1
|
Rivera A, Framnes-DeBoer SN, Arble DM. The MC4R agonist, setmelanotide, is associated with an improvement in hypercapnic chemosensitivity and weight loss in male mice. Respir Physiol Neurobiol 2025; 332:104370. [PMID: 39542230 DOI: 10.1016/j.resp.2024.104370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Obesity increases the risk of respiratory diseases that reduce respiratory chemosensitivity, such as Obesity Hypoventilation Syndrome and sleep apnea. Recent evidence suggests that obesity-related changes in the brain, including alterations in melanocortin signaling via the melanocortin-4 receptor (MC4R), may underly altered chemosensitivity. Setmelanotide, an MC4R agonist, causes weight loss in both humans and animal models. However, it is unknown the extent to which setmelanotide affects respiratory chemosensitivity independent of body weight loss. The present study uses diet-induced obese, male C57bl/6 J mice to determine the extent to which acute setmelanotide treatment affects the hypercapnic ventilatory response (HCVR). We find that ten days of daily setmelanotide treatment at 1 mg/kg, but not 0.2 mg/kg, is sufficient to cause weight loss and increase HCVR. In a separate group of animals, we find that we can emulate setmelanotide's effect on weight loss by restricting daily calories to match the hypophagia triggered by setmelanotide. These pair-fed animals exhibit improvements in HCVR similar to those who receive setmelanotide. We conclude that acute treatment with setmelanotide is as effective as weight loss at improving respiratory hypercapnic chemosensitivity.
Collapse
Affiliation(s)
- Athena Rivera
- Department of Biological Sciences, Marquette University, WI, USA
| | | | - Deanna M Arble
- Department of Biological Sciences, Marquette University, WI, USA.
| |
Collapse
|
2
|
Liang J, Yang K, Shen Y, Peng X, Tan H, Liu L, Xie Q, Wang Y. Incidence of collagen-induced arthritis is elevated by a high-fat diet without influencing body weight in mice. RMD Open 2024; 10:e003869. [PMID: 38580349 PMCID: PMC11002344 DOI: 10.1136/rmdopen-2023-003869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Affiliation(s)
- Jianhui Liang
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Kuangyang Yang
- Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Yanni Shen
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Xiao Peng
- Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Hao Tan
- Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Lichu Liu
- Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Qian Xie
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Department of Orthopaedics, Shenzhen University General Hospital, Shenzhen, China
| | - Yan Wang
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Revelo X, Fredrickson G, Florczak K, Barrow F, Dietsche K, Wang H, Parthiban P, Almutlaq R, Adeyi O, Herman A, Bartolomucci A, Staley C, Jahansouz C, Williams J, Mashek D, Ikramuddin S. Hepatic lipid-associated macrophages mediate the beneficial effects of bariatric surgery against MASH. RESEARCH SQUARE 2023:rs.3.rs-3446960. [PMID: 37961666 PMCID: PMC10635378 DOI: 10.21203/rs.3.rs-3446960/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
For patients with obesity and metabolic syndrome, bariatric procedures such as vertical sleeve gastrectomy (VSG) have a clear benefit in ameliorating metabolic dysfunction-associated steatohepatitis (MASH). While the effects of bariatric surgeries have been mainly attributed to nutrient restriction and malabsorption, whether immuno-modulatory mechanisms are involved remains unclear. Here we report that VSG ameliorates MASH progression in a weight loss-independent manner. Single-cell RNA sequencing revealed that hepatic lipid-associated macrophages (LAMs) expressing the triggering receptor expressed on myeloid cells 2 (TREM2) increase their lysosomal activity and repress inflammation in response to VSG. Remarkably, TREM2 deficiency in mice ablates the reparative effects of VSG, suggesting that TREM2 is required for MASH resolution. Mechanistically, TREM2 prevents the inflammatory activation of macrophages and is required for their efferocytotic function. Overall, our findings indicate that bariatric surgery improves MASH through a reparative process driven by hepatic LAMs, providing insights into the mechanisms of disease reversal that may result in new therapies and improved surgical interventions.
