1
|
Lamb ER, Criss AK. Terminal complement complexes with or without C9 potentiate antimicrobial activity against Neisseria gonorrhoeae. mBio 2025; 16:e0014125. [PMID: 40162779 PMCID: PMC12077172 DOI: 10.1128/mbio.00141-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
The complement cascade is a front-line defense against pathogens. Complement activation generates the membrane attack complex (MAC), a 10-11 nm diameter pore formed by complement proteins C5b through C8 and polymerized C9. The MAC embeds within the outer membrane of Gram-negative bacteria and displays bactericidal activity. In the absence of C9, C5b-C8 complexes can form 2-4 nm pores on membranes, but their relevance to microbial control is poorly understood. Deficiencies in terminal complement components uniquely predispose individuals to infections by pathogenic Neisseria, including N. gonorrhoeae (Gc). Increasing antibiotic resistance in Gc makes new therapeutic strategies a priority. Here, we demonstrate that MAC formed by complement activity in human serum disrupts the Gc outer and inner membranes, potentiating the activity of antimicrobials against Gc and re-sensitizing multidrug-resistant Gc to antibiotics. C9-depleted serum also exerts bactericidal activity against Gc and, unlike other Gram-negative bacteria, disrupts both the outer and inner membranes. C5b-C8 complex formation potentiates Gc sensitivity to azithromycin and ceftriaxone, but not lysozyme or nisin. These findings expand our mechanistic understanding of complement lytic activity, suggest a size limitation for terminal complement-mediated enhancement of antimicrobials against Gc, and suggest that complement manipulation can be used to combat drug-resistant gonorrhea. IMPORTANCE The complement cascade is a front-line arm of the innate immune system against pathogens. Complement activation results in membrane attack complex (MAC) pores forming on the outer membrane of Gram-negative bacteria, resulting in bacterial death. Individuals who cannot generate MAC are specifically susceptible to infection by pathogenic Neisseria species including N. gonorrhoeae (Gc). High rates of gonorrhea, its complications like infertility, and high-frequency resistance to multiple antibiotics make it important to identify new approaches to combat Gc. Beyond direct anti-Gc activity, we found that the MAC increases the ability of antibiotics and antimicrobial proteins to kill Gc and re-sensitizes multidrug-resistant bacteria to antibiotics. The most terminal component, C9, is needed to potentiate the anti-Gc activity of lysozyme and nisin, but azithromycin and ceftriaxone activity is potentiated regardless of C9. These findings highlight the unique effects of MAC on Gc and suggest novel translational avenues to combat drug-resistant gonorrhea.
Collapse
Affiliation(s)
- Evan R. Lamb
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Magda M, Boschloo W, Bettoni S, Fairley D, Russo TA, Giske CG, Tellapragada C, Rooijakkers SH, Riesbeck K, Blom AM. Acinetobacter baumannii Clinical Isolates Resist Complement-Mediated Lysis by Inhibiting the Complement Cascade and Improperly Depositing MAC. J Innate Immun 2025; 17:112-125. [PMID: 39842423 PMCID: PMC11845171 DOI: 10.1159/000543664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
INTRODUCTION Acinetobacter baumannii is a gram-negative opportunistic bacterium that causes life-threatening infections in immunocompromised hosts. The complement system is a critical mechanism of innate immunity that protects the human body from bacterial infections. Complement activation leads to the deposition of the membrane attack complex (MAC), which can directly lyse gram-negative bacteria. However, A. baumannii has developed evasion mechanisms to protect itself from complement. METHODS Complement deposition was investigated by flow cytometry and Western blotting. Soluble MAC formation was assessed by ELISA. Bacterial serum resistance was determined by the SYTOX Green Assay. Galleria mellonella was used as an infection model. Genome sequencing revealed virulence genes carried by isolates. RESULTS We examined clinical isolates of A. baumannii and found 11 isolates with MAC deposition and 5 isolates without deposition. Trypsinization of MAC-positive isolates significantly reduced MAC, indicating incorrect insertion, consistent with a lack of lysis of these strains. MAC-negative isolates inhibited alternative pathway activation and were significantly more serum-resistant. These strains were also more virulent in a G. mellonella infection model. Whole genome sequencing revealed that MAC-negative isolates carried more virulence genes, and both MAC-negative and MAC-positive A. baumannii significantly differed in capsule type. Importantly, a correlation was observed between complement inhibition and capsule type (e.g., capsule locus KL171) of MAC-negative bacteria, while the capsule type (e.g., KL230) of MAC-positive A. baumannii was associated with increased sensitivity to MAC-mediated lysis. CONCLUSION Our findings suggest a relationship between capsule type, complement resistance, and host virulence in A. baumannii. INTRODUCTION Acinetobacter baumannii is a gram-negative opportunistic bacterium that causes life-threatening infections in immunocompromised hosts. The complement system is a critical mechanism of innate immunity that protects the human body from bacterial infections. Complement activation leads to the deposition of the membrane attack complex (MAC), which can directly lyse gram-negative bacteria. However, A. baumannii has developed evasion mechanisms to protect itself from complement. METHODS Complement deposition was investigated by flow cytometry and Western blotting. Soluble MAC formation was assessed by ELISA. Bacterial serum resistance was determined by the SYTOX Green Assay. Galleria mellonella was used as an infection model. Genome sequencing revealed virulence genes carried by isolates. RESULTS We examined clinical isolates of A. baumannii and found 11 isolates with MAC deposition and 5 isolates without deposition. Trypsinization of MAC-positive isolates significantly reduced MAC, indicating incorrect insertion, consistent with a lack of lysis of these strains. MAC-negative isolates inhibited alternative pathway activation and were significantly more serum-resistant. These strains were also more virulent in a G. mellonella infection model. Whole genome sequencing revealed that MAC-negative isolates carried more virulence genes, and both MAC-negative and MAC-positive A. baumannii significantly differed in capsule type. Importantly, a correlation was observed between complement inhibition and capsule type (e.g., capsule locus KL171) of MAC-negative bacteria, while the capsule type (e.g., KL230) of MAC-positive A. baumannii was associated with increased sensitivity to MAC-mediated lysis. CONCLUSION Our findings suggest a relationship between capsule type, complement resistance, and host virulence in A. baumannii.
