1
|
Fujita K, Desmond P, Blondelle J, Soták M, Rajan MR, Clark M, Estève É, Chan Y, Gu Y, Actis Dato V, Marrocco V, Dalton ND, Ghassemian M, Do A, Klos M, Peterson KL, Sheikh F, Cho Y, Börgeson E, Lange S. Combined Loss of Obsc and Obsl1 in Murine Hearts Results in Diastolic Dysfunction, Altered Metabolism, and Deregulated Mitophagy. Circ Heart Fail 2025; 18:e011867. [PMID: 40066567 PMCID: PMC11995854 DOI: 10.1161/circheartfailure.124.011867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/09/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND Muscle proteins of the obscurin protein family play important roles in sarcomere organization and sarcoplasmic reticulum and T-tubule architecture and function. However, their precise molecular functions and redundancies between protein family members as well as their involvement in cardiac diseases remain to be fully understood. METHODS To investigate the functional roles of Obsc (obscurin) and its close homolog Obsl1 (obscurin-like 1) in the heart, we generated and analyzed knockout mice for Obsc, Obsl1, as well as Obsc/Obsl1 double knockouts. RESULTS We show that double-knockout mice are viable but show postnatal deficits in cardiac muscle sarcoplasmic reticulum and mitochondrial architecture and function at the microscopic, biochemical, and cellular levels. Altered sarcoplasmic reticulum structure resulted in perturbed calcium cycling, whereas mitochondrial ultrastructure deficits were linked to decreased levels of Chchd3 (coiled-coil-helix-coiled-coil-helix domain containing 3), a Micos (mitochondrial contact site and cristae organizing system) complex protein. Hearts of double-knockout mice also show altered levels of Atg4 proteins, novel Obsl1 interactors, resulting in abnormal mitophagy, and increased unfolded protein response. At the physiological level, loss of obscurin and Obsl1 resulted in a profound delay of cardiac relaxation, associated with metabolic signs of heart failure. CONCLUSIONS Taken together, our data suggest that Obsc and Obsl1 play crucial roles in cardiac sarcoplasmic reticulum structure, calcium cycling, mitochondrial function, turnover, and metabolism.
Collapse
Affiliation(s)
- Kyohei Fujita
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Japan (K.F.)
| | - Patrick Desmond
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Jordan Blondelle
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Matúš Soták
- Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, University of Gothenburg, Sweden (M.S., M.R.R., E.B.)
| | - Meenu Rohini Rajan
- Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, University of Gothenburg, Sweden (M.S., M.R.R., E.B.)
| | - Madison Clark
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
- Department of Biomedicine, Aarhus University, Denmark (M.C., E.B., S.L.)
- STENO Diabetes Center Aarhus, Denmark (M.C., E.B., S.L.)
| | - Éric Estève
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
- PhyMedExp, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Regionale Universitaire (CHRU) Montpellier, France (E.E.)
| | - Yunghang Chan
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Yusu Gu
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Virginia Actis Dato
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Valeria Marrocco
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Nancy D. Dalton
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry (M.G.), University of California San Diego, La Jolla
| | - Aryanne Do
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Matthew Klos
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Kirk L. Peterson
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Farah Sheikh
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Yoshitake Cho
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Emma Börgeson
- Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, University of Gothenburg, Sweden (M.S., M.R.R., E.B.)
- Department of Biomedicine, Aarhus University, Denmark (M.C., E.B., S.L.)
- STENO Diabetes Center Aarhus, Denmark (M.C., E.B., S.L.)
| | - Stephan Lange
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
- Department of Biomedicine, Aarhus University, Denmark (M.C., E.B., S.L.)
- STENO Diabetes Center Aarhus, Denmark (M.C., E.B., S.L.)
| |
Collapse
|
2
|
Alissa M, Aldurayhim M, Abdulaziz O, Alsalmi O, Awad A, Algopishi UB, Alharbi S, Safhi AY, Khan KH, Uffar C. From molecules to heart regeneration: Understanding the complex and profound role of non-coding RNAs in stimulating cardiomyocyte proliferation for cardiac repair. Curr Probl Cardiol 2024; 49:102857. [PMID: 39306148 DOI: 10.1016/j.cpcardiol.2024.102857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Recent studies of noncoding genomes have shown important implications for regulating gene expression and genetic programs during development and their association with health, including cardiovascular disease. There are nearly 2,500 microRNAs (miRNAs), 12,000 long-chain non-coding RNAs (lncRNA), and nearly 4,000 circular RNAs (circles). Even though they do not code for proteins, they make up nearly 99% of the human genome. Non-coding RNA families (ncRNAs) have recently been discovered and established as novel and necessary controllers of cardiovascular risk factors and cellular processes and, therefore, have the potential to improve the diagnosis and prediction of cardiovascular disease. The increase in the prevalence of cardiovascular disease can be explained by the shortcomings of existing therapies, which focus only on the non-coding RNAs that protein codes for. On the other hand, recent studies point to the possibility of using ncRNAs in the early detection and intervention of CVD. These findings suggest that developing diagnostic tools and therapies based on miRNAs, lncRNAs, and circRNAs will potentially enhance the clinical management of patients with cardiovascular disease. Cardiovascular diseases include CH, HF, RHD, ACS, MI, AS, MF, ARR, and PAH, of which CH is the most common cardiovascular disease, followed by HF and RHD. This paper aims to elucidate the biological and clinical significance of miRNAs, increase, and circles, as well as their expression profiles and the possibility of regulating non-coding transcripts in cardiovascular diseases to improve the application of ncRNAs in diagnosis and treatment.
