1
|
Granata R, Leone S, Zhang X, Gesmundo I, Steenblock C, Cai R, Sha W, Ghigo E, Hare JM, Bornstein SR, Schally AV. Growth hormone-releasing hormone and its analogues in health and disease. Nat Rev Endocrinol 2025; 21:180-195. [PMID: 39537825 DOI: 10.1038/s41574-024-01052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Growth hormone-releasing hormone (GHRH) and its ability to stimulate the production and release of growth hormone from the pituitary were discovered more than four decades ago. Since then, this hormone has been studied extensively and research into its functions is still ongoing. GHRH has multifaceted roles beyond the originally identified functions that encompass a variety of direct extrapituitary effects. In this Review, we illustrate the different biological activities of GHRH, covering the effects of GHRH agonists and antagonists in physiological and pathological contexts, along with the underlying mechanisms. GHRH and GHRH analogues have been implicated in cell growth, wound healing, cell death, inflammation, immune functions, mood disorders, feeding behaviour, neuroprotection, diabetes mellitus and obesity, as well as cardiovascular, lung and neurodegenerative diseases and some cancers. The positive effects observed in preclinical models in vitro and in vivo strongly support the potential use of GHRH agonists and antagonists as clinical therapeutics.
Collapse
Affiliation(s)
- Riccarda Granata
- Department of Medical Sciences, University of Turin, Turin, Italy.
| | - Sheila Leone
- Department of Pharmacy, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Xianyang Zhang
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
| | - Iacopo Gesmundo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Renzhi Cai
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wei Sha
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center., Miami, FL, USA
| | - Ezio Ghigo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andrew V Schally
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center., Miami, FL, USA
| |
Collapse
|
2
|
Steenblock C, Bornstein SR. GHRH in diabetes and metabolism. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09930-9. [PMID: 39560873 DOI: 10.1007/s11154-024-09930-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Despite over a century of insulin therapy and recent advances in glucose monitoring, diabetes and its complications remain a significant burden. Current medications are not durable, with symptoms often returning after treatment ends, and responses vary between patients. Additionally, the effectiveness of many medications diminishes over time, highlighting the need for alternative approaches. Maintaining β-cell mass and promoting β-cell regeneration offer more curable treatments, while cell replacement therapies could be an option if regeneration is not feasible. For both strategies, enhancing β-cell survival is crucial. Growth hormone-releasing hormone (GHRH) was originally discovered for its ability to stimulate the production and release of growth hormone (GH) from the pituitary. Beyond the hypothalamus, GHRH is produced in peripheral tissues, with its receptor, GHRHR, expressed in tissues such as the pituitary, pancreas, adipose tissue, intestine, and liver. Several studies have shown that GHRH and its analogs enhance the survival of insulin-producing pancreatic β-cells both in vitro and in animal models. These beneficial effects strongly support the potential of GHRH agonists and antagonists for the clinical treatment of human metabolic diseases or for enhancing β-cell survival in cells used for transplantation. In the current review, we will discuss the roles of hypothalamic and extrahypothalamic GHRH in metabolism in physiological and pathological contexts, along with the underlying mechanisms. Furthermore, we will discuss the potential beneficial effects of GHRH analogs for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
3
|
Wang L, Zhang X, Huang X, Sha X, Li X, Zheng J, Li S, Wei Z, Wu F. Homoplantaginin alleviates high glucose-induced vascular endothelial senescence by inhibiting mtDNA-cGAS-STING pathway via blunting DRP1-mitochondrial fission-VDAC1 axis. FASEB J 2024; 38:e70127. [PMID: 39436199 DOI: 10.1096/fj.202401299rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
