1
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Natural products and ferroptosis: A novel approach for heart failure management. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156783. [PMID: 40286752 DOI: 10.1016/j.phymed.2025.156783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/23/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND The discovery of ferroptosis has brought a revolutionary breakthrough in heart failure treatment, and natural products, as a significant source of drug discovery, are gradually demonstrating their extraordinary potential in regulating ferroptosis and alleviating heart failure symptoms. In addition to chemically synthesized small molecule compounds, natural products have attracted attention as an important source for discovering compounds that target ferroptosis in treating heart failure. PURPOSE Systematically summarize and analyze the research progress on improving heart failure through natural products' modulation of the ferroptosis pathway. METHODS By comprehensively searching authoritative databases like PubMed, Web of Science, and China National Knowledge Infrastructure with keywords such as "heart failure", "cardiovascular disease", "heart disease", "ferroptosis", "natural products", "active compounds", "traditional Chinese medicine formulas", "traditional Chinese medicine", and "acupuncture", we aim to systematically review the mechanism of ferroptosis and its link with heart failure. We also want to explore natural small-molecule compounds, traditional Chinese medicine formulas, and acupuncture therapies that can inhibit ferroptosis to improve heart failure. RESULTS In this review, we not only trace the evolution of the concept of ferroptosis and clearly distinguish it from other forms of cell death but also establish a comprehensive theoretical framework encompassing core mechanisms such as iron overload and system xc-/GSH/GPX4 imbalance, along with multiple auxiliary pathways. On this basis, we innovatively link ferroptosis with various types of heart failure, covering classic heart failure types and extending our research to pre-heart failure conditions such as arrhythmia and aortic aneurysm, providing new insights for early intervention in heart failure. Importantly, this article systematically integrates multiple strategies of natural products for interfering with ferroptosis, ranging from monomeric compounds and bioactive components to crude extracts and further to traditional Chinese medicine formulae. In addition, non-pharmacological means such as acupuncture are also included. CONCLUSION This study fills the gap in the systematic description of the relationship between ferroptosis and heart failure and the therapeutic strategies of natural products, aiming to provide patients with more diverse treatment options and promote the development of the heart failure treatment field.
Collapse
Affiliation(s)
- Zeyu Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Zhihua Yang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Shuai Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China
| | - Xianliang Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China.
| | - Jingyuan Mao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China.
| |
Collapse
|
2
|
Raza S, Tewari A, Rajak S, Gupta P, Sinha RA. Extracellular RNA mediates iron-induced toxicity and inflammatory signalling in hepatic cells. Toxicol Rep 2025; 14:102002. [PMID: 40162071 PMCID: PMC7617531 DOI: 10.1016/j.toxrep.2025.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
Hepatic iron accumulation and toxicity is a frequent finding in chronic liver diseases such as hereditary hemochromatosis (HH), metabolic associated fatty liver disease (MASLD), alcoholic liver disease (ALD) and hepatitis C virus (HCV) infection, however, it's contribution to disease pathology is not fully understood. Here, using HepG2 cells we show that iron induced hepatocyte damage triggers the release of extracellular RNAs (eRNAs), which bind to the toll-like receptor 3 (TLR3), resulting in the production of pro-inflammatory cytokines. Furthermore, the inhibition of eRNA activity by RNase1 and TLR3 inhibitor significantly improved cell viability as well as NLRP3 and NF-kB-mediated inflammatory signalling. Therefore, eRNA antagonism could represent a novel therapeutic approach to reduce iron-induced inflammation in chronic liver diseases.
Collapse
Affiliation(s)
- Sana Raza
- Correspondence to: Department of Endocrinology, India
| | | | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Pratima Gupta
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
3
|
Yap JQ, Nikouee A, Lau JE, Walsh G, Zang QS. Mitochondria at the Heart of Sepsis: Mechanisms, Metabolism, and Sex Differences. Int J Mol Sci 2025; 26:4211. [PMID: 40362448 PMCID: PMC12071423 DOI: 10.3390/ijms26094211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Sepsis is a life-threatening condition that occurs when the body is unable to effectively combat infection, leading to systemic inflammation and multi-organ failure. Interestingly, females exhibit lower sepsis incidence and improved clinical outcomes compared to males. However, the mechanisms underlying these sex-specific differences remain poorly understood. While sex hormones have been a primary focus, emerging evidence suggests that non-hormonal factors also play contributory roles. Despite sex differences in sepsis, clinical management is the same for both males and females, with treatment focused on combating infection using antibiotics and hemodynamic support through fluid therapy. However, even with these interventions, mortality remains high, highlighting the need for more effective and targeted therapeutic strategies. Sepsis-induced cardiomyopathy (SIC) is a key contributor to multi-organ failure and is characterized by left ventricular dilation and impaired cardiac contractility. In this review, we explore sex-specific differences in sepsis and SIC, with a particular focus on mitochondrial metabolism. Mitochondria generate the ATP required for cardiac function through fatty acid and glucose oxidation, and recent studies have revealed distinct metabolic profiles between males and females, which can further differ in the context of sepsis and SIC. Targeting these metabolic pathways could provide new avenues for sepsis treatment.
Collapse
Affiliation(s)
- John Q. Yap
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL 60153, USA; (J.Q.Y.); (A.N.); (J.E.L.); (G.W.)
- Burn & Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL 60153, USA
| | - Azadeh Nikouee
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL 60153, USA; (J.Q.Y.); (A.N.); (J.E.L.); (G.W.)
- Burn & Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL 60153, USA
| | - Jessie E. Lau
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL 60153, USA; (J.Q.Y.); (A.N.); (J.E.L.); (G.W.)
- Burn & Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL 60153, USA
| | - Gabriella Walsh
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL 60153, USA; (J.Q.Y.); (A.N.); (J.E.L.); (G.W.)
- Burn & Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL 60153, USA
| | - Qun Sophia Zang
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL 60153, USA; (J.Q.Y.); (A.N.); (J.E.L.); (G.W.)
- Burn & Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL 60153, USA
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL 60153, USA
- Cardiovascular Research Institute, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL 60153, USA
| |
Collapse
|
4
|
Li X, Li X, Huang P, Zhang F, Du JK, Kong Y, Shao Z, Wu X, Fan W, Tao H, Zhou C, Shao Y, Jin Y, Ye M, Chen Y, Deng J, Shao J, Yue J, Cheng X, Chinn YE. Acetylation of TIR domains in the TLR4-Mal-MyD88 complex regulates immune responses in sepsis. EMBO J 2024; 43:4954-4983. [PMID: 39294473 PMCID: PMC11535217 DOI: 10.1038/s44318-024-00237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024] Open
Abstract
Activation of the Toll-like receptor 4 (TLR4) by bacterial endotoxins in macrophages plays a crucial role in the pathogenesis of sepsis. However, the mechanism underlying TLR4 activation in macrophages is still not fully understood. Here, we reveal that upon lipopolysaccharide (LPS) stimulation, lysine acetyltransferase CBP is recruited to the TLR4 signalosome complex leading to increased acetylation of the TIR domains of the TLR4 signalosome. Acetylation of the TLR4 signalosome TIR domains significantly enhances signaling activation via NF-κB rather than IRF3 pathways. Induction of NF-κB signaling is responsible for gene expression changes leading to M1 macrophage polarization. In sepsis patients, significantly elevated TLR4-TIR acetylation is observed in CD16+ monocytes combined with elevated expression of M1 macrophage markers. Pharmacological inhibition of HDAC1, which deacetylates the TIR domains, or CBP play opposite roles in sepsis. Our findings highlight the important role of TLR4-TIR domain acetylation in the regulation of the immune responses in sepsis, and we propose this reversible acetylation of TLR4 signalosomes as a potential therapeutic target for M1 macrophages during the progression of sepsis.
Collapse
Affiliation(s)
- Xue Li
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China.
- Yantai Peninsular Cancer Center, Binzhou Medical University, Yantai, China.
- Life Science Research Institute, Zhejiang University, Hangzhou, China.
| | - Xiangrong Li
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Pengpeng Huang
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Facai Zhang
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Juanjuan K Du
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ying Kong
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziqiang Shao
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xinxing Wu
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Weijiao Fan
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Houquan Tao
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Chuanzan Zhou
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yan Shao
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yanling Jin
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Meihua Ye
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yan Chen
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jong Deng
- Yantai Peninsular Cancer Center, Binzhou Medical University, Yantai, China
| | - Jimin Shao
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Jicheng Yue
- Yantai Peninsular Cancer Center, Binzhou Medical University, Yantai, China
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China.
| | - Y Eugene Chinn
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China.
- Yantai Peninsular Cancer Center, Binzhou Medical University, Yantai, China.
| |
Collapse
|
5
|
Wang T, Zhang M, Dong W, Wang J, Zhang H, Wang Y, Ji B. Venoarterial Extracorporeal Membrane Oxygenation Implementation in Septic Shock Rat Model. ASAIO J 2024; 70:653-660. [PMID: 38421440 PMCID: PMC11280450 DOI: 10.1097/mat.0000000000002168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Septic shock, a global health concern, boasts high mortality rates. Research exploring the efficacy of venoarterial extracorporeal membrane oxygenation (VA-ECMO) in septic shock remains limited. Our study aimed to establish a rodent model employing VA-ECMO in septic shock rats, assessing the therapeutic impact of VA-ECMO on septic shock. Nineteen Sprague-Dawley rats were randomly assigned to sham, septic shock, and (septic shock + VA-ECMO; SSE) groups. Septic shock was induced by intravenous lipopolysaccharides, confirmed by a mean arterial pressure drop to 25-30% of baseline. Rats in the SSE group received 2 hours of VA-ECMO support and 60 minutes of post-weaning ventilation. Sham and septic shock groups underwent mechanical ventilation for equivalent durations. Invasive mean arterial pressure monitoring, echocardiographic examinations, and blood gas analysis revealed the efficacy of VA-ECMO in restoring circulation and ensuring adequate tissue oxygenation in septic shock rats. Post-experiment pathology exhibited the potential of VA-ECMO in mitigating major organ injury. In summary, our study successfully established a stable septic shock rat model with the implementation of VA-ECMO, offering a valuable platform to explore molecular mechanisms underlying VA-ECMO's impact on septic shock.
