1
|
Xuan L, Ren L, Kang X, Chang R, Zhang W, Gong L, Liu L. Clusterin ameliorates diabetic atherosclerosis by suppressing macrophage pyroptosis and activation. Front Pharmacol 2025; 16:1536132. [PMID: 40337510 PMCID: PMC12055819 DOI: 10.3389/fphar.2025.1536132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/07/2025] [Indexed: 05/09/2025] Open
Abstract
Background It has been demonstrated that clusterin (CLU) is a protective protein involved in a variety of diseases and disorders. However, the role of CLU in diabetic atherosclerosis is not elucidative. The objective of this study is to investigate the role of CLU in diabetic atherosclerosis and the molecular mechanisms. Method In in vivo experiments, Clu knockout and overexpressed murine models were used to investigate the role of Clu in diabetic atherosclerosis. Atherosclerotic plaque formation was determined by hematoxylin-eosin (H&E) staining and Oil Red O staining. F4/80 and CD68 levels were determined by immunohistochemical staining. Transmission electron microscopy was used to observe changes in cell pyroptosis morphology. NLRP3 and IL-1β levels were determined by Western blot and immunofluorescence staining. In in vitro experiments, TNF-α, IL-6, and IL-1β levels in THP-1 derived macrophages were determined by real-time qPCR and ELISA. Results We found that Clu-overexpression reduced while Clu knockout promoted atherosclerotic plaque formation, macrophage infiltration and inflammatory factor expression in mouse aortic plaques. Consistently, CLU overexpression inhibits the production of TNF-α, IL-6, and IL-1β in THP-1 derived macrophages. Moreover, Clu inhibited the release of inflammatory factors and macrophage pyroptosis in diabetic atherosclerosis murine models. Conclusion Our study revealed that CLU could ameliorate diabetic atherosclerosis via suppressing inflammatory factors release and pyroptosis of macrophage. CLU may be a promising therapeutic target for diabetic atherosclerosis.
Collapse
Affiliation(s)
- Lingling Xuan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lulu Ren
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaoxu Kang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Rui Chang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Wen Zhang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lili Gong
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Lihong Liu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
2
|
Zhang W, Zhang Y, Han L, Bo T, Qi Z, Zhong H, Xu H, Hu L, Chen S, Zhang S. Double-stranded DNA enhances platelet activation, thrombosis, and myocardial injury via cyclic GMP-AMP synthase. Cardiovasc Res 2025; 121:353-366. [PMID: 39302147 DOI: 10.1093/cvr/cvae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/19/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024] Open
Abstract
AIMS Elevated dsDNA levels in ST-elevated myocardial infarction (STEMI) patients are associated with increased infarct size and worse clinical outcomes. However, the direct effect of dsDNA on platelet activation remains unclear. This study aims to investigate the direct influence of dsDNA on platelet activation, thrombosis, and the underlying mechanisms. METHODS AND RESULTS Analysis of clinical samples revealed elevated plasma dsDNA levels in STEMI patients, which positively correlated with platelet aggregation and markers of neutrophil extracellular traps such as MPO-DNA and CitH3. Platelet assays demonstrated the activation of the cGAS-STING pathway in platelets from STEMI patients. DsDNA directly potentiated platelet activation and thrombus formation. Mechanistic studies using G150 (cGAS inhibitor), H151 (STING inhibitor), and MCC950 (NLRP3 inhibitor), as well as cGAS-/-, STING-/-, and NLRP3-/- mice, showed that dsDNA activated cGAS, a previously unreported DNA sensor in platelets, and induced activation of the STING/NLRP3/caspase-1/IL-1β axis. This cascade enhanced platelet activation and thrombus formation. Platelet cGAS depletion or Palbociclib, a cGAS-STING inhibitor, approved by the FDA for advanced breast cancer, ameliorated myocardial ischaemia-reperfusion injury in ApoE-/- mice fed with a high-fat diet for 12 weeks. CONCLUSIONS These results suggested that dsDNA is a novel driver of platelet activation and thrombus formation in STEMI patients.