Collapse
Affiliation(s)
- Michal Magda
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Wendy Boschloo
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Serena Bettoni
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Derek Fairley
- Department of Microbiology, Belfast Health and Social Care Trust, Belfast, UK
| | - Thomas A. Russo
- Veterans Administration Western New York Healthcare System, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University Buffalo, Buffalo, NY, USA
| | | | | | - Suzan H.M. Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kristian Riesbeck
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M. Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
3
|
Lamb ER, Criss AK. Terminal complement complexes with or without C9 potentiate antimicrobial activity against Neisseria gonorrhoeae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633325. [PMID: 39868146 PMCID: PMC11760736 DOI: 10.1101/2025.01.16.633325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The complement cascade is a front-line defense against pathogens. Complement activation generates the membrane attack complex (MAC), a 10-11 nm diameter pore formed by complement proteins C5b through C8 and polymerized C9. The MAC embeds within the outer membrane of Gram-negative bacteria and displays bactericidal activity. In the absence of C9, C5b-C8 complexes can form 2-4 nm pores on membranes, but their relevance to microbial control is poorly understood. Deficiencies in terminal complement components uniquely predispose individuals to infections by pathogenic Neisseria, including N. gonorrhoeae (Gc). Increasing antibiotic resistance in Gc makes new therapeutic strategies a priority. Here, we demonstrate that MAC formed by complement activity in human serum disrupts the Gc outer and inner membranes, potentiating the activity of antimicrobials against Gc and re-sensitizing multidrug resistant Gc to antibiotics. C9-depleted serum also disrupts Gc membranes and exerts antigonococcal activity, effects that are not reported in other Gram-negative bacteria. C5b-C8 complex formation potentiates Gc sensitivity to azithromycin but not lysozyme. These findings expand our mechanistic understanding of complement lytic activity, suggest a size limitation for terminal complement-mediated enhancement of antimicrobials against Gc, and suggest complement manipulation can be used to combat drug-resistant gonorrhea. Importance The complement cascade is a front-line arm of the innate immune system against pathogens. Complement activation results in membrane attack complex (MAC) pores forming on the outer membrane of Gram-negative bacteria, resulting in bacterial death. Individuals who cannot generate MAC are specifically susceptible to infection by pathogenic Neisseria species including N. gonorrhoeae (Gc). High rates of gonorrhea and its complications like infertility, and high-frequency resistance to multiple antibiotics, make it important to identify new approaches to combat Gc. Beyond direct anti-Gc activity, we found the MAC increases the ability of antibiotics and antimicrobial proteins to kill Gc and re-sensitizes multidrug-resistant bacteria to antibiotics. The most terminal component, C9, is needed to potentiate the anti-Gc activity of lysozyme, but azithromycin activity is potentiated regardless of C9. These findings highlight the unique effects of MAC on Gc and suggest novel translational avenues to combat drug-resistant gonorrhea.
Collapse
Affiliation(s)
- Evan R. Lamb
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
4
|
Ljungquist O, Magda M, Giske CG, Tellapragada C, Nazarchuk O, Dmytriiev D, Thofte O, Öhnström V, Matuschek E, Blom AM, Riesbeck K. Pandrug-resistant Klebsiella pneumoniae isolated from Ukrainian war victims are hypervirulent. J Infect 2024; 89:106312. [PMID: 39396555 DOI: 10.1016/j.jinf.2024.106312] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVES Carbapenem- and colistin-resistant Klebsiella pneumoniae were isolated from war victims treated in hospitals in Ukraine. The question was whether these pandrug-resistant K. pneumoniae are pathogenic and capable of causing disease in a broader context. METHODS Klebsiella pneumoniae clinical isolates (n = 37) were tested for antibiotic resistance and subjected to whole-genome sequencing (WGS). In addition, their pathogenicity was tested by serum resistance and two separate animal models. RESULTS Isolates belonging to the sequence types (ST) 23, 147, 307, 395, and 512 were found to harbor resistance genes against carbapenems and cephalosporins. Nine isolates carried point mutations in pmrB and phoP genes associated with colistin resistance. All bacteria were equipped with multiple virulence genes, and the colistin-resistant isolates each carried 10 different genes. Colistin-resistant K. pneumoniae were more serum-resistant, more virulent against G. mellonella larvae, and displayed an increased survival in mice compared to colistin-susceptible bacteria. The iucA, peg-344, rmpA, rmpC, and rmpD genes were associated with increased virulence in animals. CONCLUSIONS Pandrug-resistant K. pneumoniae in Ukraine are hypervirulent and retain their pathogenicity, highlighting the need to prevent disseminated spread.
Collapse
Affiliation(s)
- Oskar Ljungquist
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Michal Magda
- Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Christian G Giske
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden; Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Chaitanya Tellapragada
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Oleksandr Nazarchuk
- National Pirogov Memorial Medical University, Vinnytsia, Ukraine; Intensive Care Unit, Clinical Center for Thermal Injury and Plastic Surgery, MNPE Vinnytsia Regional Clinical Hospital Vinnytsia Regional Council, Vinnytsia, Ukraine
| | - Dmytro Dmytriiev
- National Pirogov Memorial Medical University, Vinnytsia, Ukraine; Bogomolets National Medical University, Kyiv, Ukraine
| | - Oskar Thofte
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Valdemar Öhnström
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | | | - Anna M Blom
- Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden; Clinical Microbiology, Laboratory Medicine Skåne, Lund, Sweden.
| |
Collapse
|
5
|
Bettoni S, Dziedzic M, Bierschenk D, Chrobak M, Magda M, Laabei M, King BC, Riesbeck K, Blom AM. C4b-Binding Protein and Factor H Attenuate NLRP3 Inflammasome-Mediated Signalling Response during Group A Streptococci Infection in Human Cells. J Innate Immun 2024; 16:554-572. [PMID: 39496236 PMCID: PMC11637495 DOI: 10.1159/000542434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/29/2024] [Indexed: 11/06/2024] Open
Abstract
INTRODUCTION Streptococcus pyogenes (group A streptococcus; GAS) is a pathogen causing over half a million deaths annually worldwide. Human immune cells respond to GAS infection by activating the NLRP3 inflammasome leading to the release of pro-inflammatory cytokines that control infection. We investigated the role of C4b-binding protein (C4BP) and factor H (FH) in the inflammasome response to GAS, as they are recruited by GAS to prevent complement deposition and limit phagocytosis. METHODS The inflammasome response was investigated using primary human cells and the strain GAS-AP1. Cytokine responses were evaluated by ELISA. C4BP internalisation was investigated using confocal microscopy. Activation of the NLRP3 inflammasome components was assessed by Western blotting. RESULTS Interleukin-1β (IL-1β) release, induced by GAS-AP1, was inhibited by FH which interferes with priming of human cells. In contrast, C4BP restricted the IL-1β response without affecting cell priming. C4BP was engulfed by cells together with bacteria and excluded from low-pH vesicles but localised within the cytosol and near the ASC speck inflammasome complex. C4BP did not inhibit either the inflammasome complex assembly or caspase-1 activation. However, C4BP limited the cleavage of gasdermin D N-terminal fragments by interfering with caspase-1 enzymatic activity. CONCLUSION Given that the amount of IL-1β modulates the severity of GAS infection, our results provide new insights into the effect of FH and internalised C4BP to control GAS sensing by inflammasomes.