Collapse
Affiliation(s)
- Tianlong Wang
- From the Department of Cardiopulmonary Bypass, Fuwai Hospital, National Center for Cardiovascular Disease, State Key Laboratory of Cardiovascular Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mingru Zhang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wenhao Dong
- Surgical IntensiveCare Unit, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- From the Department of Cardiopulmonary Bypass, Fuwai Hospital, National Center for Cardiovascular Disease, State Key Laboratory of Cardiovascular Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Han Zhang
- From the Department of Cardiopulmonary Bypass, Fuwai Hospital, National Center for Cardiovascular Disease, State Key Laboratory of Cardiovascular Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuefu Wang
- Surgical IntensiveCare Unit, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Bingyang Ji
- From the Department of Cardiopulmonary Bypass, Fuwai Hospital, National Center for Cardiovascular Disease, State Key Laboratory of Cardiovascular Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Hu K, Jiang P, Hu J, Song B, Hou Y, Zhao J, Chen H, Xie J. Dapagliflozin attenuates LPS-induced myocardial injury by reducing ferroptosis. J Bioenerg Biomembr 2024; 56:361-371. [PMID: 38743190 DOI: 10.1007/s10863-024-10020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Septic cardiomyopathy is a severe cardiovascular disease with a poor prognosis. Previous studies have reported the involvement of ferroptosis in the pathogenesis of septic cardiomyopathy. SGLT2 inhibitors such as dapagliflozin have been demonstrated to improve ischemia-reperfusion injury by alleviating ferroptosis in cardiomyocyte. However, the role of dapagliflozin in sepsis remains unclear. Therefore, our study aims to investigate the therapeutic effects of dapagliflozin on LPS-induced septic cardiomyopathy. Our results indicate that dapagliflozin improved cardiac function in septic cardiomyopathy experimental mice. Mechanistically, dapagliflozin works by inhibiting the translation of key proteins involved in ferroptosis, such as GPX4, FTH1, and SLC7A11. It also reduces the transcription of lipid peroxidation-related mRNAs, including PTGS2 and ACSL4, as well as iron metabolism genes TFRC and HMOX1.
Collapse
Affiliation(s)
- Ke Hu
- The Affiliated Drum Tower Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Pin Jiang
- Department of General Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Jiaxin Hu
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, 445000, Hubei, China
| | - Bing Song
- Department of Cardiology, National Cardiovascular Disease Regional Center for Anhui, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Ya Hou
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Jinxuan Zhao
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, 210008, Jiangsu, China.
| | - Haiting Chen
- Department of Cardiology, National Cardiovascular Disease Regional Center for Anhui, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Jun Xie
- The Affiliated Drum Tower Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
- Department of Cardiology, National Cardiovascular Disease Regional Center for Anhui, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
7
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Decoding ferroptosis: Revealing the hidden assassin behind cardiovascular diseases. Biomed Pharmacother 2024; 176:116761. [PMID: 38788596 DOI: 10.1016/j.biopha.2024.116761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The discovery of regulatory cell death processes has driven innovation in cardiovascular disease (CVD) therapeutic strategies. Over the past decade, ferroptosis, an iron-dependent form of regulated cell death driven by excessive lipid peroxidation, has been shown to drive the development of multiple CVDs. This review provides insights into the evolution of the concept of ferroptosis, the similarities and differences with traditional modes of programmed cell death (e.g., apoptosis, autophagy, and necrosis), as well as the core regulatory mechanisms of ferroptosis (including cystine/glutamate transporter blockade, imbalance of iron metabolism, and lipid peroxidation). In addition, it provides not only a detailed review of the role of ferroptosis and its therapeutic potential in widely studied CVDs such as coronary atherosclerotic heart disease, myocardial infarction, myocardial ischemia/reperfusion injury, heart failure, cardiomyopathy, and aortic aneurysm but also an overview of the phenomenon and therapeutic perspectives of ferroptosis in lesser-addressed CVDs such as cardiac valvulopathy, pulmonary hypertension, and sickle cell disease. This article aims to integrate this knowledge to provide a comprehensive view of ferroptosis in a wide range of CVDs and to drive innovation and progress in therapeutic strategies in this field.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
8
|
Neu C, Beckers C, Frank N, Thomas K, Bartneck M, Simon TP, Mossanen J, Peters K, Singendonk T, Martin L, Marx G, Kraemer S, Zechendorf E. Ribonuclease inhibitor 1 emerges as a potential biomarker and modulates inflammation and iron homeostasis in sepsis. Sci Rep 2024; 14:14972. [PMID: 38951571 PMCID: PMC11217267 DOI: 10.1038/s41598-024-65778-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
Sepsis, marked by organ dysfunction, necessitates reliable biomarkers. Ribonuclease inhibitor 1 (RNH1), a ribonuclease (RNase) inhibitor, emerged as a potential biomarker for acute kidney injury and mortality in thoracoabdominal aortic aneurysm patients. Our study investigates RNH1 dynamics in sepsis, its links to mortality and organ dysfunction, and the interplay with RNase 1 and RNase 5. Furthermore, we explore RNH1 as a therapeutic target in sepsis-related processes like inflammation, non-canonical inflammasome activation, and iron homeostasis. We showed that RNH1 levels are significantly higher in deceased patients compared to sepsis survivors and correlate with creatine kinase, aspartate and alanine transaminase, bilirubin, serum creatinine and RNase 5, but not RNase 1. RNH1 mitigated LPS-induced TNFα and RNase 5 secretion, and relative mRNA expression of ferroptosis-associated genes HMOX1, FTH1 and HAMP in PBMCs. Monocytes were identified as the predominant type of LPS-positive PBMCs. Exogenous RNH1 attenuated LPS-induced CASP5 expression, while increasing IL-1β secretion in PBMCs and THP-1 macrophages. As RNH1 has contradictory effects on inflammation and non-canonical inflammasome activation, its use as a therapeutic agent is limited. However, RNH1 levels may play a central role in iron homeostasis during sepsis, supporting our clinical observations. Hence, RNH1 shows promise as biomarkers for renal and hepatic dysfunction and hepatocyte injury, and may be useful in predicting the outcome of septic patients.
Collapse
Affiliation(s)
- Carolina Neu
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Christian Beckers
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Nadine Frank
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Katharina Thomas
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Matthias Bartneck
- Department of Medicine III, University Hospital RWTH Aachen, 52074, Aachen, Germany
| | - Tim-Philipp Simon
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jana Mossanen
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Kimmo Peters
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Tobias Singendonk
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Lukas Martin
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Gernot Marx
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sandra Kraemer
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Elisabeth Zechendorf
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
9
|
Zhao W, Liu Y, Yang Y, Wang L. New link between RNH1 and E2F1: regulates the development of lung adenocarcinoma. BMC Cancer 2024; 24:635. [PMID: 38783241 PMCID: PMC11118993 DOI: 10.1186/s12885-024-12392-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a non-small cell carcinoma. Ribonuclease/angiogenin inhibitor 1 (RNH1) exerts multiple roles in virous cancers. E2F1 is a critical transcription factor involved in the LUAD development. Here, we analyze the expression of RNH1 in LUAD patients, investigate the biological function of RNH1 in LUAD, and demonstrate its potential mechanisms through E2F1 in LUAD. METHODS In the present study, we presented the expression of RNH1 in LUAD based on the database and confirmed it by western blot detection of RNH1 in human LUAD tissues. Lentiviral infection was constructed to silence or overexpress RNH1 in NCI-H1395 and NCI-H1437 cells. We assess the role of RNH1 on proliferation in LUAD cells by MTT assay, colony formation assays, and cell cycle detection. Hoechst staining and flow cytometry were used to evaluate the effects of RNH1 on apoptosis of LUAD cells. The function of RNH1 in invasion and migration was investigated by Transwell assay. Dual luciferase assay, ChIP detection, and pull-down assay were conducted to explore the association of E2F1 in the maintenance of RNH1 expression and function. The regulation of E2F1 on the functions of RNH1 in LUAD cells was explored. Mouse experiments were performed to confirm the in-vivo role of RNH1 in LUAD. mRNA sequencing indicated that RNH1 overexpression altered the expression profile of LUAD cells. RESULTS RNH1 expression in LUAD tissues of patients was presented in this work. Importantly, RNH1 knockdown improved the proliferation, migration and invasion abilities of cells and RNH1 overexpression produced the opposite effects. Dual luciferase assay proved that E2F1 bound to the RNH1 promoter (-1064 ∼ -1054, -1514 ∼ -1504) to reduce the transcriptional activity of RNH1. ChIP assay indicated that E2F1 DNA was enriched at the RNH1 promoter (-1148 ∼ -943, -1628 ∼ -1423). Pull-down assays also showed the association between E2F1 and RNH1 promoter (-1148 ∼ -943). E2F1 overexpression contributed to the malignant behavior of LUAD cells, while RNH1 overexpression reversed it. High-throughput sequencing showed that RNH1 overexpression induced multiple genes expression changes, thereby modulating LUAD-related processes. CONCLUSION Our study demonstrates that binding of E2F1 to the RNH1 promoter may lead to inhibition of RNH1 expression and thus promoting the development of LUAD.
