, Providence, RI
| | - Aadil Kakajiwala
- Departments of Pediatric Critical Care Medicine and Nephrology, Children's National Hospital, Washington, DC
| | - John D Mahan
- Division of Nephrology and Hypertension at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH
| |
Collapse
|
21
|
Hanudel MR, Czaya B, Wong S, Jung G, Chua K, Qiao B, Gabayan V, Ganz T. Renoprotective effects of ferric citrate in a mouse model of chronic kidney disease. Sci Rep 2022; 12:6695. [PMID: 35461329 PMCID: PMC9035171 DOI: 10.1038/s41598-022-10842-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/06/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractIn chronic kidney disease, ferric citrate has been shown to be an effective phosphate binder and source of enteral iron; however, the effects of ferric citrate on the kidney have been less well-studied. Here, in Col4α3 knockout mice—a murine model of progressive chronic kidney disease, we evaluated the effects of five weeks of 1% ferric citrate dietary supplementation. As expected, ferric citrate lowered serum phosphate concentrations and increased serum iron levels in the Col4α3 knockout mice. Consistent with decreased enteral phosphate absorption and possibly improved iron status, ferric citrate greatly reduced circulating fibroblast growth factor 23 levels. Interestingly, ferric citrate also lessened systemic inflammation, improved kidney function, reduced albuminuria, and decreased kidney inflammation and fibrosis, suggesting renoprotective effects of ferric citrate in the setting of chronic kidney disease. The factors mediating possible ferric citrate renoprotection, the mechanisms by which they may act, and whether ferric citrate affects chronic kidney disease progression in humans deserves further study.
Collapse
|
22
|
Henry A, Gordillo-Marañón M, Finan C, Schmidt AF, Ferreira JP, Karra R, Sundström J, Lind L, Ärnlöv J, Zannad F, Mälarstig A, Hingorani AD, Lumbers RT, HERMES and SCALLOP Consortia. Therapeutic Targets for Heart Failure Identified Using Proteomics and Mendelian Randomization. Circulation 2022; 145:1205-1217. [PMID: 35300523 PMCID: PMC9010023 DOI: 10.1161/circulationaha.121.056663] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 02/09/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Heart failure (HF) is a highly prevalent disorder for which disease mechanisms are incompletely understood. The discovery of disease-associated proteins with causal genetic evidence provides an opportunity to identify new therapeutic targets. METHODS We investigated the observational and causal associations of 90 cardiovascular proteins, which were measured using affinity-based proteomic assays. First, we estimated the associations of 90 cardiovascular proteins with incident heart failure by means of a fixed-effect meta-analysis of 4 population-based studies, composed of a total of 3019 participants with 732 HF events. The causal effects of HF-associated proteins were then investigated by Mendelian randomization, using cis-protein quantitative loci genetic instruments identified from genomewide association studies in more than 30 000 individuals. To improve the precision of causal estimates, we implemented an Mendelian randomization model that accounted for linkage disequilibrium between instruments and tested the robustness of causal estimates through a multiverse sensitivity analysis that included up to 120 combinations of instrument selection parameters and Mendelian randomization models per protein. The druggability of candidate proteins was surveyed, and mechanism of action and potential on-target side effects were explored with cross-trait Mendelian randomization analysis. RESULTS Forty-four of ninety proteins were positively associated with risk of incident HF (P<6.0×10-4). Among these, 8 proteins had evidence of a causal association with HF that was robust to multiverse sensitivity analysis: higher CSF-1 (macrophage colony-stimulating factor 1), Gal-3 (galectin-3) and KIM-1 (kidney injury molecule 1) were positively associated with risk of HF, whereas higher ADM (adrenomedullin), CHI3L1 (chitinase-3-like protein 1), CTSL1 (cathepsin L1), FGF-23 (fibroblast growth factor 23), and MMP-12 (matrix metalloproteinase-12) were protective. Therapeutics targeting ADM and Gal-3 are currently under evaluation in clinical trials, and all the remaining proteins were considered druggable, except KIM-1. CONCLUSIONS We identified 44 circulating proteins that were associated with incident HF, of which 8 showed evidence of a causal relationship and 7 were druggable, including adrenomedullin, which represents a particularly promising drug target. Our approach demonstrates a tractable roadmap for the triangulation of population genomic and proteomic data for the prioritization of therapeutic targets for complex human diseases.
Collapse
Affiliation(s)
- Albert Henry
- Institute of Cardiovascular Science (A.H., M.G.-M., C.F., A.F.S., A.D.H.), University College London, United Kingdom
- British Heart Foundation Research Accelerator (A.H., M.G.-M., C.F., A.F.S., A.D.H., R.T.L.), University College London, United Kingdom
- Institute of Health Informatics (A.H., R.T.L.), University College London, United Kingdom
| | - María Gordillo-Marañón
- Institute of Cardiovascular Science (A.H., M.G.-M., C.F., A.F.S., A.D.H.), University College London, United Kingdom
- British Heart Foundation Research Accelerator (A.H., M.G.-M., C.F., A.F.S., A.D.H., R.T.L.), University College London, United Kingdom
| | - Chris Finan
- Institute of Cardiovascular Science (A.H., M.G.-M., C.F., A.F.S., A.D.H.), University College London, United Kingdom
- British Heart Foundation Research Accelerator (A.H., M.G.-M., C.F., A.F.S., A.D.H., R.T.L.), University College London, United Kingdom
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, The Netherlands (C.F., A.F.S.)
| | - Amand F. Schmidt
- Institute of Cardiovascular Science (A.H., M.G.-M., C.F., A.F.S., A.D.H.), University College London, United Kingdom
- British Heart Foundation Research Accelerator (A.H., M.G.-M., C.F., A.F.S., A.D.H., R.T.L.), University College London, United Kingdom
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, The Netherlands (C.F., A.F.S.)
| | - João Pedro Ferreira
- Unidade de Investigação e Desenvolvimento Cardiovascular, Rede de Investigação em Saúde, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Portugal (J.P.F.)
- Université de Lorraine, Inserm, Centre d’Investigations Cliniques - Plurithématique 14-33, and Inserm U1116, Centre Hospitalier Régional Universitaire, French Clinical Research Infrastructure Network, Investigation Network Initiative - Cardiovascular and Renal Clinical Trialists, Nancy, France (J.P.F., F.Z.)
| | - Ravi Karra
- Division of Cardiology, Department of Medicine (R.K.), Duke University Medical Center, Durham, NC
- Department of Pathology (R.K.), Duke University Medical Center, Durham, NC
| | - Johan Sundström
- Department of Medical Sciences, Uppsala University, Sweden (J.S., L.L.)
- The George Institute for Global Health, University of New South Wales, Sydney, Australia (J.S.)
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Sweden (J.S., L.L.)
| | - Johan Ärnlöv
- School of Health and Social Studies, Dalarna University, Falun, Sweden (J.Ä.)
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Science and Society, Karolinska Institutet, Huddinge, Sweden (J.Ä.)
| | - Faiez Zannad
- Université de Lorraine, Inserm, Centre d’Investigations Cliniques - Plurithématique 14-33, and Inserm U1116, Centre Hospitalier Régional Universitaire, French Clinical Research Infrastructure Network, Investigation Network Initiative - Cardiovascular and Renal Clinical Trialists, Nancy, France (J.P.F., F.Z.)
| | - Anders Mälarstig
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Solna‚ Sweden (A.M.)