Collapse
Affiliation(s)
- Serena Bettoni
- Department of Translational Medicine, Lund University, Malmö, Sweden
- Department of Life Sciences, University of Bath, Bath, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Mateusz Dziedzic
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Damien Bierschenk
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Maja Chrobak
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Michal Magda
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Maisem Laabei
- Department of Life Sciences, University of Bath, Bath, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Ben C. King
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M. Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
6
|
Welch G, Reed GW, Rice PA, Ram S. A Meta-analysis to Quantify the Risk of Disseminated Gonococcal Infection With Porin B Serotype. Open Forum Infect Dis 2024; 11:ofae389. [PMID: 39035573 PMCID: PMC11259189 DOI: 10.1093/ofid/ofae389] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024] Open
Abstract
The escalating rates of gonorrhea globally are associated with higher numbers of disseminated gonococcal infection (DGI). Expression of the PorB1A allele of the major outer membrane porin protein, PorB, is associated with DGI. This meta-analysis shows that the odds of PorB1A strains to disseminate is 20.53 compared to PorB1B isolates.
Collapse
Affiliation(s)
- Geoffrey Welch
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - George W Reed
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
7
|
Jones RA, Jerse AE, Tang CM. Gonococcal PorB: a multifaceted modulator of host immune responses. Trends Microbiol 2024; 32:355-364. [PMID: 37891023 PMCID: PMC11876096 DOI: 10.1016/j.tim.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023]
Abstract
Neisseria gonorrhoeae is a human-specific pathogen responsible for the sexually transmitted infection, gonorrhoea. N. gonorrhoeae promotes its survival by manipulating both innate and adaptive immune responses. The most abundant gonococcal outer-membrane protein is PorB, an essential porin that facilitates ion exchange. Importantly, gonococcal PorB has several immunomodulatory properties. To subvert the innate immune response, PorB suppresses killing mechanisms of macrophages and neutrophils, and recruits negative regulators of complement to the gonococcal cell surface. For manipulation of adaptive immune responses, gonococcal PorB suppresses the capability of dendritic cells to stimulate proliferation of T cells. As gonococcal PorB is highly abundant in outer-membrane vesicles, consideration of the immunomodulatory properties of this porin is critical when designing gonococcal vaccines.
Collapse
Affiliation(s)
- Rebekah A Jones
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ann E Jerse
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
8
|
Werner LM, Criss AK. Diverse Functions of C4b-Binding Protein in Health and Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1443-1449. [PMID: 37931209 PMCID: PMC10629839 DOI: 10.4049/jimmunol.2300333] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 11/08/2023]
Abstract
C4b-binding protein (C4BP) is a fluid-phase complement inhibitor that prevents uncontrolled activation of the classical and lectin complement pathways. As a complement inhibitor, C4BP also promotes apoptotic cell death and is hijacked by microbes and tumors for complement evasion. Although initially characterized for its role in complement inhibition, there is an emerging recognition that C4BP functions in a complement-independent manner to promote cell survival, protect against autoimmune damage, and modulate the virulence of microbial pathogens. In this Brief Review, we summarize the structure and functions of human C4BP, with a special focus on activities that extend beyond the canonical role of C4BP in complement inhibition.
Collapse
Affiliation(s)
- Lacie M. Werner
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
9
|
Li S, Bettoni S, Mohlin F, Geoghegan JA, Blom AM, Laabei M. Recruitment of C4b-binding protein is not a complement evasion strategy employed by Staphylococcus aureus. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001391. [PMID: 37668351 PMCID: PMC10569063 DOI: 10.1099/mic.0.001391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
Complement offers a first line of defence against infection through the opsonization of microbial pathogens, recruitment of professional phagocytes to the infection site and the coordination of inflammatory responses required for the resolution of infection. Staphylococcus aureus is a successful pathogen that has developed multiple mechanisms to thwart host immune responses. Understanding the precise strategies employed by S. aureus to bypass host immunity will be paramount for the development of vaccines and or immunotherapies designed to prevent or limit infection. To gain a better insight into the specific immune evasion mechanisms used by S. aureus we examined the pathogen's interaction with the soluble complement inhibitor, C4b-binding protein (C4BP). Previous studies indicated that S. aureus recruits C4BP using a specific cell-wall-anchored surface protein and that bound C4BP limits complement deposition on the staphylococcal surface. Using flow-cytometric-based bacterial-protein binding assays we observed no interaction between S. aureus and C4BP. Moreover, we offer a precautionary warning that C4BP isolated from plasma can be co-purified with minute quantities of human IgG, which can distort binding analysis between S. aureus and human-derived proteins. Combined our data indicates that recruitment of C4BP is not a complement evasion strategy employed by S. aureus.
Collapse
Affiliation(s)
- Shuxian Li
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Serena Bettoni
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Frida Mohlin
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Joan A. Geoghegan
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Anna M. Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Maisem Laabei
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
10
|
Belcher T, Rollier CS, Dold C, Ross JDC, MacLennan CA. Immune responses to Neisseria gonorrhoeae and implications for vaccine development. Front Immunol 2023; 14:1248613. [PMID: 37662926 PMCID: PMC10470030 DOI: 10.3389/fimmu.2023.1248613] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
Neisseria gonorrheoae is the causative agent of gonorrhea, a sexually transmitted infection responsible for a major burden of disease with a high global prevalence. Protective immunity to infection is often not observed in humans, possible due to high variability of key antigens, induction of blocking antibodies, or a large number of infections being relatively superficial and not inducing a strong immune response. N. gonorrhoeae is a strictly human pathogen, however, studies using mouse models provide useful insights into the immune response to gonorrhea. In mice, N. gonorrhoea appears to avoid a protective Th1 response by inducing a less protective Th17 response. In mouse models, candidate vaccines which provoke a Th1 response can accelerate the clearance of gonococcus from the mouse female genital tract. Human studies indicate that natural infection often induces a limited immune response, with modest antibody responses, which may correlate with the clinical severity of gonococcal disease. Studies of cytokine responses to gonococcal infection in humans provide conflicting evidence as to whether infection induces an IL-17 response. However, there is evidence for limited induction of protective immunity from a study of female sex workers in Kenya. A controlled human infection model (CHIM) has been used to examine the immune response to gonococcal infection in male volunteers, but has not to date demonstrated protection against re-infection. Correlates of protection for gonorrhea are lacking, which has hampered the progress towards developing a successful vaccine. However, the finding that the Neisseria meningitidis serogroup B vaccines, elicit cross-protection against gonorrhea has invigorated the gonococcal vaccine field. More studies of infection in humans, either natural infection or CHIM studies, are needed to understand better gonococcal protective immunity.