Collapse
Affiliation(s)
- Wenyue Zhao
- Department of Thoracic Surgery, The First Hospital of China Medical University, 155# Nanjing North Street, Shenyang, Liaoning, China
| | - Yang Liu
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Yang
- Department of Operating Room, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liming Wang
- Department of Thoracic Surgery, The First Hospital of China Medical University, 155# Nanjing North Street, Shenyang, Liaoning, China.
| |
Collapse
|
10
|
Su Z, Gao M, Weng L, Xu T. Esculin targets TLR4 to protect against LPS-induced septic cardiomyopathy. Int Immunopharmacol 2024; 131:111897. [PMID: 38513575 DOI: 10.1016/j.intimp.2024.111897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/05/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Esculin, a main active ingredient from Cortex fraxini, possesses biological activities such as anti-thrombosis, anti-inflammatory, and anti-oxidation effects. However, the effects of Esculin on septic cardiomyopathy remains unclear. This study aimed to explore the protective properties and mechanisms of Esculin in countering sepsis-induced cardiac trauma and dysfunction. METHODS AND RESULTS In lipopolysaccharide (LPS)-induced mice model, Esculin could obviously improve heart injury and function. Esculin treatment also significantly reduced the production of inflammatory and apoptotic cells, the release of inflammatory cytokines, and the expression of oxidative stress-associated and apoptosis-associated markers in hearts compared to LPS injection alone. These results were consistent with those of in vitro experiments based on neonatal rat cardiomyocytes. Database analysis and molecular docking suggested that TLR4 was targeted by Esculin, as shown by stable hydrogen bonds formed between Esculin with VAL-308, ASN-307, CYS-280, CYS-304 and ASP-281 of TLR4. Esculin reversed LPS-induced upregulation of TLR4 and phosphorylation of NF-κB p65 in cardiomyocytes. The plasmid overexpressing TLR4 abolished the protective properties of Esculin in vitro. CONCLUSION We concluded that Esculin could alleviate LPS-induced septic cardiomyopathy via binding to TLR4 to attenuate cardiomyocyte inflammation, oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Zhenyang Su
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Min Gao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Liqing Weng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China.
| | - Tianhua Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
11
|
张 晓, 赵 品, 蒯 建, 常 超, 袁 庆. [Spermidine alleviates lipopolysaccharide-induced myocardial injury in mice by suppressing apoptosis, ROS production and ferroptosis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:166-172. [PMID: 38293988 PMCID: PMC10878897 DOI: 10.12122/j.issn.1673-4254.2024.01.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Indexed: 02/01/2024]
Abstract
OBJECTIVE To investigate the protective effect of spermidine against lipopolysaccharide (LPS)-induced myocardial injury in mice and the underlying mechanism. METHODS C57BL/6 mice subjected to intraperitoneal LPS injection with or without pretreatment with daily gavage of spermidine for 2 weeks were examined for myocardial pathologies using HE staining and transmission electron microscopy. In the cell experiment, cultured rat cardiomyocytes (H9c2 cells) were pretreated with 10 or 20 μmol/L spermidine before LPS exposure for 2 h, and the changes in cell viability and levels of lactate dehydrogenase (LDH) and cardiac troponin Ⅰ (cTNI) were assessed using CCK-8 kit, LDH detection kit and ELISA, respectively. Western blotting was performed to detect the changes in the expressions of Bax, Bcl-2, cleaved caspase-3, SLC7A11 and GPX4; the changes in reactive oxygen species (ROS) and Fe2+ levels were detected using fluorescent probes, and mitochondrial membrane potential of the cells was measured using JC-1 staining. RESULTS Treatment of the mice with LPS induced obvious myocardial and mitochondrial damages, which were significantly alleviated by pretreatment with spermidine. In H9c2 cells, LPS exposure significantly lowered the cell viability, increased LDH and cTNI levels and expressions of Bax and cleaved caspase-3 levels, decreased expressions of Bcl-2, SLC7A11 and GPX4, increased ROS production and Fe2+ level (P < 0.05), and lowered mitochondrial membrane potential (all P < 0.05). These effects were significantly alleviated by SPD pretreatment of the cells prior to LPS exposure. CONCLUSION Spermidine alleviates LPS-induced myocardial injury by suppressing cell apoptosis and inhibiting cellular ROS production and ferroptosis.
Collapse
Affiliation(s)
- 晓红 张
- 西北大学生命科学学院,陕西 西安 710069College of Life Sciences, Northwest University, Xi'an 710069, China
| | - 品 赵
- 西北大学附属医院//西安市第三医院麻醉科,陕西 西安 710018Department of Anesthesiology, Xi'an Third Hospital/Affiliated Hospital of Northwest University, Xi'an 710018, China
| | - 建科 蒯
- 西北大学附属医院//西安市第三医院麻醉科,陕西 西安 710018Department of Anesthesiology, Xi'an Third Hospital/Affiliated Hospital of Northwest University, Xi'an 710018, China
| | - 超 常
- 西北大学生命科学与医学部,陕西 西安 710069Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069
| | - 庆 袁
- 西北大学生命科学与医学部,陕西 西安 710069Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069
| |
Collapse
|
12
|
Xing Y, Gao Z, Bai Y, Wang W, Chen C, Zheng Y, Meng Y. Golgi Protein 73 Promotes LPS-Induced Cardiac Dysfunction via Mediating Myocardial Apoptosis and Autophagy. J Cardiovasc Pharmacol 2024; 83:116-125. [PMID: 37755435 DOI: 10.1097/fjc.0000000000001487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023]
Abstract
ABSTRACT Sepsis-induced cardiac dysfunction represents a major cause of high mortality in intensive care units with limited therapeutic options. Golgi protein 73 (GP73) has been implicated in various diseases. However, the role of GP73 in lipopolysaccharide (LPS)-induced cardiac dysfunction is unclear. In this study, we established a sepsis-induced cardiac dysfunction model by LPS administration in wild-type and GP73 knockout ( GP73-/- ) mice. We found that GP73 was increased in LPS-treated mouse hearts and LPS-cultured neonatal rat cardiomyocytes (NRCMs). Knockout of GP73 alleviated myocardial injury and improved cardiac dysfunction. Moreover, depletion of GP73 in NRCMs relieved LPS-induced cardiomyocyte apoptosis and activated myocardial autophagy. Therefore, GP73 is a negative regulator in LPS-induced cardiac dysfunction by promoting cardiomyocyte apoptosis and inhibiting cardiomyocyte autophagy.
Collapse
Affiliation(s)
- Yaqi Xing
- Department of Pathology, Capital Medical University, Beijing, China
| | - Zhenqiang Gao
- Department of Pathology, Capital Medical University, Beijing, China
| | - Yunfei Bai
- Department of Pathology, Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Pathology, Capital Medical University, Beijing, China
- National Demonstration Center for Experimental Basic Medical Education, Experimental Teaching Center of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chen Chen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; and
| | - Yuanyuan Zheng
- Department of Pharmacology, Capital Medical University, Beijing, China
| | - Yan Meng
- Department of Pathology, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Hu S, Huang M, Mao S, Yang M, Ju H, Liu Z, Cheng M, Wu G. Serinc2 deficiency exacerbates sepsis-induced cardiomyopathy by enhancing necroptosis and apoptosis. Biochem Pharmacol 2023; 218:115903. [PMID: 37918695 DOI: 10.1016/j.bcp.2023.115903] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
In critical care medicine, sepsis is a potentially fatal syndrome characterized by multi-organ dysfunction and eventual failure. Sepsis-induced cardiomyopathy (SIC) is characterized by decreased venstricular contractility. Serine incorporator 2 (Serinc2) is a protein involved in phosphatidylserine biosynthesis and membrane incorporation. It may also be a protective factor in septic lung injury. However, it is unknown whether Serinc2 influences SIC onset or progression. In the present study, we found that Serinc2 was downregulated in the cardiomyocytes of cecal ligation and puncture (CLP)-induced SIC and in neonatal rat cardiomyocytes (NRCMs) exposed to lipopolysaccharides (LPS). Serinc2 knockout (KO) exacerbated sepsis-induced myocardial inflammation, necroptosis, apoptosis, myocardial damage, and contractility impairment. Furthermore, the lack of Serinc2 in cardiomyocytes aggravated LPS-induced cardiomyopathic inflammation, necroptosis, and apoptosis. An adenovirus overexpressing Serinc2 inhibited the inflammatory response and favored cardiomyocyte survival. A mechanistic analysis revealed that Serinc2 deficiency exacerbated LPS-induced cardiac dysfunction by inhibiting the protein kinase B (Akt)/glycogen synthase kinase 3 beta (GSK-3β) signaling pathway that regulates necrotic complex formation and apoptotic pathways in cardiomyopathy. The findings of the present work demonstrated that Serinc2 plays an essential role in SIC and is, therefore, promising as a prophylactic and therapeutic target for this condition.