- Emerging Science and Innovation, Pfizer Worldwide Research, Development and Medical, Cambridge, MA (A.M.)
| | - Aroon D. Hingorani
- Institute of Cardiovascular Science (A.H., M.G.-M., C.F., A.F.S., A.D.H.), University College London, United Kingdom
- British Heart Foundation Research Accelerator (A.H., M.G.-M., C.F., A.F.S., A.D.H., R.T.L.), University College London, United Kingdom
| | - R. Thomas Lumbers
- British Heart Foundation Research Accelerator (A.H., M.G.-M., C.F., A.F.S., A.D.H., R.T.L.), University College London, United Kingdom
- Institute of Health Informatics (A.H., R.T.L.), University College London, United Kingdom
- Health Data Research UK London (R.T.L.), University College London, United Kingdom
| | - HERMES and SCALLOP Consortia
- Institute of Cardiovascular Science (A.H., M.G.-M., C.F., A.F.S., A.D.H.), University College London, United Kingdom
- British Heart Foundation Research Accelerator (A.H., M.G.-M., C.F., A.F.S., A.D.H., R.T.L.), University College London, United Kingdom
- Institute of Health Informatics (A.H., R.T.L.), University College London, United Kingdom
- Health Data Research UK London (R.T.L.), University College London, United Kingdom
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, The Netherlands (C.F., A.F.S.)
- Unidade de Investigação e Desenvolvimento Cardiovascular, Rede de Investigação em Saúde, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Portugal (J.P.F.)
- Université de Lorraine, Inserm, Centre d’Investigations Cliniques - Plurithématique 14-33, and Inserm U1116, Centre Hospitalier Régional Universitaire, French Clinical Research Infrastructure Network, Investigation Network Initiative - Cardiovascular and Renal Clinical Trialists, Nancy, France (J.P.F., F.Z.)
- Division of Cardiology, Department of Medicine (R.K.), Duke University Medical Center, Durham, NC
- Department of Pathology (R.K.), Duke University Medical Center, Durham, NC
- Department of Medical Sciences, Uppsala University, Sweden (J.S., L.L.)
- The George Institute for Global Health, University of New South Wales, Sydney, Australia (J.S.)
- School of Health and Social Studies, Dalarna University, Falun, Sweden (J.Ä.)
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Science and Society, Karolinska Institutet, Huddinge, Sweden (J.Ä.)
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Solna‚ Sweden (A.M.)
- Emerging Science and Innovation, Pfizer Worldwide Research, Development and Medical, Cambridge, MA (A.M.)
| |
Collapse
|
23
|
Patino E, Akchurin O. Erythropoiesis-independent effects of iron in chronic kidney disease. Pediatr Nephrol 2022; 37:777-788. [PMID: 34244852 DOI: 10.1007/s00467-021-05191-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022]
Abstract
Chronic kidney disease (CKD) leads to alterations of iron metabolism, which contribute to the development of anemia and necessitates iron supplementation in patients with CKD. Elevated hepcidin accounts for a significant iron redistribution in CKD. Recent data indicate that these alterations in iron homeostasis coupled with therapeutic iron supplementation have pleiotropic effects on many organ systems in patients with CKD, far beyond the traditional hematologic effects of iron; these include effects of iron on inflammation, oxidative stress, kidney fibrosis, cardiovascular disease, CKD-mineral and bone disorder, and skeletal growth in children. The effects of iron supplementation appear to be largely dependent on the route of administration and on the specific iron preparation. Iron-based phosphate binders exemplify the opportunity for using iron for both traditional (anemia) and novel (hyperphosphatemia) indications. Further optimization of iron therapy in patients with CKD may inform new approaches to the treatment of CKD complications and potentially allow modification of disease progression.
Collapse
Affiliation(s)
- Edwin Patino
- Department of Medicine, Division of Nephrology and Hypertension, Weill Cornell Medical College, New York, NY, USA
| | - Oleh Akchurin
- Department of Pediatrics, Division of Pediatric Nephrology, Weill Cornell Medical College, New York, NY, USA. .,New York-Presbyterian Hospital, New York-Presbyterian Phyllis and David Komansky Children's Hospital, Weill Cornell Medicine, 505 East 70th Street - HT 388, New York, NY, 10021, USA.
| |
Collapse
|
24
|
Wang ZX, Luo ZW, Li FXZ, Cao J, Rao SS, Liu YW, Wang YY, Zhu GQ, Gong JS, Zou JT, Wang Q, Tan YJ, Zhang Y, Hu Y, Li YY, Yin H, Wang XK, He ZH, Ren L, Liu ZZ, Hu XK, Yuan LQ, Xu R, Chen CY, Xie H. Aged bone matrix-derived extracellular vesicles as a messenger for calcification paradox. Nat Commun 2022; 13:1453. [PMID: 35304471 PMCID: PMC8933454 DOI: 10.1038/s41467-022-29191-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Adipocyte differentiation of bone marrow mesenchymal stem/stromal cells (BMSCs) instead of osteoblast formation contributes to age- and menopause-related marrow adiposity and osteoporosis. Vascular calcification often occurs with osteoporosis, a contradictory association called “calcification paradox”. Here we show that extracellular vesicles derived from aged bone matrix (AB-EVs) during bone resorption favor BMSC adipogenesis rather than osteogenesis and augment calcification of vascular smooth muscle cells. Intravenous or intramedullary injection of AB-EVs promotes bone-fat imbalance and exacerbates Vitamin D3 (VD3)-induced vascular calcification in young or old mice. Alendronate (ALE), a bone resorption inhibitor, down-regulates AB-EVs release and attenuates aging- and ovariectomy-induced bone-fat imbalance. In the VD3-treated aged mice, ALE suppresses the ovariectomy-induced aggravation of vascular calcification. MiR-483-5p and miR-2861 are enriched in AB-EVs and essential for the AB-EVs-induced bone-fat imbalance and exacerbation of vascular calcification. Our study uncovers the role of AB-EVs as a messenger for calcification paradox by transferring miR-483-5p and miR-2861. This study uncovers the role of extracellular vesicles from bone matrix as a messenger in the development of osteoporosis and vascular calcification (calcification paradox) during skeletal aging and menopause by transferring miR-483-5p and miR-2861.
Collapse
Affiliation(s)
- Zhen-Xing Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhong-Wei Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fu-Xing-Zi Li
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Cao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan-Shan Rao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Yi-Wei Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Yi Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guo-Qiang Zhu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiang-Shan Gong
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing-Tao Zou
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiang Wang
- Department of Laboratory Medicine, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi-Juan Tan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Zhang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yin Hu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - You-You Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Yin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Kai Wang
- Department of Emergency Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze-Hui He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Ren
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng-Zhao Liu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan, China.,Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan, China
| | - Xiong-Ke Hu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling-Qing Yuan
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ran Xu
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan, China. .,Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan, China.
| |
Collapse
|
25
|
Npt2a as a target for treating hyperphosphatemia. Biochem Soc Trans 2022; 50:439-446. [PMID: 34994388 PMCID: PMC9022968 DOI: 10.1042/bst20211005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/04/2022]
Abstract
Hyperphosphatemia results from an imbalance in phosphate (Pi) homeostasis. In patients with and without reduced kidney function, hyperphosphatemia is associated with cardiovascular complications. The current mainstays in the management of hyperphosphatemia are oral Pi binder and dietary Pi restriction. Although these options are employed in patients with chronic kidney disease (CKD), they seem inadequate to correct elevated plasma Pi levels. In addition, a paradoxical increase in expression of intestinal Pi transporter and uptake may occur. Recently, studies in rodents targeting the renal Na+/Pi cotransporter 2a (Npt2a), responsible for ∼70% of Pi reabsorption, have been proposed as a potential treatment option. Two compounds (PF-06869206 and BAY-767) have been developed which are selective for Npt2a. These Npt2a inhibitors significantly increased urinary Pi excretion consequently lowering plasma Pi and PTH levels. Additionally, increases in urinary excretions of Na+, Cl− and Ca2+ have been observed. Some of these results are also seen in models of reduced kidney function. Responses of FGF23, a phosphaturic hormone that has been linked to the development of left ventricular hypertrophy in CKD, are ambiguous. In this review, we discuss the recent advances on the role of Npt2a inhibition on Pi homeostasis as well as other pleiotropic effects observed with Npt2a inhibition.
