1
|
Abdel Menaem HN, Hanafy MA, Abou El Dahab M, Mohamed KELSK. Evaluation of metformin's effect on the adult and juvenile stages of Schistosoma mansoni: an in-vitro study. J Parasit Dis 2025; 49:69-83. [PMID: 39975621 PMCID: PMC11832992 DOI: 10.1007/s12639-024-01731-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/25/2024] [Indexed: 02/21/2025] Open
Abstract
Metformin (Met), a well-known anti-diabetic drug with a potent autophagy induction property, has been proven to be effective against several parasitic diseases. In the present in vitro study, the effect of Met on the viability and ultrastructure of Schistosoma mansoni adults and juveniles in comparison with the standard anti-schistosomal drug, praziquantel (PZQ), was investigated. Adults and juveniles were treated in vitro with 5 µM PZQ and/or 10 mM Met. The viability of the treated worms was screened over a three-day period by light microscopy and recorded as mortality rates (MR). The alterations in the ultrastructure were verified using scanning and transmission electron microscopy. Met showed significant anti-schistosomal activity against both adults and juveniles and resulted in severe tegumental damage in the form of loss of integrity and architecture, with evident vacuolation suggestive of increased autophagy. Met might be a potential drug either alone or as an adjuvant to PZQ for the treatment of schistosomiasis mansoni and warrant its further assessment in animal models of disease.
Collapse
Affiliation(s)
| | - Marmar Ahmed Hanafy
- Department of Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Abou El Dahab
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Khalifa EL Sayed Khalifa Mohamed
- Department of Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Parasitology, Faculty of Medicine, Galala University, Galala, Egypt
| |
Collapse
|
2
|
Gal I, Demarta-Gatsi C, Fontinha D, Arez F, Wicha SG, Rottmann M, Nunes-Cabaço H, Blais J, Jain JP, Lakshminarayana SB, Brito C, Prudêncio M, Alves PM, Spangenberg T. Drug Interaction Studies of Cabamiquine:Ganaplacide Combination against Hepatic Plasmodium berghei. ACS Infect Dis 2025; 11:69-79. [PMID: 39657997 PMCID: PMC11731318 DOI: 10.1021/acsinfecdis.4c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024]
Abstract
New antimalarial combination therapies with novel modes of action are required to counter the emergence and spread of Plasmodium drug resistance against existing therapeutics. Here, we present a study to evaluate the preventive activity of a combination of clinical antimalarial drug candidates, cabamiquine and ganaplacide, that have multistage activity against the liver and blood stages of Plasmodium infection. Cabamiquine (DDD107498, M5717) inhibits parasite protein synthesis, and ganaplacide (KAF156) inhibits protein trafficking, blocks the establishment of new permeation pathways, and causes endoplasmic reticulum expansion. The pharmacodynamic parameters of a combination of the two compounds were assessed employing a pharmacometrics approach in conjunction with in vitro-in silico checkerboard analysis. The in vitro study was performed on a previously established 3D infection platform based on human hepatic cell lines that sustain infection by rodent P. berghei parasites. The in vivo efficacy of this drug combination was assessed against the liver stage of the P. berghei. Our results show that the combination of both drugs at the tested concentrations does not interfere with the drugs respective mode of action or affect hepatocyte cell viability. The drug combination was fully effective in preventing the appearance of blood stage parasites when a systemic plasma Cav0-24/EC50 ratio >2 for ganaplacide and >5 for cabamiquine was achieved. These findings demonstrate that chemoprevention using a combination of cabamiquine and ganaplacide has the potential to target the asymptomatic liver stage of Plasmodium infection and prevent the development of parasitemia.
Collapse
Affiliation(s)
- Isabella
Ramella Gal
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- Instituto
de Tecnologia Química e Biológica António Xavier, Av. Republica, 2780-157 Oeiras, Portugal
| | - Claudia Demarta-Gatsi
- Global
Health R&D of the healthcare business of Merck KGaA, Darmstadt,
Germany, Ares Trading S.A., (an affiliate
of Merck KGaA, Darmstadt, Germany, Route de Crassier 1, 1262 Eysins, Switzerland
| | - Diana Fontinha
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Francisca Arez
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- Instituto
de Tecnologia Química e Biológica António Xavier, Av. Republica, 2780-157 Oeiras, Portugal
| | - Sebastian G. Wicha
- Department
of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Bundesstr. 45, 20146 Hamburg, Germany
| | - Matthias Rottmann
- Swiss Tropical
and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Universität
Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Helena Nunes-Cabaço
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Johanne Blais
- Global Health,
BioMedical Research at Novartis, Emeryville, California 94608-2916, United States
| | - Jay Prakash Jain
- Global Health,
BioMedical Research at Novartis, Emeryville, California 94608-2916, United States
- DMPK
and
Clinical Pharmacology, IDEAYA Biosciences, 7000 Shoreline Ct, Suite 350, South San Francisco, California 94080, United States
| | | | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- Instituto
de Tecnologia Química e Biológica António Xavier, Av. Republica, 2780-157 Oeiras, Portugal
| | - Miguel Prudêncio
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- Instituto
de Tecnologia Química e Biológica António Xavier, Av. Republica, 2780-157 Oeiras, Portugal
| | - Thomas Spangenberg
- Global
Health R&D of the healthcare business of Merck KGaA, Darmstadt,
Germany, Ares Trading S.A., (an affiliate
of Merck KGaA, Darmstadt, Germany, Route de Crassier 1, 1262 Eysins, Switzerland
| |
Collapse
|
3
|
Hu S, Batool Z, Zheng X, Yang Y, Ullah A, Shen B. Exploration of innovative drug repurposing strategies for combating human protozoan diseases: Advances, challenges, and opportunities. J Pharm Anal 2025; 15:101084. [PMID: 39896318 PMCID: PMC11786068 DOI: 10.1016/j.jpha.2024.101084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 02/04/2025] Open
Abstract
Protozoan infections (e.g., malaria, trypanosomiasis, and toxoplasmosis) pose a considerable global burden on public health and socioeconomic problems, leading to high rates of morbidity and mortality. Due to the limited arsenal of effective drugs for these diseases, which are associated with devastating side effects and escalating drug resistance, there is an urgent need for innovative antiprotozoal drugs. The emergence of drug repurposing offers a low-cost approach to discovering new therapies for protozoan diseases. In this review, we summarize recent advances in drug repurposing for various human protozoan diseases and explore cost-effective strategies to identify viable new treatments. We highlight the cross-applicability of repurposed drugs across diverse diseases and harness common chemical motifs to provide new insights into drug design, facilitating the discovery of new antiprotozoal drugs. Challenges and opportunities in the field are discussed, delineating novel directions for ongoing and future research.