Collapse
Affiliation(s)
- Shan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Department of Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Department of Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Min Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Department of Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Department of Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Shuai Mao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Department of Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Department of Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Manqi Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Department of Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Department of Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Hao Ju
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Department of Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Department of Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Zheyu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Department of Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Department of Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Mian Cheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Department of Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Department of Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| |
Collapse
|
14
|
Zhao H, Lin X, Chen Q, Wang X, Wu Y, Zhao X. Quercetin inhibits the NOX2/ROS-mediated NF-κB/TXNIP signaling pathway to ameliorate pyroptosis of cardiomyocytes to relieve sepsis-induced cardiomyopathy. Toxicol Appl Pharmacol 2023; 477:116672. [PMID: 37648089 DOI: 10.1016/j.taap.2023.116672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Sepsis-induced cardiomyopathy (SIC) has high morbidity and mortality. Quercetin (QUE) has been used to treat many inflammatory diseases related to pyroptosis. However, its effect on SIC has not been reported before. We aimed to explore the therapeutic mechanism of QUE on SIC. We found that the expression levels of NOX2, markers of myocardial injury and inflammatory factors related to pyroptosis were upregulated in the serum of SIC patients. QUE improved the viability and reduced the death rate of LPS-treated H9C2 cells. It could downregulate the expression level of NOX2 and alleviate NOX2-induced mitochondrial damage to inhibit the ROS-mediated NF-κB/TXNIP pathway thus ameliorating cell pyroptosis. Overexpression of NOX2 partially attenuated the anti-pyroptotic effects of QUE on LPS-treated H9C2 cells in vitro. Besides, the results of animal experiments reported that the mitochondrial damage was reduced by QUE treatment, which subsequently inhibited the ROS-mediated NF-κB/TXNIP pathway to ameliorate cell pyroptosis to further alleviate myocardial injury in CLP-induced rats in vivo. To conclude, QUE suppressed the NOX2/ROS-mediated NF-κB/TXNIP signaling pathway to ameliorate pyroptosis of cardiomyocytes to relieve SIC.
Collapse
Affiliation(s)
- Hao Zhao
- Department of Emergency and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhuaxi Road, Lixia District, Jinan City, Shandong Province 250014, China
| | - Xin Lin
- Department of Emergency and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhuaxi Road, Lixia District, Jinan City, Shandong Province 250014, China
| | - Qingfeng Chen
- Department of Emergency and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhuaxi Road, Lixia District, Jinan City, Shandong Province 250014, China
| | - Xiaoyue Wang
- Department of Emergency and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhuaxi Road, Lixia District, Jinan City, Shandong Province 250014, China
| | - Yongya Wu
- Department of Emergency and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhuaxi Road, Lixia District, Jinan City, Shandong Province 250014, China
| | - Xiaoxia Zhao
- Department of Emergency and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhuaxi Road, Lixia District, Jinan City, Shandong Province 250014, China.
| |
Collapse
|
15
|
Zechendorf E, Beckers C, Frank N, Kraemer S, Neu C, Breuer T, Dreher M, Dahl E, Marx G, Martin L, Simon TP. A Potential Association between Ribonuclease 1 Dynamics in the Blood and the Outcome in COVID-19 Patients. Int J Mol Sci 2023; 24:12428. [PMID: 37569802 PMCID: PMC10419077 DOI: 10.3390/ijms241512428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The COVID-19 pandemic caused by the new SARS-CoV-2 coronavirus is the most recent and well-known outbreak of a coronavirus. RNase 1 is a small endogenous antimicrobial polypeptide that possesses antiviral activity against viral diseases. In this study, we investigated a potential association between ribonuclease 1 and the outcome in COVID-19 patients and the impact of increased and decreased RNase 1 levels serum during the course of the disease. Therefore, two patient populations, Cohort A (n = 35) and B (n = 80), were subclassified into two groups, in which the RNase 1 concentration increased or decreased from time point one to time point two. We show that the RNase 1 serum levels significantly increased in the increasing group of both cohorts (p = 0.0171; p < 0.0001). We detect that patients in the increasing group who died had significantly higher RNase 1 serum levels at both time points in Cohort A (p = 0.0170; p = 0.0393) and Cohort B (p = 0.0253; p = 0.0034) than patients who survived. Additionally, we measured a significant correlation of RNase 1 serum levels with serum creatinine as well as creatinine clearance in the increasing and decreasing group at both time points of Cohort A. Based on these results, there is now good evidence that RNase 1 may play a role in renal dysfunction associated with ICU COVID-19 patients and that increasing RNase 1 serum level may be a potential biomarker to predict outcome in COVID-19 patients.
Collapse
Affiliation(s)
- Elisabeth Zechendorf
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.-P.S.)
| | - Christian Beckers
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.-P.S.)
| | - Nadine Frank
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.-P.S.)
| | - Sandra Kraemer
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.-P.S.)
| | - Carolina Neu
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.-P.S.)
| | - Thomas Breuer
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.-P.S.)
| | - Michael Dreher
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Edgar Dahl
- RWTH Centralized Biomaterial Bank (RWTH cBMB) at the Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.-P.S.)
| | - Lukas Martin
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.-P.S.)
| | - Tim-Philipp Simon
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.-P.S.)
| |
Collapse
|
16
|
Wang L, Zhao Y, Su Z, Zhao K, Li P, Xu T. Ginkgolide A targets forkhead box O1 to protect against lipopolysaccharide-induced septic cardiomyopathy. Phytother Res 2023; 37:3309-3322. [PMID: 36932920 DOI: 10.1002/ptr.7802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/16/2023] [Accepted: 02/25/2023] [Indexed: 03/19/2023]
Abstract
Ginkgolide A (GA), a main terpenoid extracted from Ginkgo biloba, possesses biological activities such as anti-inflammatory, anti-tumor, and liver protection. However, the inhibitory effects of GA on septic cardiomyopathy remain unclear. This study aimed to explore the effects and mechanisms of GA in countering sepsis-induced cardiac dysfunction and injury. In lipopolysaccharide (LPS)-induced mouse model, GA alleviated mitochondrial injury and cardiac dysfunction. GA also significantly reduced the production of inflammatory and apoptotic cells, the release of inflammatory indicators, and the expression of oxidative stress-associated and apoptosis-associated markers, but increased the expression of pivotal antioxidant enzymes in hearts from LPS group. These results were consistent with those of in vitro experiments based on H9C2 cells. Database analysis and molecular docking suggested that FoxO1 was targeted by GA, as shown by stable hydrogen bonds formed between GA with SER-39 and ASN-29 of FoxO1. GA reversed LPS-induced downregulation of nucleus FoxO1 and upregulation of p-FoxO1 in H9C2 cells. FoxO1 knockdown abolished the protective properties of GA in vitro. KLF15, TXN2, NOTCH1, and XBP1, as the downstream genes of FoxO1, also exerted protective effects. We concluded that GA could alleviate LPS-induced septic cardiomyopathy via binding to FoxO1 to attenuate cardiomyocyte inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Luyang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunxi Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenyang Su
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tianhua Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Tewari A, Rajak S, Raza S, Gupta P, Chakravarti B, Srivastava J, Chaturvedi CP, Sinha RA. Targeting Extracellular RNA Mitigates Hepatic Lipotoxicity and Liver Injury in NASH. Cells 2023; 12:1845. [PMID: 37484201 PMCID: PMC7614796 DOI: 10.3390/cells12141845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a clinically serious stage of non-alcoholic fatty liver disease (NAFLD). Histologically characterized by hepatocyte ballooning, immune cell infiltration, and fibrosis, NASH, at a molecular level, involves lipid-induced hepatocyte death and cytokine production. Currently, there are very few diagnostic biomarkers available to screen for NASH, and no pharmacological intervention is available for its treatment. In this study, we show that hepatocyte damage induced by lipotoxicity results in the release of extracellular RNAs (eRNAs), which serve as damage-associated molecular patterns (DAMPs) that stimulate the expression of pro-apoptotic and pro-inflammatory cytokines, aggravate inflammation, and lead to cell death in HepG2 cells. Furthermore, the inhibition of eRNA activity by RNase 1 significantly increases cellular viability and reduces NF-kB-mediated cytokine production. Similarly, RNase 1 administration significantly improves hepatic steatosis, inflammatory and injury markers in a murine NASH model. Therefore, this study, for the first time, underscores the therapeutic potential of inhibiting eRNA action as a novel strategy for NASH treatment.
Collapse
Affiliation(s)
- Archana Tewari
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (A.T.); (S.R.); (S.R.); (P.G.); (B.C.)
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (A.T.); (S.R.); (S.R.); (P.G.); (B.C.)
| | - Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (A.T.); (S.R.); (S.R.); (P.G.); (B.C.)
| | - Pratima Gupta
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (A.T.); (S.R.); (S.R.); (P.G.); (B.C.)
| | - Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (A.T.); (S.R.); (S.R.); (P.G.); (B.C.)
| | - Jyotika Srivastava
- Stem Cell Research Facility, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (J.S.); (C.P.C.)
| | - Chandra P. Chaturvedi
- Stem Cell Research Facility, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (J.S.); (C.P.C.)
| | - Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (A.T.); (S.R.); (S.R.); (P.G.); (B.C.)