Collapse
Affiliation(s)
- Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Mohammed Aldurayhim
- Department of Medical Laboratory, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | - Ohud Alsalmi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | - Alsamghan Awad
- King Khalid University, College of Medicine, Family Medicine department, Saudi Arabia
| | | | - Sarah Alharbi
- Department of Medical Laboratory, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khadijah Hassan Khan
- Department of Laboratory, King Faisal Medical Complex, Ministry of Health, Taif 26514, Saudi Arabia
| | - Christin Uffar
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
3
|
Boen HM, Cherubin M, Franssen C, Gevaert AB, Witvrouwen I, Bosman M, Guns PJ, Heidbuchel H, Loeys B, Alaerts M, Van Craenenbroeck EM. Circulating MicroRNA as Biomarkers of Anthracycline-Induced Cardiotoxicity: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:183-199. [PMID: 38774014 PMCID: PMC11103047 DOI: 10.1016/j.jaccao.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 05/24/2024] Open
Abstract
Close monitoring for cardiotoxicity during anthracycline chemotherapy is crucial for early diagnosis and therapy guidance. Currently, monitoring relies on cardiac imaging and serial measurement of cardiac biomarkers like cardiac troponin and natriuretic peptides. However, these conventional biomarkers are nonspecific indicators of cardiac damage. Exploring new, more specific biomarkers with a clear link to the underlying pathomechanism of cardiotoxicity holds promise for increased specificity and sensitivity in detecting early anthracycline-induced cardiotoxicity. miRNAs (microRNAs), small single-stranded, noncoding RNA sequences involved in epigenetic regulation, influence various physiological and pathological processes by targeting expression and translation. Emerging as new biomarker candidates, circulating miRNAs exhibit resistance to degradation and offer a direct pathomechanistic link. This review comprehensively outlines their potential as early biomarkers for cardiotoxicity and their pathomechanistic link.
Collapse
Affiliation(s)
- Hanne M. Boen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Martina Cherubin
- Centrum of Medical Genetics, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Constantijn Franssen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Andreas B. Gevaert
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Isabel Witvrouwen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Matthias Bosman
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Bart Loeys
- Centrum of Medical Genetics, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Maaike Alaerts
- Centrum of Medical Genetics, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Emeline M. Van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
4
|
Pasławska M, Grodzka A, Peczyńska J, Sawicka B, Bossowski AT. Role of miRNA in Cardiovascular Diseases in Children-Systematic Review. Int J Mol Sci 2024; 25:956. [PMID: 38256030 PMCID: PMC10816020 DOI: 10.3390/ijms25020956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The number of children suffering from cardiovascular diseases (CVDs) is rising globally. Therefore, there is an urgent need to acquire a better understanding of the genetic factors and molecular mechanisms related to the pathogenesis of CVDs in order to develop new prevention and treatment strategies for the future. MicroRNAs (miRNAs) constitute a class of small non-coding RNA fragments that range from 17 to 25 nucleotides in length and play an essential role in regulating gene expression, controlling an abundance of biological aspects of cell life, such as proliferation, differentiation, and apoptosis, thus affecting immune response, stem cell growth, ageing and haematopoiesis. In recent years, the concept of miRNAs as diagnostic markers allowing discrimination between healthy individuals and those affected by CVDs entered the purview of academic debate. In this review, we aimed to systematise available information regarding miRNAs associated with arrhythmias, cardiomyopathies, myocarditis and congenital heart diseases in children. We focused on the targeted genes and metabolic pathways influenced by those particular miRNAs, and finally, tried to determine the future of miRNAs as novel biomarkers of CVD.
Collapse
Affiliation(s)
| | | | | | | | - Artur Tadeusz Bossowski
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Divisions, Medical University of Bialystok, J. Waszyngtona 17, 15-274 Bialystok, Poland; (M.P.); (A.G.); (J.P.); (B.S.)
| |
Collapse
|
5
|
Amdani S, Auerbach SR, Bansal N, Chen S, Conway J, Silva JPDA, Deshpande SR, Hoover J, Lin KY, Miyamoto SD, Puri K, Price J, Spinner J, White R, Rossano JW, Bearl DW, Cousino MK, Catlin P, Hidalgo NC, Godown J, Kantor P, Masarone D, Peng DM, Rea KE, Schumacher K, Shaddy R, Shea E, Tapia HV, Valikodath N, Zafar F, Hsu D. Research Gaps in Pediatric Heart Failure: Defining the Gaps and Then Closing Them Over the Next Decade. J Card Fail 2024; 30:64-77. [PMID: 38065308 DOI: 10.1016/j.cardfail.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 01/13/2024]
Abstract
Given the numerous opportunities and the wide knowledge gaps in pediatric heart failure, an international group of pediatric heart failure experts with diverse backgrounds were invited and tasked with identifying research gaps in each pediatric heart failure domain that scientists and funding agencies need to focus on over the next decade.
Collapse
Affiliation(s)
- Shahnawaz Amdani
- Department of Pediatric Cardiology, Cleveland Clinic Children's, Cleveland, Ohio.