Collapse
Affiliation(s)
- Thomas Belcher
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Christina Dold
- The Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Jonathan D. C. Ross
- Sexual Health and HIV, University Hospitals Birmingham NHS Trust, Birmingham, United Kingdom
| | - Calman A. MacLennan
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Girgis MM, Christodoulides M. Vertebrate and Invertebrate Animal and New In Vitro Models for Studying Neisseria Biology. Pathogens 2023; 12:782. [PMID: 37375472 DOI: 10.3390/pathogens12060782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The history of Neisseria research has involved the use of a wide variety of vertebrate and invertebrate animal models, from insects to humans. In this review, we itemise these models and describe how they have made significant contributions to understanding the pathophysiology of Neisseria infections and to the development and testing of vaccines and antimicrobials. We also look ahead, briefly, to their potential replacement by complex in vitro cellular models.
Collapse
Affiliation(s)
- Michael M Girgis
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
12
|
Manca B, Buffi G, Magri G, Del Vecchio M, Taddei AR, Pezzicoli A, Giuliani M. Functional characterization of the gonococcal polyphosphate pseudo-capsule. PLoS Pathog 2023; 19:e1011400. [PMID: 37216411 DOI: 10.1371/journal.ppat.1011400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Neisseria gonorrhoeae is an exclusively human pathogen able to evade the host immune system through multiple mechanisms. Gonococci accumulate a large portion of phosphate moieties as polyphosphate (polyP) on the exterior of the cell. Although its polyanionic nature has suggested that it may form a protective shield on the cell surface, its role remains controversial. Taking advantage of a recombinant His-tagged polyP-binding protein, the presence of a polyP pseudo-capsule in gonococcus was demonstrated. Interestingly, the polyP pseudo-capsule was found to be present in specific strains only. To investigate its putative role in host immune evasion mechanisms, such as resistance to serum bactericidal activity, antimicrobial peptides and phagocytosis, the enzymes involved in polyP metabolism were genetically deleted, generating mutants with altered polyP external content. The mutants with lower polyP content on their surface compared to the wild-type strains, became sensitive to complement-mediated killing in presence of normal human serum. Conversely, naturally serum sensitive strains that did not display a significant polyP pseudo-capsule became resistant to complement in the presence of exogenous polyP. The presence of polyP pseudo-capsule was also critical in the protection from antibacterial activity of cationic antimicrobial peptide, such as cathelicidin LL-37. Results showed that the minimum bactericidal concentration was lower in strains lacking polyP than in those harboring the pseudo-capsule. Data referring to phagocytic killing resistance, assessed by using neutrophil-like cells, showed a significant decrease in viability of mutants lacking polyP on their cell surface in comparison to the wild-type strain. The addition of exogenous polyP overturned the killing phenotype of sensitive strains suggesting that gonococcus could exploit environmental polyP to survive to complement-mediated, cathelicidin and intracellular killing. Taken together, data presented here indicate an essential role of the polyP pseudo-capsule in the gonococcal pathogenesis, opening new perspective on gonococcal biology and more effective treatments.
Collapse
Affiliation(s)
- Benedetta Manca
- Pharmacy and Biotechnology Department (FaBiT), University of Bologna, Bologna, Italy C/O GSK, Siena, Italy
| | | | | | | | - Anna Rita Taddei
- Centre for High Instruments, Electron Microscopy Section, University of Tuscia, Viterbo, Italy
| | | | | |
Collapse
|
13
|
Werner LM, Alcott A, Mohlin F, Ray JC, Belcher Dufrisne M, Smirnov A, Columbus L, Blom AM, Criss AK. Neisseria gonorrhoeae co-opts C4b-binding protein to enhance complement-independent survival from neutrophils. PLoS Pathog 2023; 19:e1011055. [PMID: 36862761 PMCID: PMC10013916 DOI: 10.1371/journal.ppat.1011055] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/14/2023] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
Neisseria gonorrhoeae (Gc) is a human-specific pathogen that causes the sexually transmitted infection gonorrhea. Gc survives in neutrophil-rich gonorrheal secretions, and recovered bacteria predominantly express phase-variable, surface-expressed opacity-associated (Opa) proteins (Opa+). However, expression of Opa proteins like OpaD decreases Gc survival when exposed to human neutrophils ex vivo. Here, we made the unexpected observation that incubation with normal human serum, which is found in inflamed mucosal secretions, enhances survival of Opa+ Gc from primary human neutrophils. We directly linked this phenomenon to a novel complement-independent function for C4b-binding protein (C4BP). When bound to the bacteria, C4BP was necessary and sufficient to suppress Gc-induced neutrophil reactive oxygen species production and prevent neutrophil phagocytosis of Opa+ Gc. This research identifies for the first time a complement-independent role for C4BP in enhancing the survival of a pathogenic bacterium from phagocytes, thereby revealing how Gc exploits inflammatory conditions to persist at human mucosal surfaces.