| |
Collapse
|
18
|
Bi CF, Liu J, Hao SW, Xu ZX, Ma X, Kang XF, Yang LS, Zhang JF. Xuebijing injection protects against sepsis induced myocardial injury by regulating apoptosis and autophagy via mediation of PI3K/AKT/mTOR signaling pathway in rats. Aging (Albany NY) 2023; 15:204740. [PMID: 37219401 DOI: 10.18632/aging.204740] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVE Apoptosis and autophagy are significant factors of sepsis induced myocardial injury (SIMI). XBJ improves SIMI by PI3K/AKT/mTOR pathway. Present study is devised to explore the protective mechanism of XBJ in continuous treatment of SIMI caused by CLP. METHODS Rat survival was first recorded within 7 days. Rats were randomly assigned to three groups: Sham group, CLP group, and XBJ group. The animals in each group were divided into 12 h group, 1 d, 2 d, 3 d and 5 d according to the administration time of 12 hours, 1 day, 2 days, 3 days or 5 days, respectively. Echocardiography, myocardial injury markers and H&E staining were used to detect cardiac function and injury. IL-1β, IL-6 and TNF-α in serum were measured using ELISA kits. Cardiomyocyte apoptosis was assayed by TUNEL staining. Apoptosis and autophagy related proteins regulated by the PI3K/AKT/mTOR signaling pathway were tested using western blot. RESULTS XBJ increased the survival rate in CLP-induced septic Rat. First of all, the results of echocardiography, H&E staining and myocardial injury markers (cTnI, CK, and LDH levels) showed that XBJ could effectively improve the myocardial injury caused by CLP with the increase of treatment time. Moreover, XBJ significantly decreased the levels of serum inflammatory cytokines IL-1β, IL-6 and TNF-α in SIMI rats. Meanwhile, XBJ downregulated the expression of apoptosis-related proteins Bax, Cleaved-Caspase 3, Cleaved-Caspase 9, Cytochrome C and Cleaved-PARP, while upregulated the protein levels of Bcl-2 in SIMI rats. And, XBJ upregulated the expression of autophagy related protein Beclin-1 and LC3-II/LC3-I ratio in SIMI rats, whereas downregulated the expression of P62. Finally, XBJ administration downregulated the phosphorylation levels of proteins PI3K, AKT and mTOR in SIMI rats. CONCLUSIONS Our results showed that XBJ has a good protective effect on SIMI after continuous treatment, and it was speculated that it might be through inhibiting apoptosis and promoting autophagy via, at least partially, activating PI3K/AKT/mTOR pathway in the early stage of sepsis, as well as promoting apoptosis and inhibiting autophagy via suppressing PI3K/AKT/mTOR pathway in the late stage of sepsis.
Collapse
Affiliation(s)
- Cheng-Fei Bi
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jia Liu
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Shao-Wen Hao
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Zhi-Xia Xu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Xiao Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Xiang-Fei Kang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| |
Collapse
|
19
|
Laakmann K, Eckersberg JM, Hapke M, Wiegand M, Bierwagen J, Beinborn I, Preußer C, Pogge von Strandmann E, Heimerl T, Schmeck B, Jung AL. Bacterial extracellular vesicles repress the vascular protective factor RNase1 in human lung endothelial cells. Cell Commun Signal 2023; 21:111. [PMID: 37189117 DOI: 10.1186/s12964-023-01131-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Sepsis is one of the leading causes of death worldwide and characterized by blood stream infections associated with a dysregulated host response and endothelial cell (EC) dysfunction. Ribonuclease 1 (RNase1) acts as a protective factor of vascular homeostasis and is known to be repressed by massive and persistent inflammation, associated to the development of vascular pathologies. Bacterial extracellular vesicles (bEVs) are released upon infection and may interact with ECs to mediate EC barrier dysfunction. Here, we investigated the impact of bEVs of sepsis-related pathogens on human EC RNase1 regulation. METHODS bEVs from sepsis-associated bacteria were isolated via ultrafiltration and size exclusion chromatography and used for stimulation of human lung microvascular ECs combined with and without signaling pathway inhibitor treatments. RESULTS bEVs from Escherichia coli, Klebsiella pneumoniae and Salmonella enterica serovar Typhimurium significantly reduced RNase1 mRNA and protein expression and activated ECs, while TLR2-inducing bEVs from Streptococcus pneumoniae did not. These effects were mediated via LPS-dependent TLR4 signaling cascades as they could be blocked by Polymyxin B. Additionally, LPS-free ClearColi™ had no impact on RNase1. Further characterization of TLR4 downstream pathways involving NF-кB and p38, as well as JAK1/STAT1 signaling, revealed that RNase1 mRNA regulation is mediated via a p38-dependent mechanism. CONCLUSION Blood stream bEVs from gram-negative, sepsis-associated bacteria reduce the vascular protective factor RNase1, opening new avenues for therapeutical intervention of EC dysfunction via promotion of RNase1 integrity. Video Abstract.
Collapse
Affiliation(s)
- Katrin Laakmann
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Jorina Mona Eckersberg
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Moritz Hapke
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Marie Wiegand
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Jeff Bierwagen
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Isabell Beinborn
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Christian Preußer
- Institute for Tumor Immunology and Core Facility - Extracellular Vesicles, Philipps-University Marburg, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology and Core Facility - Extracellular Vesicles, Philipps-University Marburg, Marburg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
- Department of Pulmonary and Critical Care Medicine, Philipps-University Marburg, Marburg, Germany
- Member of the German Center for Infectious Disease Research (DZIF), Marburg, Germany
| | - Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany.
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
20
|
Zhou C, Yang ZF, Sun BY, Yi Y, Wang Z, Zhou J, Fan J, Gan W, Ren N, Qiu SJ. Lenvatinib Induces Immunogenic Cell Death and Triggers Toll-Like Receptor-3/4 Ligands in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:697-712. [PMID: 37138764 PMCID: PMC10149778 DOI: 10.2147/jhc.s401639] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
Purpose Immunogenic cell death (ICD) is a cell death modality that plays a vital role in anticancer therapy. In this study, we investigated whether lenvatinib induces ICD in hepatocellular carcinoma and how it affects cancer cell behavior. Patients and Methods Hepatoma cells were treated with 0.5 μM lenvatinib for two weeks, and damage-associated molecular patterns were assessed using the expression of calreticulin, high mobility group box 1, and ATP secretion. Transcriptome sequencing was performed to investigate the effects of lenvatinib on hepatocellular carcinoma. Additionally, CU CPT 4A and TAK-242 were used to inhibit TLR3 and TLR4 expressions, respectively. Flow cytometry was used to assess PD-L1 expression. Kaplan-Meier and Cox regression models were applied for prognosis assessment. Results After treatment with lenvatinib, there was a significant increase in ICD-associated damage-associated molecular patterns, such as calreticulin on the cell membrane, extracellular ATP, and high mobility group box 1, in hepatoma cells. Following treatment with lenvatinib, there was a significant increase in the downstream immunogenic cell death receptors, including TLR3 and TLR4. Furthermore, lenvatinib increased the expression of PD-L1, which was later inhibited by TLR4. Interestingly, inhibiting TLR3 in MHCC-97H and Huh7 cells strengthened their proliferative capacity. Moreover, TLR3 inhibition was identified as an independent risk factor for overall survival and recurrence-free survival in patients with hepatocellular carcinoma. Conclusion Our study revealed that lenvatinib induced ICD in hepatocellular carcinoma and upregulated PD-L1 expression through TLR4 while promoting cell apoptosis through TLR3. Antibodies against PD-1/PD-L1 can enhance the efficacy of lenvatinib in the management of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Zhang-Fu Yang
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Bao-Ye Sun
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yong Yi
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Zheng Wang
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jia Fan
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Wei Gan
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Ning Ren
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Institute of Fudan Minhang Academic Health System & Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Minhang Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Correspondence: Shuang-Jian Qiu, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200030, People’s Republic of China, Tel +86 13916625289, Email
| |
Collapse
|
21
|
DAMPs Released from Proinflammatory Macrophages Induce Inflammation in Cardiomyocytes via Activation of TLR4 and TNFR. Int J Mol Sci 2022; 23:ijms232415522. [PMID: 36555168 PMCID: PMC9778802 DOI: 10.3390/ijms232415522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiac dysfunction is a life-threatening complication in sepsis. Upon infection and cardiac stress, the cardiac macrophage population expands. Recruited macrophages exhibit a predominantly proinflammatory phenotype and release danger-associated molecular patterns (DAMPs) that contribute to cardiac dysfunction. However, the underlying pathomechanisms are highly complex and not fully understood. Here, we utilized an indirect macrophage-cardiomyocyte co-culture model to study the effects of proinflammatory macrophages on the activation of different cardiac receptors (TLR3, TLR4, and TNFR) and their role in cardiac inflammation and caspase-3/7 activation. The stimulation of cardiomyocytes with conditioned medium of LPS-stimulated macrophages resulted in elevated IL-6 protein concentrations and relative IL-6 and TNFα mRNA levels. Conditioned medium from LPS-stimulated macrophages also induced NFκB translocation and increased caspase-3/7 activation in cardiomyocytes. Analyzing the role of different cardiac receptors, we found that TLR4 and TNFR inhibition reduces cardiac inflammation and that the inhibition of TNFR prevents NFκB translocation into the nuclei of cardiomyocytes, induced by exposure to conditioned medium of proinflammatory macrophages. Moreover, we demonstrated that TLR3 inhibition reduces macrophage-mediated caspase-3/7 activation. Our results suggest that the immune response of macrophages under inflammatory conditions leads to the release of DAMPs, such as eRNA and cytokines, which in turn induce cardiomyocyte dysfunction. Thus, the data obtained in this study contribute to a better understanding of the pathophysiological mechanisms of cardiac dysfunction.