Collapse
|
4
|
Liu FS, Wang S, Guo XS, Ye ZX, Zhang HY, Li Z. State of art on the mechanisms of laparoscopic sleeve gastrectomy in treating type 2 diabetes mellitus. World J Diabetes 2023; 14:632-655. [PMID: 37383590 PMCID: PMC10294061 DOI: 10.4239/wjd.v14.i6.632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/01/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023] Open
Abstract
Obesity and type-2 diabetes mellitus (T2DM) are metabolic disorders. Obesity increases the risk of T2DM, and as obesity is becoming increasingly common, more individuals suffer from T2DM, which poses a considerable burden on health systems. Traditionally, pharmaceutical therapy together with lifestyle changes is used to treat obesity and T2DM to decrease the incidence of comorbidities and all-cause mortality and to increase life expectancy. Bariatric surgery is increasingly replacing other forms of treatment of morbid obesity, especially in patients with refractory obesity, owing to its many benefits including good long-term outcomes and almost no weight regain. The bariatric surgery options have markedly changed recently, and laparoscopic sleeve gastrectomy (LSG) is gradually gaining popularity. LSG has become an effective and safe treatment for type-2 diabetes and morbid obesity, with a high cost-benefit ratio. Here, we review the me-chanism associated with LSG treatment of T2DM, and we discuss clinical studies and animal experiments with regard to gastrointestinal hormones, gut microbiota, bile acids, and adipokines to clarify current treatment modalities for patients with obesity and T2DM.
Collapse
Affiliation(s)
- Fa-Shun Liu
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Song Wang
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Xian-Shan Guo
- Department of Endocrinology, Xinxiang Central Hospital, Xinxiang 453000, Henan Province, China
| | - Zhen-Xiong Ye
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Hong-Ya Zhang
- Central Laboratory, Yangpu District Control and Prevention Center, Shanghai 200090, China
| | - Zhen Li
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| |
Collapse
|
5
|
Womble JT, Ihrie MD, McQuade VL, Hegde A, McCravy MS, Phatak S, Tighe RM, Que LG, D’Alessio D, Walker JKL, Ingram JL. Vertical sleeve gastrectomy associates with airway hyperresponsiveness in a murine model of allergic airway disease and obesity. Front Endocrinol (Lausanne) 2023; 14:1092277. [PMID: 36926031 PMCID: PMC10011633 DOI: 10.3389/fendo.2023.1092277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Asthma is a chronic airway inflammatory disease marked by airway inflammation, remodeling and hyperresponsiveness to allergens. Allergic asthma is normally well controlled through the use of beta-2-adrenergic agonists and inhaled corticosteroids; however, a subset of patients with comorbid obesity experience resistance to currently available therapeutics. Patients with asthma and comorbid obesity are also at a greater risk for severe disease, contributing to increased risk of hospitalization. Bariatric surgery improves asthma control and airway hyperresponsiveness in patients with asthma and comorbid obesity, however, the underlying mechanisms for these improvements remain to be elucidated. We hypothesized that vertical sleeve gastrectomy (VSG), a model of metabolic surgery in mice, would improve glucose tolerance and airway inflammation, resistance, and fibrosis induced by chronic allergen challenge and obesity. Methods Male C57BL/6J mice were fed a high fat diet (HFD) for 13 weeks with intermittent house dust mite (HDM) allergen administration to induce allergic asthma, or saline as control. At week 11, a subset of mice underwent VSG or Sham surgery with one week recovery. A separate group of mice did not undergo surgery. Mice were then challenged with HDM or saline along with concurrent HFD feeding for 1-1.5 weeks before measurement of lung mechanics and harvesting of tissues, both of which occurred 24 hours after the final HDM challenge. Systemic and pulmonary cytokine profiles, lung histology and gene expression were analyzed. Results High fat diet contributed to increased body weight, serum leptin levels and development of glucose intolerance for both HDM and saline treatment groups. When compared to saline-treated mice, HDM-challenged mice exhibited greater weight gain. VSG improved glucose tolerance in both saline and HDM-challenged mice. HDM-challenged VSG mice exhibited an increase in airway hyperresponsiveness to methacholine when compared to the non-surgery group. Discussion The data presented here indicate increased airway hyperresponsiveness in allergic mice undergoing bariatric surgery.