Collapse
Affiliation(s)
- Lacie M. Werner
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Allison Alcott
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Frida Mohlin
- Department of Translational Medicine, Lund University, Malmo, Sweden
| | - Jocelyn C. Ray
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Meagan Belcher Dufrisne
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - Asya Smirnov
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - Anna M. Blom
- Department of Translational Medicine, Lund University, Malmo, Sweden
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
14
|
Shaughnessy J, Chabeda A, Tran Y, Zheng B, Nowak N, Steffens C, DeOliveira RB, Gulati S, Lewis LA, Maclean J, Moss JA, Wycoff KL, Ram S. An optimized Factor H-Fc fusion protein against multidrug-resistant Neisseria gonorrhoeae. Front Immunol 2022; 13:975676. [PMID: 36110842 PMCID: PMC9468773 DOI: 10.3389/fimmu.2022.975676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Novel therapeutics against the global threat of multidrug-resistant Neisseria gonorrhoeae are urgently needed. Gonococci evade killing by complement by binding factor H (FH), a key inhibitor of the alternative pathway. FH comprises 20 short consensus repeat (SCR) domains organized as a single chain. Gonococci bind FH through domains 6 and 7, and C-terminal domains 18 through 20. Previously, we showed that a chimeric protein comprising (from the N- to C-terminus) FH domains 18-20 (containing a point mutation in domain 19 to prevent lysis of host cells) fused to human IgG1 Fc (called FH*/Fc1) killed gonococci in a complement-dependent manner and reduced the duration and bacterial burden in the mouse vaginal colonization model of gonorrhea. Considering the N. gonorrhoeae-binding FH domains 18-20 are C-terminal in native FH, we reasoned that positioning Fc N-terminal to FH* (Fc1/FH*) would improve binding and bactericidal activity. Although both molecules bound gonococci similarly, Fc1/FH* displayed a 5-fold lower IC50 (the concentration required for 50% killing in complement-dependent bactericidal assays) than FH*/Fc1. To further increase complement activation, we replaced human IgG1 Fc in Fc1/FH* with Fc from human IgG3, the most potent complement-activating IgG subclass, to obtain Fc3/FH*. Bactericidal activity was further increased ~2.3-fold in Fc3/FH* compared to Fc1/FH*. Fc3/FH* killed (defined by <50% survival) 45/45 (100%) diverse PorB1B-expessing gonococci, but only 2/15 PorB1A-expressing isolates, in a complement-dependent manner. Decreased Fc3/FH* binding accounted for the limited activity against PorB1A strains. Fc3/FH* was efficacious against all four tested PorB1B gonococcal strains in the mouse vaginal colonization model when administered at a dose of 5 µg intravaginally, daily. Furthermore, Fc3/FH* retained bactericidal activity when reconstituted following lyophilization or spray-drying, suggesting feasibility for formulation into intravaginal rings. In conclusion, Fc3/FH* represents a promising prophylactic immunotherapeutic against multidrug-resistant gonococci.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Aleyo Chabeda
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Y. Tran
- Planet Biotechnology, Inc., Hayward, CA, United States
| | - Bo Zheng
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Nancy Nowak
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Carolynn Steffens
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Rosane B. DeOliveira
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Lisa A. Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - James Maclean
- Planet Biotechnology, Inc., Hayward, CA, United States
| | - John A. Moss
- Oak Crest Institute of Science, Monrovia, CA, United States
| | | | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
15
|
Du Y, Xin H, Cao X, Liu Z, He Y, Zhang B, Yan J, Wang D, Guan L, Shen F, Feng B, He Y, Liu J, Jin Q, Pan S, Zhang H, Gao L. Association Between Plasma Exosomes S100A9/C4BPA and Latent Tuberculosis Infection Treatment: Proteomic Analysis Based on a Randomized Controlled Study. Front Microbiol 2022; 13:934716. [PMID: 35935235 PMCID: PMC9355536 DOI: 10.3389/fmicb.2022.934716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundIdentifying host plasma exosome proteins associated with host response to latent tuberculosis infection (LTBI) treatment might promote our understanding of tuberculosis (TB) pathogenesis and provide useful tools for implementing the precise intervention.MethodsBased on an open-label randomized controlled trial (RCT) aiming to evaluate the short-course regimens for LTBI treatment, plasma exosomes from pre- and post-LTBI treatment were retrospectively detected by label-free quantitative protein mass spectrometry and validated by a parallel reaction monitoring method for participants with changed or not changed infection testing results after LTBI treatment. Eligible participants for both screening and verification sets were randomly selected from the based-RCT in a 1:1 ratio by age and gender. Reversion was defined as a decrease in IFN-γ levels from >0.70 IU/ml prior to treatment to 0.20 IU/ml within 1 week of treatment. The predictive ability of the candidate proteins was evaluated by receiver operating characteristic (ROC) analysis.ResultsTotally, two sample sets for screening (n = 40) and validation (n = 60) were included. Each of them included an equal number of subjects with persistent positive or reversed QuantiFERON-TB Gold In-Tube (QFT) results after LTBI. A total of 2,321 exosome proteins were detected and 102 differentially expressed proteins were identified to be associated with QFT reversion. Proteins with high confidence and original values intact were selected to be further verified. Totally, 9 downregulated proteins met the criteria and were validated. After verification, C4BPA and S100A9 were confirmed to be still significantly downregulated (fold change <0.67, p < 0.05). The respective areas under the ROC curve were 0.73 (95% CI: 0.57–0.89) and 0.69 (95% CI: 0.52–0.86) for C4BPA and S100A9, with a combined value of 0.78 (95% CI: 0.63–0.93). The positive and negative predictive values for combined markers were 70.10% (95% CI: 50.22–86.30%) and 55.63% (95% CI: 29.17–61.00%).ConclusionOur findings suggest that downregulated C4BPA and S100A9 in plasma exosomes might be associated with a host positive response to LTBI treatment. Further studies are warranted to verify the findings and potential underlying mechanisms in varied populations with a larger sample size.
