1
|
Tichauer JE, Rovegno M. Role of astrocytes connexins - pannexins in acute brain injury. Neurotherapeutics 2025; 22:e00523. [PMID: 39848901 PMCID: PMC11840357 DOI: 10.1016/j.neurot.2025.e00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/25/2025] Open
Abstract
Acute brain injuries (ABIs) encompass a broad spectrum of primary injuries such as ischemia, hypoxia, trauma, and hemorrhage that converge into secondary injury where some mechanisms show common determinants. In this regard, astroglial connexin and pannexin channels have been shown to play an important role. These channels are transmembrane proteins sharing similar topology and form gateways between adjacent cells named gap junctions (GJs) and pores into unopposed membranes named hemichannels (HCs). In astrocytes, GJs and HCs enable intercellular communication and have active participation in normal brain physiological processes, such as calcium waves, synapsis modulation, regional blood flow regulation, and homeostatic control of the extracellular environment, among others. However, after acute brain injury, astrocytes can change their phenotype and modify the activity of both channels and hemichannels, which can result in the amplification of danger signals, increased mediators of inflammation, and neuronal death, contributing to the expansion of brain damage and neurological deterioration. This is known as secondary brain damage. In this review, we discussed the main biological mechanism of secondary brain damage with a particular focus on astroglial connexin and pannexin participation during acute brain injuries.
Collapse
Affiliation(s)
- Juan E Tichauer
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile.
| | - Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
2
|
Zhao D, Tu C, Zhang L, Guda T, Gu S, Jiang JX. Activation of connexin hemichannels enhances mechanosensitivity and anabolism in disused and aged bone. JCI Insight 2024; 9:e177557. [PMID: 39641271 PMCID: PMC11623949 DOI: 10.1172/jci.insight.177557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
Mechanical loading, essential for bone health, promotes bone formation and remodeling. However, the positive response diminishes in cases of disuse and aging, leading to bone loss and an increased fracture risk. This study demonstrates that activating hemichannels (HCs) using a connexin 43 (Cx43) antibody, Cx43(M2), in bone osteocytes revitalizes aging and disused bones. Using a hindlimb suspension (HLS) disuse model and a tibial mechanical loading model, we found that Cx43(M2) inhibited bone loss and osteocyte apoptosis induced by unloading in 16-week-old adult mice. Additionally, it enhanced bone mass in response to tibial loading in 22-month-old aged mice. The HC opening released bone anabolic factor prostaglandin E2 (PGE2) and suppressed catabolic factor sclerostin (SOST). This suppressed the increase of cortical bone formation and reduction of bone resorption during unloading and promoted trabecular and cortical bone formation during loading. Cx43(M2)-induced HC opening, coupled with PGE2 release, effectively rescued unloading-induced bone loss and restored the diminished anabolic response of aged bones to mechanical loading. Activating HCs with the Cx43 antibody holds promise as a de novo therapeutic approach, as it can overcome the limitations of existing treatment regimens for treating bone loss and osteoporosis associated with aging and disuse.
Collapse
Affiliation(s)
- Dezhi Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
- School of Medicine, Northwest University, Xi’an, China
| | - Chao Tu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lidan Zhang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
| |
Collapse
|
3
|
Lv M, Zhao Y, Chang S, Gao Z. Identifying signature genes and their associations with immune cell infiltration in spinal cord injury. IBRO Neurosci Rep 2024; 17:320-328. [PMID: 39430218 PMCID: PMC11490871 DOI: 10.1016/j.ibneur.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
Background Early detection of spinal cord injury (SCI) is conducive to improving patient outcomes. In addition, many studies have revealed the role of immune cells in the progression or treatment of SCI. The objective of this study was to identify the early signature genes and clarify how they are related to immune cell infiltration in SCI. Methods We analysed and identified early signature genes associated with SCI via bioinformatics analysis of the GSE151371 dataset from the GEO database. These genes were subsequently verified in the GSE33886 dataset and qRT-PCR. Finally, the CIBERSORT algorithm was used to examine the immune cell infiltration in SCI and its relationship with signature genes. Results Seven SCI-related signature genes, including ARG1, RETN, BPI, GGH, CCNB1, HIST1H2AC, and HIST1H2BJ, were identified, and their expression was verified via an external validation cohort and qRT-PCR. Moreover, the ROC curves revealed the diagnostic value of these genes. In addition, on the basis of immune cell infiltration analysis, plasma cells, M0 macrophages, activated CD4+ memory T cells, γδ T cells, naive CD4+ T cells, and resting CD4+ memory T cells may participate in the progression of SCI. Conclusion This study identified seven early signature genes of SCI that may serve as biomarkers for the early diagnosis of SCI and contribute to our understanding of immune changes during the pathology of SCI.
Collapse
Affiliation(s)
- Meng Lv
- Department of Orthopaedics, Shaanxi Provincial People's Hospital (Third Affiliated Hospital of Xi’an Jiaotong University), Xi’an, Shaanxi Province 710068, China
| | - Yingjie Zhao
- Department of Orthopaedics, Shaanxi Provincial People's Hospital (Third Affiliated Hospital of Xi’an Jiaotong University), Xi’an, Shaanxi Province 710068, China
| | - Su’e Chang
- Department of Orthoapedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Zhengchao Gao
- Department of Orthoapedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| |
Collapse
|
4
|
Wang ZQ, Ran R, Ma CW, Zhao GH, Zhou KS, Zhang HH. Lentivirus-mediated Knockdown of Ski Improves Neurological Function After Spinal Cord Injury in Rats. Neurochem Res 2024; 50:15. [PMID: 39549172 DOI: 10.1007/s11064-024-04261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 11/18/2024]
Abstract
The glial scar that forms at the site of injury after spinal cord injury (SCI) is an important physical and biochemical barrier that prevents axonal regeneration and thus delays functional recovery. Ski is a multifunctional transcriptional co-regulator that is involved in a wide range of physiological and pathological processes in humans. Previous studies by our group found that Ski is significantly upregulated in the spinal cord after in vivo injury and in astrocytes after in vitro activation, suggesting that Ski may be a novel molecule regulating astrocyte activation after spinal cord injury. Further studies revealed that knockdown or overexpression intervention of Ski expression could significantly affect the proliferation and migration of activated astrocytes. To further verify the effect of knockdown of Ski expression in vivo on glial scar formation and neurological function after spinal cord injury, we prepared a rat spinal cord injury model using Allen's percussion method and used lentivirus as a vector to mediate the downregulation of Ski in the injured spinal cord. The results showed that knockdown of Ski expression after spinal cord injury significantly suppressed the expression of glial fibrillary acidic protein (Gfap) and vimentin, hallmark molecules of glial scarring, and increased the expression of neurofilament protein-200 (Nf-200) and growth-associated protein (Gap43), key molecules of axon regeneration, as well as Synaptophysin, a key molecule of synapse formation expression. In addition, knockdown of Ski after spinal cord injury also promoted the recovery of motor function. Taken together, these results suggest that Ski is able to inhibit the expression of key molecules of glial scar formation, and at the same time promotes the expression of molecules that are markers of axonal regeneration and synapse formation after spinal cord injury, making it a potential target for targeted therapy after spinal cord injury.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Lanzhou University Second Hospital, LanzhouGansu, 730000, China
- Orthopaedics Key Laboratory of Gansu Province, LanzhouGansu, 730000, China
| | - Rui Ran
- Lanzhou University Second Hospital, LanzhouGansu, 730000, China
- Orthopaedics Key Laboratory of Gansu Province, LanzhouGansu, 730000, China
| | - Chun-Wei Ma
- Lanzhou University Second Hospital, LanzhouGansu, 730000, China
- Orthopaedics Key Laboratory of Gansu Province, LanzhouGansu, 730000, China
| | - Guang-Hai Zhao
- Lanzhou University Second Hospital, LanzhouGansu, 730000, China
- Orthopaedics Key Laboratory of Gansu Province, LanzhouGansu, 730000, China
| | - Kai-Sheng Zhou
- Lanzhou University Second Hospital, LanzhouGansu, 730000, China
- Orthopaedics Key Laboratory of Gansu Province, LanzhouGansu, 730000, China
| | - Hai-Hong Zhang
- Lanzhou University Second Hospital, LanzhouGansu, 730000, China.