Collapse
|
26
|
Park MY, Le Henaff C, Sitara D. Administration of α-Klotho Does Not Rescue Renal Anemia in Mice. Front Pediatr 2022; 10:924915. [PMID: 35813388 PMCID: PMC9259788 DOI: 10.3389/fped.2022.924915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 12/05/2022] Open
Abstract
Renal anemia is a common complication in chronic kidney disease (CKD), associated with decreased production of erythropoietin (EPO) due to loss of kidney function, and subsequent decreased red blood cell (RBC) production. However, many other factors play a critical role in the development of renal anemia, such as iron deficiency, inflammation, and elevated fibroblast growth factor 23 (FGF23) levels. We previously reported that inhibition of FGF23 signaling rescues anemia in mice with CKD. In the present study we sought to investigate whether α-Klotho deficiency present in CKD also contributes to the development of renal anemia. To address this, we administered α-Klotho to mice with CKD induced by an adenine-rich diet. Mice were sacrificed 24 h after α-Klotho injection, and blood and organs were collected immediately post-mortem. Our data show that α-Klotho administration had no beneficial effect in mice with CKD-associated anemia as it did not increase RBC numbers and hemoglobin levels, and it did not stimulate EPO secretion. Moreover, α-Klotho did not improve iron deficiency and inflammation in CKD as it had no effect on iron levels or inflammatory markers. Interestingly, Klotho supplementation significantly reduced the number of erythroid progenitors in the bone marrow and downregulated renal Epo and Hif2α mRNA in mice fed control diet resulting in reduced circulating EPO levels in these mice. In addition, Klotho significantly decreased intestinal absorption of iron in control mice leading to reduced serum iron and transferrin saturation levels. Our findings demonstrate that α-Klotho does not have a direct role in renal anemia and that FGF23 suppresses erythropoiesis in CKD via a Klotho-independent mechanism. However, in physiological conditions α-Klotho appears to have an inhibitory effect on erythropoiesis and iron regulation.
Collapse
Affiliation(s)
- Min Young Park
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, United States
| | - Carole Le Henaff
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, United States
| | - Despina Sitara
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, United States.,Medicine, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Fibroblast growth factor 23 (FGF23) is a bone- and bone marrow-derived hormone that is critical to maintain phosphate homeostasis. The principal actions of FGF23 are to reduce serum phosphate levels by decreasing kidney phosphate reabsorption and 1,25-dihydroxyvitamin D synthesis. FGF23 deficiency causes hyperphosphatemia and ectopic calcifications, while FGF23 excess causes hypophosphatemia and skeletal defects. Excess FGF23 also correlates with kidney disease, where it is associated with increased morbidity and mortality. Accordingly, FGF23 levels are tightly regulated, but the mechanisms remain incompletely understood. RECENT FINDINGS In addition to bone mineral factors, additional factors including iron, erythropoietin, inflammation, energy, and metabolism regulate FGF23. All these factors affect Fgf23 expression, while some also regulate FGF23 protein cleavage. Conversely, FGF23 may have a functional role in regulating these biologic processes. Understanding the bi-directional relationship between FGF23 and non-bone mineral factors is providing new insights into FGF23 regulation and function.
Collapse
Affiliation(s)
- Petra Simic
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Jodie L Babitt
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Soppert J, Frisch J, Wirth J, Hemmers C, Boor P, Kramann R, Vondenhoff S, Moellmann J, Lehrke M, Hohl M, van der Vorst EPC, Werner C, Speer T, Maack C, Marx N, Jankowski J, Roma LP, Noels H. A systematic review and meta-analysis of murine models of uremic cardiomyopathy. Kidney Int 2021; 101:256-273. [PMID: 34774555 DOI: 10.1016/j.kint.2021.10.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) triggers the risk of developing uremic cardiomyopathy as characterized by cardiac hypertrophy, fibrosis and functional impairment. Traditionally, animal studies are used to reveal the underlying pathological mechanism, although variable CKD models, mouse strains and readouts may reveal diverse results. Here, we systematically reviewed 88 studies and performed meta-analyses of 52 to support finding suitable animal models for future experimental studies on pathological kidney-heart crosstalk during uremic cardiomyopathy. We compared different mouse strains and the direct effect of CKD on cardiac hypertrophy, fibrosis and cardiac function in "single hit" strategies as well as cardiac effects of kidney injury combined with additional cardiovascular risk factors in "multifactorial hit" strategies. In C57BL/6 mice, CKD was associated with a mild increase in cardiac hypertrophy and fibrosis and marginal systolic dysfunction. Studies revealed high variability in results, especially regarding hypertrophy and systolic function. Cardiac hypertrophy in CKD was more consistently observed in 129/Sv mice, which express two instead of one renin gene and more consistently develop increased blood pressure upon CKD induction. Overall, "multifactorial hit" models more consistently induced cardiac hypertrophy and fibrosis compared to "single hit" kidney injury models. Thus, genetic factors and additional cardiovascular risk factors can "prime" for susceptibility to organ damage, with increased blood pressure, cardiac hypertrophy and early cardiac fibrosis more consistently observed in 129/Sv compared to C57BL/6 strains.
Collapse
Affiliation(s)
- Josefin Soppert
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Janina Frisch
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| | - Julia Wirth
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Hemmers
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany; Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
| | - Sonja Vondenhoff
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Julia Moellmann
- Department of Internal Medicine I, Cardiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, Cardiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Mathias Hohl
- Department of Internal Medicine III, Cardiology/Angiology, University of Homburg, Homburg/Saar, Germany
| | - Emiel P C van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands; Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Werner
- Department of Internal Medicine III, Cardiology/Angiology, University of Homburg, Homburg/Saar, Germany
| | - Thimoteus Speer
- Translational Cardio-Renal Medicine, Saarland University, Homburg/Saar, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Würzburg, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I, Cardiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Leticia Prates Roma
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
29
|
Understanding the Stony Bridge between Osteoporosis and Vascular Calcification: Impact of the FGF23/Klotho axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7536614. [PMID: 34539972 PMCID: PMC8448600 DOI: 10.1155/2021/7536614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/07/2021] [Indexed: 12/11/2022]
Abstract
A relationship between osteoporosis (OP) and vascular calcification (VC) is now proposed. There are common mechanisms underlying the regulation of them. Fibroblast growth factor- (FGF-) 23 and Klotho are hormones associated with the metabolic axis of osteovascular metabolism. Most recently, it was suggested that the FGF23-klotho axis is associated with increasing incidence of fractures and is potentially involved in the progression of the aortic-brachial stiffness ratio. Herein, we discussed the potential role of the FGF23/Klotho axis in the pathophysiology of OP and VC. We want to provide an update review in order to allow a better understanding of the potential role of the FGF23/Klotho axis in comorbidity of OP and VC. We believe that a better understanding of the relationship between both entities can help in proposing new therapeutic targets for reducing the increasing prevalence of OP and VC in the aging population.
Collapse
|
30
|
Inflammation: a putative link between phosphate metabolism and cardiovascular disease. Clin Sci (Lond) 2021; 135:201-227. [PMID: 33416083 PMCID: PMC7796315 DOI: 10.1042/cs20190895] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Dietary habits in the western world lead to increasing phosphate intake. Under physiological conditions, extraosseous precipitation of phosphate with calcium is prevented by a mineral buffering system composed of calcification inhibitors and tight control of serum phosphate levels. The coordinated hormonal regulation of serum phosphate involves fibroblast growth factor 23 (FGF23), αKlotho, parathyroid hormone (PTH) and calcitriol. A severe derangement of phosphate homeostasis is observed in patients with chronic kidney disease (CKD), a patient collective with extremely high risk of cardiovascular morbidity and mortality. Higher phosphate levels in serum have been associated with increased risk for cardiovascular disease (CVD) in CKD patients, but also in the general population. The causal connections between phosphate and CVD are currently incompletely understood. An assumed link between phosphate and cardiovascular risk is the development of medial vascular calcification, a process actively promoted and regulated by a complex mechanistic interplay involving activation of pro-inflammatory signalling. Emerging evidence indicates a link between disturbances in phosphate homeostasis and inflammation. The present review focuses on critical interactions of phosphate homeostasis, inflammation, vascular calcification and CVD. Especially, pro-inflammatory responses mediating hyperphosphatemia-related development of vascular calcification as well as FGF23 as a critical factor in the interplay between inflammation and cardiovascular alterations, beyond its phosphaturic effects, are addressed.