Collapse
Affiliation(s)
- ShanShan Hu
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610213, China
| | - Zahra Batool
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610213, China
| | - Xin Zheng
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610213, China
| | - Yin Yang
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610213, China
| | - Amin Ullah
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610213, China
| | - Bairong Shen
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610213, China
| |
Collapse
|
4
|
Silva RCMC, Ribeiro JS, Farias TSDMD, Travassos LH. The role of host autophagy in intracellular protozoan parasites diseases. Arch Biochem Biophys 2024; 761:110186. [PMID: 39455040 DOI: 10.1016/j.abb.2024.110186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Intracellular protozoan parasites are the etiologic agents of important human diseases, like malaria, Chagas disease, toxoplasmosis, and leishmaniasis. Inside host cells, these parasites manipulate the host metabolism and intracellular trafficking for their own benefits and, inevitably, induce several stress response mechanisms. In this review, we discuss autophagy as a stress response mechanism that can be both (i) explored by these intracellular parasites to acquire nutrients and (ii) to restrict parasite proliferation and survival within host cells. We also discuss the immunomodulatory role of autophagy as a strategy to reduce inflammatory-mediated damage, an essential player in the pathophysiology of these parasitic diseases. At last, we propose and discuss several known autophagy modulators as possible pharmaceuticals for adjunctive therapies.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Institute of Biophysic, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; State University of Rio de Janeiro, Faculty of Medical Sciences, Campus Cabo Frio, Rio de Janeiro, Brazil
| | - Jhones Sousa Ribeiro
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Institute of Biophysic, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thalita Santos de Moraes de Farias
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Institute of Biophysic, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Holanda Travassos
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Institute of Biophysic, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Loos JA, Negro PS, Ortega HH, Salinas FJ, Arán M, Pellizza L, Salerno GL, Cumino AC. Anti-echinococcal effect of metformin in advanced experimental cystic echinococcosis: reprogrammed intermediary carbon metabolism in the parasite. Antimicrob Agents Chemother 2024; 68:e0094124. [PMID: 39264188 PMCID: PMC11459915 DOI: 10.1128/aac.00941-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024] Open
Abstract
Metformin, a safe biguanide derivative with antiproliferative properties, has shown antiparasitic efficacy against the Echinococcus larval stage. Hence, we assessed the efficacy of a dose of 250 mg kg-1 day-1 in experimental models of advanced CE, at 6 and 12 months post-infection with oral and intraperitoneal administration, respectively. At this high dose, metformin reached intracystic concentrations between 0.7 and 1.7 mM and triggered Eg-TOR inhibition through AMPK activation by AMP-independent and -dependent mechanisms, which are dependent on drug dose. Cystic metformin uptake was controlled by increased expression of organic cation transporters in the presence of the drug. In both experimental models, metformin reduced the weight of parasite cysts, altered the ultrastructural integrity of their germinal layers, and reduced the intracystic availability of glucose, limiting the cellular carbon and energy charge and the proliferative capacity of metacestodes. This glucose depletion in the parasite was associated with a slight increase in cystic uptake of 2-deoxiglucose and the transcriptional induction of GLUT genes in metacestodes. In this context, drastic glycogen consumption led to increased lactate production and altered intermediary metabolism in treated metacestodes. Specifically, the fraction of reducing soluble sugars decreased twofold, and the levels of non-reducing soluble sugars, such as sucrose and trehalose, were modified in both cystic fluid and germinal cells. Taken together, our findings highlight the relevance of metformin as a promising candidate for CE treatment and warrant further research to improve the therapeutic conditions of this chronic zoonosis in humans.
Collapse
Affiliation(s)
- Julia A. Loos
- IIPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
| | - Perla S. Negro
- Parasitología y Enfermedades Parasitarias, Facultad de Ciencias Veterinarias, Universidad Nacional de Rosario, Casilda, Santa Fe, Argentina
| | - Hugo H. Ortega
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET, Esperanza, Santa Fe, Argentina
| | - Facundo J. Salinas
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET, Esperanza, Santa Fe, Argentina
| | - Martín Arán
- Fundación Instituto Leloir e Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)—CONICET, Buenos Aires, Argentina
| | - Leonardo Pellizza
- Fundación Instituto Leloir e Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)—CONICET, Buenos Aires, Argentina
| | - Graciela L. Salerno
- Fundación Para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina
| | - Andrea C. Cumino
- IIPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| |
Collapse
|
6
|
Gomaa MM, Nabil El Achy S, Hezema NN. Could metformin modulate the outcome of chronic murine toxoplasmosis? Acta Trop 2024; 258:107339. [PMID: 39084481 DOI: 10.1016/j.actatropica.2024.107339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Toxoplasmosis is a pervasive parasitic infection possessing a chief impact on both public health and veterinary medicine. Unfortunately, the commercially-available anti-Toxoplasma agents have either serious side effects or diminished efficiency, specifically on the Toxoplasma tissue cysts. In the present study, metformin (The first-line treatment for type 2 diabetes mellitus) was investigated for the first time against chronic cerebral toxoplasmosis in mice model experimentally-infected with ME49 strain versus spiramycin. Two metformin regimens were applied; starting one week before the infection and four weeks PI. Parasitological, ultrastructural, histopathological, immunohistochemical, immunological, and biochemical assessments were performed. The anti-parasitic effect of metformin was granted by the statistically-significant reduction in tissue-cyst burden in both treatment regimens. This was accompanied by markedly-mutilated ultrastructure and profound amelioration of the cerebral histopathology with remarkable decline in the brain CD4+ and CD8+ T cell count. Besides, diminution of anti-Toxoplasma IgG and brain GSH levels was evident. Ultimately, the present findings highlighted the powerful promising therapeutic role of metformin in the management of chronic toxoplasmosis on a basis of anti-parasitic, anti-inflammatory, and anti-oxidant possessions.
Collapse
Affiliation(s)
- Maha Mohamed Gomaa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Samar Nabil El Achy
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nehal Nassef Hezema
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
7
|
Tan Y, Li J, Nie Y, Zheng Z. Novel Approach for Cardioprotection: In Situ Targeting of Metformin via Conductive Hydrogel System. Polymers (Basel) 2024; 16:2226. [PMID: 39125251 PMCID: PMC11314979 DOI: 10.3390/polym16152226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Ischemia/reperfusion (I/R) injury following myocardial infarction is a major cause of cardiomyocyte death and impaired cardiac function. Although clinical data show that metformin is effective in repairing cardiac I/R injury, its efficacy is hindered by non-specific targeting during administration, a short half-life, frequent dosing, and potential adverse effects on the liver and kidneys. In recent years, injectable hydrogels have shown substantial potential in overcoming drug delivery challenges and treating myocardial infarction. To this end, we developed a natural polymer hydrogel system comprising methacryloylated chitosan and methacryloylated gelatin modified with polyaniline conductive derivatives. In vitro studies demonstrated that the optimized hydrogel exhibited excellent injectability, biocompatibility, biodegradability, suitable mechanical properties, and electrical conductivity. Incorporating metformin into this hydrogel significantly extended the administration cycle, mitigated mitochondrial damage, decreased abnormal ROS production, and enhanced cardiomyocyte function. Animal experiments indicated that the metformin/hydrogel system reduced arrhythmia incidence, infarct size, and improved cardiac mitochondrial and overall cardiac function, promoting myocardial repair in I/R injury. Overall, the metformin-loaded conductive hydrogel system effectively mitigates mitochondrial oxidative damage and improves cardiomyocyte function, thereby offering a theoretical foundation for the potential application of metformin in cardioprotection.