Collapse
Affiliation(s)
- Wei Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai 200032, China
| | - Yan Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai 200032, China
| | - Liping Han
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Tao Bo
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai 200032, China
| | - Zhiyong Qi
- Department of Cardiology, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Haoxuan Zhong
- Department of Cardiology, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Huajie Xu
- Department of Cardiology, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Liang Hu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - She Chen
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai 200032, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai 200032, China
| |
Collapse
|
3
|
Vallazhath A, Thimmappa PY, Joshi HB, Hebbar KR, Nayak A, Umakanth S, Saoji AA, Manjunath NK, Hadapad BS, Joshi MB. A comprehensive review on the implications of Yogic/Sattvic diet in reducing inflammation in type 2 diabetes. Nutr Diabetes 2025; 15:14. [PMID: 40216734 PMCID: PMC11992243 DOI: 10.1038/s41387-025-00371-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Chronic inflammation in type 2 diabetes (T2D), characterized by constitutively activated immune cells and elevated pro-inflammatory mediators along with hyperglycaemia and increased free fatty acids and branched chain amino acid levels, significantly alters the immuno-metabolic axis. Over the years, dietary intervention has been explored as an effective strategy for managing T2D. Evidence from experimental and clinical studies indicates that various diets, including Mediterranean, Nordic, Palaeolithic and ketogenic diets, increase insulin sensitivity, decrease gluconeogenesis, and adiposity, and exert anti-inflammatory effects, thus preserving immuno-metabolic homeostasis in individuals with T2D. Indian dietary sources are categorized as Sattvic, Rajasic, and Tamasic, depending on their impact on health and behaviour. The Yogic diet, commonly recommended during yoga practice, is predominantly Sattvic, emphasizing plant-based whole foods while limiting processed and high-glycaemic-index items. Yogic diet is also recommended for Mitahara, emphasizing mindful eating, which is attributed to calorie restriction. Adopting a Yogic diet, featuring low-fat vegetarian principles, strongly reduces inflammatory mediator levels. This diet not only ameliorates insulin resistance and maintains a healthy body weight but also regulates immunomodulation, enhances gut microbiome diversity and provides essential phytonutrients, collectively preventing inflammation. Although, preliminary studies show aforementioned beneficial role of Yogic diet in improving diabetes associated metabolic and inflammatory changes, precise cellular and molecular mechanisms are not yet understood. Hence, further studies are warranted to decipher the mechanisms. This review summarizes the multiple roles of Yogic diet and related dietary components in mitigating inflammation and enhancing glycaemic control in T2D.
Collapse
Affiliation(s)
- Anupama Vallazhath
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Pooja Yedehalli Thimmappa
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Harshit B Joshi
- Division of Ayurveda, Centre for Integrative Medicine and Research, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Krishna Raghava Hebbar
- Division of Ayurveda, Centre for Integrative Medicine and Research, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Anupama Nayak
- Division of Ayurveda, Centre for Integrative Medicine and Research, Manipal Academy of Higher Education, Manipal, 576104, India
| | | | - Apar Avinash Saoji
- Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore, 560105, Karnataka, India
| | | | - Basavaraj S Hadapad
- Division of Ayurveda, Centre for Integrative Medicine and Research, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
- Centre for Ayurveda Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
4
|
Guo S, Zhang Y, Lian J, Su C, Wang H. The role of hydrogen sulfide in the regulation of necroptosis across various pathological processes. Mol Cell Biochem 2025; 480:1999-2013. [PMID: 39138751 DOI: 10.1007/s11010-024-05090-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Necroptosis is a programmed cell death form executed by receptor-interacting protein kinase (RIPK) 1, RIPK3 and mixed lineage kinase domain-like protein (MLKL), which assemble into an oligomer called necrosome. Accumulating evidence reveals that necroptosis participates in many types of pathological processes. Hence, clarifying the mechanism of necroptosis in pathological processes is particularly important for the prevention and treatment of various diseases. For over 300 years, hydrogen sulfide (H2S) has been widely known in the scientific community as a toxic and foul-smelling gas. However, after discovering the important physiological and pathological functions of H2S, human understanding of this small molecule changed, believing that H2S is the third gas signaling molecule after carbon monoxide (CO) and nitric oxide (NO). H2S plays an important role in various diseases, but the related mechanisms are not yet fully understood. In recent years, more and more studies have shown that H2S regulation of necroptosis is involved in various pathological processes. Herein, we focus on the recent progress on the role of H2S regulation of necroptosis in different pathological processes and profoundly analyze the related mechanisms.
Collapse
Affiliation(s)
- Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Yanting Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jingwen Lian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Chunqi Su
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
5
|
Wen J, Li J, Wu Z. Neutrophil extracellular traps induced by diabetes aggravate periodontitis by inhibiting janus kinase/signal transducers and activators of transcription signaling in macrophages. J Dent Sci 2025; 20:869-876. [PMID: 40224106 PMCID: PMC11993069 DOI: 10.1016/j.jds.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/14/2024] [Indexed: 04/15/2025] Open
Abstract
Background/purpose Diabetes, which is a systemic disease, increases susceptibility to destructive periodontal diseases, which are characterized by infectious susceptibility, but the potential mechanisms remain unknown. The aim of this study was to investigate the mechanism of high glucose environment promoting the occurrence and development of local periodontal inflammation. Materials and methods In this study, the effects of neutrophil extracellular traps (NETs) on macrophage polarization and the mechanism were designed to verify whether this course plays a role in periodontal tissue impairment associated with diabetes. Here, we examined the impact of NETs on macrophages in vitro. NETs were isolated from cultures of neutrophils exposed to hyperglycemia. Mouse models of diabetic periodontitis (DP) and macrophage polarization were developed, and the degrees of NET formation in the periodontal tissue of DP mice were assessed. Furthermore, western blotting was performed to analyze the related mechanisms. Results The results revealed that hyperglycemia induced the formation of NETs, and abundant NET formation led to proinflammatory cytokine secretion by macrophages and low expression of JAK-2 and STAT-3 in vitro and in vivo. NETs regulated macrophage polarization through the JAK/STAT pathway. Conclusion These results suggest that NETs target proinflammatory cytokine secretion via the JAK/STAT pathway and may play important roles in DP progression and macrophage polarization, which indicates that therapeutically referring to this regulatory pathway might be a promising method for treating diabetes-associated inflammatory diseases.