Collapse
|
31
|
Ouyang L, Su X, Li W, Tang L, Zhang M, Zhu Y, Xie C, Zhang P, Chen J, Huang H. ALKBH1-demethylated DNA N6-methyladenine modification triggers vascular calcification via osteogenic reprogramming in chronic kidney disease. J Clin Invest 2021; 131:146985. [PMID: 34003800 PMCID: PMC8279589 DOI: 10.1172/jci146985] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
Vascular calcification (VC) predicts cardiovascular morbidity and mortality in chronic kidney disease (CKD). To date, the underlying mechanisms remain unclear. We detected leukocyte DNA N6-methyladenine (6mA) levels in patients with CKD with or without aortic arch calcification. We used arteries from CKD mice infected with vascular smooth muscle cell-targeted (VSMC-targeted) adeno-associated virus encoding alkB homolog 1 (Alkbh1) gene or Alkbh1 shRNA to evaluate features of calcification. We identified that leukocyte 6mA levels were significantly reduced as the severity of VC increased in patients with CKD. Decreased 6mA demethylation resulted from the upregulation of ALKBH1. Here, ALKBH1 overexpression aggravated whereas its depletion blunted VC progression and osteogenic reprogramming in vivo and in vitro. Mechanistically, ALKBH1-demethylated DNA 6mA modification could facilitate the binding of octamer-binding transcription factor 4 (Oct4) to bone morphogenetic protein 2 (BMP2) promoter and activate BMP2 transcription. This resulted in osteogenic reprogramming of VSMCs and subsequent VC progression. Either BMP2 or Oct4 depletion alleviated the procalcifying effects of ALKBH1. This suggests that targeting ALKBH1 might be a therapeutic method to reduce the burden of VC in CKD.
Collapse
Affiliation(s)
- Liu Ouyang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoyan Su
- Department of Nephropathy, Tungwah Hospital, Sun Yat-sen University, Dongguan, China
| | - Wenxin Li
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Liangqiu Tang
- Department of Cardiology, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Mengbi Zhang
- Department of Nephropathy, Tungwah Hospital, Sun Yat-sen University, Dongguan, China
| | - Yongjun Zhu
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Changming Xie
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Puhua Zhang
- Department of Nephrology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Chen
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
32
|
Noonan ML, Ni P, Agoro R, Sacks SA, Swallow EA, Wheeler JA, Clinkenbeard EL, Capitano ML, Prideaux M, Atkins GJ, Thompson WR, Allen MR, Broxmeyer HE, White KE. The HIF-PHI BAY 85-3934 (Molidustat) Improves Anemia and Is Associated With Reduced Levels of Circulating FGF23 in a CKD Mouse Model. J Bone Miner Res 2021; 36:1117-1130. [PMID: 33592127 PMCID: PMC8255270 DOI: 10.1002/jbmr.4272] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022]
Abstract
Fibroblast growth factor-23 (FGF23) is a critical factor in chronic kidney disease (CKD), with elevated levels causing alterations in mineral metabolism and increased odds for mortality. Patients with CKD develop anemia as the kidneys progressively lose the ability to produce erythropoietin (EPO). Anemia is a potent driver of FGF23 secretion; therefore, a hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHI) currently in clinical trials to elevate endogenous EPO to resolve anemia was tested for effects on iron utilization and FGF23-related parameters in a CKD mouse model. Mice were fed either a casein control diet or an adenine-containing diet to induce CKD. The CKD mice had markedly elevated iFGF23 and blood urea nitrogen (BUN), hyperphosphatemia, and anemia. Cohorts of mice were then treated with a patient-equivalent dose of BAY 85-3934 (BAY; Molidustat), which elevated EPO and completely resolved aberrant complete blood counts (CBCs) in the CKD mice. iFGF23 was elevated in vehicle-treated CKD mice (120-fold), whereas circulating iFGF23 was significantly attenuated (>60%) in the BAY-treated CKD mice. The BAY-treated mice with CKD also had reduced BUN, but there was no effect on renal vitamin D metabolic enzyme expression. Consistent with increased EPO, bone marrow Erfe, Transferrin receptor (Tfrc), and EpoR mRNAs were increased in BAY-treated CKD mice, and in vitro hypoxic marrow cultures increased FGF23 with direct EPO treatment. Liver Bmp-6 and hepcidin expression were downregulated in all BAY-treated groups. Femur trabecular parameters and cortical porosity were not worsened with BAY administration. In vitro, differentiated osteocyte-like cells exposed to an iron chelator to simulate iron depletion/hypoxia increased FGF23; repletion with holo-transferrin completely suppressed FGF23 and normalized Tfrc1. Collectively, these results support that resolving anemia using a HIF-PHI during CKD was associated with lower BUN and reduced FGF23, potentially through direct restoration of iron utilization, thus providing modifiable outcomes beyond improving anemia for this patient population. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Megan L Noonan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Pu Ni
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Rafiou Agoro
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Spencer A Sacks
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Elizabeth A Swallow
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Jonathan A Wheeler
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Erica L Clinkenbeard
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Maegan L Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Matthew Prideaux
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Gerald J Atkins
- Centre for Orthopaedic and Trauma Research, The University of Adelaide, Adelaide, Australia
| | - William R Thompson
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Matthew R Allen
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Kenneth E White
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
33
|
Zittermann A, Berthold HK, Pilz S. The effect of vitamin D on fibroblast growth factor 23: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr 2021; 75:980-987. [PMID: 32855522 PMCID: PMC8510890 DOI: 10.1038/s41430-020-00725-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/09/2020] [Accepted: 08/11/2020] [Indexed: 11/30/2022]
Abstract
The phosphaturic hormone fibroblast growth factor 23 (FGF23) is a risk marker of cardiovascular and all-cause mortality. We therefore aimed to synthesize the evidence for the effect of vitamin D administration on circulating FGF23 concentrations. We performed a systematic review and meta-analysis of randomized, placebo-controlled trials (RCTs) in several databases from inception to January 2020. A total of 73 records were identified for full-text review, and 21 articles with 23 studies were included in the final analysis. The selected studies included 1925 participants with 8-156 weeks of follow-up. The weighted mean difference in FGF23 in the vitamin D versus placebo group was +21 pg/ml (95% CI: 13-28 pg/ml; P < 0.001) with considerable heterogeneity among studies (I2 = 99%). The FGF23 increment was higher in patients with end-stage kidney/heart failure than in other individuals (+300 pg/ml [95% CI: 41-558 pg/ml] vs. +20 pg/ml [95% CI: 12-28 pg/ml], Pinteraction = 0.03), and if baseline 25-hydroxyvitamin D concentrations were <50 nmol/l instead of ≥50 nmol/l (+34 pg/ml [95% CI: 18-51 pg/ml] vs. +9 pg/ml [95% CI: 3-14 pg/ml]; Pinteraction = 0.002). Moreover, the FGF23 increment was influenced by vitamin D dose/type (vitamin D dose equivalent ≤ 2000 IU/day: +2 pg/ml [95% CI: 0-3 pg/ml]; vitamin D dose equivalent > 2000 IU/day: +18 pg/ml [95% CI: 6-30 pg/ml]; administration of activated vitamin D: +67 pg/ml [95% CI: 16-117 pg/ml]; Pinteraction = 0.001). Results were not significantly influenced by study duration (Pinteraction = 0.14), age class (Pinteraction = 0.09), or assay provider (Pinteraction = 0.11). In conclusion, this meta-analysis of RCTs demonstrates that vitamin D administration of >2000 IU/d vitamin D or activated vitamin D significantly increased concentrations of the cardiovascular risk marker FGF23, especially in patients with end-stage kidney/heart failure.