Collapse
Affiliation(s)
| | | | - Yali Nie
- Hunan Provincial Key Laboratory of Multi-Omics and Artificial Intelligence of Cardiovascular Diseases & Institute of Cardiovascular Disease & Department of Cardiology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhi Zheng
- Hunan Provincial Key Laboratory of Multi-Omics and Artificial Intelligence of Cardiovascular Diseases & Institute of Cardiovascular Disease & Department of Cardiology, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
8
|
Lockwood TD. Coordination chemistry suggests that independently observed benefits of metformin and Zn 2+ against COVID-19 are not independent. Biometals 2024; 37:983-1022. [PMID: 38578560 PMCID: PMC11255062 DOI: 10.1007/s10534-024-00590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024]
Abstract
Independent trials indicate that either oral Zn2+ or metformin can separately improve COVID-19 outcomes by approximately 40%. Coordination chemistry predicts a mechanistic relationship and therapeutic synergy. Zn2+ deficit is a known risk factor for both COVID-19 and non-infectious inflammation. Most dietary Zn2+ is not absorbed. Metformin is a naked ligand that presumably increases intestinal Zn2+ bioavailability and active absorption by cation transporters known to transport metformin. Intracellular Zn2+ provides a natural buffer of many protease reactions; the variable "set point" is determined by Zn2+ regulation or availability. A Zn2+-interactive protease network is suggested here. The two viral cysteine proteases are therapeutic targets against COVID-19. Viral and many host proteases are submaximally inhibited by exchangeable cell Zn2+. Inhibition of cysteine proteases can improve COVID-19 outcomes and non-infectious inflammation. Metformin reportedly enhances the natural moderating effect of Zn2+ on bioassayed proteome degradation. Firstly, the dissociable metformin-Zn2+ complex could be actively transported by intestinal cation transporters; thereby creating artificial pathways of absorption and increased body Zn2+ content. Secondly, metformin Zn2+ coordination can create a non-natural protease inhibitor independent of cell Zn2+ content. Moderation of peptidolytic reactions by either or both mechanisms could slow (a) viral multiplication (b) viral invasion and (c) the pathogenic host inflammatory response. These combined actions could allow development of acquired immunity to clear the infection before life-threatening inflammation. Nirmatrelvir (Paxlovid®) opposes COVID-19 by selective inhibition the viral main protease by a Zn2+-independent mechanism. Pending safety evaluation, predictable synergistic benefits of metformin and Zn2+, and perhaps metformin/Zn2+/Paxlovid® co-administration should be investigated.
Collapse
Affiliation(s)
- Thomas D Lockwood
- Department Pharmacology and Toxicology, School of Medicine, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
9
|
Nemeth DV, Iannelli L, Gangitano E, D’Andrea V, Bellini MI. Energy Metabolism and Metformin: Effects on Ischemia-Reperfusion Injury in Kidney Transplantation. Biomedicines 2024; 12:1534. [PMID: 39062107 PMCID: PMC11275143 DOI: 10.3390/biomedicines12071534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Metformin (MTF) is the only biguanide included in the World Health Organization's list of essential medicines; representing a widespread drug in the management of diabetes mellitus. With its accessibility and affordability being one of its biggest assets, it has become the target of interest for many trying to find alternative treatments for varied pathologies. Over time, an increasing body of evidence has shown additional roles of MTF, with unexpected interactions of benefit in other diseases. Metformin (MTF) holds significant promise in mitigating ischemia-reperfusion injury (IRI), particularly in the realm of organ transplantation. As acceptance criteria for organ transplants expand, IRI during the preservation phase remain a major concern within the transplant community, prompting a keen interest in MTF's effects. Emerging evidence suggests that administering MTF during reperfusion may activate the reperfusion injury salvage kinase (RISK) pathway. This pathway is pivotal in alleviating IRI in transplant recipients, potentially leading to improved outcomes such as reduced rates of organ rejection. This review aims to contextualize MTF historically, explore its current uses, pharmacokinetics, and pharmacodynamics, and link these aspects to the pathophysiology of IRI to illuminate its potential future role in transplantation. A comprehensive survey of the current literature highlights MTF's potential to recondition and protect against IRI by attenuating free radical damage, activating AMP-activated protein kinase to preserve cellular energy and promote repair, as well as directly reducing inflammation and enhancing microcirculation.
Collapse
Affiliation(s)
- Denise V. Nemeth
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX 78235, USA
| | - Leonardo Iannelli
- Department of Surgery, Sapienza University of Rome, 00161 Rome, Italy
| | - Elena Gangitano
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Vito D’Andrea
- Department of Surgery, Sapienza University of Rome, 00161 Rome, Italy
| | | |
Collapse
|
10
|
Zhao X, Li Y, Yu J, Teng H, Wu S, Wang Y, Zhou H, Li F. Role of mitochondria in pathogenesis and therapy of renal fibrosis. Metabolism 2024; 155:155913. [PMID: 38609039 DOI: 10.1016/j.metabol.2024.155913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Renal fibrosis, specifically tubulointerstitial fibrosis, represents the predominant pathological consequence observed in the context of progressive chronic kidney conditions. The pathogenesis of renal fibrosis encompasses a multifaceted interplay of mechanisms, including but not limited to interstitial fibroblast proliferation, activation, augmented production of extracellular matrix (ECM) components, and impaired ECM degradation. Notably, mitochondria, the intracellular organelles responsible for orchestrating biological oxidation processes in mammalian cells, assume a pivotal role within this intricate milieu. Mitochondrial dysfunction, when manifest, can incite a cascade of events, including inflammatory responses, perturbed mitochondrial autophagy, and associated processes, ultimately culminating in the genesis of renal fibrosis. This comprehensive review endeavors to furnish an exegesis of mitochondrial pathophysiology and biogenesis, elucidating the precise mechanisms through which mitochondrial aberrations contribute to the onset and progression of renal fibrosis. We explored how mitochondrial dysfunction, mitochondrial cytopathy and mitochondrial autophagy mediate ECM deposition and renal fibrosis from a multicellular perspective of mesangial cells, endothelial cells, podocytes, macrophages and fibroblasts. Furthermore, it succinctly encapsulates the most recent advancements in the realm of mitochondrial-targeted therapeutic strategies aimed at mitigating renal fibrosis.
Collapse
Affiliation(s)
- Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Jinyu Yu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Haolin Teng
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
11
|
Shapira T, Christofferson M, Av-Gay Y. The antimicrobial activity of innate host-directed therapies: A systematic review. Int J Antimicrob Agents 2024; 63:107138. [PMID: 38490573 DOI: 10.1016/j.ijantimicag.2024.107138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Intracellular human pathogens are the deadliest infectious diseases and are difficult to treat effectively due to their protection inside the host cell and the development of antimicrobial resistance (AMR). An emerging approach to combat these intracellular pathogens is host-directed therapies (HDT), which harness the innate immunity of host cells. HDT rely on small molecules to promote host protection mechanisms that ultimately lead to pathogen clearance. These therapies are hypothesized to: (1) possess indirect yet broad, cross-species antimicrobial activity, (2) effectively target drug-resistant pathogens, (3) carry a reduced susceptibility to the development of AMR and (4) have synergistic action with conventional antimicrobials. As the field of HDT expands, this systematic review was conducted to collect a compendium of HDT and their characteristics, such as the host mechanisms affected, the pathogen inhibited, the concentrations investigated and the magnitude of pathogen inhibition. The evidential support for the main four HDT hypotheses was assessed and concluded that HDT demonstrate robust cross-species activity, are active against AMR pathogens, clinical isolates and laboratory-adapted pathogens. However, limited information exists to support the notion that HDT are synergistic with canonical antimicrobials and are less predisposed to AMR development.