- Orthopaedics Key Laboratory of Gansu Province, LanzhouGansu, 730000, China.
| |
Collapse
|
5
|
Zhang Y, Acosta FM, Jiang JX. Connexin 43 hemichannels and related diseases. Antib Ther 2024; 7:361-369. [PMID: 39678258 PMCID: PMC11646280 DOI: 10.1093/abt/tbae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 12/17/2024] Open
Abstract
Connexin 43 (Cx43) protein forms hemichannels (connexons) and gap junctions, with hemichannels consisting of six Cx43 molecules and gap junctions formed by two hemichannels. While gap junctions are prevalent in organs like the heart and liver, hemichannels are found in specific cell types, such as astrocytes and osteocytes. They allow the passage of small molecules (<1.5 kDa) between the cytoplasm and extracellular matrix. Cx43 hemichannels have emerged as potential therapeutic targets in various diseases, including central nervous system disorders, bone-related diseases, diabetic complications, wound healing, and cancers. Aberrant hemichannel opening can worsen conditions by releasing inflammatory elements, such as causing gliosis in neuronal cells. Conversely, functional hemichannels may inhibit cancer cell growth and metastasis. Recent studies are revealing new mechanisms of Cx43 hemichannels, broadening their therapeutic applications and highlighting the importance of regulating their activity for improved disease outcomes.
Collapse
Affiliation(s)
- Yanfeng Zhang
- AlaMab Therapeutics Inc, 302 Carnegie Center Dr Suite 100, Princeton, NJ 08540, United States
| | - Francisca M Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, United States
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, United States
| |
Collapse
|
6
|
Sáez JC, Burrell JC, Cahill CM, Cullen DK, Devi LA, Gilbert RJ, Graham ZA, Gurvich VJ, Havton LA, Iyengar R, Khanna R, Palermo EF, Siddiq M, Toro CA, Vasquez W, Zhao W, Cardozo CP. Pharmacology of boldine: summary of the field and update on recent advances. Front Pharmacol 2024; 15:1427147. [PMID: 39346563 PMCID: PMC11427365 DOI: 10.3389/fphar.2024.1427147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Over the past decade, boldine, a naturally occurring alkaloid found in several plant species including the Chilean Boldo tree, has garnered attention for its efficacy in rodent models of human disease. Some of the properties that have been attributed to boldine include antioxidant activities, neuroprotective and analgesic actions, hepatoprotective effects, anti-inflammatory actions, cardioprotective effects and anticancer potential. Compelling data now indicates that boldine blocks connexin (Cx) hemichannels (HCs) and that many if not all of its effects in rodent models of injury and disease are due to CxHC blockade. Here we provide an overview of boldine's pharmacological properties, including its efficacy in rodent models of common human injuries and diseases, and of its absorption, distribution, pharmacokinetics, and metabolism.
Collapse
Affiliation(s)
- Juan C. Sáez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Justin C. Burrell
- Center for Neurotrauma, Neurodegeneration and Restoration, CMC VA Medical Center, Philadelphia, PA, United States
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Catherine M. Cahill
- Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - D. Kacy Cullen
- Center for Neurotrauma, Neurodegeneration and Restoration, CMC VA Medical Center, Philadelphia, PA, United States
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lakshmi A. Devi
- Department of Pharmacology and System Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ryan J. Gilbert
- Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Albany Stratton VA Medical Center, New York, NY, United States
| | - Zachary A. Graham
- Healthspan, Resilience and Performance, Florida Institute for Human and Machine Cognition, Gainesville, FL, United States
| | - Vadim J. Gurvich
- Institute for Therapeutics Discovery and Development and Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Leif A. Havton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Spinal Cord Damage Research Center, James J Peters VA Medical Center, New York, NY, United States
| | - Ravi Iyengar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rajesh Khanna
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Edmund F. Palermo
- Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Materials Science and Engineering, Rensselaer Polytechnic Institute, New York, NY, United States
| | - Mustafa Siddiq
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Carlos A. Toro
- Spinal Cord Damage Research Center, James J Peters VA Medical Center, New York, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Rehabilitation Medicine and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Walter Vasquez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Wei Zhao
- Spinal Cord Damage Research Center, James J Peters VA Medical Center, New York, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Rehabilitation Medicine and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Christopher P. Cardozo
- Spinal Cord Damage Research Center, James J Peters VA Medical Center, New York, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Rehabilitation Medicine and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
Metwally E, Sanchez Solano A, Lavanderos B, Yamasaki E, Thakore P, McClenaghan C, Rios N, Radi R, Feng Earley Y, Nichols CG, Earley S. Mitochondrial Ca2+-coupled generation of reactive oxygen species, peroxynitrite formation, and endothelial dysfunction in Cantú syndrome. JCI Insight 2024; 9:e176212. [PMID: 39088268 PMCID: PMC11385080 DOI: 10.1172/jci.insight.176212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
Cantú syndrome is a multisystem disorder caused by gain-of-function (GOF) mutations in KCNJ8 and ABCC9, the genes encoding the pore-forming inward rectifier Kir6.1 and regulatory sulfonylurea receptor SUR2B subunits, respectively, of vascular ATP-sensitive K+ (KATP) channels. In this study, we investigated changes in the vascular endothelium in mice in which Cantú syndrome-associated Kcnj8 or Abcc9 mutations were knocked in to the endogenous loci. We found that endothelium-dependent dilation was impaired in small mesenteric arteries from Cantú mice. Loss of endothelium-dependent vasodilation led to increased vasoconstriction in response to intraluminal pressure or treatment with the adrenergic receptor agonist phenylephrine. We also found that either KATP GOF or acute activation of KATP channels with pinacidil increased the amplitude and frequency of wave-like Ca2+ events generated in the endothelium in response to the vasodilator agonist carbachol. Increased cytosolic Ca2+ signaling activity in arterial endothelial cells from Cantú mice was associated with elevated mitochondrial [Ca2+] and enhanced reactive oxygen species (ROS) and peroxynitrite levels. Scavenging intracellular or mitochondrial ROS restored endothelium-dependent vasodilation in the arteries of mice with KATP GOF mutations. We conclude that mitochondrial Ca2+ overload and ROS generation, which subsequently leads to nitric oxide consumption and peroxynitrite formation, cause endothelial dysfunction in mice with Cantú syndrome.