Collapse
Affiliation(s)
- Ying Du
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Henan Xin
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuefang Cao
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zisen Liu
- Center for Diseases Control and Prevention of Zhongmu, Zhengzhou, China
| | - Yijun He
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Zhang
- Center for Diseases Control and Prevention of Zhongmu, Zhengzhou, China
| | - Jiaoxia Yan
- Center for Diseases Control and Prevention of Zhongmu, Zhengzhou, China
| | - Dakuan Wang
- Center for Diseases Control and Prevention of Zhongmu, Zhengzhou, China
| | - Ling Guan
- The Sixth People's Hospital of Zhengzhou, Zhengzhou, China
| | - Fei Shen
- The Sixth People's Hospital of Zhengzhou, Zhengzhou, China
| | - Boxuan Feng
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongpeng He
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianmin Liu
- The Sixth People's Hospital of Zhengzhou, Zhengzhou, China
| | - Qi Jin
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shouguo Pan
- Center for Diseases Control and Prevention of Zhongmu, Zhengzhou, China
- Shouguo Pan
| | - Haoran Zhang
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Haoran Zhang
| | - Lei Gao
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Lei Gao
| |
Collapse
|
16
|
Magda M, Bettoni S, Laabei M, Fairley D, Russo TA, Riesbeck K, Blom AM. Clinical Isolates of Acinetobacter spp. Are Highly Serum Resistant Despite Efficient Recognition by the Complement System. Front Immunol 2022; 13:814193. [PMID: 35173727 PMCID: PMC8841485 DOI: 10.3389/fimmu.2022.814193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Gram-negative bacteria from the genus Acinetobacter are responsible for life-threating hospital-related infections such as pneumonia, septicemia, and meningitis, especially in immunocompromised patients. Worryingly, Acinetobacter have become multi- and extensively drug resistant (MDR/XDR) over the last few decades. The complement system is the first line of defense against microbes, thus it is highly important to increase our understanding of evasion mechanisms used by Acinetobacter spp. Here, we studied clinical isolates of Acinetobacter spp. (n=50), aiming to characterize their recognition by the complement system. Most isolates tested survived 1 h incubation in 30% serum, and only 8 isolates had a lower survival rate, yet none of those isolates were fully killed. Intriguingly, four isolates survived in human whole blood containing all cell component. Their survival was, however, significantly reduced. Flow cytometry analyses revealed that most of the isolates were detected by human IgG and IgM. Interestingly, we could not detect any significant concentration of deposited C1q, despite observing C4b deposition that was abolished in C1q-deficient serum, indicating transient binding of C1q to bacteria. Moreover, several isolates were recognized by MBL, with C4b deposition abolished in MBL-deficient serum. C3b was deposited on most isolates, but this was not, however, seen with respect to C5b and formation of the membrane attack complex (MAC), indicating that many isolates could avoid complement-mediated lysis. India ink staining showed that isolates were capsulated, and capsule thickness varied significantly between isolates. Studies performed on a wild-type strain and capsule mutant strains, demonstrated that the production of a capsular polysaccharide is one mechanism that mediates resistance to complement-mediated bactericidal activity by preventing MAC deposition and lysis. Our data showed that most clinical Acinetobacter spp. isolates are highly serum resistant despite being efficiently recognized by the complement system.
Collapse
Affiliation(s)
- Michal Magda
- Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Serena Bettoni
- Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Maisem Laabei
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Derek Fairley
- Department of Microbiology, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Thomas A. Russo
- Veterans Administration Western New York Healthcare System, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University Buffalo, Buffalo, NY, United States
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M. Blom
- Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
- *Correspondence: Anna M. Blom,
| |
Collapse
|
17
|
Machine Learning-Based Identification of Potentially Novel Non-Alcoholic Fatty Liver Disease Biomarkers. Biomedicines 2021; 9:biomedicines9111636. [PMID: 34829865 PMCID: PMC8615894 DOI: 10.3390/biomedicines9111636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease that presents a great challenge for treatment and prevention.. This study aims to implement a machine learning approach that employs such datasets to identify potential biomarker targets. We developed a pipeline to identify potential biomarkers for NAFLD that includes five major processes, namely, a pre-processing step, a feature selection and a generation of a random forest model and, finally, a downstream feature analysis and a provision of a potential biological interpretation. The pre-processing step includes data normalising and variable extraction accompanied by appropriate annotations. A feature selection based on a differential gene expression analysis is then conducted to identify significant features and then employ them to generate a random forest model whose performance is assessed based on a receiver operating characteristic curve. Next, the features are subjected to a downstream analysis, such as univariate analysis, a pathway enrichment analysis, a network analysis and a generation of correlation plots, boxplots and heatmaps. Once the results are obtained, the biological interpretation and the literature validation is conducted over the identified features and results. We applied this pipeline to transcriptomics and lipidomic datasets and concluded that the C4BPA gene could play a role in the development of NAFLD. The activation of the complement pathway, due to the downregulation of the C4BPA gene, leads to an increase in triglyceride content, which might further render the lipid metabolism. This approach identified the C4BPA gene, an inhibitor of the complement pathway, as a potential biomarker for the development of NAFLD.
Collapse
|
18
|
Sharma A, Yadav SP, Sarma D, Mukhopadhaya A. Modulation of host cellular responses by gram-negative bacterial porins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:35-77. [PMID: 35034723 DOI: 10.1016/bs.apcsb.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The outer membrane of a gram-negative bacteria encapsulates the plasma membrane thereby protecting it from the harsh external environment. This membrane acts as a sieving barrier due to the presence of special membrane-spanning proteins called "porins." These porins are β-barrel channel proteins that allow the passive transport of hydrophilic molecules and are impermeable to large and charged molecules. Many porins form trimers in the outer membrane. They are abundantly present on the bacterial surface and therefore play various significant roles in the host-bacteria interactions. These include the roles of porins in the adhesion and virulence mechanisms necessary for the pathogenesis, along with providing resistance to the bacteria against the antimicrobial substances. They also act as the receptors for phage and complement proteins and are involved in modulating the host cellular responses. In addition, the potential use of porins as adjuvants, vaccine candidates, therapeutic targets, and biomarkers is now being exploited. In this review, we focus briefly on the structure of the porins along with their important functions and roles in the host-bacteria interactions.
Collapse
Affiliation(s)
- Arpita Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Shashi Prakash Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Dwipjyoti Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| |
Collapse
|
19
|
Thofte O, Bettoni S, Su YC, Thegerström J, Jonsson S, Mattsson E, Sandblad L, Martí S, Garmendia J, Blom AM, Riesbeck K. Nontypeable Haemophilus influenzae P5 Binds Human C4b-Binding Protein, Promoting Serum Resistance. THE JOURNAL OF IMMUNOLOGY 2021; 207:1566-1577. [PMID: 34433620 PMCID: PMC8428749 DOI: 10.4049/jimmunol.2100105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
Exposure of P5 at the surface of NTHi positively correlates with C4BP binding. C4BP bound to the bacterial surface retains its complement inhibitory capacity. C4BP binding to P5 is important for NTHi serum resistance.
Nontypeable Haemophilus influenzae (NTHi) is a Gram-negative human pathogen that causes infections mainly in the upper and lower respiratory tract. The bacterium is associated with bronchitis and exacerbations in patients suffering from chronic obstructive pulmonary disease and frequently causes acute otitis media in preschool children. We have previously demonstrated that the binding of C4b binding protein (C4BP) is important for NTHi complement evasion. In this study, we identified outer membrane protein 5 (P5) of NTHi as a novel ligand of C4BP. Importantly, we observed significantly lower C4BP binding and decreased serum resistance in P5-deficient NTHi mutants. Surface expression of recombinant P5 on Escherichia coli conferred C4BP binding and consequently increased serum resistance. Moreover, P5 expression was positively correlated with C4BP binding in a series of clinical isolates. We revealed higher levels of P5 surface expression and consequently more C4BP binding in isolates from the lower respiratory tract of chronic obstructive pulmonary disease patients and tonsil specimens compared with isolates from the upper respiratory tract and the bloodstream (invasive strains). Our results highlight P5 as an important protein for protecting NTHi against complement-mediated killing.