Collapse
Affiliation(s)
- Armin Zittermann
- Clinic for Thoracic and Cardiovascular Surgery, Herz- und Diabeteszentrum NRW, Ruhr University Bochum, Bad Oeynhausen, 32545, Germany.
| | - Heiner K Berthold
- Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, 33611, Germany
| | - Stefan Pilz
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, 8036, Austria
| |
Collapse
|
34
|
Graves JM, Vallejo JA, Hamill CS, Wang D, Ahuja R, Patel S, Faul C, Wacker MJ. Fibroblast growth factor 23 (FGF23) induces ventricular arrhythmias and prolongs QTc interval in mice in an FGF receptor 4-dependent manner. Am J Physiol Heart Circ Physiol 2021; 320:H2283-H2294. [PMID: 33929896 DOI: 10.1152/ajpheart.00798.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is a phosphate regulating protein hormone released by osteocytes. FGF23 becomes markedly elevated in chronic kidney disease (CKD), for which the leading cause of death is cardiovascular disease, particularly sudden cardiac death. Previously, we found that FGF23 increases intracellular Ca2+ in cardiomyocytes and alters contractility in mouse ventricles ex vivo via FGF receptor 4 (FGFR4). In the present study, we demonstrate that FGF23 induces cardiac arrhythmias and prolongs QTc interval in mice, and we tested whether these effects are mediated through FGFR4. In isolated Langendorff perfused hearts, FGF23 perfusion increased mechanical arrhythmias in the form of premature ventricular beats (PVBs), and induced runs of ventricular tachycardia in 6 of 11 animals, which were attenuated with pretreatment of an anti-FGFR4 blocking antibody. Ex vivo ECG analysis of isolated intact hearts showed increased ventricular arrhythmias and QTc prolongation after FGF23 infusion compared with vehicle. In vivo, injection of FGF23 into the jugular vein led to the emergence of premature ventricular contractions (PVCs) in 5 out of 11 experiments. FGF23 also produced a significant lengthening effect upon QTc interval in vivo. In vivo FGFR4 blockade ameliorated the arrhythmogenic and QTc prolonging effects of FGF23. Finally, FGF23 increased cardiomyocyte Ca2+ levels in intact left ventricular muscle which was inhibited by FGR4 blockade. We conclude that FGF23/FGFR4 signaling in the heart may contribute to ventricular arrhythmogenesis and repolarization disturbances commonly observed in patients with CKD via Ca2+ overload and may be an important therapeutic target to reduce cardiac mortality in CKD.NEW & NOTEWORTHY Here we provide direct evidence that fibroblast growth factor 23 (FGF23), a phosphaturic hormone elevated in chronic kidney disease, is proarrhythmic. FGF23 acutely triggered ventricular arrhythmias and prolonged corrected QT interval (QTc) in isolated mouse hearts and in vivo. FGF23 also increased Ca2+ levels in ventricular muscle tissue. Blockade of the FGF receptor 4 signaling pathway using a monoclonal antibody ameliorated ventricular arrhythmias, QTc prolongation, and elevated ventricular Ca2+ induced by FGF23, and may represent a potential therapeutic target in chronic kidney disease.
Collapse
Affiliation(s)
- Jonah M Graves
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Julian A Vallejo
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Chelsea S Hamill
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Derek Wang
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Rohan Ahuja
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Shaan Patel
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Christian Faul
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Michael J Wacker
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| |
Collapse
|
35
|
Metzger CE, Swallow EA, Stacy AJ, Allen MR. Adenine-induced chronic kidney disease induces a similar skeletal phenotype in male and female C57BL/6 mice with more severe deficits in cortical bone properties of male mice. PLoS One 2021; 16:e0250438. [PMID: 33891630 PMCID: PMC8064570 DOI: 10.1371/journal.pone.0250438] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/07/2021] [Indexed: 11/19/2022] Open
Abstract
Chronic kidney disease (CKD) causes bone loss, particularly in cortical bone, through formation of cortical pores which lead to skeletal fragility. Animal models of CKD have shown variability in the skeletal response to CKD between males and females suggesting sex may play a role in this variation. Our aim was to compare the impact of adenine-induced CKD on cortical parameters in skeletally mature male and female C57Bl/6 mice. After 10-weeks of adenine-induced CKD, both male and female adenine mice had high serum parathyroid hormone (PTH), high bone turnover, and cortical porosity compared to non-CKD controls. Both sexes had lower cortical thickness, but only male mice had lower cortical bone area. CKD imparted greater deficits in mechanical properties of male mice compared to female mice. These data demonstrate that both male and female mice develop high PTH/high bone turnover in response to adenine-induced CKD and that cortical bone phenotypes are slightly more severe in males, particularly in mechanical properties deficits.
Collapse
MESH Headings
- Adenine/adverse effects
- Adenine/pharmacology
- Animals
- Bone Diseases, Metabolic/blood
- Bone Diseases, Metabolic/chemically induced
- Bone Diseases, Metabolic/genetics
- Bone Diseases, Metabolic/pathology
- Bone and Bones/metabolism
- Bone and Bones/pathology
- Cortical Bone/metabolism
- Cortical Bone/pathology
- Diet
- Disease Models, Animal
- Female
- Femur/drug effects
- Femur/metabolism
- Femur/pathology
- Humans
- Kidney/metabolism
- Kidney/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Parathyroid Hormone/blood
- Phenotype
- Porosity/drug effects
- Renal Insufficiency, Chronic/blood
- Renal Insufficiency, Chronic/chemically induced
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/pathology
- Sex Characteristics
Collapse
Affiliation(s)
- Corinne E. Metzger
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Elizabeth A. Swallow
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Alexander J. Stacy
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Matthew R. Allen
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States of America
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States of America
- * E-mail:
| |
Collapse
|
36
|
Simultaneous management of disordered phosphate and iron homeostasis to correct fibroblast growth factor 23 and associated outcomes in chronic kidney disease. Curr Opin Nephrol Hypertens 2021; 29:359-366. [PMID: 32452919 DOI: 10.1097/mnh.0000000000000614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Hyperphosphatemia, iron deficiency, and anemia are powerful stimuli of fibroblast growth factor 23 (FGF23) production and are highly prevalent complications of chronic kidney disease (CKD). In this manuscript, we put in perspective the newest insights on FGF23 regulation by iron and phosphate and their effects on CKD progression and associated outcomes. We especially focus on new studies aiming to reduce FGF23 levels, and we present new data that suggest major benefits of combined corrections of iron, phosphate, and FGF23 in CKD. RECENT FINDINGS New studies show that simultaneously correcting iron deficiency and hyperphosphatemia in CKD reduces the magnitude of FGF23 increase. Promising therapies using iron-based phosphate binders in CKD might mitigate cardiac and renal injury and improve survival. SUMMARY New strategies to lower FGF23 have emerged, and we discuss their benefits and risks in the context of CKD. Novel clinical and preclinical studies highlight the effects of phosphate restriction and iron repletion on FGF23 regulation.