Collapse
Affiliation(s)
- Elsayed Metwally
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Alfredo Sanchez Solano
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Boris Lavanderos
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Evan Yamasaki
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Conor McClenaghan
- Departments of Pharmacology and Medicine, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Natalia Rios
- Departamento de Bioquímica, Facultad de Medicina, and
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, and
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Yumei Feng Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases and Departments of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
8
|
Zhang Q, Liu T, Li Y, Fan Y, Shang H, Zhao H, Sun H, Yu Z, Han M, Wan C. Gelatin methacryloyl microneedle loaded with 3D-MSC-Exosomes for the protection of ischemia-reperfusion. Int J Biol Macromol 2024; 275:133336. [PMID: 38936568 DOI: 10.1016/j.ijbiomac.2024.133336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Exosomes (Exo) generated from mesenchymal stem cells (MSCs) have great therapeutic potential in ischemia-reperfusion treatment. For best therapeutic effect, high quality Exo product and effective delivery system are indispensable. In this study, we developed a new strategy for ischemia-reperfusion recovery by combining MSCs 3D (3D-MSC) culturing technology to generate Exo (3D-MSC-Exo) and microneedle for topical delivery. Firstly, primary MSCs from neonatal mice were isolated and 3D cultured with gelatin methacryloyl (GelMA) hydrogel to prepare 3D-MSC-Exo. The 3D-MSC showed better viability and 3D-MSC-Exo exhibited more effective effects of reducing neuroinflammation, inhibiting glial scarring, and promoting angiogenesis. Subsequently, the biocompatible GelMA was used to construct microneedles for 3D-Exo delivery (GelMA-MN@3D-Exo). The results demonstrated GelMA microneedles had excellent 3D-Exo loading capacity and enabled continuous 3D-Exo release to maintain effective therapeutic concentrations. Furthermore, the rat middle cerebral artery occlusion (MCAO) model was established to evaluate the therapeutic effect of GelMA-MN@3D-Exo in ischemia-reperfusion in vivo. Animal experiments showed that the GelMA-MN@3D-Exo system could effectively reduce the local neuroinflammatory reaction, promote angiogenesis and minimize glial scar proliferation in ischemia-reperfusion. The underlying reasons for the stronger neuroprotective effect of 3D-Exo was further studied using mass spectrometry and transcriptome assays, verifying their effects on immune regulation and cell proliferation. Taken together, our findings demonstrated that GelMA-MN@3D-Exo microneedle can effectively attenuate ischemia-reperfusion cell damage in the MCAO model, which provides a promising therapeutic strategy for ischemia-reperfusion recovery.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, 154 Anshan Rd, District Heping, Tianjin 300052, P. R. China; Department of Geriatrics, The Fifth People's Hospital of Jinan, No. 24297 Jingshi Rd, District Huaiyin, Jinan 250000, Shandong, P. R. China
| | - Tiangui Liu
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P. R. China
| | - Yuming Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P. R. China
| | - Yang Fan
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P. R. China
| | - Hao Shang
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P. R. China
| | - Huayang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P. R. China
| | - Haohan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P. R. China
| | - Zaiyang Yu
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P. R. China
| | - Min Han
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P. R. China.
| | - Chunxiao Wan
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, 154 Anshan Rd, District Heping, Tianjin 300052, P. R. China.
| |
Collapse
|
9
|
Alvear TF, Farias-Pasten A, Vergara SA, Prieto-Villalobos J, Silva-Contreras A, Fuenzalida FA, Quintanilla RA, Orellana JA. Hemichannels contribute to mitochondrial Ca 2+ and morphology alterations evoked by ethanol in astrocytes. Front Cell Dev Biol 2024; 12:1434381. [PMID: 39129788 PMCID: PMC11310047 DOI: 10.3389/fcell.2024.1434381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/03/2024] [Indexed: 08/13/2024] Open
Abstract
Alcohol, a toxic and psychoactive substance with addictive properties, severely impacts life quality, leading to significant health, societal, and economic consequences. Its rapid passage across the blood-brain barrier directly affects different brain cells, including astrocytes. Our recent findings revealed the involvement of pannexin-1 (Panx1) and connexin-43 (Cx43) hemichannels in ethanol-induced astrocyte dysfunction and death. However, whether ethanol influences mitochondrial function and morphology in astrocytes, and the potential role of hemichannels in this process remains poorly understood. Here, we found that ethanol reduced basal mitochondrial Ca2+ but exacerbated thapsigargin-induced mitochondrial Ca2+ dynamics in a concentration-dependent manner, as evidenced by Rhod-2 time-lapse recordings. Similarly, ethanol-treated astrocytes displayed increased mitochondrial superoxide production, as indicated by MitoSox labeling. These effects coincided with reduced mitochondrial membrane potential and increased mitochondrial fragmentation, as determined by MitoRed CMXRos and MitoGreen quantification, respectively. Crucially, inhibiting both Cx43 and Panx1 hemichannels effectively prevented all ethanol-induced mitochondrial abnormalities in astrocytes. We speculate that exacerbated hemichannel activity evoked by ethanol may impair intracellular Ca2+ homeostasis, stressing mitochondrial Ca2+ with potentially damaging consequences for mitochondrial fusion and fission dynamics and astroglial bioenergetics.
Collapse
Affiliation(s)
- Tanhia F. Alvear
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Arantza Farias-Pasten
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio A. Vergara
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Prieto-Villalobos
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonia Silva-Contreras
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando A. Fuenzalida
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A. Quintanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Juan A. Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Riquelme MA, Wang X, Acosta FM, Zhang J, Chavez J, Gu S, Zhao P, Xiong W, Zhang N, Li G, Srinivasan S, Ma C, Rao MK, Sun LZ, Zhang N, An Z, Jiang JX. Antibody-activation of connexin hemichannels in bone osteocytes with ATP release suppresses breast cancer and osteosarcoma malignancy. Cell Rep 2024; 43:114377. [PMID: 38889005 PMCID: PMC11380445 DOI: 10.1016/j.celrep.2024.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/02/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
Bone tissue represents the most frequent site of cancer metastasis. We developed a hemichannel-activating antibody, Cx43-M2. Cx43-M2, directly targeting osteocytes in situ, activates osteocytic hemichannels and elevates extracellular ATP, thereby inhibiting the growth and migration of cultured breast and osteosarcoma cancer cells. Cx43-M2 significantly decreases breast cancer metastasis, osteosarcoma growth, and osteolytic activity, while improving survival rates in mice. The antibody's inhibition of breast cancer and osteosarcoma is dose dependent in both mouse and human cancer metastatic models. Furthermore, Cx43-M2 enhances anti-tumor immunity by increasing the population and activation of tumor-infiltrating immune-promoting effector T lymphocytes, while reducing immune-suppressive regulatory T cells. Our results suggest that the Cx43-M2 antibody, by activating Cx43 hemichannels and facilitating ATP release and purinergic signaling, transforms the cancer microenvironment from a supportive to a suppressive state. Collectively, our study underscores the potential of Cx43-M2 as a therapeutic for treating breast cancer bone metastasis and osteosarcoma.