Collapse
Affiliation(s)
- Jack T. Womble
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Mark D. Ihrie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Victoria L. McQuade
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Akhil Hegde
- School of Nursing, Duke University, Durham, NC, United States
| | - Matthew S. McCravy
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Sanat Phatak
- Diabetes/Rheumatology Units, King Edward Memorial Hospital, Pune, India
| | - Robert M. Tighe
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Loretta G. Que
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - David D’Alessio
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | | | - Jennifer L. Ingram
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
6
|
Fang Z, Fan M, Yuan D, Jin L, Wang Y, Ding L, Xu S, Tu J, Zhang E, Wu X, Chen ZB, Huang W. Downregulation of hepatic lncRNA Gm19619 improves gluconeogenesis and lipogenesis following vertical sleeve gastrectomy in mice. Commun Biol 2023; 6:105. [PMID: 36707678 PMCID: PMC9883214 DOI: 10.1038/s42003-023-04483-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging important epigenetic regulators in metabolic processes. Whether they contribute to the metabolic effects of vertical sleeve gastrectomy (VSG), one of the most effective treatments for sustainable weight loss and metabolic improvement, is unknown. Herein, we identify a hepatic lncRNA Gm19619, which is strongly repressed by VSG but highly up-regulated by diet-induced obesity and overnight-fasting in mice. Forced transcription of Gm19619 in the mouse liver significantly promotes hepatic gluconeogenesis with the elevated expression of G6pc and Pck1. In contrast, AAV-CasRx mediated knockdown of Gm19619 in high-fat diet-fed mice significantly improves hepatic glucose and lipid metabolism. Mechanistically, Gm19619 is enriched along genomic regions encoding leptin receptor (Lepr) and transcription factor Foxo1, as revealed in chromatin isolation by RNA purification (ChIRP) assay and is confirmed to modulate their transcription in the mouse liver. In conclusion, Gm19619 may enhance gluconeogenesis and lipid accumulation in the liver.
Collapse
Affiliation(s)
- Zhipeng Fang
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Mingjie Fan
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Department of Pediatric, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Dongqiang Yuan
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Lihua Jin
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Yangmeng Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Lili Ding
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Senlin Xu
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Jui Tu
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Eryun Zhang
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Xiwei Wu
- Integrated Genomic Core, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
7
|
Evers SS, Shao Y, Ramakrishnan SK, Shin JH, Bozadjieva-Kramer N, Irmler M, Stemmer K, Sandoval DA, Shah YM, Seeley RJ. Gut HIF2α signaling is increased after VSG, and gut activation of HIF2α decreases weight, improves glucose, and increases GLP-1 secretion. Cell Rep 2022; 38:110270. [PMID: 35045308 PMCID: PMC8832374 DOI: 10.1016/j.celrep.2021.110270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/11/2021] [Accepted: 12/23/2021] [Indexed: 01/03/2023] Open
Abstract
Gastric bypass and vertical sleeve gastrectomy (VSG) remain the most potent and durable treatments for obesity and type 2 diabetes but are also associated with iron deficiency. The transcription factor HIF2α, which regulates iron absorption in the duodenum, increases following these surgeries. Increasing iron levels by means of dietary supplementation or hepatic hepcidin knockdown does not undermine the effects of VSG, indicating that metabolic improvements following VSG are not secondary to lower iron levels. Gut-specific deletion of Vhl results in increased constitutive duodenal HIF2α signaling and produces a profound lean, glucose-tolerant phenotype that mimics key effects of VSG. Interestingly, intestinal Vhl deletion also results in increased intestinal secretion of GLP-1, which is essential for these metabolic benefits. These data demonstrate a role for increased duodenal HIF2α signaling in regulating crosstalk between iron-regulatory systems and other aspects of systemic physiology important for metabolic regulation. Bariatric surgery remains the most potent treatment for obesity and type 2 diabetes but also reduces iron levels. Evers et al. find that the machinery for absorbing iron is activated after VSG. Activation of this machinery recapitulates multiple effects of VSG. These findings may lead to less invasive therapies.