Collapse
Affiliation(s)
- Oskar Thofte
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Serena Bettoni
- Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - John Thegerström
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Sandra Jonsson
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Emma Mattsson
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Linda Sandblad
- Department of Molecular Biology, Umeå University, Umea, Sweden
| | - Sara Martí
- Microbiology Department, Research Network for Respiratory Diseases, Bellvitge Institute for Biomedical Research, Bellvitge University Hospital, Barcelona, Spain; and
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, Mutilva, Spain
| | - Anna M Blom
- Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden;
| |
Collapse
|
20
|
Bettoni S, Maziarz K, Stone MRL, Blaskovich MAT, Potempa J, Bazzo ML, Unemo M, Ram S, Blom AM. Serum Complement Activation by C4BP-IgM Fusion Protein Can Restore Susceptibility to Antibiotics in Neisseria gonorrhoeae. Front Immunol 2021; 12:726801. [PMID: 34539665 PMCID: PMC8440848 DOI: 10.3389/fimmu.2021.726801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
Neisseria gonorrhoeae is the etiological agent of gonorrhea, the second most common bacterial sexually transmitted infection worldwide. Reproductive sequelae of gonorrhea include infertility, ectopic pregnancy and chronic pelvic pain. Most antibiotics currently in clinical use have been rendered ineffective due to the rapid spread of antimicrobial resistance among gonococci. The developmental pipeline of new antibiotics is sparse and novel therapeutic approaches are urgently needed. Previously, we utilized the ability of N. gonorrhoeae to bind the complement inhibitor C4b-binding protein (C4BP) to evade killing by human complement to design a chimeric protein that linked the two N-terminal gonococcal binding domains of C4BP with the Fc domain of IgM. The resulting molecule, C4BP-IgM, enhanced complement-mediated killing of gonococci. Here we show that C4BP-IgM induced membrane perturbation through complement deposition and membrane attack complex pore insertion facilitates the access of antibiotics to their intracellular targets. Consequently, bacteria become more susceptible to killing by antibiotics. Remarkably, C4BP-IgM restored susceptibility to azithromycin of two azithromycin-resistant clinical gonococcal strains because of overexpression of the MtrC-MtrD-MtrE efflux pump. Our data show that complement activation can potentiate activity of antibiotics and suggest a role for C4BP-IgM as an adjuvant for antibiotic treatment of drug-resistant gonorrhea.
Collapse
Affiliation(s)
- Serena Bettoni
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Karolina Maziarz
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - M Rhia L Stone
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jan Potempa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Maria Luiza Bazzo
- Molecular Biology, Microbiology and Serology Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Magnus Unemo
- World Health Organization (WHO) Collaborating Centre for Gonorrhoea and other STIs, Department of Laboratory Medicine, Örebro University, Örebro, Sweden
| | - Sanjay Ram
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, MA, United States
| | - Anna M. Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
21
|
Connolly KL, Pilligua-Lucas M, Gomez C, Costenoble-Caherty AC, Soc A, Underwood K, Macintyre AN, Sempowski GD, Jerse AE. Preclinical Testing of Vaccines and Therapeutics for Gonorrhea in Female Mouse Models of Lower and Upper Reproductive Tract Infection. J Infect Dis 2021; 224:S152-S160. [PMID: 34396408 DOI: 10.1093/infdis/jiab211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Murine models of Neisseria gonorrhoeae lower reproductive tract infection are valuable systems for studying N. gonorrhoeae adaptation to the female host and immune responses to infection. These models have also accelerated preclinical testing of candidate therapeutic and prophylactic products against gonorrhea. However, because N. gonorrhoeae infection is restricted to the murine cervicovaginal region, there is a need for an in vivo system for translational work on N. gonorrhoeae pelvic inflammatory disease (PID). Here we discuss the need for well-characterized preclinical upper reproductive tract infection models for developing candidate products against N. gonorrhoeae PID, and report a refinement of the gonorrhea mouse model that supports sustained upper reproductive tract infection. To establish this new model for vaccine testing, we also tested the licensed meningococcal 4CMenB vaccine, which cross-protects against murine N. gonorrhoeae lower reproductive tract infection, for efficacy against N. gonorrhoeae in the endometrium and oviducts following transcervical or vaginal challenge.
Collapse
Affiliation(s)
- Kristie L Connolly
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Michelle Pilligua-Lucas
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Carolina Gomez
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | | | - Anthony Soc
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Knashka Underwood
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Andrew N Macintyre
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ann E Jerse
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Lin EY, Adamson PC, Klausner JD. Epidemiology, Treatments, and Vaccine Development for Antimicrobial-Resistant Neisseria gonorrhoeae: Current Strategies and Future Directions. Drugs 2021; 81:1153-1169. [PMID: 34097283 PMCID: PMC8182353 DOI: 10.1007/s40265-021-01530-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 12/12/2022]
Abstract
Neisseria gonorrhoeae is the second most common bacterial sexually transmitted infection in the world after Chlamydia trachomatis. The pathogen has developed resistance to every antibiotic currently approved for treatment, and multidrug-resistant strains have been identified globally. The current treatment recommended by the World Health Organization is ceftriaxone and azithromycin dual therapy. However, resistance to azithromycin and ceftriaxone are increasing and treatment failures have been reported. As a result, there is a critical need to develop novel strategies for mitigating the spread of antimicrobial-resistant N. gonorrhoeae through improved diagnosis and treatment of resistant infections. Strategies that are currently being pursued include developing molecular assays to predict resistance, utilizing higher doses of ceftriaxone, repurposing older antibiotics, and developing newer agents. In addition, efforts to discover a vaccine for N. gonorrhoeae have been reignited in recent years with the cross-protectivity provided by the N. meningitidis vaccine, with several new strategies and targets. Despite the significant progress that has been made, there is still much work ahead to combat antimicrobial-resistant N. gonorrhoeae globally.