Collapse
Affiliation(s)
- Manuel A Riquelme
- Departments of Biochemistry and Structural Biology, Microbiology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Xuewei Wang
- Departments of Biochemistry and Structural Biology, Microbiology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Francisca M Acosta
- Departments of Biochemistry and Structural Biology, Microbiology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Jingruo Zhang
- Departments of Biochemistry and Structural Biology, Microbiology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Jeffery Chavez
- Departments of Biochemistry and Structural Biology, Microbiology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Sumin Gu
- Departments of Biochemistry and Structural Biology, Microbiology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Peng Zhao
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Wei Xiong
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Ningyan Zhang
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Guo Li
- Immunology & Molecular Genetics, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Saranya Srinivasan
- Immunology & Molecular Genetics, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Chaoyu Ma
- Immunology & Molecular Genetics, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Manjeet K Rao
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA; Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Lu-Zhe Sun
- Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Nu Zhang
- Immunology & Molecular Genetics, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA; South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Zhiqiang An
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Jean X Jiang
- Departments of Biochemistry and Structural Biology, Microbiology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
11
|
Huang J, Hu X, Chen Z, Ouyang F, Li J, Hu Y, Zhao Y, Wang J, Yao F, Jing J, Cheng L. Fascin-1 limits myosin activity in microglia to control mechanical characterization of the injured spinal cord. J Neuroinflammation 2024; 21:88. [PMID: 38600569 PMCID: PMC11005239 DOI: 10.1186/s12974-024-03089-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Mechanical softening of the glial scar region regulates axonal regeneration to impede neurological recovery in central nervous system (CNS) injury. Microglia, a crucial cellular component of the glial scar, facilitate neuronal survival and neurological recovery after spinal cord injury (SCI). However, the critical mechanical characterization of injured spinal cord that harmonizes neuroprotective function of microglia remains poorly understood. METHODS Spinal cord tissue stiffness was assessed using atomic force microscopy (AFM) in a mouse model of crush injury. Pharmacological depletion of microglia using PLX5622 was used to explore the effect of microglia on mechanical characterization. Conditional knockout of Fascin-1 in microglia (Fascin-1 CKO) alone or in combination with inhibition of myosin activity was performed to delve into relevant mechanisms of microglia regulating mechanical signal. Immunofluorescence staining was performed to evaluate the related protein levels, inflammatory cells, and neuron survival after SCI. The Basso mouse scale score was calculated to assess functional recovery. RESULTS Spinal cord tissue significantly softens after SCI. Microglia depletion or Fascin-1 knockout in microglia limits tissue softening and alters mechanical characterization, which leads to increased tissue pathology and impaired functional recovery. Mechanistically, Fascin-1 inhibits myosin activation to promote microglial migration and control mechanical characterization after SCI. CONCLUSIONS We reveal that Fascin-1 limits myosin activity to regulate mechanical characterization after SCI, and this mechanical signal should be considered in future approaches for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Jinxin Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xuyang Hu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zeqiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Fangru Ouyang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jianjian Li
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yixue Hu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yuanzhe Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jingwen Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Fei Yao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Li Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
12
|
Gómez GI, Alvear TF, Roa DA, Farias-Pasten A, Vergara SA, Mellado LA, Martinez-Araya CJ, Prieto-Villalobos J, García-Rodríguez C, Sánchez N, Sáez JC, Ortíz FC, Orellana JA. Cx43 hemichannels and panx1 channels contribute to ethanol-induced astrocyte dysfunction and damage. Biol Res 2024; 57:15. [PMID: 38576018 PMCID: PMC10996276 DOI: 10.1186/s40659-024-00493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Alcohol, a widely abused drug, significantly diminishes life quality, causing chronic diseases and psychiatric issues, with severe health, societal, and economic repercussions. Previously, we demonstrated that non-voluntary alcohol consumption increases the opening of Cx43 hemichannels and Panx1 channels in astrocytes from adolescent rats. However, whether ethanol directly affects astroglial hemichannels and, if so, how this impacts the function and survival of astrocytes remains to be elucidated. RESULTS Clinically relevant concentrations of ethanol boost the opening of Cx43 hemichannels and Panx1 channels in mouse cortical astrocytes, resulting in the release of ATP and glutamate. The activation of these large-pore channels is dependent on Toll-like receptor 4, P2X7 receptors, IL-1β and TNF-α signaling, p38 mitogen-activated protein kinase, and inducible nitric oxide (NO) synthase. Notably, the ethanol-induced opening of Cx43 hemichannels and Panx1 channels leads to alterations in cytokine secretion, NO production, gliotransmitter release, and astrocyte reactivity, ultimately impacting survival. CONCLUSION Our study reveals a new mechanism by which ethanol impairs astrocyte function, involving the sequential stimulation of inflammatory pathways that further increase the opening of Cx43 hemichannels and Panx1 channels. We hypothesize that targeting astroglial hemichannels could be a promising pharmacological approach to preserve astrocyte function and synaptic plasticity during the progression of various alcohol use disorders.
Collapse
Affiliation(s)
- Gonzalo I Gómez
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Tanhia F Alvear
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile
| | - Daniela A Roa
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile
| | - Arantza Farias-Pasten
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile
| | - Sergio A Vergara
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile
| | - Luis A Mellado
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile
| | - Claudio J Martinez-Araya
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile
| | - Juan Prieto-Villalobos
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile
| | - Claudia García-Rodríguez
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2360102, Chile
| | - Natalia Sánchez
- Department of Anatomy, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Sáez
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2360102, Chile
| | - Fernando C Ortíz
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Mechanisms of Myelin Formation and Repair Laboratory, Chacabuco 675, of. 212, Santiago, 8350347, Chile.
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile.
| |
Collapse
|
13
|
Yan L, Han X, Zhang M, Kou H, Liu H, Cheng T. Melatonin exerts neuroprotective effects in mice with spinal cord injury by activating the Nrf2/Keap1 signaling pathway via the MT2 receptor. Exp Ther Med 2024; 27:37. [PMID: 38125360 PMCID: PMC10731399 DOI: 10.3892/etm.2023.12325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/21/2023] [Indexed: 12/23/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating event that often leads to severe disability, and effective treatments for SCI are currently limited. The present study investigated the potential effects and specific mechanisms of melatonin treatment in SCI. Mice were divided into Sham (Sham), Vehicle (Veh), Melatonin (Mel), and Melatonin + 4-phenyl-2-propionamidotetralin (4P-PDOT) (Mel + 4PP) groups based on randomized allocation. The expression of MT2 and the nuclear factor-erythroid 2-related factor 2 (Nrf2)/Keap1 signaling pathways were examined, along with oxidative stress indicators, inflammatory factors and GFAP-positive cells near the injury site. The polarization of microglial cells in different inflammatory microenvironments was also observed. Cell survival, motor function recovery and spinal cord tissue morphology were assessed using staining and Basso Mouse Scale scores. On day 7 after SCI, the results revealed that melatonin treatment increased MT2 protein expression and activated the Nrf2/Keap1 signaling pathway. It also reduced GFAP-positive cells, mitigated oxidative stress, and suppressed inflammatory responses around the injury site. Furthermore, melatonin treatment promoted the polarization of microglia toward the M2 type, increased the number of neutrophil-positive cells, and modulated the transcription of Bax and Bcl2 in the injured spinal cord. Melatonin treatment alleviated the severity of spinal injuries and facilitated functional recovery in mice with SCI. Notably, blocking MT2 with 4P-PDOT partially reversed the neuroprotective effects of melatonin in SCI, indicating that the activation of the MT2/Nrf2/Keap1 signaling pathway contributes to the neuroprotective properties of melatonin in SCI. The therapeutic and translational potentials of melatonin in SCI warrant further investigation.
Collapse
Affiliation(s)
- Liyan Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaonan Han
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Mingkang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hongwei Kou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Tian Cheng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
14
|
Nardin C, Mammano F. Measurement of Ca 2+ Uptake Through Connexin Hemichannels. Methods Mol Biol 2024; 2801:97-109. [PMID: 38578416 DOI: 10.1007/978-1-0716-3842-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Increasing evidence points to deregulated flux of ionized calcium (Ca2+) mediated by hyperactive mutant connexin (Cx) hemichannels (HCs) as a common gain-of-function etiopathogenetic mechanism for several diseases, ranging from skin disorders to nervous system defects. Furthermore, the opening of nonmutated Cx HCs is associated with an impressive list of widespread diseases including, but not limited to, ischemia/stroke, Alzheimer's disease, and epilepsy. HC inhibitors are attracting a growing attention due to their therapeutic potential for numerous pathologies. This chapter describes a quantitative method to measure Ca2+ uptake though HCs expressed in cultured cells. The assay we developed can be used to probe HC activity as wells as to test HC inhibitors. Furthermore, with minor changes it can be easily adapted to high-throughput high-content platforms and/or primary cells and microtissues.