| | - Scott R Auerbach
- Division of Pediatric Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Neha Bansal
- Division of Pediatric Cardiology, Mount Sinai Kravis Children's Hospital, Icahn School of Medicine, New York, New York
| | - Sharon Chen
- Division of Pediatric Cardiology, Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, California
| | - Jennifer Conway
- Division of Pediatric Cardiology, Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Julie Pires DA Silva
- Division of Pediatric Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Jessica Hoover
- Department of Pediatric Cardiology, Cleveland Clinic Children's, Cleveland, Ohio
| | - Kimberly Y Lin
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Shelley D Miyamoto
- Division of Pediatric Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kriti Puri
- Department of Pediatrics, Section of Pediatric Cardiology, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas
| | - Jack Price
- Department of Pediatrics, Section of Pediatric Cardiology, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas
| | - Joseph Spinner
- Department of Pediatrics, Section of Pediatric Cardiology, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas
| | - Rachel White
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Joseph W Rossano
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David W Bearl
- Department of Pediatric Cardiology, Monroe Carell Jr. Children's Hospital, Nashville, Tennessee
| | - Melissa K Cousino
- Department of Pediatrics, University of Michigan, C. S. Mott Children's Hospital, Ann Arbor, Michigan
| | - Perry Catlin
- Department of Psychology, Marquette University, Milwaukee, Wisconsin
| | - Nicolas Corral Hidalgo
- Division of Pediatric Cardiology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Justin Godown
- Department of Pediatric Cardiology, Monroe Carell Jr. Children's Hospital, Nashville, Tennessee
| | - Paul Kantor
- Children's Hospital Los Angeles and the Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Daniele Masarone
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital Naples, Naples, Italy
| | - David M Peng
- Department of Pediatrics, University of Michigan, C. S. Mott Children's Hospital, Ann Arbor, Michigan
| | - Kelly E Rea
- Department of Pediatrics, University of Michigan, C. S. Mott Children's Hospital, Ann Arbor, Michigan
| | - Kurt Schumacher
- Department of Pediatrics, University of Michigan, C. S. Mott Children's Hospital, Ann Arbor, Michigan
| | - Robert Shaddy
- Children's Hospital Los Angeles and the Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Erin Shea
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital Naples, Naples, Italy
| | - Henry Valora Tapia
- Division of Pediatric Cardiology, University of Utah. Salt Lake City, Utah
| | - Nishma Valikodath
- Department of Pediatrics, Section of Pediatric Cardiology, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas
| | - Farhan Zafar
- The Heart Institute, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Daphne Hsu
- Division of Pediatric Cardiology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
6
|
Toro V, Jutras-Beaudoin N, Boucherat O, Bonnet S, Provencher S, Potus F. Right Ventricle and Epigenetics: A Systematic Review. Cells 2023; 12:2693. [PMID: 38067121 PMCID: PMC10705252 DOI: 10.3390/cells12232693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
There is an increasing recognition of the crucial role of the right ventricle (RV) in determining the functional status and prognosis in multiple conditions. In the past decade, the epigenetic regulation (DNA methylation, histone modification, and non-coding RNAs) of gene expression has been raised as a critical determinant of RV development, RV physiological function, and RV pathological dysfunction. We thus aimed to perform an up-to-date review of the literature, gathering knowledge on the epigenetic modifications associated with RV function/dysfunction. Therefore, we conducted a systematic review of studies assessing the contribution of epigenetic modifications to RV development and/or the progression of RV dysfunction regardless of the causal pathology. English literature published on PubMed, between the inception of the study and 1 January 2023, was evaluated. Two authors independently evaluated whether studies met eligibility criteria before study results were extracted. Amongst the 817 studies screened, 109 studies were included in this review, including 69 that used human samples (e.g., RV myocardium, blood). While 37 proposed an epigenetic-based therapeutic intervention to improve RV function, none involved a clinical trial and 70 are descriptive. Surprisingly, we observed a substantial discrepancy between studies investigating the expression (up or down) and/or the contribution of the same epigenetic modifications on RV function or development. This exhaustive review of the literature summarizes the relevant epigenetic studies focusing on RV in human or preclinical setting.
Collapse
Affiliation(s)
| | | | | | | | | | - François Potus
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (V.T.); (N.J.-B.); (O.B.); (S.B.); (S.P.)
| |
Collapse
|
7
|
Minakawa T, Yamashita JK. Extracellular vesicles and microRNAs in the regulation of cardiomyocyte differentiation and proliferation. Arch Biochem Biophys 2023; 749:109791. [PMID: 37858665 DOI: 10.1016/j.abb.2023.109791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
Cardiomyocyte differentiation and proliferation are essential processes for the regeneration of an injured heart. In recent years, there have been several reports highlighting the involvement of extracellular vesicles (EVs) in cardiomyocyte differentiation and proliferation. These EVs originate from mesenchymal stem cells, pluripotent stem cells, and heart constituting cells (cardiomyocytes, cardiac fibroblasts, cardiac progenitor cells, epicardium). Numerous reports also indicate the involvement of microRNAs (miRNAs) in cardiomyocyte differentiation and proliferation. Among them, miRNA-1, miRNA-133, and miRNA-499, recently demonstrated to promote cardiomyocyte differentiation, and miRNA-199, shown to promote cardiomyocyte proliferation, were found effective in various studies. MiRNA-132 and miRNA-133 have been identified as cargo in EVs and are reported to induce cardiomyocyte differentiation. Similarly, miRNA-30a, miRNA-100, miRNA-27a, miRNA-30e, miRNA-294 and miRNA-590 have also been identified as cargo in EVs and are shown to have a role in the promotion of cardiomyocyte proliferation. Regeneration of the heart by EVs or artificial nanoparticles containing functional miRNAs is expected in the future. In this review, we outline recent advancements in understanding the roles of EVs and miRNAs in cardiomyocyte differentiation and proliferation. Additionally, we explore the related challenges when utilizing EVs and miRNAs as a less risky approach to cardiac regeneration compared to cell transplantation.
Collapse
Affiliation(s)
- Tomohiro Minakawa
- Department of Cellular and Tissue Communication, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Jun K Yamashita
- Department of Cellular and Tissue Communication, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| |
Collapse
|
8
|
Cebro-Márquez M, Rodríguez-Mañero M, Serrano-Cruz V, Vilar-Sánchez ME, González-Melchor L, García-Seara J, Martínez-Sande JL, Aragón-Herrera A, Martínez-Monzonís MA, González-Juanatey JR, Lage R, Moscoso I. Plasma miR-486-5p Expression Is Upregulated in Atrial Fibrillation Patients with Broader Low-Voltage Areas. Int J Mol Sci 2023; 24:15248. [PMID: 37894937 PMCID: PMC10607367 DOI: 10.3390/ijms242015248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia worldwide, affecting 1% of the population over 60 years old. The incidence and prevalence of AF are increasing globally, representing a relevant health problem, suggesting that more advanced strategies for predicting risk stage are highly needed. miRNAs mediate several processes involved in AF. Our aim was to identify miRNAs with a prognostic value as biomarkers in patients referred for AF ablation and its association with LVA extent, based on low-voltage area (LVA) maps. In this study, we recruited 44 AF patients referred for catheter ablation. We measured the expression of 84 miRNAs in plasma from peripheral blood in 3 different groups based on LVA extent. Expression analysis showed that miR-486-5p was significantly increased in patients with broader LVA (4-fold, p = 0.0002; 5-fold, p = 0.0001). Receiver operating characteristic curve analysis showed that miR-486-5p expression could predict atrium LVA (AUC, 0.8958; p = 0.0015). Also, miR-486-5p plasma levels were associated with AF-type (AUC, 0.7137; p = 0.0453). In addition, miR-486-5p expression was positively correlated with LVA percentage, left atrial (LA) area, and LA volume (r = 0.322, p = 0.037; r = 0.372, p = 0.015; r = 0.319, p = 0.045, respectively). These findings suggest that miR-486-5p expression might have prognostic significance in LVA extent in patients with AF.