Collapse
|
22
|
Abstract
The ribonuclease A (RNase A) family is one of the best-characterized vertebrate-specific proteins. In humans, eight catalytically active RNases (numbered 1–8) have been identified and have unique tissue distributions. Apart from the digestion of dietary RNA, a broad range of biological actions, including the regulation of intra- or extra-cellular RNA metabolism as well as antiviral, antibacterial, and antifungal activities, neurotoxicity, promotion of cell proliferation, anti-apoptosis, and immunomodulatory abilities, have been recently reported for the members of this family. Based on multiple biological roles, RNases are found to participate in the pathogenic processes of many diseases, such as infection, immune dysfunction, neurodegeneration, cancer, and cardiovascular disorders. This review summarizes the available data on the human RNase A family and illustrates the significant roles of the eight canonical RNases in health and disease, for stimulating further basic research and development of ideas on the potential solutions for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Desen Sun
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chenjie Han
- Institute of Environmental Medicine and Affiliated Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China,Undergraduate Program in Public Health, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jinghao Sheng
- Institute of Environmental Medicine and Affiliated Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China,Corresponding author
| |
Collapse
|
23
|
Li X, Wang L, Ying X, Zheng Y, Tan Q, Yu X, Gong J, Li M, Deng X, Yang G, Li S, Jiang S. Electroacupuncture pre-treatment alleviates sepsis-induced cardiac inflammation and dysfunction by inhibiting the calpain-2/STAT3 pathway. Front Physiol 2022; 13:961909. [PMID: 36160853 PMCID: PMC9489935 DOI: 10.3389/fphys.2022.961909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Electroacupuncture (EA) has both anti-inflammatory and cardio-protective effects. Activation of calpain pathway is involved in several myocardiopathy. In sepsis, the role of calpain-2-regulated STAT3 in cardio-protective mechanism of electroacupuncture remains unclear. In this study, we aimed to elucidate the mechanism by which electroacupuncture reduces cardiac inflammation and apoptosis and improves cardiac function during sepsis. Electroacupuncture pretreatment for 7 days was applied in septic cardiomyopathy model induced by lipopolysaccharide (LPS). lipopolysaccharide-induced sepsis was associated with a dramatically systemic inflammation and cardiac dysfunction, which was alleviated by electroacupuncture pre-treatment. Lipopolysaccharide resulted in increases of pro-inflammatory factors (TNF-α,IL1βand IL-6) and apoptosis (TUNEL staining and BAX/Bcl2) via activation of calpain-2/STAT3 pathway.Electroacupuncture pre-treatment inhibited LPS-induced activation of cardiac calpain-2/STAT3 signalling and ameliorated inflammatory and apoptosis. Additionally, inhibition of calpain-2 expression using the corresponding siRNA decreased the Phosphorylation of STAT3,pro-inflammatory factors and apoptosis in lipopolysaccharide- treated cardiomyocytes, confirming that calpain-2 activated p-STAT3 participate in septic cardiomyopathy. Furthermore, suppression of STAT3 by stattic enhanced anti-inflammatory and anti-apoptosis effects of electroacupuncture. These findings reveal mechanisms of electroacupuncture preconditioning protection against cardiac inflammation and apoptosis in sepsis mouse via calpain-2/STAT3 pathway and may provide novel targets for clinical treatments of the sepsis-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Xuqing Li
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li Wang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinwang Ying
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yujun Zheng
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianqian Tan
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolan Yu
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiahong Gong
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming Li
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaofeng Deng
- Wenzhou Sports School, Wenzhou Sports Science Research Institute, Wenzhou, Zhejiang, China
| | - Guanhu Yang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Guanhu Yang, ; Shengcun Li, Songhe Jiang,
| | - Shengcun Li
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Guanhu Yang, ; Shengcun Li, Songhe Jiang,
| | - Songhe Jiang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Guanhu Yang, ; Shengcun Li, Songhe Jiang,
| |
Collapse
|
24
|
Xiao H, Xiao H, Zhang Y, Guo L, Dou Z, Liu L, Zhu L, Feng W, Liu B, Hu B, Chen T, Liu G, Wen T. High-throughput sequencing unravels the cell heterogeneity of cerebrospinal fluid in the bacterial meningitis of children. Front Immunol 2022; 13:872832. [PMID: 36119025 PMCID: PMC9478118 DOI: 10.3389/fimmu.2022.872832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial meningitis (BM) is a common life-threatening infection in children that occurs in the central nervous system (CNS). The cytologic examination of cerebrospinal fluid (CSF) is a key parameter in the diagnosis of BM, but the heterogeneity of cells in the CSF has not been elucidated, which limits the current understanding of BM neuroinflammation. In this study, CSF samples were collected from a number of BM patients who were in different stages of disease progression. Single-cell RNA-sequencing (scRNA-seq), with additional bulk transcriptome sequencing, was conducted to decipher the characteristics of CSF cells in BM progression. A total of 18 immune cell clusters in CSF were identified, including two neutrophils, two monocytes, one macrophage, four myeloid dendritic cells, five T cells, one natural killer cell, one B cell, one plasmacytoid dendritic cell, and one plasma cell subtype. Their population profiles and dynamics in the initial onset, remission, and recovery stages during BM progression were also characterized, which showed decreased proportions of myeloid cells and increased proportions of lymphoid cells with disease progression. One novel neutrophil subtype, FFAR2+TNFAIP6+ neutrophils, and one novel monocyte subtype, THBS1+IL1B+ monocytes, were discovered, and their quantity changes positively correlated with the intensity of the inflammatory response in the CSF during BM. In addition, the CSF of BM patients with unsatisfactory therapeutic responses presented with different cell heterogeneity compared to the CSF of BM patients with satisfactory therapeutic responses, and their CSF featured altered intercellular communications and increased proportions of type II myeloid dendritic cells and plasmacytoid dendritic cells. Moreover, the bulk transcriptome profiles of autologous CSF cells and peripheral blood leukocytes of BM patients showed that the immune cells in these two physiological compartments exhibited distinct immune responses under different onset conditions. In particular, the CSF cells showed a high expression of macrophage characteristic genes and a low expression of platelet characteristic genes compared with peripheral blood leukocytes. Our study conducted an in-depth exploration of the characteristics of CSF cells in BM progression, which provided novel insights into immune cell engagement in acute CNS infection.
Collapse
Affiliation(s)
- Haihan Xiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haijuan Xiao
- Department of Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yun Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lingyun Guo
- Department of Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Zhenzhen Dou
- Department of Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Linlin Liu
- Department of Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Liang Zhu
- Department of Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Wenya Feng
- Department of Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Bing Liu
- Department of Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Bing Hu
- Department of Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Tianming Chen
- Department of Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Gang Liu
- Department of Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- *Correspondence: Tingyi Wen, ; Gang Liu,
| | - Tingyi Wen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Tingyi Wen, ; Gang Liu,
| |
Collapse
|
25
|
Nofi CP, Wang P, Aziz M. Chromatin-Associated Molecular Patterns (CAMPs) in sepsis. Cell Death Dis 2022; 13:700. [PMID: 35961978 PMCID: PMC9372964 DOI: 10.1038/s41419-022-05155-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/21/2023]
Abstract
Several molecular patterns have been identified that recognize pattern recognition receptors. Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are commonly used terminologies to classify molecules originating from pathogen and endogenous molecules, respectively, to heighten the immune response in sepsis. Herein, we focus on a subgroup of endogenous molecules that may be detected as foreign and similarly trigger immune signaling pathways. These chromatin-associated molecules, i.e., chromatin containing nuclear DNA and histones, extracellular RNA, mitochondrial DNA, telomeric repeat-containing RNA, DNA- or RNA-binding proteins, and extracellular traps, may be newly classified as chromatin-associated molecular patterns (CAMPs). Herein, we review the release of CAMPs from cells, their mechanism of action and downstream immune signaling pathways, and targeted therapeutic approaches to mitigate inflammation and tissue injury in inflammation and sepsis.
Collapse
Affiliation(s)
- Colleen P. Nofi
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY USA ,Elmezi Graduate School of Molecular Medicine, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| | - Ping Wang
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY USA ,Elmezi Graduate School of Molecular Medicine, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| | - Monowar Aziz
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY USA ,Elmezi Graduate School of Molecular Medicine, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| |
Collapse
|
26
|
Zhang G, Dong D, Wan X, Zhang Y. Cardiomyocyte death in sepsis: Mechanisms and regulation (Review). Mol Med Rep 2022; 26:257. [PMID: 35703348 PMCID: PMC9218731 DOI: 10.3892/mmr.2022.12773] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/20/2022] [Indexed: 11/06/2022] Open
Abstract
Sepsis‑induced cardiac dysfunction is one of the most common types of organ dysfunction in sepsis; its pathogenesis is highly complex and not yet fully understood. Cardiomyocytes serve a key role in the pathophysiology of cardiac function; due to the limited ability of cardiomyocytes to regenerate, their loss contributes to decreased cardiac function. The activation of inflammatory signalling pathways affects cardiomyocyte function and modes of cardiomyocyte death in sepsis. Prevention of cardiomyocyte death is an important therapeutic strategy for sepsis‑induced cardiac dysfunction. Thus, understanding the signalling pathways that activate cardiomyocyte death and cross‑regulation between death modes are key to finding therapeutic targets. The present review focused on advances in understanding of sepsis‑induced cardiomyocyte death pathways, including apoptosis, necroptosis, mitochondria‑mediated necrosis, pyroptosis, ferroptosis and autophagy. The present review summarizes the effect of inflammatory activation on cardiomyocyte death mechanisms, the diversity of regulatory mechanisms and cross‑regulation between death modes and the effect on cardiac function in sepsis to provide a theoretical basis for treatment of sepsis‑induced cardiac dysfunction.