Collapse
Affiliation(s)
- Tirosh Shapira
- Department of Medicine, Division of Infectious Disease, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Matthew Christofferson
- Department of Microbiology and Immunology, Division of Infectious Disease, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yossef Av-Gay
- Department of Medicine, Division of Infectious Disease, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Microbiology and Immunology, Division of Infectious Disease, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
12
|
Liu C, Zhang S, Xue J, Zhang H, Yin J. Evaluation of PEN2-ATP6AP1 axis as an antiparasitic target for metformin based on phylogeny analysis and molecular docking. Mol Biochem Parasitol 2023; 255:111580. [PMID: 37473813 DOI: 10.1016/j.molbiopara.2023.111580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Metformin (Met), the first-line drug used in the treatment for type 2 diabetes mellitus, is effective against a variety of parasites. However, the molecular target of Met at clinical dose against various parasites remains unclear. Recently, low-dose Met (clinical dose) has been reported to directly bind PEN2 (presenilin enhancer protein 2) and initiate the lysosomal glucose-sensing pathway for AMPK activation via ATP6AP1 (V-type proton ATPase subunit S1), rather than perturbing AMP/ATP levels. METHODS To explore the possibility of PEN2-ATP6AP1 axis as a drug target of Met for the treatment of parasitic diseases, we identified and characterized orthologs of PEN2 and ATP6AP1 genes in parasites, by constructing phylogenetic trees, analyzing protein sequences and predicting interactions between Met and parasite PEN2. RESULTS The results showed that PEN2 and ATP6AP1 genes are only found together in a few of parasite species in the cestoda and nematoda groups. Indicated by molecular simulation, Met might function by interacting with PEN2 on V37/W38/E5 (Trichinella spiralis) with similar binding energy, and on F35/S39 (Caenorhabditis elegans) with higher binding energy, comparing to human PEN2. Hence, these results indicated that only the T. spiralis PEN2-ATP6AP1 axis has the potential to be the direct target of low-concentration Met. Together with contribution of host cells including immune cells in vivo, T. spiralis PEN2-ATP6AP1 axis might play roles in reducing parasite load at low-concentration Met. However, the mechanisms of low-concentration Met on other parasitic infections might be mainly achieved by regulating host cells, rather than directly targeting PEN2-ATP6AP1 axis. CONCLUSIONS These findings revealed the potential mechanisms by which Met treats various parasitic diseases, and shed new light on the development of antiparasitic drugs.
Collapse
Affiliation(s)
- Congshan Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Shangrui Zhang
- Henan Medical College, No. 8 Shuanghu Avenue, Longhu Town, Xinzheng, Zhengzhou City 451191, Henan Province, China
| | - Jian Xue
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Haobing Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China.
| |
Collapse
|
13
|
Luchetti CG, Lorenzo MS, Elia EM, Teplitz GM, Cruzans PR, Carou MC, Lombardo DM. Effects of the addition of insulin-transferrin-selenium (ITS) and/or metformin to the in vitro maturation of porcine oocytes on cytoplasmic maturation and embryo development. Reprod Fertil Dev 2023; 35:363-374. [PMID: 36780707 DOI: 10.1071/rd22254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 01/21/2023] [Indexed: 02/15/2023] Open
Abstract
CONTEXT One of the main problems of porcine in vitro maturation (IVM) is incomplete cytoplasmatic maturation. Nuclear and cytoplasmic maturation will determine the future success of fertilisation and embryo development. Insulin-transferrin-selenium (ITS) has insulin-like and antioxidant effects, and metformin (M) is an insulin-sensitiser and antioxidant drug. AIMS To assess the effects of adding ITS and/or M in porcine IVM media on cytoplasmic maturation and early embryo development. METHODS Cumulus -oocyte complexes (COC) were IVM with M (10-4 M), ITS (0.1% v/v), M+ITS or no adding (Control). KEY RESULTS ITS increased glucose consumption compared to Control and M (P <0.01), and M+ITS did not differ from ITS or Control. Redox balance: M, ITS and M+ITS increased glutathione (P <0.01) and decreased lipid peroxidation (P <0.005). The viability of cumulus cells by flow cytometry increased with M (P <0.005) and decreased with ITS (P <0.001); M+ITS did not differ from Control. After IVF, M increased penetration and decreased male pronucleus (P <0.05). Embryo development: cleavage increased with M (P <0.05), and blastocysts increased with ITS and M+ITS (P <0.05). The number of blastocyst cells increased with ITS (P <0.05). CONCLUSIONS Adding ITS and M+ITS to porcine IVM media benefits embryo development to blastocysts, but ITS alone has better effects than M+ITS. IMPLICATIONS ITS is an excellent tool to improve IVM and embryo development after IVF in pigs.
Collapse
Affiliation(s)
- Carolina Griselda Luchetti
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Cátedra de Histología y Embriología, Chorroarín 280, Buenos Aires C1427CWO, Argentina; and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQD, Argentina
| | - María Soledad Lorenzo
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Cátedra de Histología y Embriología, Chorroarín 280, Buenos Aires C1427CWO, Argentina; and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQD, Argentina
| | - Evelin Mariel Elia
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales (FCEN), Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina; and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina; and UBA, FCEN, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
| | - Gabriela Maia Teplitz
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Cátedra de Histología y Embriología, Chorroarín 280, Buenos Aires C1427CWO, Argentina; and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQD, Argentina
| | - Paula Romina Cruzans
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Cátedra de Histología y Embriología, Chorroarín 280, Buenos Aires C1427CWO, Argentina; and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQD, Argentina
| | - María Clara Carou
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Cátedra de Histología y Embriología, Chorroarín 280, Buenos Aires C1427CWO, Argentina
| | - Daniel Marcelo Lombardo
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Cátedra de Histología y Embriología, Chorroarín 280, Buenos Aires C1427CWO, Argentina; and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQD, Argentina
| |
Collapse
|
14
|
Wu T, Li C, Zhou J, Han L, Qiang S, Hu Z, Liu J, Li X, Zhao W, Chen X. Primaquine activates Keratin 7 to treat diabetes and its complications. J Diabetes Metab Disord 2022; 21:1731-1741. [PMID: 36404863 PMCID: PMC9672200 DOI: 10.1007/s40200-022-01135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Background The global prevalence of type 2 diabetes mellitus (T2DM) raises the rates of its complications, such as diabetic nephropathy and cardiovascular diseases. To conquer the complications, new strategies to reverse the deterioration of T2DM are urgently needed. In this project, we aimed to examine the hypoglycemic effect of primaquine and explore its specific target. Methods In vitro T2DM insulin resistance model was built in HepG2 cells to screen the potential anti-diabetic chemicals. On the other hand, the potential protein targets were explored by molecular docking. Accordingly, we chose C57BL/6 N mice to establish T2DM model to verify the effect of the chemicals on anti-hyperglycemia and diabetic complications. Results By targeting the Keratin 7 (K7) to activate EGFR/Akt glucose metabolism signaling pathway, primaquine poses a potent hypoglycemic effect. The level of acetyl-CoA is enhanced markedly, supporting that primaquine upregulates the aerobic glycolysis. Moreover, primaquine ameliorates kidney function by reducing the secretion of urinary proteins and creatinine, especially for the urea nitrogen which is significantly decreased compared to no-treatment T2DM mice. Notably, primaquine restores the level of plasma low-density lipoprotein cholesterol (LDL-C) nearly to normal, minimizing the incidence of cardiovascular diseases. Conclusions We find that primaquine may reverse the dysregulated metabolism to prevent diabetic complications by stimulating EGFR/Akt signaling axis, shedding new light on the therapy of T2DM. Graphical abstract Insulin resistance is characterized by reduced p-Akt and glucose metabolism, dominated by anaerobic glycolysis. Primaquine activates the complex made of K7 and EGFR, further stimulating Akt phosphorylation. Then, p-Akt promotes the aerobic glucose metabolism and upregulates Ac-CoA to mobilize TCA cycle, improving insulin sensitivity. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-022-01135-8.