Collapse
Affiliation(s)
- María Cebro-Márquez
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.C.-M.); (V.S.-C.); (M.E.V.-S.)
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (L.G.-M.); (J.G.-S.); (J.L.M.-S.); (A.A.-H.); (M.A.M.-M.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Moisés Rodríguez-Mañero
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (L.G.-M.); (J.G.-S.); (J.L.M.-S.); (A.A.-H.); (M.A.M.-M.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Valentina Serrano-Cruz
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.C.-M.); (V.S.-C.); (M.E.V.-S.)
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (L.G.-M.); (J.G.-S.); (J.L.M.-S.); (A.A.-H.); (M.A.M.-M.); (J.R.G.-J.)
| | - Marta E. Vilar-Sánchez
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.C.-M.); (V.S.-C.); (M.E.V.-S.)
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (L.G.-M.); (J.G.-S.); (J.L.M.-S.); (A.A.-H.); (M.A.M.-M.); (J.R.G.-J.)
| | - Laila González-Melchor
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (L.G.-M.); (J.G.-S.); (J.L.M.-S.); (A.A.-H.); (M.A.M.-M.); (J.R.G.-J.)
| | - Javier García-Seara
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (L.G.-M.); (J.G.-S.); (J.L.M.-S.); (A.A.-H.); (M.A.M.-M.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - José Luis Martínez-Sande
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (L.G.-M.); (J.G.-S.); (J.L.M.-S.); (A.A.-H.); (M.A.M.-M.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Alana Aragón-Herrera
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (L.G.-M.); (J.G.-S.); (J.L.M.-S.); (A.A.-H.); (M.A.M.-M.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Cellular and Molecular Cardiology Research Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - María Amparo Martínez-Monzonís
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (L.G.-M.); (J.G.-S.); (J.L.M.-S.); (A.A.-H.); (M.A.M.-M.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - José Ramón González-Juanatey
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (L.G.-M.); (J.G.-S.); (J.L.M.-S.); (A.A.-H.); (M.A.M.-M.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Ricardo Lage
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.C.-M.); (V.S.-C.); (M.E.V.-S.)
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (L.G.-M.); (J.G.-S.); (J.L.M.-S.); (A.A.-H.); (M.A.M.-M.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Isabel Moscoso
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.C.-M.); (V.S.-C.); (M.E.V.-S.)
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (L.G.-M.); (J.G.-S.); (J.L.M.-S.); (A.A.-H.); (M.A.M.-M.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
9
|
Birla AK, Brimmer S, Short WD, Olutoye OO, Shar JA, Lalwani S, Sucosky P, Parthiban A, Keswani SG, Caldarone CA, Birla RK. Current state of the art in hypoplastic left heart syndrome. Front Cardiovasc Med 2022; 9:878266. [PMID: 36386362 PMCID: PMC9651920 DOI: 10.3389/fcvm.2022.878266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a complex congenital heart condition in which a neonate is born with an underdeveloped left ventricle and associated structures. Without palliative interventions, HLHS is fatal. Treatment typically includes medical management at the time of birth to maintain patency of the ductus arteriosus, followed by three palliative procedures: most commonly the Norwood procedure, bidirectional cavopulmonary shunt, and Fontan procedures. With recent advances in surgical management of HLHS patients, high survival rates are now obtained at tertiary treatment centers, though adverse neurodevelopmental outcomes remain a clinical challenge. While surgical management remains the standard of care for HLHS patients, innovative treatment strategies continue to be developing. Important for the development of new strategies for HLHS patients is an understanding of the genetic basis of this condition. Another investigational strategy being developed for HLHS patients is the injection of stem cells within the myocardium of the right ventricle. Recent innovations in tissue engineering and regenerative medicine promise to provide important tools to both understand the underlying basis of HLHS as well as provide new therapeutic strategies. In this review article, we provide an overview of HLHS, starting with a historical description and progressing through a discussion of the genetics, surgical management, post-surgical outcomes, stem cell therapy, hemodynamics and tissue engineering approaches.
Collapse
Affiliation(s)
- Aditya K. Birla
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, United States
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, United States
| | - Sunita Brimmer
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, United States
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, United States
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Walker D. Short
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, United States
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Oluyinka O. Olutoye
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, United States
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Jason A. Shar
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, United States
| | - Suriya Lalwani
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, United States
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, United States
| | - Philippe Sucosky
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, United States
| | - Anitha Parthiban
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States
- Division of Pediatric Cardiology, Texas Children's Hospital, Houston, TX, United States
| | - Sundeep G. Keswani
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, United States
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, United States
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Christopher A. Caldarone
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, United States
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, United States
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Ravi K. Birla
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, United States
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, United States
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, United States
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
10
|
Samani A, Hightower RM, Reid AL, English KG, Lopez MA, Doyle JS, Conklin MJ, Schneider DA, Bamman MM, Widrick JJ, Crossman DK, Xie M, Jee D, Lai EC, Alexander MS. miR-486 is essential for muscle function and suppresses a dystrophic transcriptome. Life Sci Alliance 2022; 5:e202101215. [PMID: 35512829 PMCID: PMC9087951 DOI: 10.26508/lsa.202101215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/02/2023] Open
Abstract
miR-486 is a muscle-enriched microRNA, or "myomiR," that has reduced expression correlated with Duchenne muscular dystrophy (DMD). To determine the function of miR-486 in normal and dystrophin-deficient muscles and elucidate miR-486 target transcripts in skeletal muscle, we characterized mir-486 knockout mice (mir-486 KO). mir-486 KO mice developed disrupted myofiber architecture, decreased myofiber size, decreased locomotor activity, increased cardiac fibrosis, and metabolic defects were exacerbated in mir-486 KO:mdx 5cv (DKO) mice. To identify direct in vivo miR-486 muscle target transcripts, we integrated RNA sequencing and chimeric miRNA eCLIP sequencing to identify key transcripts and pathways that contribute towards mir-486 KO and dystrophic disease pathologies. These targets included known and novel muscle metabolic and dystrophic structural remodeling factors of muscle and skeletal muscle contractile transcript targets. Together, our studies identify miR-486 as essential for normal muscle function, a driver of pathological remodeling in dystrophin-deficient muscle, a useful biomarker for dystrophic disease progression, and highlight the use of multiple omic platforms to identify in vivo microRNA target transcripts.