Collapse
|
37
|
Grund A, Sinha MD, Haffner D, Leifheit-Nestler M. Fibroblast Growth Factor 23 and Left Ventricular Hypertrophy in Chronic Kidney Disease-A Pediatric Perspective. Front Pediatr 2021; 9:702719. [PMID: 34422725 PMCID: PMC8372151 DOI: 10.3389/fped.2021.702719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases (CVD) are a hallmark in pediatric patients with chronic kidney disease (CKD) contributing to an enhanced risk of all-cause and CV morbidity and mortality in these patients. The bone-derived phosphaturic hormone fibroblast growth factor (FGF) 23 progressively rises with declining kidney function to maintain phosphate homeostasis, with up to 1,000-fold increase in patients with kidney failure requiring dialysis. FGF23 is associated with the development of left ventricular hypertrophy (LVH) and thereby accounts to be a CVD risk factor in CKD. Experimentally, FGF23 directly induces hypertrophic growth of cardiac myocytes in vitro and LVH in vivo. Further, clinical studies in adult CKD have observed cardiotoxicity associated with FGF23. Data regarding prevalence and determinants of FGF23 excess in children with CKD are limited. This review summarizes current data and discusses whether FGF23 may be a key driver of LVH in pediatric CKD.
Collapse
Affiliation(s)
- Andrea Grund
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School Children's Hospital, Hanover, Germany.,Paediatric Research Centre, Hannover Medical School, Hanover, Germany
| | - Manish D Sinha
- Department of Paediatric Nephrology, King's College London, Evelina London Children's Hospital, London, United Kingdom
| | - Dieter Haffner
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School Children's Hospital, Hanover, Germany.,Paediatric Research Centre, Hannover Medical School, Hanover, Germany
| | - Maren Leifheit-Nestler
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School Children's Hospital, Hanover, Germany.,Paediatric Research Centre, Hannover Medical School, Hanover, Germany
| |
Collapse
|
38
|
Caloric Intake in Renal Patients: Repercussions on Mineral Metabolism. Nutrients 2020; 13:nu13010018. [PMID: 33374582 PMCID: PMC7822489 DOI: 10.3390/nu13010018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 12/22/2022] Open
Abstract
The aim of this paper is to review current knowledge about how calorie intake influences mineral metabolism focussing on four aspects of major interest for the renal patient: (a) phosphate (P) handling, (b) fibroblast growth factor 23 (FGF23) and calcitriol synthesis and secretion, (c) metabolic bone disease, and (d) vascular calcification (VC). Caloric intake has been shown to modulate P balance in experimental models: high caloric intake promotes P retention, while caloric restriction decreases plasma P concentrations. Synthesis and secretion of the phosphaturic hormone FGF23 is directly influenced by energy intake; a direct correlation between caloric intake and FGF23 plasma concentrations has been shown in animals and humans. Moreover, in vitro, energy availability has been demonstrated to regulate FGF23 synthesis through mechanisms in which the molecular target of rapamycin (mTOR) signalling pathway is involved. Plasma calcitriol concentrations are inversely proportional to caloric intake due to modulation by FGF23 of the enzymes implicated in vitamin D metabolism. The effect of caloric intake on bone is controversial. High caloric intake has been reported to increase bone mass, but the associated changes in adipokines and cytokines may as well be deleterious for bone. Low caloric intake tends to reduce bone mass but also may provide indirect (through modulation of inflammation and insulin regulation) beneficial effects on bone. Finally, while VC has been shown to be exacerbated by diets with high caloric content, the opposite has not been demonstrated with low calorie intake. In conclusion, although prospective studies in humans are needed, when planning caloric intake for a renal patient, it is important to take into consideration the associated changes in mineral metabolism.
Collapse
|
39
|
Ni P, Clinkenbeard EL, Noonan ML, Richardville JM, McClintick J, Hato T, Janosevic D, Cheng YH, El-Achkar TM, Eadon MT, Dagher PC, White KE. Targeting fibroblast growth factor 23-responsive pathways uncovers controlling genes in kidney mineral metabolism. Kidney Int 2020; 99:598-608. [PMID: 33159963 DOI: 10.1016/j.kint.2020.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
Fibroblast Growth Factor 23 (FGF23) is a bone-derived hormone that reduces kidney phosphate reabsorption and 1,25(OH)2 vitamin D synthesis via its required co-receptor alpha-Klotho. To identify novel genes that could serve as targets to control FGF23-mediated mineral metabolism, gene array and single-cell RNA sequencing were performed in wild type mouse kidneys. Gene array demonstrated that heparin-binding EGF-like growth factor (HBEGF) was significantly up-regulated following one-hour FGF23 treatment of wild type mice. Mice injected with HBEGF had phenotypes consistent with partial FGF23-mimetic activity including robust induction of Egr1, and increased Cyp24a1 mRNAs. Single cell RNA sequencing showed overlapping HBEGF and EGF-receptor expression mostly in the proximal tubule, and alpha-Klotho expression in proximal and distal tubule segments. In alpha-Klotho-null mice devoid of canonical FGF23 signaling, HBEGF injections significantly increased Egr1 and Cyp24a1 with correction of basally elevated Cyp27b1. Additionally, mice placed on a phosphate deficient diet to suppress FGF23 had endogenously increased Cyp27b1 mRNA, which was rescued in mice receiving HBEGF. In HEK293 cells with stable alpha-Klotho expression, FGF23 and HBEGF increased CYP24A1 mRNA expression. HBEGF, but not FGF23 bioactivity was blocked with EGF-receptor inhibition. Thus, our findings support that the paracrine/autocrine factor HBEGF could play novel roles in controlling genes downstream of FGF23 via targeting common signaling pathways.
Collapse
Affiliation(s)
- Pu Ni
- Department of Medical and Molecular Genetics, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Erica L Clinkenbeard
- Department of Medical and Molecular Genetics, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Megan L Noonan
- Department of Medical and Molecular Genetics, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Joseph M Richardville
- Department of Medical and Molecular Genetics, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jeanette McClintick
- Department of Biochemistry and Molecular Biology, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Takashi Hato
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Danielle Janosevic
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ying-Hua Cheng
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tarek M El-Achkar
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael T Eadon
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Pierre C Dagher
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kenneth E White
- Department of Medical and Molecular Genetics, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
40
|
Patino E, Doty SB, Bhatia D, Meza K, Zhu YS, Rivella S, Choi ME, Akchurin O. Carbonyl iron and iron dextran therapies cause adverse effects on bone health in juveniles with chronic kidney disease. Kidney Int 2020; 98:1210-1224. [PMID: 32574618 PMCID: PMC7606334 DOI: 10.1016/j.kint.2020.05.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022]
Abstract
Anemia is a frequent complication of chronic kidney disease (CKD), related in part to the disruption of iron metabolism. Iron therapy is very common in children with CKD and excess iron has been shown to induce bone loss in non-CKD settings, but the impact of iron on bone health in CKD remains poorly understood. Here, we evaluated the effect of oral and parenteral iron therapy on bone transcriptome, bone histology and morphometry in two mouse models of juvenile CKD (adenine-induced and 5/6-nephrectomy). Both modalities of iron therapy effectively improved anemia in the mice with CKD, and lowered bone Fgf23 expression. At the same time, iron therapy suppressed genes implicated in bone formation and resulted in the loss of cortical and trabecular bone in the mice with CKD. Bone resorption was activated in untreated CKD, but iron therapy had no additional effect on this. Furthermore, we assessed the relationship between biomarkers of bone turnover and iron status in a cohort of children with CKD. Children treated with iron had lower levels of circulating biomarkers of bone formation (bone-specific alkaline phosphatase and the amino-terminal propeptide of type 1 procollagen), as well as fewer circulating osteoblast precursors, compared to children not treated with iron. These differences were independent of age, sex, and glomerular filtration rate. Thus, iron therapy adversely affected bone health in juvenile mice with CKD and was associated with low levels of bone formation biomarkers in children with CKD.