Collapse
Affiliation(s)
- Geping Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Dan Dong
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xianyao Wan
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yongli Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
27
|
Guo Y, Zhang W, Zhou X, Zhao S, Wang J, Guo Y, Liao Y, Lu H, Liu J, Cai Y, Wu J, Shen M. Roles of Ferroptosis in Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:911564. [PMID: 35677693 PMCID: PMC9168067 DOI: 10.3389/fcvm.2022.911564] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022] Open
Abstract
Ferroptosis is an iron-dependent regulated cell death characterized by lipid peroxidation and iron overload, which is different from other types of programmed cell death, including apoptosis, necroptosis, autophagy, and pyroptosis. Over the past years, emerging studies have shown a close relation between ferroptosis and various cardiovascular diseases such as atherosclerosis, acute myocardial infarction, ischemia/reperfusion injury, cardiomyopathy, and heart failure. Herein, we will review the contributions of ferroptosis to multiple cardiovascular diseases and the related targets. Further, we discuss the potential ferroptosis-targeting strategies for treating different cardiovascular diseases.
Collapse
Affiliation(s)
- Yuting Guo
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
| | - Wei Zhang
- Department of Cardiology, Second Medical Center, PLA General Hospital, Beijing, China
| | - Xinger Zhou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
| | - Shihao Zhao
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
| | - Jian Wang
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
| | - Yi Guo
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
| | - Yichao Liao
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
| | - Haihui Lu
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
| | - Jie Liu
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
| | - Yanbin Cai
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiao Wu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
- Jiao Wu
| | - Mingzhi Shen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
- *Correspondence: Mingzhi Shen
| |
Collapse
|
28
|
Ribonuclease-1 treatment after traumatic brain injury preserves blood-brain barrier integrity and delays secondary brain damage in mice. Sci Rep 2022; 12:5731. [PMID: 35388024 PMCID: PMC8986812 DOI: 10.1038/s41598-022-09326-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/22/2022] [Indexed: 11/08/2022] Open
Abstract
Traumatic brain injury (TBI) involves primary mechanical damage and delayed secondary damage caused by vascular dysfunction and neuroinflammation. Intracellular components released into the parenchyma and systemic circulation, termed danger-associated molecular patterns (DAMPs), are major drivers of vascular dysfunction and neuroinflammation. These DAMPs include cell-free RNAs (cfRNAs), which damage the blood-brain barrier (BBB), thereby promoting edema, procoagulatory processes, and infiltration of inflammatory cells. We tested the hypothesis that intraperitoneal injection of Ribonuclease-1 (RNase1, two doses of 20, 60, or 180 µg/kg) at 30 min and 12 h after controlled-cortical-impact (CCI) can reduce secondary lesion expansion compared to vehicle treatment 24 h and 120 h post-CCI. The lowest total dose (40 µg/kg) was most effective at reducing lesion volume (- 31% RNase 40 µg/kg vs. vehicle), brain water accumulation (- 5.5%), and loss of BBB integrity (- 21.6%) at 24 h post-CCI. RNase1 also reduced perilesional leukocyte recruitment (- 53.3%) and microglial activation (- 18.3%) at 120 h post-CCI, but there was no difference in lesion volume at this time and no functional benefit. Treatment with RNase1 in the early phase following TBI stabilizes the BBB and impedes leukocyte immigration, thereby suppressing neuroinflammation. RNase1-treatment may be a novel approach to delay brain injury to extend the window for treatment opportunities after TBI.
Collapse
|
29
|
Hong T, Li S, Guo X, Wei Y, Zhang J, Su X, Zhou M, Jin H, Miao Q, Shen L, Zhu M, He B. IL-13 Derived Type 2 Innate Lymphocytes Ameliorates Cardiomyocyte Apoptosis Through STAT3 Signaling Pathway. Front Cell Dev Biol 2021; 9:742662. [PMID: 34616745 PMCID: PMC8488199 DOI: 10.3389/fcell.2021.742662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
The involvement of cardiomyopathy during sepsis means higher mortality and prolonged length of hospital stay. Many efforts have been made to alleviate the apoptosis of cardiomyocytes in sepsis. The huge potential of IL-13 in tissue repair has attracted increasing attention. In the present study, we used LPS-treated mice or primary cardiomyocytes as a sepsis model to explore the anti-apoptotic ability of IL-13. It was found that an increased level of exogenous IL-13 was beneficial to the recovery of heart function in sepsis, and this anti-apoptotic effect of IL-13 was probably through enhancing the phosphorylation of STAT3 Ser727. In addition, we identified that the heart protective effect of IL-13 was associated with type 2 innate lymphocytes (ILC2). All these findings may provide a potential promising treatment for sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Ting Hong
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Saiqi Li
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Guo
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yazhong Wei
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjing Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohui Su
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miao Zhou
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haizhen Jin
- Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Miao
- Departments of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Shen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minfang Zhu
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bin He
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
Qin Y, Qiao Y, Wang D, Tang C, Yan G. Ferritinophagy and ferroptosis in cardiovascular disease: Mechanisms and potential applications. Biomed Pharmacother 2021; 141:111872. [PMID: 34246187 DOI: 10.1016/j.biopha.2021.111872] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/09/2023] Open
Abstract
Ferroptosis is a type of regulated cell death driven by iron dependent accumulation of cellular reactive oxygen species (ROS) when glutathione (GSH)-dependent lipid peroxidation repair systems are compromised. Nuclear receptor co-activator 4 (NCOA4)-mediated selective autophagy of ferritin, termed ferritinophagy, involves the regulation of ferroptosis. Emerging evidence has revealed that ferritinophagy and ferroptosis exert a significant role in the occurrence and development of cardiovascular disease. In the present review, we aimed to present a brief overview of ferritinophagy and ferroptosis focusing on the underlying mechanism and regulations involved. We summarize and discuss relevant research progress on the role of ferritinophagy and ferroptosis in cardiovascular diseases accompanied with potential applications of ferritinophagy and ferroptosis modulators in the treatment of ferroptosis-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Yuhan Qin
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China
| | - Yong Qiao
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China
| | - Dong Wang
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China
| | - Chengchun Tang
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China.
| | - Gaoliang Yan
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China.
| |
Collapse
|
31
|
Zhai Z, Zou P, Liu F, Xia Z, Li J. Ferroptosis Is a Potential Novel Diagnostic and Therapeutic Target for Patients With Cardiomyopathy. Front Cell Dev Biol 2021; 9:649045. [PMID: 33869204 PMCID: PMC8047193 DOI: 10.3389/fcell.2021.649045] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiomyocyte death is a fundamental progress in cardiomyopathy. However, the mechanism of triggering the death of myocardial cells remains unclear. Ferroptosis, which is the nonapoptotic, iron-dependent, and peroxidation-driven programmed cell death pathway, that is abundant and readily accessible, was not discovered until recently with a pharmacological approach. New researches have demonstrated the close relationship between ferroptosis and the development of many cardiovascular diseases, and several ferroptosis inhibitors, iron chelators, and small antioxidant molecules can relieve myocardial injury by blocking the ferroptosis pathways. Notably, ferroptosis is gradually being considered as an important cell death mechanism in the animal models with multiple cardiomyopathies. In this review, we will discuss the mechanism of ferroptosis and the important role of ferroptosis in cardiomyopathy with a special emphasis on the value of ferroptosis as a potential novel diagnostic and therapeutic target for patients suffering from cardiomyopathy in the future.
Collapse
Affiliation(s)
- Zhenyu Zhai
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pengtao Zou
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fuxiang Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zirong Xia
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Juxiang Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
32
|
Preissner KT, Fischer S, Deindl E. Extracellular RNA as a Versatile DAMP and Alarm Signal That Influences Leukocyte Recruitment in Inflammation and Infection. Front Cell Dev Biol 2020; 8:619221. [PMID: 33392206 PMCID: PMC7775424 DOI: 10.3389/fcell.2020.619221] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Upon vascular injury, tissue damage, ischemia, or microbial infection, intracellular material such as nucleic acids and histones is liberated and comes into contact with the vessel wall and circulating blood cells. Such "Danger-associated molecular patterns" (DAMPs) may thus have an enduring influence on the inflammatory defense process that involves leukocyte recruitment and wound healing reactions. While different species of extracellular RNA (exRNA), including microRNAs and long non-coding RNAs, have been implicated to influence inflammatory processes at different levels, recent in vitro and in vivo work has demonstrated a major impact of ribosomal exRNA as a prominent DAMP on various steps of leukocyte recruitment within the innate immune response. This includes the induction of vascular hyper-permeability and vasogenic edema by exRNA via the activation of the "vascular endothelial growth factor" (VEGF) receptor-2 system, as well as the recruitment of leukocytes to the inflamed endothelium, the M1-type polarization of inflammatory macrophages, or the role of exRNA as a pro-thrombotic cofactor to promote thrombosis. Beyond sterile inflammation, exRNA also augments the docking of bacteria to host cells and the subsequent microbial invasion. Moreover, upon vessel occlusion and ischemia, the shear stress-induced release of exRNA initiates arteriogenesis (i.e., formation of natural vessel bypasses) in a multistep process that resembles leukocyte recruitment. Although exRNA can be counteracted for by natural circulating RNase1, under the conditions mentioned, only the administration of exogenous, thermostable, non-toxic RNase1 provides an effective and safe therapeutic regimen for treating the damaging activities of exRNA. It remains to be investigated whether exRNA may also influence viral infections (including COVID-19), e.g., by supporting the interaction of host cells with viral particles and their subsequent invasion. In fact, as a consequence of the viral infection cycle, massive amounts of exRNA are liberated, which can provoke further tissue damage and enhance virus dissemination. Whether the application of RNase1 in this scenario may help to limit the extent of viral infections like COVID-19 and impact on leukocyte recruitment and emigration steps in immune defense in order to limit the extent of associated cardiovascular diseases remains to be studied.