Collapse
Affiliation(s)
- Tongyu Wu
- Department of Pharmacy, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Chun Li
- Department of Pharmacy, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Jing Zhou
- Department of Pharmacy, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Liang Han
- Department of Pharmacy, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Shaojia Qiang
- Department of Pharmacy, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Zhuozhou Hu
- Department of Pharmacy, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Jingjing Liu
- Department of Pharmacy, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Xiangxiang Li
- Department of Pharmacy, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Wenyang Zhao
- Department of Pharmacy, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Xinping Chen
- Department of Pharmacy, Lanzhou University, Lanzhou, 730000 People’s Republic of China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou, 730000 People’s Republic of China
| |
Collapse
|
15
|
Goel S, Singh R, Singh V, Singh H, Kumari P, Chopra H, Sharma R, Nepovimova E, Valis M, Kuca K, Emran TB. Metformin: Activation of 5' AMP-activated protein kinase and its emerging potential beyond anti-hyperglycemic action. Front Genet 2022; 13:1022739. [PMID: 36386794 PMCID: PMC9659887 DOI: 10.3389/fgene.2022.1022739] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Metformin is a plant-based drug belonging to the class of biguanides and is known to treat type-2 diabetes mellitus (T2DM). The drug, combined with controlling blood glucose levels, improves the body's response to insulin. In addition, trials have identified the cardioprotective potential of metformin in the diabetic population receiving the drug. Activation of 5' AMP-activated protein kinase (AMPK) is the major pathway for these potential beneficial effects of metformin. Historically, much emphasis has been placed on the potential indications of metformin beyond its anti-diabetic use. This review aims to appraise other potential uses of metformin primarily mediated by the activation of AMPK. We also discuss various mechanisms, other than AMPK activation, by which metformin could produce beneficial effects for different conditions. Databases including PubMed/MEDLINE and Embase were searched for literature relevant to the review's objective. Reports from both research and review articles were considered. We found that metformin has diverse effects on the human body systems. It has been shown to exert anti-inflammatory, antioxidant, cardioprotective, metabolic, neuroprotective, anti-cancer, and antimicrobial effects and has now even been identified as effective against SARS-CoV-2. Above all, the AMPK pathway has been recognized as responsible for metformin's efficiency and effectiveness. Owing to its extensive potential, it has the capability to become a part of treatment regimens for diseases apart from T2DM.
Collapse
Affiliation(s)
- Sanjay Goel
- Government Medical College, Patiala, Punjab, India
| | - Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Harmanjit Singh
- Department of Pharmacology, Government Medical College and Hospital, Chandigarh, India
| | - Pratima Kumari
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Neurology Clinic, University Hospital, Hradec Králové, Czechia
| | - Martin Valis
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
16
|
Triggle CR, Mohammed I, Bshesh K, Marei I, Ye K, Ding H, MacDonald R, Hollenberg MD, Hill MA. Metformin: Is it a drug for all reasons and diseases? Metabolism 2022; 133:155223. [PMID: 35640743 DOI: 10.1016/j.metabol.2022.155223] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Metformin was first used to treat type 2 diabetes in the late 1950s and in 2022 remains the first-choice drug used daily by approximately 150 million people. An accumulation of positive pre-clinical and clinical data has stimulated interest in re-purposing metformin to treat a variety of diseases including COVID-19. In polycystic ovary syndrome metformin improves insulin sensitivity. In type 1 diabetes metformin may help reduce the insulin dose. Meta-analysis and data from pre-clinical and clinical studies link metformin to a reduction in the incidence of cancer. Clinical trials, including MILES (Metformin In Longevity Study), and TAME (Targeting Aging with Metformin), have been designed to determine if metformin can offset aging and extend lifespan. Pre-clinical and clinical data suggest that metformin, via suppression of pro-inflammatory pathways, protection of mitochondria and vascular function, and direct actions on neuronal stem cells, may protect against neurodegenerative diseases. Metformin has also been studied for its anti-bacterial, -viral, -malaria efficacy. Collectively, these data raise the question: Is metformin a drug for all diseases? It remains unclear as to whether all of these putative beneficial effects are secondary to its actions as an anti-hyperglycemic and insulin-sensitizing drug, or result from other cellular actions, including inhibition of mTOR (mammalian target for rapamycin), or direct anti-viral actions. Clarification is also sought as to whether data from ex vivo studies based on the use of high concentrations of metformin can be translated into clinical benefits, or whether they reflect a 'Paracelsus' effect. The environmental impact of metformin, a drug with no known metabolites, is another emerging issue that has been linked to endocrine disruption in fish, and extensive use in T2D has also raised concerns over effects on human reproduction. The objectives for this review are to: 1) evaluate the putative mechanism(s) of action of metformin; 2) analyze the controversial evidence for metformin's effectiveness in the treatment of diseases other than type 2 diabetes; 3) assess the reproducibility of the data, and finally 4) reach an informed conclusion as to whether metformin is a drug for all diseases and reasons. We conclude that the primary clinical benefits of metformin result from its insulin-sensitizing and antihyperglycaemic effects that secondarily contribute to a reduced risk of a number of diseases and thereby enhancing healthspan. However, benefits like improving vascular endothelial function that are independent of effects on glucose homeostasis add to metformin's therapeutic actions.