Collapse
Affiliation(s)
- Edwin Patino
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Stephen B Doty
- Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Divya Bhatia
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Kelly Meza
- Division of Pediatric Nephrology, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Yuan-Shan Zhu
- Clinical and Translational Science Center, Weill Cornell Medicine, New York, New York, USA; Division of Endocrinology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Stefano Rivella
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Mary E Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA; NewYork-Presbyterian/Weill Cornell Medical Center, New York, New York, USA
| | - Oleh Akchurin
- Division of Pediatric Nephrology, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA; NewYork-Presbyterian/Weill Cornell Medical Center, New York, New York, USA.
| |
Collapse
|
41
|
Agoro R, Ni P, Noonan ML, White KE. Osteocytic FGF23 and Its Kidney Function. Front Endocrinol (Lausanne) 2020; 11:592. [PMID: 32982979 PMCID: PMC7485387 DOI: 10.3389/fendo.2020.00592] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Osteocytes, which represent up to 95% of adult skeletal cells, are deeply embedded in bone. These cells exhibit important interactive abilities with other bone cells such as osteoblasts and osteoclasts to control skeletal formation and resorption. Beyond this local role, osteocytes can also influence the function of distant organs due to the presence of their sophisticated lacunocanalicular system, which connects osteocyte dendrites directly to the vasculature. Through these networks, osteocytes sense changes in circulating metabolites and respond by producing endocrine factors to control homeostasis. One critical function of osteocytes is to respond to increased blood phosphate and 1,25(OH)2 vitamin D (1,25D) by producing fibroblast growth factor-23 (FGF23). FGF23 acts on the kidneys through partner fibroblast growth factor receptors (FGFRs) and the co-receptor Klotho to promote phosphaturia via a downregulation of phosphate transporters, as well as the control of vitamin D metabolizing enzymes to reduce blood 1,25D. In the first part of this review, we will explore the signals involved in the positive and negative regulation of FGF23 in osteocytes. In the second portion, we will bridge bone responses with the review of current knowledge on FGF23 endocrine functions in the kidneys.
Collapse
Affiliation(s)
- Rafiou Agoro
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Pu Ni
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Megan L. Noonan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kenneth E. White
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Medicine/Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
42
|
Burosumab in X-linked hypophosphatemia and perspective for chronic kidney disease. Curr Opin Nephrol Hypertens 2020; 29:531-536. [PMID: 32701599 DOI: 10.1097/mnh.0000000000000631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Perturbations in phosphate and vitamin D homeostasis impacts skeletal health in children and adults. Study of inherited and acquired hypophosphatemic syndromes led to the discovery of fibroblast growth factor 23 (FGF23) as a potent regulator of phosphate and vitamin D metabolism, and advanced our understanding of the pathophysiology of mineral and bone disorder in chronic kidney disease (CKD-MBD). Here, we review a recently approved therapy for patients with X-linked hypophosphatemia (XLH) using a novel anti-FGF23 antibody, burosumab, and discuss the implications of such targeted therapy in CKD. RECENT FINDINGS In children and adults with XLH, burosumab treatment significantly increased renal tubular phosphate reabsorption and normalized serum phosphorus concentrations. Prolonged treatment with burosumab showed a favorable safety profile, improved healing of rickets in children, and fractures and pseudofractures in adults. FGF23 excess in CKD is independently associated with left ventricular hypertrophy and cardiovascular mortality. Research strategies to lower FGF23 in animal models of CKD are rapidly advancing and a question that remains to be answered is whether FGF23 blockade will offer a new targeted intervention for disordered mineral metabolism in CKD. SUMMARY Findings from recently concluded clinical trials in adults and children with XLH provide evidence for improved skeletal health with burosumab therapy with normalization of phosphate and vitamin D metabolism. Targeted anti-FGF23 antibody treatment of XLH has emerged as a novel therapeutic strategy to treat an inherited disorder of FGF23 excess.
Collapse
|
43
|
Noonan ML, Clinkenbeard EL, Ni P, Swallow EA, Tippen SP, Agoro R, Allen MR, White KE. Erythropoietin and a hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHDi) lowers FGF23 in a model of chronic kidney disease (CKD). Physiol Rep 2020; 8:e14434. [PMID: 32476270 PMCID: PMC7261757 DOI: 10.14814/phy2.14434] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022] Open
Abstract
Iron-deficiency anemia is a potent stimulator of the phosphaturic hormone Fibroblast growth factor-23 (FGF23). Anemia, elevated FGF23, and elevated serum phosphate are significant mortality risk factors for patients with chronic kidney disease (CKD). However, the contribution of anemia to overall circulating FGF23 levels in CKD is not understood. Our goal was to investigate the normalization of iron handling in a CKD model using the erythropoiesis stimulating agents (ESAs) Erythropoietin (EPO) and the hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHDi) FG-4592, on the production of, and outcomes associated with, changes in bioactive, intact FGF23 ("iFGF23"). Our hypothesis was that rescuing the prevailing anemia in a model of CKD would reduce circulating FGF23. Wild-type mice were fed an adenine-containing diet to induce CKD, then injected with EPO or FG-4592. The mice with CKD were anemic, and EPO improved red blood cell indices, whereas FG-4592 increased serum EPO and bone marrow erythroferrone (Erfe), and decreased liver ferritin, bone morphogenic protein-6 (Bmp-6), and hepcidin mRNAs. In the mice with CKD, iFGF23 was markedly elevated in control mice but was attenuated by >70% after delivery of either ESA, with no changes in serum phosphate. ESA treatment also reduced renal fibrosis markers, as well as increased Cyp27b1 and reduced Cyp24a1 mRNA expression. Thus, improvement of iron utilization in a CKD model using EPO and a HIF-PHDi significantly reduced iFGF23, demonstrating that anemia is a primary driver of FGF23, and that management of iron utilization in patients with CKD may translate to modifiable outcomes in mineral metabolism.
Collapse
Affiliation(s)
- Megan L. Noonan
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisINUSA
| | - Erica L. Clinkenbeard
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisINUSA
| | - Pu Ni
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisINUSA
| | - Elizabeth A. Swallow
- Department of AnatomyCell Biology, and PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - Samantha P. Tippen
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisINUSA
- Department of AnatomyCell Biology, and PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - Rafiou Agoro
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisINUSA
| | - Matthew R. Allen
- Department of AnatomyCell Biology, and PhysiologyIndiana University School of MedicineIndianapolisINUSA
- Department of MedicineDivision of NephrologyIndiana University School of MedicineIndianapolisINUSA
| | - Kenneth E. White
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisINUSA
- Department of MedicineDivision of NephrologyIndiana University School of MedicineIndianapolisINUSA
| |
Collapse
|
44
|
Abstract
Purpose of review Chronic kidney disease (CKD) is a condition associated with bone disease and fibroblast growth factor 23 (FGF23) excess that contributes to cardiovascular mortality. Dentin matrix protein 1 (DMP1) is an established regulator of bone mineralization and FGF23 production in osteocytes. To date, DMP1 function has mainly been studied in the context of hereditary hypophosphatemic rickets diseases. This review describes the role of DMP1 as a potential strong candidate to prevent bone disorders, FGF23 elevation and associated cardiac outcomes in CKD. Recent findings Patients and mice with CKD show impaired osteocyte maturation and impaired regulation of DMP1 and FGF23 in bone. New data suggest that impaired DMP1 production contributes to CKD-associated bone and mineral metabolism disorders and we show that DMP1 repletion improves osteocyte alterations, bone mineralization and partially prevents FGF23 elevation. As a result, mice with CKD show attenuated left ventricular hypertrophy and improved survival. Summary There is an urgent need for new therapeutic strategies to improve bone quality and to lower FGF23 levels in CKD. By preventing osteocyte apoptosis and inhibiting Fgf23 transcription, DMP1 supplementation may represent an ideal approach to improve CKD-associated bone and cardiac outcomes.