Collapse
Affiliation(s)
- Chiara Nardin
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
- , Genoa, Italy
| | - Fabio Mammano
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy.
- Department of Physics and Astronomy "G. Galilei", University of Padova, Padova, Italy.
| |
Collapse
|
15
|
Acosta FM, Riquelme MA, Gu S, Jiang JX. Evaluation of Connexin Hemichannel Activity In Vivo. Methods Mol Biol 2024; 2801:111-124. [PMID: 38578417 PMCID: PMC11610261 DOI: 10.1007/978-1-0716-3842-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Connexin hemichannels (Cx HCs) are hexameric structures at the cell plasma membrane, whose function as membrane transport proteins allows for the passive flow of small hydrophilic molecules and ions (≤1 kDa) between the cytosol and the extracellular environment. Activation of Cx HCs is highly dependent on pathological conditions. HC activity provokes changes in the microenvironment, inducing the dissemination of signaling molecules in both an autocrine and paracrine manner. Given the elicitation of a variety of signaling pathways, and assortment of Cx species and dispersion throughout the body, Cx HCs have been implicated in a range of processes such as cell proliferation, differentiation, cell death, and tissue modeling and remodeling. While studying the expression and localization of Cx HCs can be done using traditional laboratory techniques, such as immunoblot analysis, measuring the functionality/activity of the HCs requires a more explicit methodology and is essential for determining Cx-mediated physiological changes. The study of Cx HC function/activity has focused mainly on in vitro measurements through electrophysiological characterization or, more commonly, using HC-permeable dye uptake studies. Here, we describe the use of dye uptake to measure Cx HC activity in vivo using mechanically stimulated osteocytic Cx43 HCs with Evans blue dye as our model.
Collapse
Affiliation(s)
- Francisca M Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
16
|
Zhang W, Yin J, Gao BY, Lu X, Duan YJ, Liu XY, Li MZ, Jiang S. Inhibition of astroglial hemichannels ameliorates infrasonic noise induced short-term learning and memory impairment. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:23. [PMID: 38110991 PMCID: PMC10726613 DOI: 10.1186/s12993-023-00226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
As a kind of environmental noise, infrasonic noise has negative effects on various human organs. To date, research has shown that infrasound impairs cognitive function, especially the ability for learning and memory. Previously, we demonstrated that impaired learning and memory induced by infrasound was closely related with glia activation; however, the underlying mechanisms remain unclear. Connexin 43 hemichannels (Cx43 HCs), which are mainly expressed in hippocampal astrocytes, are activated under pathological conditions, lending support to the hypothesis that Cx43 HCs might function in the impaired learning and memory induced by infrasound. This study revealed that that blocking hippocampal Cx43 HCs or downregulating hippocampal Cx43 expression significantly alleviated impaired learning and memory induced by infrasound. We also observed that infrasound exposure led to the abundant release of glutamate and ATP through Cx43 HCs. In addition, the abundant release of glutamate and ATP depended on proinflammatory cytokines. Our finds suggested that the enhanced release of ATP and glutamate by astroglial Cx43 HCs may be involved in the learning and memory deficits caused by infrasound exposure.
Collapse
Affiliation(s)
- Wei Zhang
- Teaching and Evaluation Center of Air Force Medical University, Xi'an, 710032, China
| | - Jue Yin
- Department of Rehabilitation Medicine, The China-Japan Friendship Hospital, No.2 Ying Hua Yuan East Street, Beijing, 100029, People's Republic of China
| | - Bei-Yao Gao
- Department of Rehabilitation Medicine, The China-Japan Friendship Hospital, No.2 Ying Hua Yuan East Street, Beijing, 100029, People's Republic of China
| | - Xi Lu
- Department of Rehabilitation Medicine, The China-Japan Friendship Hospital, No.2 Ying Hua Yuan East Street, Beijing, 100029, People's Republic of China
| | - Ya-Jing Duan
- Department of Rehabilitation Medicine, The China-Japan Friendship Hospital, No.2 Ying Hua Yuan East Street, Beijing, 100029, People's Republic of China
| | - Xu-Yan Liu
- Department of Rehabilitation Medicine, The China-Japan Friendship Hospital, No.2 Ying Hua Yuan East Street, Beijing, 100029, People's Republic of China
| | - Ming-Zhen Li
- Department of Rehabilitation Medicine, The China-Japan Friendship Hospital, No.2 Ying Hua Yuan East Street, Beijing, 100029, People's Republic of China
| | - Shan Jiang
- Department of Rehabilitation Medicine, The China-Japan Friendship Hospital, No.2 Ying Hua Yuan East Street, Beijing, 100029, People's Republic of China.
| |
Collapse
|
17
|
Li Y, Acosta FM, Jiang JX. Gap Junctions or Hemichannel-Dependent and Independent Roles of Connexins in Fibrosis, Epithelial-Mesenchymal Transitions, and Wound Healing. Biomolecules 2023; 13:1796. [PMID: 38136665 PMCID: PMC10742173 DOI: 10.3390/biom13121796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fibrosis initially appears as a normal response to damage, where activated fibroblasts produce large amounts of the extracellular matrix (ECM) during the wound healing process to assist in the repair of injured tissue. However, the excessive accumulation of the ECM, unresolved by remodeling mechanisms, leads to organ dysfunction. Connexins, a family of transmembrane channel proteins, are widely recognized for their major roles in fibrosis, the epithelial-mesenchymal transition (EMT), and wound healing. Efforts have been made in recent years to identify novel mediators and targets for this regulation. Connexins form gap junctions and hemichannels, mediating communications between neighboring cells and inside and outside of cells, respectively. Recent evidence suggests that connexins, beyond forming channels, possess channel-independent functions in fibrosis, the EMT, and wound healing. One crucial channel-independent function is their role as the primary functional component for cell adhesion. Other channel-independent functions of connexins involve their roles in mitochondria and exosomes. This review summarizes the latest advances in the channel-dependent and independent roles of connexins in fibrosis, the EMT, and wound healing, with a particular focus on eye diseases, emphasizing their potential as novel, promising therapeutic targets.
Collapse
Affiliation(s)
- Yuting Li
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (Y.L.); (F.M.A.)
- Department of Pathology, Basic Medical School, Ningxia Medical University, Yinchuan 750004, China
| | - Francisca M. Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (Y.L.); (F.M.A.)