Vascular endothelial senescence is a major risk factor for diabetic vascular complications. Abnormal mitochondrial fission by dynamically related protein 1 (DRP1) accelerates vascular endothelial cell senescence. Homoplantaginin (Hom) is a flavonoid in Salvia plebeia R. Br. with protecting mitochondrial and repairing vascular properties. However, the relevant mechanism of Hom against diabetic vascular endothelial cell senescence remains unclear. Here, we used db/db mice and high glucose (HG)-treated human umbilical vein endothelial cells (HUVECs) to assess the anti-vascular endothelial cell senescence of Hom. We found that Hom inhibited senescence-associated β-galactosidase activity, decreased the levels of senescence markers, and senescence-associated secretory phenotype factors. Additionally, Hom inhibited the expression of cGAS-STING pathway and downstream inflammatory factors. STING inhibitor H-151 delayed endothelial senescence, whereas STING overexpression attenuated the anti-endothelial senescence effect of Hom. Furthermore, we observed that Hom reduced mitochondrial fragmentation and inhibited abnormal mitochondrial fission using transmission electron microscopy. Importantly, Hom has a stronger effect on mitochondrial fission protein than mitochondrial fusion protein, especially downregulated the expression of DRP1. DRP1 inhibitor Mdivi-1 suppressed cGAS-STING pathway and vascular endothelial senescence, yet DRP1 agonist FCCP attenuated the effect of Hom. Surprisingly, Hom blunted abnormal mitochondrial fission mediated by DRP1 mitochondrial localization, suppressed interaction of DRP1 with VDAC1 and prevented VDAC1 oligomerization, which was necessary for mtDNA escape and subsequent cGAS-STING pathway activation. These results revealed a previously unrecognized mechanism that Hom alleviated vascular endothelial senescence by inhibited mtDNA-cGAS-STING signaling pathway via blunting DRP1-mitochondrial fission-VDAC1 axis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xueying Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xi Huang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaotong Sha
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xulu Li
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jianmei Zheng
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shitong Li
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Feihua Wu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Gusmao DO, de Sousa LMM, de Sousa ME, Rusew SJR, List EO, Kopchick JJ, Gomes AF, Campideli-Santana AC, Szawka RE, Donato J. Characterization and Regulation of the Neonatal Growth Hormone Surge. Endocrinology 2024; 165:bqae140. [PMID: 39446366 PMCID: PMC11544317 DOI: 10.1210/endocr/bqae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Indexed: 11/09/2024]
Abstract
High neonatal growth hormone (GH) secretion has been described in several species. However, the neuroendocrine mechanisms behind this surge remain unknown. Thus, the pattern of postnatal GH secretion was investigated in mice and rats. Blood GH levels were very high on postnatal day (P)1 and progressively decreased until near zero by P17 in C57BL/6 mice without sex differences. This pattern was similar to that observed in rats, except that female rats showed higher GH levels on P1 than males. In comparison, follicle-stimulating hormone exhibited higher secretion in females during the first 3 weeks of life. Hypothalamic Sst mRNA and somatostatin neuroendocrine terminals in the median eminence were higher in P20/P21 mice than in newborns. Knockout mice for GH-releasing hormone (GHRH) receptor showed no GH surge, whereas knockdown mice for the Sst gene displayed increased neonatal GH peak. Leptin deficiency caused only minor effects on early-life GH secretion. GH receptor ablation in neurons or the entire body did not affect neonatal GH secretion, but the subsequent reduction in blood GH levels was attenuated or prevented by these genetic manipulations, respectively. This phenotype was also observed in knockout mice for the insulin-like growth factor-1 (IGF-1) receptor in GHRH neurons. Moreover, glucose-induced hyperglycemia overstimulated GH secretion in neonatal mice. In conclusion, GH surge in the first days of life is not regulated by negative feedback loops. However, neonatal GH secretion requires GHRH receptor, and is modulated by somatostatin and blood glucose levels, suggesting that this surge is controlled by hypothalamic-pituitary communication.