Collapse
|
45
|
Metzger CE, Swallow EA, Allen MR. Elevations in Cortical Porosity Occur Prior to Significant Rise in Serum Parathyroid Hormone in Young Female Mice with Adenine-Induced CKD. Calcif Tissue Int 2020; 106:392-400. [PMID: 31832725 PMCID: PMC7422916 DOI: 10.1007/s00223-019-00642-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/25/2019] [Indexed: 12/27/2022]
Abstract
Chronic kidney disease (CKD) leads to significant bone loss primarily through the development of cortical porosity. In both patients and animal models of CKD, sustained elevations in serum parathyroid hormone (PTH) are associated with cortical porosity. In this study, we aimed to track the progression of cortical porosity and increased PTH utilizing the adenine-induced CKD model. Young female mice (8 weeks) were given 0.2% adenine to induce CKD. Tissues were collected from groups of adenine and age-matched control mice after 2, 6, and 10 weeks. Serum blood urea nitrogen was elevated at all time points in adenine mice, but serum PTH was only statistically elevated at the 10-week time point. Cortical porosity was sevenfold higher in 6-week adenine mice compared to age-matched controls and 14-fold higher in 10-week adenine mice vs. controls. Additionally, osteocyte receptor activator of nuclear factor κB ligand (RANKL) was elevated in adenine-fed mice, while annexin V, an early marker of cellular apoptosis, was mildly decreased in osteocytes in adenine-fed mice. Based on these results, we hypothesize high serum PTH signals to osteocytes prolonging their lifespan resulting in sustained RANKL which drives osteoclastic bone resorption in the cortex. In conclusion, our data show time-dependent elevations in serum PTH and cortical porosity in adenine-induced CKD mice and demonstrate changes in osteocyte RANKL and apoptosis which may contribute to the development of cortical pores.
Collapse
Affiliation(s)
- Corinne E Metzger
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elizabeth A Swallow
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr, MS 5035, Indianapolis, IN, 46202, USA.
| |
Collapse
|
46
|
de Seigneux S, Delitsikou V, Martin PY. The KNOW-CKD study: evidence for a link between proteinuria and alterations of mineral metabolism. Nephrol Dial Transplant 2020; 35:382-385. [PMID: 31039254 DOI: 10.1093/ndt/gfz083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Sophie de Seigneux
- Laboratory and Service of Nephrology, Department of Internal Medicine, University Hospital of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University Hospital of Geneva, Geneva, Switzerland
| | - Vasiliki Delitsikou
- Laboratory and Service of Nephrology, Department of Internal Medicine, University Hospital of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University Hospital of Geneva, Geneva, Switzerland
| | - Pierre-Yves Martin
- Laboratory and Service of Nephrology, Department of Internal Medicine, University Hospital of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
47
|
Matthias J, Cui Q, Shumate LT, Plagge A, He Q, Bastepe M. Extra-Large Gα Protein (XLαs) Deficiency Causes Severe Adenine-Induced Renal Injury with Massive FGF23 Elevation. Endocrinology 2020; 161:5638044. [PMID: 31758181 PMCID: PMC6986553 DOI: 10.1210/endocr/bqz025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022]
Abstract
Fibroblast growth factor-23 (FGF23) is critical for phosphate and vitamin D homeostasis. Cellular and molecular mechanisms underlying FGF23 production remain poorly defined. The extra-large Gα subunit (XLαs) is a variant of the stimulatory G protein alpha-subunit (Gsα), which mediates the stimulatory action of parathyroid hormone in skeletal FGF23 production. XLαs ablation causes diminished FGF23 levels in early postnatal mice. Herein we found that plasma FGF23 levels were comparable in adult XLαs knockout (XLKO) and wild-type littermates. Upon adenine-rich diet-induced renal injury, a model of chronic kidney disease, both mice showed increased levels of plasma FGF23. Unexpectedly, XLKO mice had markedly higher FGF23 levels than WT mice, with higher blood urea nitrogen and more severe tubulopathy. FGF23 mRNA levels increased substantially in bone and bone marrow in both genotypes; however, the levels in bone were markedly higher than in bone marrow. In XLKO mice, a positive linear correlation was observed between plasma FGF23 and bone, but not bone marrow, FGF23 mRNA levels, suggesting that bone, rather than bone marrow, is an important contributor to severely elevated FGF23 levels in this model. Upon folic acid injection, a model of acute kidney injury, XLKO and WT mice exhibited similar degrees of tubulopathy; however, plasma phosphate and FGF23 elevations were modestly blunted in XLKO males, but not in females, compared to WT counterparts. Our findings suggest that XLαs ablation does not substantially alter FGF23 production in adult mice but increases susceptibility to adenine-induced kidney injury, causing severe FGF23 elevations in plasma and bone.
Collapse
Affiliation(s)
- Julia Matthias
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Qiuxia Cui
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lauren T Shumate
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Antonius Plagge
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Qing He
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Correspondence: Murat Bastepe, MD, PhD, 50 Blossom St. Thier 10 Boston, MA 02114, USA. E-mail: and Qing He, PhD 50 Blossom St. Thier 10 Boston, Massachusetts 02114, USA. E-mail:
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Correspondence: Murat Bastepe, MD, PhD, 50 Blossom St. Thier 10 Boston, MA 02114, USA. E-mail: and Qing He, PhD 50 Blossom St. Thier 10 Boston, Massachusetts 02114, USA. E-mail:
| |
Collapse
|
48
|
Vogt I, Haffner D, Leifheit-Nestler M. FGF23 and Phosphate-Cardiovascular Toxins in CKD. Toxins (Basel) 2019; 11:E647. [PMID: 31698866 PMCID: PMC6891626 DOI: 10.3390/toxins11110647] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Elevated levels of fibroblast growth factor 23 (FGF23) and phosphate are highly associated with increased cardiovascular disease and mortality in patients suffering from chronic kidney disease (CKD). As the kidney function declines, serum phosphate levels rise and subsequently induce the secretion of the phosphaturic hormone FGF23. In early stages of CKD, FGF23 prevents the increase of serum phosphate levels and thereby attenuates phosphate-induced vascular calcification, whereas in end-stage kidney disease, FGF23 fails to maintain phosphate homeostasis. Both hyperphosphatemia and elevated FGF23 levels promote the development of hypertension, vascular calcification, and left ventricular hypertrophy by distinct mechanisms. Therefore, FGF23 and phosphate are considered promising therapeutic targets to improve the cardiovascular outcome in CKD patients. Previous therapeutic strategies are based on dietary and pharmacological reduction of serum phosphate, and consequently FGF23 levels. However, clinical trials proving the effects on the cardiovascular outcome are lacking. Recent publications provide evidence for new promising therapeutic interventions, such as magnesium supplementation and direct targeting of phosphate and FGF receptors to prevent toxicity of FGF23 and hyperphosphatemia in CKD patients.
Collapse
Affiliation(s)
| | | | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases Hannover Medical School, 30625 Hannover, Germany; (I.V.); (D.H.)
| |
Collapse
|
49
|
Czaya B, Faul C. The Role of Fibroblast Growth Factor 23 in Inflammation and Anemia. Int J Mol Sci 2019; 20:E4195. [PMID: 31461904 PMCID: PMC6747522 DOI: 10.3390/ijms20174195] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
In patients with chronic kidney disease (CKD), adverse outcomes such as systemic inflammation and anemia are contributing pathologies which increase the risks for cardiovascular mortality. Amongst these complications, abnormalities in mineral metabolism and the metabolic milieu are associated with chronic inflammation and iron dysregulation, and fibroblast growth factor 23 (FGF23) is a risk factor in this context. FGF23 is a bone-derived hormone that is essential for regulating vitamin D and phosphate homeostasis. In the early stages of CKD, serum FGF23 levels rise 1000-fold above normal values in an attempt to maintain normal phosphate levels. Despite this compensatory action, clinical CKD studies have demonstrated powerful and dose-dependent associations between FGF23 levels and higher risks for mortality. A prospective pathomechanism coupling elevated serum FGF23 levels with CKD-associated anemia and cardiovascular injury is its strong association with chronic inflammation. In this review, we will examine the current experimental and clinical evidence regarding the role of FGF23 in renal physiology as well as in the pathophysiology of CKD with an emphasis on chronic inflammation and anemia.
Collapse
Affiliation(s)
- Brian Czaya
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|