Collapse
Affiliation(s)
- Adrienne Samani
- Department of Pediatrics, Division of Neurology at Children's of Alabama and the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rylie M Hightower
- Department of Pediatrics, Division of Neurology at Children's of Alabama and the University of Alabama at Birmingham, Birmingham, AL, USA
- University of Alabama at Birmingham Center for Exercise Medicine (UCEM), Birmingham, AL, USA
| | - Andrea L Reid
- Department of Pediatrics, Division of Neurology at Children's of Alabama and the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Katherine G English
- Department of Pediatrics, Division of Neurology at Children's of Alabama and the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael A Lopez
- Department of Pediatrics, Division of Neurology at Children's of Alabama and the University of Alabama at Birmingham, Birmingham, AL, USA
- University of Alabama at Birmingham Center for Exercise Medicine (UCEM), Birmingham, AL, USA
| | - J Scott Doyle
- Department of Orthopedic Surgery, at the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael J Conklin
- Department of Orthopedic Surgery, at the University of Alabama at Birmingham, Birmingham, AL, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics at the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marcas M Bamman
- University of Alabama at Birmingham Center for Exercise Medicine (UCEM), Birmingham, AL, USA
| | - Jeffrey J Widrick
- Division of Genetics and Genomics at Boston Children's Hospital, Boston, MA, USA
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Min Xie
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| | - David Jee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Weill Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Weill Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Matthew S Alexander
- Department of Pediatrics, Division of Neurology at Children's of Alabama and the University of Alabama at Birmingham, Birmingham, AL, USA
- University of Alabama at Birmingham Center for Exercise Medicine (UCEM), Birmingham, AL, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- UAB Civitan International Research Center (CIRC), at the University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
11
|
Deshpande A, Shetty PMV, Frey N, Rangrez AY. SRF: a seriously responsible factor in cardiac development and disease. J Biomed Sci 2022; 29:38. [PMID: 35681202 PMCID: PMC9185982 DOI: 10.1186/s12929-022-00820-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
The molecular mechanisms that regulate embryogenesis and cardiac development are calibrated by multiple signal transduction pathways within or between different cell lineages via autocrine or paracrine mechanisms of action. The heart is the first functional organ to form during development, which highlights the importance of this organ in later stages of growth. Knowledge of the regulatory mechanisms underlying cardiac development and adult cardiac homeostasis paves the way for discovering therapeutic possibilities for cardiac disease treatment. Serum response factor (SRF) is a major transcription factor that controls both embryonic and adult cardiac development. SRF expression is needed through the duration of development, from the first mesodermal cell in a developing embryo to the last cell damaged by infarction in the myocardium. Precise regulation of SRF expression is critical for mesoderm formation and cardiac crescent formation in the embryo, and altered SRF levels lead to cardiomyopathies in the adult heart, suggesting the vital role played by SRF in cardiac development and disease. This review provides a detailed overview of SRF and its partners in their various functions and discusses the future scope and possible therapeutic potential of SRF in the cardiovascular system.
Collapse
Affiliation(s)
- Anushka Deshpande
- Department of Internal Medicine III, Cardiology and Angiology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Prithviraj Manohar Vijaya Shetty
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
12
|
Zhao M, Han M, Liang L, Song Q, Li X, Du Y, Hu D, Cheng Y, Wang QK, Ke T. Mog1 deficiency promotes cardiac contractile dysfunction and isoproterenol-induced arrhythmias associated with cardiac fibrosis and Cx43 remodeling. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166429. [PMID: 35533905 DOI: 10.1016/j.bbadis.2022.166429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Our earlier studies identified MOG1 as a Nav1.5-binding protein that promotes Nav1.5 intracellular trafficking to plasma membranes. Genetic studies have identified MOG1 variants responsible for cardiac arrhythmias. However, the physiological functions of MOG1 in vivo remain incompletely characterized. In this study, we generated Mog1 knockout (Mog1-/-) mice. Mog1-/- mice did not develop spontaneous arrhythmias at the baseline, but exhibited a prolongation of QRS duration. Mog1-/- mice treated with isoproterenol (ISO), but not with flecainide, exhibited an increased risk of arrhythmias and even sudden death. Mog1-/- mice had normal cardiac morphology, however, LV systolic dysfunction was identified and associated with an increase in ventricular fibrosis. Whole-cell patch-clamping and Western blotting analysis clearly demonstrated the normal cardiac expression and function of Nav1.5 in Mog1-/- mice. Further RNA-seq and iTRAQ analysis identified critical pathways and genes, including extracellular matrix (Mmp2), gap junction (Gja1), and mitochondrial components that were dysregulated in Mog1-/- mice. RT-qPCR, Western blotting, and immunofluorescence assays revealed reduced cardiac expression of Gja1 in Mog1-/- mice. Dye transfer assays confirmed impairment of gap-junction function; Cx43 gap-junction enhancer ZP123 decreased arrhythmia inducibility in ISO-treated Mog1-/- mice. Transmission electron microscopy analysis revealed abnormal sarcomere ultrastructure and altered mitochondrial morphology in Mog1-/- mice. Mitochondrial dynamics was found to be disturbed, and associated with a trend toward increased mitochondrial fusion in Mog1-/- mice. Meanwhile, the level of ATP supply was increased in the hearts of Mog1-/- mice. These results indicate that MOG1 plays an important role in cardiac electrophysiology and cardiac contractile function.