Collapse
Affiliation(s)
- Simon S Evers
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Yikai Shao
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Sadeesh K Ramakrishnan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Jae Hoon Shin
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Martin Irmler
- Institute of Experimental Genetics and German Mouse Clinic, Neuherberg, Germany
| | - Kerstin Stemmer
- Molecular Cell Biology, Institute for Theoretical Medicine, University of Augsburg, Augsburg, Germany; Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Darleen A Sandoval
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Nutrition, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics, Section of Nutrition, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Myronovych A, Peck BCE, An M, Zhu J, Warm A, Kupe A, Lubman DM, Seeley RJ. Intestinal extracellular vesicles are altered by vertical sleeve gastrectomy. Am J Physiol Gastrointest Liver Physiol 2021; 320:G153-G165. [PMID: 33175569 PMCID: PMC7864234 DOI: 10.1152/ajpgi.00224.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bariatric surgery is the most effective treatment for obesity and its comorbidities. However, our understanding of the molecular mechanisms behind its beneficial effects is limited. Extracellular vesicles (EVs) comprise an important mode of intercellular communication. They carry nucleic acids, hormones, and signaling molecules and regulate multiple processes. Our aim was to test the role of EVs in the effects of vertical sleeve gastrectomy (VSG) using a mouse model. Small intestinal EVs were obtained from the mice that underwent VSG or control surgery and were on chow or high-fat diet or diet-restricted, and then they were subjected to the proteomic analysis. Enteroid and bacterial cultures were treated with EVs to evaluate their survival effect. A mouse cohort received intraduodenal administration of EVs from VSG or Sham mice for 10 days. Body weight, glucose metabolism, and intestinal morphology were evaluated. EVs were enriched in the intestinal lumen and mucus of VSG compared with Sham mice. Protein composition of VSG and Sham-derived EVs was highly distinct. When introduced into culture, VSG EVs decreased survival of intestinal enteroids and, conversely, promoted proliferation of bacteria. Mice administered with EVs obtained from VSG and Sham groups did not show differences in body weight, food intake, or glucose metabolism. Intestinal morphology was altered, as VSG EVs caused reduction of ileal villi length and decreased epithelial proliferation in the jejunum and ileum. VSG causes remodeling of intestinal EVs, which results in unique protein composition. VSG-derived EVs exhibit cytotoxic effects on epithelial cells and reduce proliferation of intestinal progenitor cells in mice.NEW & NOTEWORTHY This is the first study that investigates the impact of bariatric surgery on protein composition of intestinal extracellular vesicles. Extracellular vesicle composition is greatly altered after vertical sleeve gastrectomy and may potentially modulate various signaling pathways. In our study, extracellular vesicles from vertical sleeve gastrectomy-treated mice promote bacterial proliferation but exhibit cytotoxic effect on epithelial cells and reduce proliferation of intestinal progenitor cells in mice.
Collapse
Affiliation(s)
| | | | - Mingrui An
- 1Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Jianhui Zhu
- 1Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - Aleksander Kupe
- 1Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - David M. Lubman
- 1Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Randy J. Seeley
- 1Department of Surgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
9
|
Gauda EB, Conde S, Bassi M, Zoccal DB, Almeida Colombari DS, Colombari E, Despotovic N. Leptin: Master Regulator of Biological Functions that Affects Breathing. Compr Physiol 2020; 10:1047-1083. [PMID: 32941688 DOI: 10.1002/cphy.c190031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity is a global epidemic in developed countries accounting for many of the metabolic and cardiorespiratory morbidities that occur in adults. These morbidities include type 2 diabetes, sleep-disordered breathing (SDB), obstructive sleep apnea, chronic intermittent hypoxia, and hypertension. Leptin, produced by adipocytes, is a master regulator of metabolism and of many other biological functions including central and peripheral circuits that control breathing. By binding to receptors on cells and neurons in the brainstem, hypothalamus, and carotid body, leptin links energy and metabolism to breathing. In this comprehensive article, we review the central and peripheral locations of leptin's actions that affect cardiorespiratory responses during health and disease, with a particular focus on obesity, SDB, and its effects during early development. Obesity-induced hyperleptinemia is associated with centrally mediated hypoventilation with decrease CO2 sensitivity. On the other hand, hyperleptinemia augments peripheral chemoreflexes to hypoxia and induces sympathoexcitation. Thus, "leptin resistance" in obesity is relative. We delineate the circuits responsible for these divergent effects, including signaling pathways. We review the unique effects of leptin during development on organogenesis, feeding behavior, and cardiorespiratory responses, and how undernutrition and overnutrition during critical periods of development can lead to cardiorespiratory comorbidities in adulthood. We conclude with suggestions for future directions to improve our understanding of leptin dysregulation and associated clinical diseases and possible therapeutic targets. Lastly, we briefly discuss the yin and the yang, specifically the contribution of relative adiponectin deficiency in adults with hyperleptinemia to the development of metabolic and cardiovascular disease. © 2020 American Physiological Society. Compr Physiol 10:1047-1083, 2020.