Collapse
MESH Headings
- Animals
- Female
- Growth Hormone/metabolism
- Growth Hormone/blood
- Animals, Newborn
- Male
- Mice, Knockout
- Mice, Inbred C57BL
- Somatostatin/metabolism
- Somatostatin/genetics
- Mice
- Receptor, IGF Type 1/metabolism
- Receptor, IGF Type 1/genetics
- Rats
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Leptin/blood
- Leptin/metabolism
- Hypothalamus/metabolism
- Receptors, Pituitary Hormone-Regulating Hormone/genetics
- Receptors, Pituitary Hormone-Regulating Hormone/metabolism
- Growth Hormone-Releasing Hormone/metabolism
- Growth Hormone-Releasing Hormone/genetics
- Receptors, Somatotropin/genetics
- Receptors, Somatotropin/metabolism
- Follicle Stimulating Hormone/blood
- Follicle Stimulating Hormone/metabolism
- Insulin-Like Growth Factor I/metabolism
- Insulin-Like Growth Factor I/genetics
Collapse
Affiliation(s)
- Daniela O Gusmao
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Ligia M M de Sousa
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Maria E de Sousa
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Stephanie J R Rusew
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Andre F Gomes
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Ana C Campideli-Santana
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Raphael E Szawka
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
5
|
Sakamuri SSVP, Sure VN, Oruganti L, Wisen W, Chandra PK, Liu N, Fonseca VA, Wang X, Klein J, Katakam PVG. Acute severe hypoglycemia alters mouse brain microvascular proteome. J Cereb Blood Flow Metab 2024; 44:556-572. [PMID: 37944245 PMCID: PMC10981402 DOI: 10.1177/0271678x231212961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/12/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
Hypoglycemia increases the risk related to stroke and neurodegenerative diseases, however, the underlying mechanisms are unclear. For the first time, we studied the effect of a single episode (acute) of severe (ASH) and mild (AMH) hypoglycemia on mouse brain microvascular proteome. After four-hour fasting, insulin was administered (i.p) to lower mean blood glucose in mice and induce ∼30 minutes of ASH (∼30 mg/dL) or AMH (∼75 mg/dL), whereas a similar volume of saline was given to control mice (∼130 mg/dL). Blood glucose was allowed to recover over 60 minutes either spontaneously or by 20% dextrose administration (i.p). Twenty-four hours later, the brain microvessels (BMVs) were isolated, and tandem mass tag (TMT)-based quantitative proteomics was performed using liquid chromatography-mass spectrometry (LC/MS). When compared to control, ASH significantly downregulated 13 proteins (p ≤ 0.05) whereas 23 proteins showed a strong trend toward decrease (p ≤ 0.10). When compared to AMH, ASH significantly induced the expression of 35 proteins with 13 proteins showing an increasing trend. AMH downregulated only 3 proteins. ASH-induced downregulated proteins are involved in actin cytoskeleton maintenance needed for cell shape and migration which are critical for blood-brain barrier maintenance and angiogenesis. In contrast, ASH-induced upregulated proteins are RNA-binding proteins involved in RNA splicing, transport, and stability. Thus, ASH alters BMV proteomics to impair cytoskeletal integrity and RNA processing which are critical for cerebrovascular function.
Collapse
Affiliation(s)
- Siva SVP Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Lokanatha Oruganti
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - William Wisen
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Ning Liu
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Clinical Neuroscience Research Center, New Orleans, LA, USA
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Vivian A Fonseca
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Xiaoying Wang
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Clinical Neuroscience Research Center, New Orleans, LA, USA
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jennifer Klein
- Department of Biochemistry & Molecular Biology, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Prasad VG Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Clinical Neuroscience Research Center, New Orleans, LA, USA
| |
Collapse
|
6
|
Wu K, Xie W, Chen Z, Zhou L, Wang L, Zhou Y, Liu L. Disturbed hippocampal histidine metabolism contributes to cognitive impairment induced by recurrent nonsevere hypoglycemia in diabetes. Biochem Biophys Res Commun 2023; 682:325-334. [PMID: 37837753 DOI: 10.1016/j.bbrc.2023.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Hypoglycemia is a common adverse reaction to glucose-lowering treatment. Diabetes mellitus (DM) combined with recurrent nonsevere hypoglycemia (RH) can accelerate cognitive decline. Currently, the metabolic pattern changes in cognition-related brain regions caused by this combined effect of DM and RH (DR) remain unclear. In this study, we first characterized the metabolic profiles of the hippocampus in mice exposed to DR using non-targeted metabolomic platforms. Our results showed that DR induced a unique metabolic pattern in the hippocampus, and several significant differences in metabolite levels belonging to the histidine metabolism pathway were discovered. Based on these findings, in the follow-up experiment, we found that histidine treatment could attenuate the cognitive impairment and rescue the neuronal and synaptic damage induced by DR in the hippocampus, which are closely related to ameliorated mitochondrial injury. These findings provide new insights into the metabolic mechanisms of the hippocampus in the progression of DR, and l-histidine supplementation may be a potential metabolic therapy in the future.