Collapse
Affiliation(s)
- Miao Zhao
- Center for Human Genome Research, The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, PR China
| | - Meng Han
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Kidney Diseases, Medical College, Hubei Polytechnic University, Huangshi, Hubei Province, PR China
| | - Lina Liang
- Center for Human Genome Research, The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, PR China
| | - Qixue Song
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, PR China
| | - Xia Li
- Center for Human Genome Research, The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, PR China
| | - Yimei Du
- Research Center of Ion Channelopathy, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China
| | - Dongping Hu
- Center for Human Genome Research, The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, PR China
| | - Yu Cheng
- Center for Human Genome Research, The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, PR China
| | - Qing K Wang
- Center for Human Genome Research, The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, PR China.
| | - Tie Ke
- Center for Human Genome Research, The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, PR China.
| |
Collapse
|
13
|
|
14
|
Bei Y, Lu D, Bär C, Chatterjee S, Costa A, Riedel I, Mooren FC, Zhu Y, Huang Z, Wei M, Hu M, Liu S, Yu P, Wang K, Thum T, Xiao J. MiR-486 attenuates cardiac ischemia/reperfusion injury and mediates the beneficial effect of exercise for myocardial protection. Mol Ther 2022; 30:1675-1691. [PMID: 35077859 PMCID: PMC9077322 DOI: 10.1016/j.ymthe.2022.01.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/23/2021] [Accepted: 01/20/2022] [Indexed: 10/19/2022] Open
Abstract
Exercise and its regulated molecules have myocardial protective effects against cardiac ischemia/reperfusion (I/R) injury. The muscle-enriched miR-486 was previously identified to be upregulated in exercised heart, which prompted us to investigate the functional roles of miR-486 in cardiac I/R injury and to further explore its potential in contributing to exercise-induced protection against I/R injury. Our data showed that miR-486 was significantly downregulated in the heart upon cardiac I/R injury. Both preventive and therapeutic interventions of adeno-associated virus 9 (AAV9)-mediated miR-486 overexpression could reduce cardiac I/R injury. Using AAV9 expressing miR-486 with cTnT promoter, we further demonstrated that cardiac muscle cell-targeted miR-486 overexpression was also sufficient to protect against cardiac I/R injury. Consistently, miR-486 was downregulated in oxygen glucose deprivation/reperfusion (OGDR)-stressed cardiomyocytes, while upregulating miR-486 inhibited cardiomyocyte apoptosis through PTEN and FoxO1 inhibition and AKT/mTOR activation. Finally, we observed that miR-486 was necessary for exercise-induced protection against cardiac I/R injury. In conclusion, miR-486 is protective against cardiac I/R injury and myocardial apoptosis through targeting PTEN and FoxO1 and activation of the AKT/mTOR pathway, and mediates the beneficial effect of exercise for myocardial protection. Increasing miR-486 might be a promising therapeutic strategy for myocardial protection.
Collapse
Affiliation(s)
- Yihua Bei
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Dongchao Lu
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover 30625, Germany; REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover 30625, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover 30625, Germany; REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover 30625, Germany
| | - Shambhabi Chatterjee
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover 30625, Germany
| | - Alessia Costa
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover 30625, Germany; REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover 30625, Germany
| | - Isabelle Riedel
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover 30625, Germany
| | - Frank C Mooren
- Witten/Herdecke University, Faculty of Health/School of Medicine, Witten 58448, Germany
| | - Yujiao Zhu
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Zhenzhen Huang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Meng Wei
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Meiyu Hu
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Sunyi Liu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Pujiao Yu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Kun Wang
- Department of Cardio-thoracic Surgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover 30625, Germany; REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover 30625, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover 30625, Germany.
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
15
|
Role of FUS-CHOP in Myxoid Liposarcoma via miR-486/CDK4 Axis. Biochem Genet 2021; 60:1095-1106. [PMID: 34792704 DOI: 10.1007/s10528-021-10151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
This study aimed to explore the roles and relationship between FUsed in Sarcoma (FUS)-C/EBP HOmologous Protein (CHOP), microRNA (miR)-486 and cyclin dependent kinase 4 (CDK4) in myxoid liposarcoma, and determined whether FUS-CHOP can regulate proliferation and apoptosis of myxoid liposarcoma cells by regulating miR-486/CDK4 axis. The levels of miR-486, CDK4 and FUS-CHOP in myxoid liposarcoma samples/adjacent normal muscle tissues and myxoid liposarcoma/human adipose-derived stem cell line were evaluated using reverse transcription-quantitative polymerase chain reaction and western blotting. Cell proliferation and apoptosis were performed using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide and flow cytometry, respectively. Furthermore, the apoptosis-related proteins were determined using Western blot assay. We found that miR-486 was down-regulated, FUS-CHOP and CDK4 were up-regulated in myxoid liposarcoma tissues and myxoid liposarcoma cell lines. Moreover, FUS-CHOP-siRNA distinctly suppressed FUS-CHOP level and increased miR-486 levels in 1955/91 cells. Our results demonstrated that knockdown of FUS-CHOP by siRNA inhibited 1955/91 growth, promoted cell apoptosis and enhanced cleaved Caspase3 protein expression. However, all these data were reversed by miR-486 inhibitor. Similarly, compared to mimic control, miR-486 mimic markedly reduced 1955/91 cells growth, induced cell apoptosis and fortified cleaved Caspase3 level, while these results were abolished by CDK4-plasmid. Collectively, our observations clearly suggested that FUS-CHOP regulated myxoid liposarcoma cell proliferation and apoptosis by the regulation of miR-486/CDK4 axis, indicating the potential use of FUS-CHOP-siRNA as a promising therapy for myxoid liposarcoma.