Collapse
Affiliation(s)
- Chris R Triggle
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar; Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar.
| | - Ibrahim Mohammed
- Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Khalifa Bshesh
- Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Isra Marei
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Kevin Ye
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar; Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Ross MacDonald
- Distribution eLibrary, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, a Cumming School of Medicine, University of Calgary, T2N 4N1, Canada
| | - Michael A Hill
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia 65211, MO, USA
| |
Collapse
|
17
|
Fontinha D, Arez F, Gal IR, Nogueira G, Moita D, Baeurle THH, Brito C, Spangenberg T, Alves PM, Prudêncio M. Pre-erythrocytic Activity of M5717 in Monotherapy and Combination in Preclinical Plasmodium Infection Models. ACS Infect Dis 2022; 8:721-727. [PMID: 35312290 PMCID: PMC9003234 DOI: 10.1021/acsinfecdis.1c00640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Combination therapies
have emerged to mitigate Plasmodium drug resistance,
which has hampered the fight against malaria. M5717
is a potent multistage antiplasmodial drug under clinical development,
which inhibits parasite protein synthesis. The combination of M5717
with pyronaridine, an inhibitor of hemozoin formation, displays potent
activity against blood stage Plasmodium infection.
However, the impact of this therapy on liver infection by Plasmodium remains unknown. Here, we employed a recently
described 3D culture-based hepatic infection platform to evaluate
the activity of the M5717-pyronaridine combination against hepatic
infection by P. berghei. This effect was further
confirmed in vivo by employing the C57BL/6J rodent Plasmodium infection model. Collectively, our data demonstrate
that pyronaridine potentiates the activity of M5717 against P. berghei hepatic development. These preclinical results
contribute to the validation of pyronaridine as a suitable partner
drug for M5717, supporting the clinical evaluation of this novel antiplasmodial
combination therapy.
Collapse
Affiliation(s)
- Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Francisca Arez
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Isabella Ramella Gal
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Gonçalo Nogueira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Diana Moita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Tobias Hyun Ho Baeurle
- Site Management − Analytics, the healthcare business of Merck KGaA, 64293 Darmstadt, Germany
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading S.A. (a subsidiary of Merck KGaA Darmstadt Germany), 1262 Eysins, Switzerland
| | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
18
|
Baindara P, Agrawal S, Franco OL. Host-directed therapies for malaria and tuberculosis: common infection strategies and repurposed drugs. Expert Rev Anti Infect Ther 2022; 20:849-869. [DOI: 10.1080/14787210.2022.2044794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Piyush Baindara
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Missouri, Columbia, MO, USA
| | - Sonali Agrawal
- Immunology Division, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - O. L. Franco
- Proteomics Analysis and Biochemical Center, Catholic University of Brasilia, Brasilia, Brazil; S-Inova Biotech, Catholic University Dom Bosco, Campo Grande, MS, Brazil
| |
Collapse
|
19
|
Upadhyay C, Sharma N, Kumar S, Sharma PP, Fontinha D, Chhikara BS, Mukherjee B, Kumar D, Prudencio M, Singh AP, Poonam. Synthesis of the new analogs of morpholine and their antiplasmodial evaluation against the human malaria parasite Plasmodium falciparum. NEW J CHEM 2022. [DOI: 10.1039/d1nj04198c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of morpholine analogs functionalized with hydroxyethylamine (HEA) pharmacophore was synthesized and assayed for the initial screening against Plasmodium falciparum 3D7 in culture, which suggested that analog 6k is a hit molecule with an inhibitory concentration of 5.059 ± 0.2036 μM.
Collapse
Affiliation(s)
- Charu Upadhyay
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| | - Neha Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi 110007, India
| | - Sumit Kumar
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| | - Prem Prakash Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi 110007, India
| | - Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | | | - Budhaditya Mukherjee
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur-721302, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - Miguel Prudencio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Agam P. Singh
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| |
Collapse
|
20
|
Loos JA, Coccimiglio M, Nicolao MC, Rodrigues CR, Cumino AC. Metformin improves the therapeutic efficacy of low-dose albendazole against experimental alveolar echinococcosis. Parasitology 2022; 149:138-144. [PMID: 35184788 PMCID: PMC11010535 DOI: 10.1017/s0031182021001633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/28/2021] [Accepted: 09/17/2021] [Indexed: 11/06/2022]
Abstract
Alveolar echinococcosis (AE) is a severe disease caused by Echinococcus multilocularis. Its chemotherapeutic treatment is based on benzimidazoles, which are rarely curative and cause several adverse effects. Therefore, it is necessary to develop alternative and safer chemotherapeutic strategies against AE. It has previously been shown that metformin (Met) exhibits considerable in vivo activity on an early-infection model of AE when administered at 50 mg kg−1 day−1 for 8 weeks. Here, the challenge is heightened by a 2-fold increase in parasite inoculum or by starting the treatment 6 weeks post-infection. In both cases, only the combination of Met (100 mg kg−1 day−1) together with a sub-optimal dose of albendazole (ABZ) (5 mg kg−1 day−1) led to a significant reduction in parasite weight compared to the untreated group. Coincidentally, drug combination showed the highest level of damage in E. multilocularis metacestodes. Likewise, Met alone or combined with ABZ led to a decrease in parasite glucose availability, which was evidenced as a lower intracystic glucose concentration. Therefore, the results demonstrate that combination therapy with Met and ABZ offers an alternative to improve the efficacy and reduce the toxicity of the high-dose ABZ monotherapy currently employed.
Collapse
Affiliation(s)
- Julia A. Loos
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, (7600) Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Magalí Coccimiglio
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, (7600) Mar del Plata, Argentina
| | - María Celeste Nicolao
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, (7600) Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Christian Rodriguez Rodrigues
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, (7600) Mar del Plata, Argentina
| | - Andrea C. Cumino
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, (7600) Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, (7600) Mar del Plata, Argentina
| |
Collapse
|
21
|
Kukla DA, Khetani SR. Bioengineered Liver Models for Investigating Disease Pathogenesis and Regenerative Medicine. Semin Liver Dis 2021; 41:368-392. [PMID: 34139785 DOI: 10.1055/s-0041-1731016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Owing to species-specific differences in liver pathways, in vitro human liver models are utilized for elucidating mechanisms underlying disease pathogenesis, drug development, and regenerative medicine. To mitigate limitations with de-differentiated cultures, bioengineers have developed advanced techniques/platforms, including micropatterned cocultures, spheroids/organoids, bioprinting, and microfluidic devices, for perfusing cell cultures and liver slices. Such techniques improve mature functions and culture lifetime of primary and stem-cell human liver cells. Furthermore, bioengineered liver models display several features of liver diseases including infections with pathogens (e.g., malaria, hepatitis C/B viruses, Zika, dengue, yellow fever), alcoholic/nonalcoholic fatty liver disease, and cancer. Here, we discuss features of bioengineered human liver models, their uses for modeling aforementioned diseases, and how such models are being augmented/adapted for fabricating implantable human liver tissues for clinical therapy. Ultimately, continued advances in bioengineered human liver models have the potential to aid the development of novel, safe, and efficacious therapies for liver disease.