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (Y.L.); (F.M.A.)
| |
Collapse
|
18
|
Huang Q, Sha W, Gu Q, Wang J, Zhu Y, Xu T, Xu Z, Yan F, Lin X, Tian S. Inhibition of Connexin43 Improves the Recovery of Spinal Cord Injury Against Ferroptosis via the SLC7A11/GPX4 Pathway. Neuroscience 2023; 526:121-134. [PMID: 37391124 DOI: 10.1016/j.neuroscience.2023.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Ferroptosis plays a key role in the process of spinal cord injury (SCI). As a signal amplifier, connexin 43 (CX43) participates in cell death signal transduction and aggravates the propagation of injury. However, it remains unclear whether CX43 plays a regulatory role in ferroptosis after SCI. The SCI rat model was established by an Infinite Vertical Impactor to investigate the role of CX43 in SCI-induced ferroptosis. Ferrostatin-1 (Fer-1), an inhibitor of ferroptosis, and a CX43-specific inhibitor (Gap27) were administered by intraperitoneal injection. Behavioral analysis was assessed according to the Basso-Beattie-Bresnahan (BBB) Motor Rating Scale and the inclined plate test. The levels of ferroptosis-related proteins were estimated by qRT-PCR and western blotting, while the histopathology of neuronal injury induced by SCI was evaluated by immunofluorescence, Nissl, FJB and Perl's Blue staining. Meanwhile, transmission electron microscopy was used to observe the ultrastructural changes characteristic of ferroptosis. Gap27 strongly inhibited ferroptosis and therefore improved the functional recovery of SCI, which was similar to the treatment of Fer-1. Notably, the inhibition of CX43 decreased P-mTOR/mTOR expression and reversed the decrease in SLC7A11 induced by SCI. As a result, the levels of GPX4 and glutathione (GSH) increased, while the levels of the lipid peroxidation products 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA) decreased. Together, inhibition of CX43 could alleviate ferroptosis after SCI. These findings reveal a potential mechanism of the neuroprotective role of CX43 after SCI and provide a new theoretical basis for clinical transformation and application.
Collapse
Affiliation(s)
- Qun Huang
- Department of Orthopaedic Surgery, Zhangjiagang Hospital affiliated to Soochow University, Suzhou 215600, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Weiping Sha
- Department of Orthopaedic Surgery, Zhangjiagang Hospital affiliated to Soochow University, Suzhou 215600, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Qi Gu
- Department of Orthopaedic Surgery, Zhangjiagang Hospital affiliated to Soochow University, Suzhou 215600, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Jin Wang
- Department of Orthopaedic Surgery, Zhangjiagang Hospital affiliated to Soochow University, Suzhou 215600, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Yi Zhu
- Department of Orthopaedic Surgery, Zhangjiagang Hospital affiliated to Soochow University, Suzhou 215600, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Tianli Xu
- Department of Orthopaedic Surgery, Zhangjiagang Hospital affiliated to Soochow University, Suzhou 215600, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Zhenhua Xu
- Department of Anesthesiology, Zhangjiagang Hospital affiliated to Soochow University, Suzhou 215600, China
| | - Fei Yan
- Department of Orthopaedic Surgery, Zhangjiagang Hospital affiliated to Soochow University, Suzhou 215600, China
| | - Xiaolong Lin
- Department of Orthopaedic Surgery, Zhangjiagang Hospital affiliated to Soochow University, Suzhou 215600, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China.
| | - Shoujin Tian
- Department of Orthopaedic Surgery, Zhangjiagang Hospital affiliated to Soochow University, Suzhou 215600, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China.
| |
Collapse
|
19
|
Toro CA, Johnson K, Hansen J, Siddiq MM, Vásquez W, Zhao W, Graham ZA, Sáez JC, Iyengar R, Cardozo CP. Boldine modulates glial transcription and functional recovery in a murine model of contusion spinal cord injury. Front Cell Neurosci 2023; 17:1163436. [PMID: 37416508 PMCID: PMC10321410 DOI: 10.3389/fncel.2023.1163436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
Membrane channels such as those formed by connexins (Cx) and P2X7 receptors (P2X7R) are permeable to calcium ions and other small molecules such as adenosine triphosphate (ATP) and glutamate. Release of ATP and glutamate through these channels is a key mechanism driving tissue response to traumas such as spinal cord injury (SCI). Boldine, an alkaloid isolated from the Chilean boldo tree, blocks both Cx and Panx1 hemichannels (HCs). To test if boldine could improve function after SCI, boldine or vehicle was administered to treat mice with a moderate severity contusion-induced SCI. Boldine led to greater spared white matter and increased locomotor function as determined by the Basso Mouse Scale and horizontal ladder rung walk tests. Boldine treatment reduced immunostaining for markers of activated microglia (Iba1) and astrocytic (GFAP) markers while increasing that for axon growth and neuroplasticity (GAP-43). Cell culture studies demonstrated that boldine blocked glial HC, specifically Cx26 and Cx30, in cultured astrocytes and blocked calcium entry through activated P2X7R. RT-qPCR studies showed that boldine treatment reduced expression of the chemokine Ccl2, cytokine IL-6 and microglial gene CD68, while increasing expression of the neurotransmission genes Snap25 and Grin2b, and Gap-43. Bulk RNA sequencing revealed that boldine modulated a large number of genes involved in neurotransmission in spinal cord tissue just caudal from the lesion epicenter at 14 days after SCI. Numbers of genes regulated by boldine was much lower at 28 days after injury. These results indicate that boldine treatment ameliorates injury and spares tissue to increase locomotor function.
Collapse
Affiliation(s)
- Carlos A. Toro
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kaitlin Johnson
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, United States
| | - Jens Hansen
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mustafa M. Siddiq
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Walter Vásquez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Neurociencias, Centro Interdisciplinario De Neurociencia De Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Wei Zhao
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Zachary A. Graham
- Florida Institute for Human and Machine Cognition, Pensacola, FL, United States
- Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, AL, United States
- Research Service, Birmingham Veterans Affairs Health Care System, Birmingham, AL, United States
| | - Juan C. Sáez
- Instituto de Neurociencias, Centro Interdisciplinario De Neurociencia De Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Ravi Iyengar
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Christopher P. Cardozo
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Rehabilitative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
20
|
Wang X, Botchway BOA, Zhang Y, Huang M, Liu X. Maresin1 can be a potential therapeutic target for nerve injury. Biomed Pharmacother 2023; 161:114466. [PMID: 36870281 DOI: 10.1016/j.biopha.2023.114466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Nerve injury significantly affects human motor and sensory function due to destruction of the integrity of nerve structure. In the wake of nerve injury, glial cells are activated, and synaptic integrity is destroyed, causing inflammation and pain hypersensitivity. Maresin1, an omega-3 fatty acid, is a derivative of docosahexaenoic acid. It has showed beneficial effects in several animal models of central and peripheral nerve injuries. In this review, we summarize the anti-inflammatory, neuroprotective and pain hypersensitivity effects of maresin1 in nerve injury and provide a theoretical basis for the clinical treatment of nerve injury using maresin1.
Collapse
Affiliation(s)
- Xichen Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China; Bupa Cromwell Hospital, London, UK
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China.
| |
Collapse
|
21
|
Toro CA, Johnson K, Hansen J, Siddiq MM, Vásquez W, Zhao W, Graham ZA, Sáez JC, Iyengar R, Cardozo CP. Boldine modulates glial transcription and functional recovery in a murine model of contusion spinal cord injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528337. [PMID: 36824813 PMCID: PMC9949031 DOI: 10.1101/2023.02.15.528337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Membrane channels such as connexins (Cx), pannexins (Panx) and P2X 7 receptors (P2X 7 R) are permeable to calcium ions and other small molecules such as ATP and glutamate. Release of ATP and glutamate through these channels is a key mechanism driving tissue response to traumas such as spinal cord injury (SCI). Boldine, an alkaloid isolated from the Chilean boldo tree, blocks both Cx hemichannels (HC) and Panx. To test if boldine could improve function after SCI, boldine or vehicle was administered to treat mice with a moderate severity contusion-induced SCI. Boldine led to greater spared white matter and increased locomotor function as determined by the Basso Mouse Scale and horizontal ladder rung walk tests. Boldine treatment reduced immunostaining for markers of activated microglia (Iba1) and astrocytic (GFAP) markers while increasing that for axon growth and neuroplasticity (GAP-43). Cell culture studies demonstrated that boldine blocked glial HC, specifically Cx26 and Cx30, in cultured astrocytes and blocked calcium entry through activated P2X 7 R. RT-qPCR studies showed that boldine treatment reduced expression of the chemokine Ccl2, cytokine IL-6 and microglial gene CD68, while increasing expression of the neurotransmission genes Snap25 and Grin2b, and Gap-43. Bulk RNA sequencing (of the spinal cord revealed that boldine modulated a large number of genes involved in neurotransmission in in spinal cord tissue just below the lesion epicenter at 14 days after SCI. Numbers of genes regulated by boldine was much lower at 28 days after injury. These results indicate that boldine treatment ameliorates injury and spares tissue to increase locomotor function.