Collapse
|
16
|
Wang H, Maimaitiaili R, Yao J, Xie Y, Qiang S, Hu F, Li X, Shi C, Jia P, Yang H, Wei M, Zhao J, Zhou Z, Xie J, Jiang J, Cai H, Sluijter JPG, Xu Y, Zhang Y, Xiao J. Percutaneous Intracoronary Delivery of Plasma Extracellular Vesicles Protects the Myocardium Against Ischemia-Reperfusion Injury in Canis. Hypertension 2021; 78:1541-1554. [PMID: 34488435 DOI: 10.1161/hypertensionaha.121.17574] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hongyun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science (H.W., J.J., J.X.), Shanghai University, China
| | - Rusitanmujiang Maimaitiaili
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianhua Yao
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuling Xie
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
| | - Sujing Qiang
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fan Hu
- Department of Nuclear Medicine (F.H., H.C.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang Li
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chao Shi
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
| | - Peng Jia
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haotian Yang
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Meng Wei
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
| | - Juan Zhao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
| | - Zheng Zhou
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jinxin Xie
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
| | - Jizong Jiang
- Shanghai Engineering Research Center of Organ Repair, School of Life Science (H.W., J.J., J.X.), Shanghai University, China
| | - Haidong Cai
- Department of Nuclear Medicine (F.H., H.C.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, the Netherlands (J.P.G.S.)
- UMC Utrecht Regenerative Medicine Center, University Medical Center, Utrecht University, the Netherlands (J.P.G.S.)
| | - Yawei Xu
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Zhang
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science (H.W., J.J., J.X.), Shanghai University, China
| |
Collapse
|
17
|
Ouyang T, Qin Y, Luo K, Han X, Yu C, Zhang A, Pan X. miR-486-3p regulates CyclinD1 and promotes fluoride-induced osteoblast proliferation and activation. ENVIRONMENTAL TOXICOLOGY 2021; 36:1817-1828. [PMID: 34080770 DOI: 10.1002/tox.23302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Fluoride is a persistent environmental pollutant, and its excessive intake contributes to skeletal and dental fluorosis. The mechanisms underlying fluoride-induced abnormal osteoblast proliferation and activation, which are related to skeletal fluorosis, have not yet been fully clarified. As important epigenetic regulators, microRNAs (miRNAs) participate in bone metabolism. On the basis of our previous miRNA-seq results and bioinformatics analysis, this study investigated the role and specific molecular mechanism of miR-486-3p in fluoride-induced osteoblast proliferation and activation via CyclinD1. Herein, in the fluoride-challenged population, we observed that miR-486-3p expression decreased while CyclinD1 and transforming growth factor (TGF)-β1 increased, and miR-486-3p level correlated negatively with the expression of CyclinD1 and TGF-β1 genes. Further, we verified that sodium fluoride (NaF) decreases miR-486-3p expression in human osteoblasts and overexpression of miR-486-3p reduces fluoride-induced osteoblast proliferation and activation. Meanwhile, we demonstrated that miR-486-3p regulates NaF-induced upregulation of CyclinD1 by directly targeting its 3'-untranslated region (3'-UTR). In addition, we observed that NaF activates the TGF-β1/Smad2/3/CyclinD1 axis and miR-486-3p mediates transcriptional regulation of CyclinD1 by TGF-β1/Smad2/3 signaling pathway via targeting TGF-β1 3'-UTR in vitro. This study, thus, contributes significantly in revealing the mechanism of miR-486-3p-mediated CyclinD1 upregulation in skeletal fluorosis and sheds new light on endemic fluorosis treatment.
Collapse
Affiliation(s)
- Ting Ouyang
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yu Qin
- Department of Orthopedics, Guizhou Province Orthopedics Hospital, Guiyang, China
| | - Keke Luo
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Xue Han
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Chun Yu
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Aihua Zhang
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Xueli Pan
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
18
|
Jiang J, Sun Y, Xu G, Wang H, Wang L. The role of miRNA, lncRNA and circRNA in the development of intervertebral disk degeneration (Review). Exp Ther Med 2021; 21:555. [PMID: 33850527 PMCID: PMC8027750 DOI: 10.3892/etm.2021.9987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a degenerative musculoskeletal disorder with multiple causative factors, such as age, genetics, mechanics and life style. IVDD contributes to non-specific lower back pain (NLBP), which is a globally prevalent and debilitating musculoskeletal disorder. NLBP has a substantial impact on medical resources and creates an economic burden for the public. Dysregulated phenotypes of nucleus pulposus (NP) cells and endplate chondrocytes, such as proliferation, senescence and apoptosis, along with aberrant expression of extracellular matrix components, including type II collagen and aggrecan, are involved in the pathological process of IVDD. Evidence indicates that non-coding RNAs, mainly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a vital role in the development of IVDD. In the present review, the potential molecular mechanisms of miRNAs, lncRNAs and circRNAs in the initiation and progression of IVDD were described based on the latest literature. Furthermore, ways to influence the functions of NP cells and endplate chondrocytes in IVDD were also summarized. The presented insights suggested that non-coding RNAs may function as potential targets for the treatment of IVDD.
Collapse
Affiliation(s)
- Jian Jiang
- Department of Minimally Invasive Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Yuefeng Sun
- Department of Spine Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Gaoran Xu
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Hong Wang
- Department of Spine Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Ling Wang
- Department of Oncology Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| |
Collapse
|
19
|
Braga L, Ali H, Secco I, Giacca M. Non-coding RNA therapeutics for cardiac regeneration. Cardiovasc Res 2021; 117:674-693. [PMID: 32215566 PMCID: PMC7898953 DOI: 10.1093/cvr/cvaa071] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/02/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022] Open
Abstract
A growing body of evidence indicates that cardiac regeneration after myocardial infarction can be achieved by stimulating the endogenous capacity of cardiomyocytes (CMs) to replicate. This process is controlled, both positively and negatively, by a large set of non-coding RNAs (ncRNAs). Some of the microRNAs (miRNAs) that can stimulate CM proliferation is expressed in embryonic stem cells and is required to maintain pluripotency (e.g. the miR-302∼367 cluster). Others also govern the proliferation of different cell types, including cancer cells (e.g. the miR-17∼92 cluster). Additional miRNAs were discovered through systematic screenings (e.g. miR-199a-3p and miR-590-3p). Several miRNAs instead suppress CM proliferation and are involved in the withdrawal of CMs from the cell cycle after birth (e.g. the let-7 and miR-15 families). Similar regulatory roles on CM proliferation are also exerted by a few long ncRNAs. This body of information has obvious therapeutic implications, as miRNAs with activator function or short antisense oligonucleotides against inhibitory miRNAs or lncRNAs can be administered to stimulate cardiac regeneration. Expression of miRNAs can be achieved by gene therapy using adeno-associated vectors, which transduce CMs with high efficiency. More effective and safer for therapeutic purposes, small nucleic acid therapeutics can be obtained as chemically modified, synthetic molecules, which can be administered through lipofection or inclusion in lipid or polymer nanoparticles for efficient cardiac delivery. The notion that it is possible to reprogramme CMs into a regenerative state and that this property can be enhanced by ncRNA therapeutics remains exciting, however extensive experimentation in large mammals and rigorous assessment of safety are required to advance towards clinical application.