Collapse
Affiliation(s)
- Klaus T. Preissner
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
- Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, LMU Munich, Munich, Germany
| |
Collapse
|
33
|
Bedenbender K, Beinborn I, Vollmeister E, Schmeck B. p38 and Casein Kinase 2 Mediate Ribonuclease 1 Repression in Inflamed Human Endothelial Cells via Promoter Remodeling Through Nucleosome Remodeling and Deacetylase Complex. Front Cell Dev Biol 2020; 8:563604. [PMID: 33178683 PMCID: PMC7593526 DOI: 10.3389/fcell.2020.563604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
Vascular pathologies, such as thrombosis or atherosclerosis, are leading causes of death worldwide and are strongly associated with the dysfunction of vascular endothelial cells. In this context, the extracellular endonuclease Ribonuclease 1 (RNase1) acts as an essential protective factor in regulation and maintenance of vascular homeostasis. However, long-term inflammation causes strong repression of RNase1 expression, thereby promoting endothelial cell dysfunction. This inflammation-mediated downregulation of RNase1 in human endothelial cells is facilitated via histone deacetylase (HDAC) 2, although the underlying molecular mechanisms are still unknown. Here, we report that inhibition of c-Jun N-terminal kinase by small chemical compounds in primary human endothelial cells decreased physiological RNase1 mRNA abundance, while p38 kinase inhibition restored repressed RNase1 expression upon proinflammatory stimulation with tumor necrosis factor alpha (TNF-α) and poly I:C. Moreover, blocking of the p38 kinase- and HDAC2-associated kinase casein kinase 2 (CK2) by inhibitor as well as small interfering RNA (siRNA)-knockdown restored RNase1 expression upon inflammation of human endothelial cells. Further downstream, siRNA-knockdown of chromodomain helicase DNA binding protein (CHD) 3 and 4 of the nucleosome remodeling and deacetylase (NuRD) complex restored RNase1 repression in TNF-α treated endothelial cells implicating its role in the HDAC2-containing repressor complex involved in RNase1 repression. Finally, chromatin immunoprecipitation in primary human endothelial cells confirmed recruitment of the CHD4-containing NuRD complex and subsequent promoter remodeling via histone deacetylation at the RNASE1 promoter in a p38-dependent manner upon human endothelial cell inflammation. Altogether, our results suggest that endothelial RNase1 repression in chronic vascular inflammation is regulated by a p38 kinase-, CK2-, and NuRD complex-dependent pathway resulting in complex recruitment to the RNASE1 promoter and subsequent promoter remodeling.
Collapse
Affiliation(s)
- Katrin Bedenbender
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
| | - Isabell Beinborn
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
| | - Evelyn Vollmeister
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany.,Department of Pulmonary and Critical Care Medicine, Department of Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, Marburg, Germany.,Member of the German Center for Lung Research, Member of the German Center for Infectious Disease Research, Marburg, Germany.,Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
34
|
Zechendorf E, Gombert A, Bülow T, Frank N, Beckers C, Peine A, Kotelis D, Jacobs MJ, Marx G, Martin L. The Role of Ribonuclease 1 and Ribonuclease Inhibitor 1 in Acute Kidney Injury after Open and Endovascular Thoracoabdominal Aortic Aneurysm Repair. J Clin Med 2020; 9:jcm9103292. [PMID: 33066382 PMCID: PMC7602227 DOI: 10.3390/jcm9103292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022] Open
Abstract
Acute kidney injury (AKI) is one of the most common post-operative complications and is closely associated with increased mortality after open and endovascular thoracoabdominal aortic aneurysm (TAAA) repair. Ribonuclease (RNase) 1 belongs to the group of antimicrobial peptides elevated in septic patients and indicates the prediction of two or more organ failures. The role of RNase 1 and its antagonist RNase inhibitor 1 (RNH1) after TAAA repair is unknown. In this study, we analyzed RNase 1 and RNH1 serum levels in patients undergoing open (n = 14) or endovascular (n = 19) TAAA repair to determine their association with post-operative AKI and in-hospital mortality. Increased RNH1 serum levels after open TAAA repair as compared with endovascular TAAA repair immediately after surgery and 12, 48, and 72 h after surgery (all p < 0.05) were observed. Additionally, elevated RNase 1 and RNH1 serum levels 12, 24, and 48 h after surgery were shown to be significantly associated with AKI (all p < 0.05). RNH1 serum levels before and RNase 1 serum levels 12 h after TAAA repair were significantly correlated with in-hospital mortality (both p < 0.05). On the basis of these findings, RNase 1 and RNH1 may be therapeutically relevant and may represent biomarkers for post-operative AKI and in-hospital mortality.
Collapse
Affiliation(s)
- Elisabeth Zechendorf
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, 52062 Aachen, Germany; (E.Z.); (N.F.); (C.B.); (A.P.); (G.M.)
| | - Alexander Gombert
- European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, 52062 Aachen, Germany; (A.G.); (D.K.); (M.J.J.)
| | - Tanja Bülow
- Department of Medical Statistics, University Hospital RWTH Aachen, 52062 Aachen, Germany;
| | - Nadine Frank
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, 52062 Aachen, Germany; (E.Z.); (N.F.); (C.B.); (A.P.); (G.M.)
| | - Christian Beckers
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, 52062 Aachen, Germany; (E.Z.); (N.F.); (C.B.); (A.P.); (G.M.)
| | - Arne Peine
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, 52062 Aachen, Germany; (E.Z.); (N.F.); (C.B.); (A.P.); (G.M.)
| | - Drosos Kotelis
- European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, 52062 Aachen, Germany; (A.G.); (D.K.); (M.J.J.)
| | - Michael J. Jacobs
- European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, 52062 Aachen, Germany; (A.G.); (D.K.); (M.J.J.)
| | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, 52062 Aachen, Germany; (E.Z.); (N.F.); (C.B.); (A.P.); (G.M.)
| | - Lukas Martin
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, 52062 Aachen, Germany; (E.Z.); (N.F.); (C.B.); (A.P.); (G.M.)
- Correspondence: ; Tel.: +49-(0)-241-8037606
| |
Collapse
|
35
|
O'Riordan CE, Purvis GSD, Collotta D, Krieg N, Wissuwa B, Sheikh MH, Ferreira Alves G, Mohammad S, Callender LA, Coldewey SM, Collino M, Greaves DR, Thiemermann C. X-Linked Immunodeficient Mice With No Functional Bruton's Tyrosine Kinase Are Protected From Sepsis-Induced Multiple Organ Failure. Front Immunol 2020; 11:581758. [PMID: 33162995 PMCID: PMC7580254 DOI: 10.3389/fimmu.2020.581758] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
We previously reported the Bruton's tyrosine kinase (BTK) inhibitors ibrutinib and acalabrutinib improve outcomes in a mouse model of polymicrobial sepsis. Now we show that genetic deficiency of the BTK gene alone in Xid mice confers protection against cardiac, renal, and liver injury in polymicrobial sepsis and reduces hyperimmune stimulation ("cytokine storm") induced by an overwhelming bacterial infection. Protection is due in part to enhanced bacterial phagocytosis in vivo, changes in lipid metabolism and decreased activation of NF-κB and the NLRP3 inflammasome. The inactivation of BTK leads to reduced innate immune cell recruitment and a phenotypic switch from M1 to M2 macrophages, aiding in the resolution of sepsis. We have also found that BTK expression in humans is increased in the blood of septic non-survivors, while lower expression is associated with survival from sepsis. Importantly no further reduction in organ damage, cytokine production, or changes in plasma metabolites is seen in Xid mice treated with the BTK inhibitor ibrutinib, demonstrating that the protective effects of BTK inhibitors in polymicrobial sepsis are mediated solely by inhibition of BTK and not by off-target effects of this class of drugs.
Collapse
Affiliation(s)
- Caroline E. O'Riordan
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Gareth S. D. Purvis
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Debora Collotta
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Nadine Krieg
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Bianka Wissuwa
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Madeeha H. Sheikh
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | | | - Shireen Mohammad
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Lauren A. Callender
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Massimo Collino
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - David R. Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Christoph Thiemermann
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
36
|
Bedenbender K, Schmeck BT. Endothelial Ribonuclease 1 in Cardiovascular and Systemic Inflammation. Front Cell Dev Biol 2020; 8:576491. [PMID: 33015070 PMCID: PMC7500176 DOI: 10.3389/fcell.2020.576491] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
The vascular endothelial cell layer forms the inner lining of all blood vessels to maintain proper functioning of the vascular system. However, dysfunction of the endothelium depicts a major issue in context of vascular pathologies, such as atherosclerosis or thrombosis that cause several million deaths per year worldwide. In recent years, the endothelial extracellular endonuclease Ribonuclease 1 (RNase1) was described as a key player in regulation of vascular homeostasis by protecting endothelial cells from detrimental effects of the damage-associated molecular pattern extracellular RNA upon acute inflammation. Despite this protective function, massive dysregulation of RNase1 was observed during prolonged endothelial cell inflammation resulting in progression of several vascular diseases. For the first time, this review article outlines the current knowledge on endothelial RNase1 and its role in function and dysfunction of the endothelium, thereby focusing on the intensive research from recent years: Uncovering the underlying mechanisms of RNase1 function and regulation in response to acute as well as long-term inflammation, the role of RNase1 in context of vascular, inflammatory and infectious diseases and the potential to develop novel therapeutic options to treat these pathologies against the background of RNase1 function in endothelial cells.
Collapse
Affiliation(s)
- Katrin Bedenbender
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Marburg, Germany
| | - Bernd T. Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Marburg, Germany
- Department of Pulmonary and Critical Care Medicine, Department of Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, Marburg, Germany
- Member of the German Center for Lung Research, Member of the German Center for Infectious Disease Research, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|