Collapse
|
22
|
Portal B, Vasile F, Zapata J, Lejards C, Ait Tayeb AEK, Colle R, Verstuyft C, Corruble E, Rouach N, Guiard BP. Astroglial Connexins Inactivation Increases Relapse of Depressive-like Phenotype after Antidepressant Withdrawal. Int J Mol Sci 2022; 23:13227. [PMID: 36362016 PMCID: PMC9656718 DOI: 10.3390/ijms232113227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 09/11/2023] Open
Abstract
Studies suggest that astrocytic connexins (Cx) have an important role in the regulation of high brain functions through their ability to establish fine-tuned communication with neurons within the tripartite synapse. In light of these properties, growing evidence suggests a role of Cx in psychiatric disorders such as major depression but also in the therapeutic activity of antidepressant drugs. However, the real impact of Cx on treatment response and the underlying neurobiological mechanisms remain yet to be clarified. On this ground, the present study was designed to evaluate the functional activity of Cx in a mouse model of depression based on chronic corticosterone exposure and to determine to which extent their pharmacological inactivation influences the antidepressant-like activity of venlafaxine (VENLA). On the one hand, our results indicate that depressed mice have impaired Cx-based gap-junction and hemichannel activities. On the other hand, while VENLA exerts robust antidepressant-like activity in depressed mice; this effect is abolished by the pharmacological inhibition of Cx with carbenoxolone (CBX). Interestingly, the combination of VENLA and CBX is also associated with a higher rate of relapse after treatment withdrawal. To our knowledge, this study is one of the first to develop a model of relapse, and our results reveal that Cx-mediated dynamic neuroglial interactions play a critical role in the efficacy of monoaminergic antidepressant drugs, thus providing new targets for the treatment of depression.
Collapse
Affiliation(s)
- Benjamin Portal
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Flora Vasile
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, 75005 Paris, France
| | - Jonathan Zapata
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, 75005 Paris, France
| | - Camille Lejards
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Abd El Kader Ait Tayeb
- CESP, MOODS Team, INSERM, Faculté de Médecine, University of Paris-Saclay, 94275 Le Kremlin Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, 94275 Le Kremlin Bicêtre, France
| | - Romain Colle
- CESP, MOODS Team, INSERM, Faculté de Médecine, University of Paris-Saclay, 94275 Le Kremlin Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, 94275 Le Kremlin Bicêtre, France
| | - Céline Verstuyft
- CESP, MOODS Team, INSERM, Faculté de Médecine, University of Paris-Saclay, 94275 Le Kremlin Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, 94275 Le Kremlin Bicêtre, France
| | - Emmanuelle Corruble
- CESP, MOODS Team, INSERM, Faculté de Médecine, University of Paris-Saclay, 94275 Le Kremlin Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, 94275 Le Kremlin Bicêtre, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, 75005 Paris, France
| | - Bruno P. Guiard
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 31062 Toulouse, France
| |
Collapse
|
23
|
Quan M, Lv H, Liu Z, Li K, Zhang C, Shi L, Yang X, Lei P, Zhu Y, Ai D. MST1 Suppresses Disturbed Flow Induced Atherosclerosis. Circ Res 2022; 131:748-764. [PMID: 36164986 DOI: 10.1161/circresaha.122.321322] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Atherosclerosis occurs mainly at arterial branching points exposed to disturbed blood flow. How MST1 (mammalian sterile 20-like kinase 1), the primary kinase in the mechanosensitive Hippo pathway modulates disturbed flow induced endothelial cells (ECs) activation and atherosclerosis remains unclear. METHODS To assess the role of MST1 in vivo, mice with EC-specific Mst1 deficiency on ApoE-/- background (Mst1iECKOApoE-/-) were used in an atherosclerosis model generated by carotid artery ligation. Mass spectrometry, immunoprecipitation, proximity ligation assay, and dye uptake assay were used to identify the functional substrate of MST1. Human umbilical vein endothelial cells and human aortic endothelial cells were subjected to oscillatory shear stress that mimic disturbed flow in experiments conducted in vitro. RESULTS We found that the phosphorylation of endothelial MST1 was significantly inhibited in oscillatory shear stress-exposed regions of human and mouse arteries and ECs. Ectopic lenti-mediated overexpression of wild-type MST1, but not a kinase-deficient mutant of MST1, reversed disturbed flow-caused EC activation and atherosclerosis in EC-specific Mst1 deficiency on ApoE-/- background (Mst1iECKOApoE-/-). Inhibition of MST1 by oscillatory shear stress led to reduced phosphorylation of Cx43 (connexin 43) at Ser255, the Cx43 hemichannel open, EC activation, and atherosclerosis, which were blocked by TAT-GAP19, a Cx43 hemichannel inhibitory peptide. Mass spectrometry studies identified that Filamin B fueled the translocation of Cx43 to lipid rafts for further hemichannel open. Finally, lenti-mediated overexpression of the Cx43S255 mutant into glutamate to mimic phosphorylation blunted disturbed flow-induced EC activation, thereby inhibiting the atherogenesis in both ApoE-/- and Mst1 iECKOApoE-/- mice. CONCLUSIONS Our study reveals that inhibition of the MST1-Cx43 axis is an essential driver of oscillatory shear stress-induced endothelial dysfunction and atherosclerosis, which provides a new therapeutic target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Meixi Quan
- Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University (M.Q., H.L., D.A.), Tianjin Medical University, China.,Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| | - Huizhen Lv
- Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University (M.Q., H.L., D.A.), Tianjin Medical University, China.,Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| | - Zening Liu
- Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| | - Kan Li
- Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| | - Chenghu Zhang
- Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences (L.S.), Tianjin Medical University, China
| | - XinYu Yang
- Department of Neurosurgery (X.Y.), Tianjin Medical University General Hospital, China
| | - Ping Lei
- Department of Geriatrics (P.L.), Tianjin Medical University General Hospital, China
| | - Yi Zhu
- Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| | - Ding Ai
- Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University (M.Q., H.L., D.A.), Tianjin Medical University, China.,Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| |
Collapse
|
24
|
Han M, Yang H, Lu X, Li Y, Liu Z, Li F, Shang Z, Wang X, Li X, Li J, Liu H, Xin T. Three-Dimensional-Cultured MSC-Derived Exosome-Hydrogel Hybrid Microneedle Array Patch for Spinal Cord Repair. NANO LETTERS 2022; 22:6391-6401. [PMID: 35876503 DOI: 10.1021/acs.nanolett.2c02259] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exosomes derived from mesenchymal stem cells (MSCs) have been proven to exhibit great potentials in spinal cord injury (SCI) therapy. However, conventional two-dimensional (2D) culture will inevitably lead to the loss of stemness of MSCs, which substantially limits the therapeutic potency of MSCs exosomes (2D-Exo). Exosomes derived from three-dimensional culture (3D-Exo) possess higher therapeutic efficiency which have wide applications in spinal cord therapy. Typically, conventional exosome therapy that relies on local repeated injection results in secondary injury and low efficiency. It is urgent to develop a more reliable, convenient, and effective exosome delivery method to achieve constant in situ exosomes release. Herein, we proposed a controlled 3D-exohydrogel hybrid microneedle array patch to achieve SCI repair in situ. Our studies suggested that MSCs with 3D-culturing could maintain their stemness, and consequently, 3D-Exo effectively reduced SCI-induced inflammation and glial scarring. Thus, it is a promising therapeutic strategy for the treatment of SCI.