Collapse
Affiliation(s)
- David A Kukla
- Deparment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Salman R Khetani
- Deparment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
22
|
Affiliation(s)
- Malcolm J McConville
- Department of Biochemistry and Pharmacology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia.
| | | |
Collapse
|
23
|
Boeckmans J, Rombaut M, Demuyser T, Declerck B, Piérard D, Rogiers V, De Kock J, Waumans L, Magerman K, Cartuyvels R, Rummens JL, Rodrigues RM, Vanhaecke T. Infections at the nexus of metabolic-associated fatty liver disease. Arch Toxicol 2021; 95:2235-2253. [PMID: 34027561 PMCID: PMC8141380 DOI: 10.1007/s00204-021-03069-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease that affects about a quarter of the world population. MAFLD encompasses different disease stadia ranging from isolated liver steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocellular carcinoma. Although MAFLD is considered as the hepatic manifestation of the metabolic syndrome, multiple concomitant disease-potentiating factors can accelerate disease progression. Among these risk factors are diet, lifestyle, genetic traits, intake of steatogenic drugs, male gender and particular infections. Although infections often outweigh the development of fatty liver disease, pre-existing MAFLD could be triggered to progress towards more severe disease stadia. These combined disease cases might be underreported because of the high prevalence of both MAFLD and infectious diseases that can promote or exacerbate fatty liver disease development. In this review, we portray the molecular and cellular mechanisms by which the most relevant viral, bacterial and parasitic infections influence the progression of fatty liver disease and steatohepatitis. We focus in particular on how infectious diseases, including coronavirus disease-19, hepatitis C, acquired immunodeficiency syndrome, peptic ulcer and periodontitis, exacerbate MAFLD. We specifically underscore the synergistic effects of these infections with other MAFLD-promoting factors.
Collapse
Affiliation(s)
- Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
- Clinical Laboratory, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium.
| | - Matthias Rombaut
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Thomas Demuyser
- Department of Microbiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
- Center for Neurosciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Baptist Declerck
- Department of Microbiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Denis Piérard
- Department of Microbiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Luc Waumans
- Clinical Laboratory, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium
| | - Koen Magerman
- Clinical Laboratory, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium
- Department of Immunology and Infection, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Reinoud Cartuyvels
- Clinical Laboratory, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium
| | - Jean-Luc Rummens
- Clinical Laboratory, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| |
Collapse
|
24
|
Vijayan K, Wei L, Glennon EKK, Mattocks C, Bourgeois N, Staker B, Kaushansky A. Host-targeted Interventions as an Exciting Opportunity to Combat Malaria. Chem Rev 2021; 121:10452-10468. [PMID: 34197083 DOI: 10.1021/acs.chemrev.1c00062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Terminal and benign diseases alike in adults, children, pregnant women, and others are successfully treated by pharmacological inhibitors that target human enzymes. Despite extensive global efforts to fight malaria, the disease continues to be a massive worldwide health burden, and new interventional strategies are needed. Current drugs and vector control strategies have contributed to the reduction in malaria deaths over the past 10 years, but progress toward eradication has waned in recent years. Resistance to antimalarial drugs is a substantial and growing problem. Moreover, targeting dormant forms of the malaria parasite Plasmodium vivax is only possible with two approved drugs, which are both contraindicated for individuals with glucose-6-phosphate dehydrogenase deficiency and in pregnant women. Plasmodium parasites are obligate intracellular parasites and thus have specific and absolute requirements of their hosts. Growing evidence has described these host necessities, paving the way for opportunities to pharmacologically target host factors to eliminate Plasmodium infection. Here, we describe progress in malaria research and adjacent fields and discuss key challenges that remain in implementing host-directed therapy against malaria.
Collapse
Affiliation(s)
| | - Ling Wei
- Seattle Children's Research Institute, Seattle, Washington 98109, United States
| | | | - Christa Mattocks
- Department of Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Natasha Bourgeois
- Seattle Children's Research Institute, Seattle, Washington 98109, United States.,Department of Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Bart Staker
- Seattle Children's Research Institute, Seattle, Washington 98109, United States
| | - Alexis Kaushansky
- Seattle Children's Research Institute, Seattle, Washington 98109, United States.,Department of Global Health, University of Washington, Seattle, Washington 98195, United States.,Department of Pediatrics, University of Washington, Seattle, Washington 98105, United States.,Brotman Baty Institute for Precision Medicine, Seattle, Washington 98195, United States
| |
Collapse
|
25
|
Justice JN, Gubbi S, Kulkarni AS, Bartley JM, Kuchel GA, Barzilai N. A geroscience perspective on immune resilience and infectious diseases: a potential case for metformin. GeroScience 2021; 43:1093-1112. [PMID: 32902818 PMCID: PMC7479299 DOI: 10.1007/s11357-020-00261-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
We are in the midst of the global pandemic. Though acute respiratory coronavirus (SARS-COV2) that leads to COVID-19 infects people of all ages, severe symptoms and mortality occur disproportionately in older adults. Geroscience interventions that target biological aging could decrease risk across multiple age-related diseases and improve outcomes in response to infectious disease. This offers hope for a new host-directed therapeutic approach that could (i) improve outcomes following exposure or shorten treatment regimens; (ii) reduce the chronic pathology associated with the infectious disease and subsequent comorbidity, frailty, and disability; and (iii) promote development of immunological memory that protects against relapse or improves response to vaccination. We review the possibility of this approach by examining available evidence in metformin: a generic drug with a proven safety record that will be used in a large-scale multicenter clinical trial. Though rigorous translational research and clinical trials are needed to test this empirically, metformin may improve host immune defenses and confer protection against long-term health consequences of infectious disease, age-related chronic diseases, and geriatric syndromes.
Collapse
Affiliation(s)
- Jamie N Justice
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Internal Medicine - Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Sriram Gubbi
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Ameya S Kulkarni
- Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jenna M Bartley
- Center on Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - George A Kuchel
- Center on Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Nir Barzilai
- Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
26
|
Yang ASP, van Waardenburg YM, van de Vegte-Bolmer M, van Gemert GJA, Graumans W, de Wilt JHW, Sauerwein RW. Zonal human hepatocytes are differentially permissive to Plasmodium falciparum malaria parasites. EMBO J 2021; 40:e106583. [PMID: 33459428 PMCID: PMC7957391 DOI: 10.15252/embj.2020106583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
Plasmodium falciparum (Pf) is a major cause of human malaria and is transmitted by infected Anopheles mosquitoes. The initial asymptomatic infection is characterized by parasite invasion of hepatocytes, followed by massive replication generating schizonts with blood‐infective merozoites. Hepatocytes can be categorized by their zonal location and metabolic functions within a liver lobule. To understand specific host conditions that affect infectivity, we studied Pf parasite liver stage development in relation to the metabolic heterogeneity of fresh human hepatocytes. We found selective preference of different Pf strains for a minority of hepatocytes, which are characterized by the particular presence of glutamine synthetase (hGS). Schizont growth is significantly enhanced by hGS uptake early in development, showcasing a novel import system. In conclusion, Pf development is strongly determined by the differential metabolic status in hepatocyte subtypes. These findings underscore the importance of detailed understanding of hepatocyte host‐Pf interactions and may delineate novel pathways for intervention strategies.