Collapse
Affiliation(s)
- Eric Y Lin
- David Geffen School of Medicine at UCLA, Los Angeles, CA USA
| | - Paul C Adamson
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave. CHS 52-215, Los Angeles, CA 90095 USA
| | - Jeffrey D. Klausner
- Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA USA
| |
Collapse
|
23
|
More than a Pore: Nonlytic Antimicrobial Functions of Complement and Bacterial Strategies for Evasion. Microbiol Mol Biol Rev 2021; 85:85/1/e00177-20. [PMID: 33504655 DOI: 10.1128/mmbr.00177-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The complement system is an evolutionarily ancient defense mechanism against foreign substances. Consisting of three proteolytic activation pathways, complement converges on a common effector cascade terminating in the formation of a lytic pore on the target surface. The classical and lectin pathways are initiated by pattern recognition molecules binding to specific ligands, while the alternative pathway is constitutively active at low levels in circulation. Complement-mediated killing is essential for defense against many Gram-negative bacterial pathogens, and genetic deficiencies in complement can render individuals highly susceptible to infection, for example, invasive meningococcal disease. In contrast, Gram-positive bacteria are inherently resistant to the direct bactericidal activity of complement due to their thick layer of cell wall peptidoglycan. However, complement also serves diverse roles in immune defense against all bacteria by flagging them for opsonization and killing by professional phagocytes, synergizing with neutrophils, modulating inflammatory responses, regulating T cell development, and cross talk with coagulation cascades. In this review, we discuss newly appreciated roles for complement beyond direct membrane lysis, incorporate nonlytic roles of complement into immunological paradigms of host-pathogen interactions, and identify bacterial strategies for complement evasion.
Collapse
|
24
|
Elieh Ali Komi D, Shafaghat F, Kovanen PT, Meri S. Mast cells and complement system: Ancient interactions between components of innate immunity. Allergy 2020; 75:2818-2828. [PMID: 32446274 DOI: 10.1111/all.14413] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/09/2020] [Accepted: 04/26/2020] [Indexed: 12/23/2022]
Abstract
The emergence and evolution of the complement system and mast cells (MCs) can be traced back to sea urchins and the ascidian Styela plicata, respectively. Acting as a cascade of enzymatic reactions, complement is activated through the classical (CP), the alternative (AP), and the lectin pathway (LP) based on the recognized molecules. The system's main biological functions include lysis, opsonization, and recruitment of phagocytes. MCs, beyond their classic role as master cells of allergic reactions, play a role in other settings, as well. Thus, MCs are considered as extrahepatic producers of complement proteins. They express various complement receptors, including those for C3a and C5a. C3a and C5a not only activate the C3aR and C5aR expressing MCs but also act as chemoattractants for MCs derived from different anatomic sites, such as from the bone marrow, human umbilical cord blood, or skin in vitro. Cross talk between MCs and complement is facilitated by the production of complement proteins by MCs and their activation by the MC tryptase. The coordinated activity between MCs and the complement system plays a key role, for example, in a number of allergic, cutaneous, and vascular diseases. At a molecular level, MCs and complement system interactions are based on the production of several complement zymogens by MCs and their activation by MC-released proteases. Additionally, at a cellular level, MCs act as potent effector cells of complement activation by expressing receptors for C3a and C5a through which their chemoattraction and activation are mediated by anaphylatoxins in a paracrine and autocrine fashion.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology Tabriz University of Medical Sciences Tabriz Iran
| | - Farzaneh Shafaghat
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology Tabriz University of Medical Sciences Tabriz Iran
| | | | - Seppo Meri
- Department of Bacteriology and Immunology Immunobiology Research Program University of Helsinki Helsinki Finland
- HUSLAB Helsinki University Central Hospital Helsinki Finland
| |
Collapse
|
25
|
Laabei M, Colineau L, Bettoni S, Maziarz K, Ermert D, Riesbeck K, Ram S, Blom AM. Antibacterial Fusion Proteins Enhance Moraxella catarrhalis Killing. Front Immunol 2020; 11:2122. [PMID: 32983170 PMCID: PMC7492680 DOI: 10.3389/fimmu.2020.02122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/05/2020] [Indexed: 01/10/2023] Open
Abstract
Moraxella catarrhalis is a human-specific commensal of the respiratory tract and an opportunistic pathogen. It is one of the leading cause of otitis media in children and of acute exacerbations in patients with chronic obstructive pulmonary disease, resulting in significant morbidity and economic burden. Vaccines and new immunotherapeutic strategies to treat this emerging pathogen are needed. Complement is a key component of innate immunity that mediates the detection, response, and subsequent elimination of invading pathogens. Many pathogens including M. catarrhalis have evolved complement evasion mechanisms, which include the binding of human complement inhibitors such as C4b-binding protein (C4BP) and Factor H (FH). Inhibiting C4BP and FH acquisition by M. catarrhalis may provide a novel therapeutic avenue to treat infections. To achieve this, we created two chimeric proteins that combined the Moraxella-binding domains of C4BP and FH fused to human immunoglobulin Fcs: C4BP domains 1 and 2 and FH domains 6 and 7 fused to IgM and IgG Fc, respectively. As expected, FH6-7/IgG displaced FH from the bacterial surface while simultaneously activating complement via Fc-C1q interactions, together increasing pathogen elimination. C4BP1-2/IgM also increased serum killing of the bacteria through enhanced complement deposition, but did not displace C4BP from the surface of M. catarrhalis. These Fc fusion proteins could act as anti-infective immunotherapies. Many microbes bind the complement inhibitors C4BP and FH through the same domains as M. catarrhalis, therefore these Fc fusion proteins may be promising candidates as adjunctive therapy against many different drug-resistant pathogens.
Collapse
Affiliation(s)
- Maisem Laabei
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden.,Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Lucie Colineau
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Serena Bettoni
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Karolina Maziarz
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - David Ermert
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
26
|
Lewis LA, Ram S. Complement interactions with the pathogenic Neisseriae: clinical features, deficiency states, and evasion mechanisms. FEBS Lett 2020; 594:2670-2694. [PMID: 32058583 DOI: 10.1002/1873-3468.13760] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
Neisseria gonorrhoeae causes the sexually transmitted infection gonorrhea, while Neisseria meningitidis is an important cause of bacterial meningitis and sepsis. Complement is a central arm of innate immune defenses and plays an important role in combating Neisserial infections. Persons with congenital and acquired defects in complement are at a significantly higher risk for invasive Neisserial infections such as invasive meningococcal disease and disseminated gonococcal infection compared to the general population. Of note, Neisseria gonorrhoeae and Neisseria meningitidis can only infect humans, which in part may be related to their ability to evade only human complement. This review summarizes the epidemiologic and clinical aspects of Neisserial infections in persons with defects in the complement system. Mechanisms used by these pathogens to subvert killing by complement and preclinical studies showing how these complement evasion strategies may be used to counteract the global threat of meningococcal and gonococcal infections are discussed.
Collapse
Affiliation(s)
- Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|