Collapse
Affiliation(s)
- Min Han
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P.R. China
| | - Hongru Yang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Xiangdong Lu
- Department of Neurosurgery, People's Hospital Affiliated to Shandong First Medical University, Jinan 250117, P.R. China
| | - Yuming Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, P.R. China
| | - Zihao Liu
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, P.R. China
| | - Feng Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, P.R. China
| | - Zehan Shang
- Department of Neurosurgery, Shangdong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250014, P.R. China
| | - Xiaofeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, P.R. China
| | - Xuze Li
- Department of Neurosurgery, Shangdong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250014, P.R. China
| | - Junliang Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, P.R. China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Tao Xin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P.R. China
| |
Collapse
|
25
|
A Quantitative Assay for Ca2+ Uptake through Normal and Pathological Hemichannels. Int J Mol Sci 2022; 23:ijms23137337. [PMID: 35806342 PMCID: PMC9266989 DOI: 10.3390/ijms23137337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/25/2022] Open
Abstract
Connexin (Cx) hemichannels (HCs) are large pore hexameric structures that allow the exchange of ions, metabolites and a variety of other molecules between the cell cytoplasm and extracellular milieu. HC inhibitors are attracting growing interest as drug candidates because deregulated fluxes through HCs have been implicated in a plethora of genetic conditions and other diseases. HC activity has been mainly investigated by electrophysiological methods and/or using HC-permeable dye uptake measurements. Here, we present an all-optical assay based on fluorometric measurements of ionized calcium (Ca2+) uptake with a Ca2+-selective genetically encoded indicator (GCaMP6s) that permits the optical tracking of cytosolic Ca2+ concentration ([Ca2+]cyt) changes with high sensitivity. We exemplify use of the assay in stable pools of HaCaT cells overexpressing human Cx26, Cx46, or the pathological mutant Cx26G45E, under control of a tetracycline (Tet) responsive element (TRE) promoter (Tet-on). We demonstrate the usefulness of the assay for the characterization of new monoclonal antibodies (mAbs) targeting the extracellular domain of the HCs. Although we developed the assay on a spinning disk confocal fluorescence microscope, the same methodology can be extended seamlessly to high-throughput high-content platforms to screen other kinds of inhibitors and/or to probe HCs expressed in primary cells and microtissues.
Collapse
|
26
|
Zou P, Zhang X, Zhang R, Chai X, Zhao Y, Li E, Zhang Q, Yan R, Yang J, Liao B. Blockage of ERCC6 Alleviates Spinal Cord Injury Through Weakening Apoptosis, Inflammation, Senescence, and Oxidative Stress. Front Mol Biosci 2022; 9:853654. [PMID: 35392536 PMCID: PMC8980712 DOI: 10.3389/fmolb.2022.853654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Spinal cord injury (SCI) is a devastating disease resulting in lifelong disability, but the molecular mechanism remains unclear. Our study was designed to observe the role of excision repair cross-complementing group 6 (ERCC6) following SCI and to determine the underlying mechanism. Methods: SCI mouse models and LPS-induced microglia cell models were established. ERCC6 expression was blocked by ERCC6-siRNA-carrying lentivirus. Nissl staining was utilized for detecting neuronal damage, and apoptosis was analyzed with TUNEL and Western blotting (apoptotic markers). Immunofluorescence was used for measuring macrophage markers (CD68 and F4/80) and astrocyte and microglia markers (GFAP and Iba-1). Pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) were measured via ELISA. Senescent cells were estimated via SA-β-Gal staining as well as Western blot (senescent markers p21 and p27). Oxidative stress was investigated by detecting the expression of 4-HNE, Nrf2, and Keap1, and intracellular ROS levels. Results: ERCC6 expression was remarkably upregulated both in the spinal cord of SCI mice and LPS-induced microglia cells. ERCC6 deficiency alleviated neuronal damage and apoptosis. Macrophage infiltration and inflammatory response were suppressed by si-ERCC6 treatment. Moreover, ERCC6 blockage ameliorated astrocyte and microglia activation and cell senescence in the damaged spinal cord. Excessive oxidative stress was significantly decreased by ERCC6 knockdown in SCI. Conclusion: Collectively, ERCC6 exerts crucial functions in mediating physiological processes (apoptosis, inflammation, senescence, and oxidative stress), implying that ERCC6 might act as a prospective therapeutic target against SCI.
Collapse
Affiliation(s)
- Peng Zou
- Department of Spinal Surgery, Tangdu Hospital, Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
- Department of Spinal Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoping Zhang
- Department of Spinal Surgery, Tangdu Hospital, Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Rui Zhang
- Department of Spinal Surgery, Tangdu Hospital, Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Xin Chai
- Department of Spinal Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yuanting Zhao
- Department of Spinal Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Erliang Li
- Department of Spinal Surgery, Tangdu Hospital, Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Qian Zhang
- Department of Spinal Surgery, Tangdu Hospital, Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Rongbao Yan
- Department of Spinal Surgery, Tangdu Hospital, Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Junsong Yang
- Department of Spinal Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Bo Liao, ; Junsong Yang,
| | - Bo Liao
- Department of Spinal Surgery, Tangdu Hospital, Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
- *Correspondence: Bo Liao, ; Junsong Yang,
| |
Collapse
|
27
|
Zhao D, Riquelme MA, Guda T, Tu C, Xu H, Gu S, Jiang JX. Connexin hemichannels with prostaglandin release in anabolic function of bone to mechanical loading. eLife 2022; 11:74365. [PMID: 35132953 PMCID: PMC8824479 DOI: 10.7554/elife.74365] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/10/2022] [Indexed: 01/18/2023] Open
Abstract
Mechanical stimulation, such as physical exercise, is essential for bone formation and health. Here, we demonstrate the critical role of osteocytic Cx43 hemichannels in anabolic function of bone in response to mechanical loading. Two transgenic mouse models, R76W and Δ130–136, expressing dominant-negative Cx43 mutants in osteocytes were adopted. Mechanical loading of tibial bone increased cortical bone mass and mechanical properties in wild-type and gap junction-impaired R76W mice through increased PGE2, endosteal osteoblast activity, and decreased sclerostin. These anabolic responses were impeded in gap junction/hemichannel-impaired Δ130–136 mice and accompanied by increased endosteal osteoclast activity. Specific inhibition of Cx43 hemichannels by Cx43(M1) antibody suppressed PGE2 secretion and impeded loading-induced endosteal osteoblast activity, bone formation and anabolic gene expression. PGE2 administration rescued the osteogenic response to mechanical loading impeded by impaired hemichannels. Together, osteocytic Cx43 hemichannels could be a potential new therapeutic target for treating bone loss and osteoporosis.
Collapse
Affiliation(s)
- Dezhi Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, United States.,School of Life Sciences, Northwestern Polytechnical University, Xian, China
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, United States
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, United States
| | - Chao Tu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, United States.,Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Huiyun Xu
- School of Life Sciences, Northwestern Polytechnical University, Xian, China
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, United States
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, United States
| |
Collapse
|