Collapse
Affiliation(s)
- Annie S P Yang
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Youri M van Waardenburg
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marga van de Vegte-Bolmer
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert-Jan A van Gemert
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wouter Graumans
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johannes H W de Wilt
- Department of surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robert W Sauerwein
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
27
|
Mohammed I, Hollenberg MD, Ding H, Triggle CR. A Critical Review of the Evidence That Metformin Is a Putative Anti-Aging Drug That Enhances Healthspan and Extends Lifespan. Front Endocrinol (Lausanne) 2021; 12:718942. [PMID: 34421827 PMCID: PMC8374068 DOI: 10.3389/fendo.2021.718942] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
The numerous beneficial health outcomes associated with the use of metformin to treat patients with type 2 diabetes (T2DM), together with data from pre-clinical studies in animals including the nematode, C. elegans, and mice have prompted investigations into whether metformin has therapeutic utility as an anti-aging drug that may also extend lifespan. Indeed, clinical trials, including the MILES (Metformin In Longevity Study) and TAME (Targeting Aging with Metformin), have been designed to assess the potential benefits of metformin as an anti-aging drug. Preliminary analysis of results from MILES indicate that metformin may induce anti-aging transcriptional changes; however it remains controversial as to whether metformin is protective in those subjects free of disease. Furthermore, despite clinical use for over 60 years as an anti-diabetic drug, the cellular mechanisms by which metformin exerts either its actions remain unclear. In this review, we have critically evaluated the literature that has investigated the effects of metformin on aging, healthspan and lifespan in humans as well as other species. In preparing this review, particular attention has been placed on the strength and reproducibility of data and quality of the study protocols with respect to the pharmacokinetic and pharmacodynamic properties of metformin. We conclude that despite data in support of anti-aging benefits, the evidence that metformin increases lifespan remains controversial. However, via its ability to reduce early mortality associated with various diseases, including diabetes, cardiovascular disease, cognitive decline and cancer, metformin can improve healthspan thereby extending the period of life spent in good health. Based on the available evidence we conclude that the beneficial effects of metformin on aging and healthspan are primarily indirect via its effects on cellular metabolism and result from its anti-hyperglycemic action, enhancing insulin sensitivity, reduction of oxidative stress and protective effects on the endothelium and vascular function.
Collapse
Affiliation(s)
- Ibrahim Mohammed
- Department of Medical Education, Weill Cornell Medicine-Qatar, Al-Rayyan, Qatar
- *Correspondence: Chris R. Triggle, ; Ibrahim Mohammed,
| | - Morley D. Hollenberg
- Inflammation Research Network and Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
- Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Hong Ding
- Department of Medical Education, Weill Cornell Medicine-Qatar, Al-Rayyan, Qatar
- Departments of Medical Education and Pharmacology, Weill Cornell Medicine-Qatar, Al-Rayyan, Qatar
| | - Chris R. Triggle
- Department of Medical Education, Weill Cornell Medicine-Qatar, Al-Rayyan, Qatar
- Departments of Medical Education and Pharmacology, Weill Cornell Medicine-Qatar, Al-Rayyan, Qatar
- *Correspondence: Chris R. Triggle, ; Ibrahim Mohammed,
| |
Collapse
|
28
|
Mansouri K, Rastegari-Pouyani M, Ghanbri-Movahed M, Safarzadeh M, Kiani S, Ghanbari-Movahed Z. Can a metabolism-targeted therapeutic intervention successfully subjugate SARS-COV-2? A scientific rational. Biomed Pharmacother 2020; 131:110694. [PMID: 32920511 PMCID: PMC7451059 DOI: 10.1016/j.biopha.2020.110694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022] Open
Abstract
As a process entailing a high turnover of the host cell molecules, viral replication is required for a successful viral infection and requests virus capacity to acquire the macromolecules required for its propagation. To this end, viruses have adopted several strategies to harness cellular metabolism in accordance with their specific demands. Most viruses upregulate specific cellular anabolic pathways and are largely dependent on such alterations. RNA viruses, for example, upregulate both glycolysisand glycogenolysis providing TCA cycle intermediates essential for anabolic lipogenesis. Also, these infections usually induce the PPP, leading to increased nucleotide levels supporting viral replication. SARS-CoV-2 (the cause of COVID-19)that has so far spread from China throughout the world is also an RNA virus. Owing to the more metabolic plasticity of uninfected cells, a promising approach for specific antiviral therapy, which has drawn a lot of attention in the recent years, would be the targeting of metabolic changes induced by viruses. In the current review, we first summarize some of virus-induced metabolic adaptations and then based on these information as well as SARS-CoV-2 pathogenesis, propose a potential therapeutic modality for this calamitous world-spreading virus with the hope of employing this strategy for near-future clinical application.
Collapse
Affiliation(s)
- Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Rastegari-Pouyani
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Ghanbri-Movahed
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Mehrnoush Safarzadeh
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Kiani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Ghanbari-Movahed
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
29
|
Repurposing Drugs to Fight Hepatic Malaria Parasites. Molecules 2020; 25:molecules25153409. [PMID: 32731386 PMCID: PMC7435416 DOI: 10.3390/molecules25153409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Malaria remains one of the most prevalent infectious diseases worldwide, primarily affecting some of the most vulnerable populations around the globe. Despite achievements in the treatment of this devastating disease, there is still an urgent need for the discovery of new drugs that tackle infection by Plasmodium parasites. However, de novo drug development is a costly and time-consuming process. An alternative strategy is to evaluate the anti-plasmodial activity of compounds that are already approved for other purposes, an approach known as drug repurposing. Here, we will review efforts to assess the anti-plasmodial activity of existing drugs, with an emphasis on the obligatory and clinically silent liver stage of infection. We will also review the current knowledge on the classes of compounds that might be therapeutically relevant against Plasmodium in the context of other communicable diseases that are prevalent in regions where malaria is endemic. Repositioning existing compounds may constitute a faster solution to the current gap of prophylactic and therapeutic drugs that act on Plasmodium parasites, overall contributing to the global effort of malaria eradication.
Collapse
|
30
|
Insulin Resistance in Osteoarthritis: Similar Mechanisms to Type 2 Diabetes Mellitus. J Nutr Metab 2020; 2020:4143802. [PMID: 32566279 PMCID: PMC7261331 DOI: 10.1155/2020/4143802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) and type 2 diabetes mellitus (T2D) are two of the most widespread chronic diseases. OA and T2D have common epidemiologic traits, are considered heterogenic multifactorial pathologies that develop through the interaction of genetic and environmental factors, and have common risk factors. In addition, both of these diseases often manifest in a single patient. Despite differences in clinical manifestations, both diseases are characterized by disturbances in cellular metabolism and by an insulin-resistant state primarily associated with the production and utilization of energy. However, currently, the primary cause of OA development and progression is not clear. In addition, although OA is manifested as a joint disease, evidence has accumulated that it affects the whole body. As pathological insulin resistance is viewed as a driving force of T2D development, now, we present evidence that the molecular and cellular metabolic disturbances associated with OA are linked to an insulin-resistant state similar to T2D. Moreover, the alterations in cellular energy requirements associated with insulin resistance could affect many metabolic changes in the body that eventually result in pathology and could serve as a unified mechanism that also functions in many metabolic diseases. However, these issues have not been comprehensively described. Therefore, here, we discuss the basic molecular mechanisms underlying the pathological processes associated with the development of insulin resistance; the major inducers, regulators, and metabolic consequences of insulin resistance; and instruments for controlling insulin resistance as a new approach to therapy.
Collapse
|