Collapse
Affiliation(s)
- Estelle B Gauda
- Division of Neonatology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Silvia Conde
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Lisboa, Portugal
| | - Mirian Bassi
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Debora Simoes Almeida Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Nikola Despotovic
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Hankir MK, Seyfried F. Partial Leptin Reduction: An Emerging Weight Loss Paradigm. Trends Endocrinol Metab 2020; 31:395-397. [PMID: 32396841 DOI: 10.1016/j.tem.2020.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
Leptin-based obesity pharmacotherapies were originally developed according to the lipostatic view that elevated circulating leptin levels promote a negative energy balance. A series of independent preclinical findings suggest, however, that a partial reduction in circulating leptin levels (either by immunoneutralization, a peripherally restricted CB1 receptor inverse agonist, or bariatric surgery) can paradoxically lead to weight loss.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Department of Experimental Surgery, University Hospital Wuerzburg, Wuerzburg 97080, Bavaria, Germany.
| | - Florian Seyfried
- Department of General, Visceral, Transplant, Vascular, and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg 97080, Bavaria, Germany
| |
Collapse
|
11
|
Framnes-DeBoer SN, Bakke E, Yalamanchili S, Peterson H, Sandoval DA, Seeley RJ, Arble DM. Bromocriptine improves glucose tolerance independent of circadian timing, prolactin, or the melanocortin-4 receptor. Am J Physiol Endocrinol Metab 2020; 318:E62-E71. [PMID: 31794265 PMCID: PMC6985791 DOI: 10.1152/ajpendo.00325.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bromocriptine, a dopamine D2 receptor agonist originally used for the treatment of hyperprolactinemia, is largely successful in reducing hyperglycemia and improving glucose tolerance in type 2 diabetics. However, the mechanism behind bromocriptine's effect on glucose intolerance is unclear. Here, we tested three hypotheses, that bromocriptine may exert its effects on glucose metabolism by 1) decreasing prolactin secretion, 2) indirectly increasing activity of key melanocortin receptors in the central nervous system, or 3) improving/restoring circadian rhythms. Using a diet-induced obese (DIO) mouse model, we established that a 2-wk treatment of bromocriptine is robustly effective at improving glucose tolerance. We then demonstrated that bromocriptine is effective at improving the glucose tolerance of both DIO prolactin-deficient and melanocortin-4 receptor (MC4R)-deficient mice, pointing to bromocriptine's ability to affect glucose tolerance independently of prolactin or MC4R signaling. Finally, we tested bromocriptine's dependence on the circadian system by testing its effectiveness in environmental (e.g., repeated shifts to the light-dark cycle) and genetic (e.g., the Clock mutant mouse) models of circadian disruption. In both models of circadian disruption, bromocriptine was effective at improving glucose tolerance, indicating that a functional or well-aligned endogenous clock is not necessary for bromocriptine's effects on glucose metabolism. Taken together, these results do not support the role of prolactin, MC4R, or the circadian clock as integral to bromocriptine's underlying mechanism. Instead, we find that bromocriptine is a robust diabetic treatment and resilient to genetically induced obesity, diabetes, and circadian disruption.
Collapse
Affiliation(s)
| | - Ellen Bakke
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | | | - Hannah Peterson
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | | | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Deanna M Arble
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
12
|
Abstract
The obese brain is stressed and inflamed. This is mainly at the level of neurons and glial cells in the hypothalamus: a brain region where the adipokine leptin acts to control feeding and body weight. Relieving hypothalamic neuronal endoplasmic reticulum (ER) stress with the natural small molecule drugs celastrol or withaferin-A reverses the leptin resistance commensurate with obesity, producing a degree of weight loss found only with bariatric surgery. Here, recent evidence from rodent models of vertical sleeve gastrectomy (VSG) is brought to the fore which suggests that this particular bariatric surgical procedure may work in a similar fashion to celastrol and withaferin-A alongside remedying hypothalamic inflammation and gliosis. Thus, restoring and preserving healthy hypothalamic neuronal and glial cell function, be it by pharmacological or surgical means, ensures a negative energy balance in an environment constructed to promote a one - possibly through re-establishing communication between adipose tissue and the brain.
Collapse
Affiliation(s)
- Florian Seyfried
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, 97080 Bavaria, Germany
| | - Mohammed K Hankir
- Department of Experimental Surgery, University Hospital Wuerzburg, Wuerzburg, 97080 Bavaria, Germany
| |
Collapse
|