Collapse
Affiliation(s)
- Luca Braga
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Hashim Ali
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Ilaria Secco
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Mauro Giacca
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
20
|
Dong X, Dong X, Gao F, Liu N, Liang T, Zhang F, Fu X, Pu L, Chen J. Non-coding RNAs in cardiomyocyte proliferation and cardiac regeneration: Dissecting their therapeutic values. J Cell Mol Med 2021; 25:2315-2332. [PMID: 33492768 PMCID: PMC7933974 DOI: 10.1111/jcmm.16300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular diseases are associated with high incidence and mortality, contribute to disability and place a heavy economic burden on countries worldwide. Stimulating endogenous cardiomyocyte proliferation and regeneration has been considering as a key to repair the injured heart caused by ischaemia. Emerging evidence has proved that non‐coding RNAs participate in cardiac proliferation and regeneration. In this review, we focus on the observation and mechanism that microRNAs (or miRNAs), long non‐coding RNAs (or lncRNAs) and circular RNA (or circRNAs) regulate cardiomyocyte proliferation and regeneration to repair a damaged heart. Furthermore, we highlight the potential therapeutic role of some non‐coding RNAs used in stimulating CMs proliferation. Finally, perspective on the development of non‐coding RNAs therapy in cardiac regeneration is presented.
Collapse
Affiliation(s)
- Xiaoxuan Dong
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuyun Dong
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, China
| | - Feng Gao
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Liu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian Liang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Zhang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuyang Fu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Linbin Pu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghai Chen
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Ashrafizadeh M, Rafiei H, Mohammadinejad R, Farkhondeh T, Samarghandian S. Wnt-regulating microRNAs role in gastric cancer malignancy. Life Sci 2020; 250:117547. [PMID: 32173311 DOI: 10.1016/j.lfs.2020.117547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
Gastric cancer (GC) is responsible for high morbidity and mortality worldwide. This cancer claims fifth place among other cancers. There are a number of factors associated with GC development such as alcohol consumption and tobacco smoking. It seems that genetic factors play significant role in GC malignancy and progression. MicroRNAs (miRs) are short non-coding RNA molecules with negative impact on the expression of target genes. A variety of studies have elucidated the potential role of miRs in GC growth. Investigation of molecular pathways has revealed that miRs function as upstream modulators of Wnt signaling pathway. This signaling pathway involves in important biological processes such as cell proliferation and differentiation, and its dysregulation is associated with GC invasion. At the present review, we demonstrate that how miRs regulate Wnt signaling pathway in GC malignancy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hossein Rafiei
- Department of Biology, Faculty of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
22
|
Sha C, Jia G, Jingjing Z, Yapeng H, Zhi L, Guanghui X. miR-486 is involved in the pathogenesis of acute myeloid leukemia by regulating JAK-STAT signaling. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:177-187. [PMID: 32472154 DOI: 10.1007/s00210-020-01892-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/28/2020] [Indexed: 12/27/2022]
Abstract
Acute myeloid leukemia (AML) is a widely prevalent disease worldwide and poses a large threat to public health. Previous studies have shown that AML is associated with cytogenetic heterogeneity, complex subtypes, and different therapeutic approaches. In this study, we found that miR-486 was upregulated in AML using both The Cancer Genome Atlas (TCGA) database and patient tissues. After knockdown of miR-486 by short hairpin RNA (shRNA), we discovered that miR-486 was required for cell proliferation. Through miRNA profile analysis and a dual-luciferase reporter assay, suppressor of cytokine signaling 2 (SOCS2) was identified as a direct target of miR-486. Therefore, by silencing SOCS2, a negative regulator of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, miR-486 enhanced JAK-STAT3 activity and promoted cell proliferation. The miR-486-SOCS2-STAT3 proliferation axis is therefore involved in the pathogenesis of AML, providing a novel molecular mechanism and diagnostic and therapeutic clues for AML.
Collapse
Affiliation(s)
- Cao Sha
- Department of Oncology, The First People's Hospital of Lianyungang, No. 6 Zhenhua Earth Road, Lianyungang City, 222061, Jiangsu Province, People's Republic of China
| | - Gao Jia
- Department of Oncology, The First People's Hospital of Lianyungang, No. 6 Zhenhua Earth Road, Lianyungang City, 222061, Jiangsu Province, People's Republic of China
| | - Zhao Jingjing
- Department of Oncology, The First People's Hospital of Lianyungang, No. 6 Zhenhua Earth Road, Lianyungang City, 222061, Jiangsu Province, People's Republic of China
| | - Hu Yapeng
- Department of Oncology, The First People's Hospital of Lianyungang, No. 6 Zhenhua Earth Road, Lianyungang City, 222061, Jiangsu Province, People's Republic of China
| | - Lou Zhi
- Department of Oncology, The First People's Hospital of Lianyungang, No. 6 Zhenhua Earth Road, Lianyungang City, 222061, Jiangsu Province, People's Republic of China
| | - Xu Guanghui
- Department of Oncology, The First People's Hospital of Lianyungang, No. 6 Zhenhua Earth Road, Lianyungang City, 222061, Jiangsu Province, People's Republic of China.
| |
Collapse
|