Collapse
Affiliation(s)
- Kejun Wu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wenhuo Xie
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhou Chen
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Linying Zhou
- Public Technology Service Center, Fujian Medical University, Fuzhou, China
| | - Lijing Wang
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yu Zhou
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China.
| | - Libin Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
7
|
Chen Y, Yang C, Zou M, Wang D, Sheng R, Zhan M, Chen Q, Yang W, Liu X, Xu S. Inhibiting mitochondrial inflammation through Drp1/HK1/NLRP3 pathway: A mechanism of alpinetin attenuated aging-associated cognitive impairment. Phytother Res 2023. [PMID: 36772986 DOI: 10.1002/ptr.7767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/20/2022] [Accepted: 01/29/2023] [Indexed: 02/12/2023]
Abstract
Mitochondrial inflammation triggered by abnormal mitochondrial division and regulated by the Drp1/HK1/NLRP3 pathway is correlated with the progression of aging-associated cognitive impairment (AACI). Alpinetin is a novel flavonoid derived from Zingiberaceae that has many bioactivities such as antiinflammation and anti-oxidation. However, whether alpinetin alleviates AACI by suppressing Drp1/HK1/NLRP3 pathway-inhibited mitochondrial inflammation is still unknown. In the present study, D-galactose (D-gal)-induced aging mice and BV-2 cells were used, and the effects of alpinetin on learning and memory function, neuroprotection and activation of the Drp1/HK1/NLRP3 pathway were investigated. Our data indicated that alpinetin significantly alleviated cognitive dysfunction and neuronal damage in the CA1 and CA3 regions of D-gal-treated mice. Moreover, D-gal-induced microglial activation was markedly reduced by alpinetin by inhibiting the Drp1/HK1/NLRP3 pathway-suppressed mitochondrial inflammation, down-regulating the levels of p-Drp1 (s616), VDAC, NLRP3, ASC, Cleaved-caspase 1, IL-18, and IL-1β, and up-regulating the expression of HK1. Furthermore, after Drp1 inhibition by Mdivi-1 in vitro, the inhibitory effect of alpinetin on Drp1/HK1/NLRP3 pathway was more evident. In summary, the current results implied that alpinetin attenuated aging-related cognitive deficits by inhibiting the Drp1/HK1/NLRP3 pathway and suppressing mitochondrial inflammation, suggesting that the inhibition of the Drp1/HK1/NLRP3 pathway is one of the mechanisms by which alpinetin attenuates AACI.
Collapse
Affiliation(s)
- Yuanyuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mi Zou
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Wang
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruilin Sheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meng Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenqin Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Staricoff EO, Evans ML. Recent advances in understanding hypothalamic control of defensive responses to hypoglycaemia. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 24:100353. [PMID: 39183767 PMCID: PMC11339540 DOI: 10.1016/j.coemr.2022.100353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Maintenance of normal blood glucose is important for survival. In particular, brain function is dependent on circulating glucose. In health, a series of powerful counterregulatory defences operate to prevent/limit hypoglycaemia. These defences are altered to varying degrees in diabetes and in particular, a subset of people with diabetes can develop profound deficits in these defences placing them at increased risk of suffering episodes of severe hypoglycaemia. Brain is an important controller of glucose homeostasis and developments in molecular techniques have allowed the neurocircuitry of a number of important centrally-controlled homeostatic processes such as energy balance, thirst and thermoregulation to be defined. This review describes how some of these advances have allowed a better understanding of the neuronal/brain ensembles which help protect against hypoglycaemia.
Collapse
Affiliation(s)
- Emily O. Staricoff
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, UK
| | - Mark L. Evans
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, UK
- Department of Medicine, Addenbrookes NIHR Biomedical Campus, Cambridge, UK
| |
Collapse
|