Collapse
Affiliation(s)
- Jing Wen
- Changsha Stomatology Hosipital, Changsha, China
| | - Jingru Li
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha, China
| | - Zhenhuan Wu
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Al-Kuraishy HM, Sulaiman GM, Mohammed HA, Dawood RA, Albuhadily AK, Al-Gareeb AI, Klionsky DJ, Abomughaid MM. Insight into the Mechanistic role of Colchicine in Atherosclerosis. Curr Atheroscler Rep 2025; 27:40. [PMID: 40111634 DOI: 10.1007/s11883-025-01291-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
PURPOSE OF REVIEW Globally, the prevalence of atherosclerosis (AS) is rising. Currently, there is no specific drug for AS. Therefore, this review aims to discuss the protective mechanisms of colchicine against the development and progression of atherosclerosis (AS). RECENT FINDINGS Many studies highlighted that the anti-inflammatory drug colchicine reduces the severity of AS, although the underlying mechanism for the beneficial effect of colchicine was not fully clarified. AS is a chronic progressive vascular disorder characterized by the formation of atherosclerotic plaques. Endothelial dysfunction is an initial stage in the pathogenesis of AS that is induced by oxidized low-density lipoprotein (oxLDL). Engulfment of oxLDL by macrophages triggers the development of inflammation due to the release of pro-inflammatory cytokines and growth factors. Inflammatory and adhesion molecules are involved in the pathogenesis of AS. Infiltration and accumulation of leukocytes provoke erosion, rupture, and thrombosis of the atherosclerotic plaque. Therefore, targeting inflammation and leukocyte infiltration by anti-inflammatory agents may reduce AS progression and complications. The anti-inflammatory drug colchicine reduces the severity of AS, although the underlying mechanism for the beneficial effect of colchicine was not fully elucidated. IN CONCLUSION colchicine through inhibition of vascular inflammation, oxidative stress, platelet aggregation and the modulation of autophagy reduces the development and progression of AS.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ghassan M Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad, Iraq.
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, 51452, Qassim, Saudi Arabia
| | - Retaj A Dawood
- Department of Biology, College of Science, Al-Mustaqbal University, Hilla, 51001, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Jabir Ibn Hayyan Medical University, Al-Ameer Qu, PO.Box13 Kufa, Najaf, Iraq
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Mosleh M Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, 67714, Bisha, Saudi Arabia
| |
Collapse
|
7
|
Skjølberg C, Degani L, Sileikaite-Morvaközi I, Hawkins CL. Oxidative modification of extracellular histones by hypochlorous acid modulates their ability to induce β-cell dysfunction. Free Radic Biol Med 2025; 230:209-221. [PMID: 39956473 DOI: 10.1016/j.freeradbiomed.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 02/18/2025]
Abstract
Histones are nuclear proteins that play a key role in chromatin assembly and regulation of gene expression by their ability to bind to DNA. Histones can also be released from cells owing to necrosis or extracellular trap release from neutrophils (NETs) and other immune cells. The presence of histones in the extracellular environment has implications for many pathologies, including diabetes mellitus, owing to the cytotoxic nature of these proteins, and their ability to promote inflammation. NETs also contain myeloperoxidase, a defensive enzyme that produces hypochlorous acid (HOCl), to kill pathogens, but also readily damages host proteins. In this study, we examined the reactivity of histones with and without HOCl modification, with a pancreatic β-cell model. Exposure of β-cells to histones resulted in a loss of metabolic activity and cell death by a combination of apoptosis and necrosis. This toxicity was increased on pretreatment of the β-cells with tumour necrosis factor α and interleukin 1β. Histones upregulated endoplasmic reticulum (ER) stress genes, including the pro-apoptotic transcription factor CHOP. There was also evidence for alterations to the cellular redox environment and upregulation of antioxidant gene expression. However, downregulation of insulin-associated genes and insulin was observed. Interestingly, modification of the histones with HOCl reduced their toxicity and altered the patterns of gene expression observed, and a further decrease in the expression of insulin-associated genes was observed. These findings could be relevant to the development of Type 2 diabetes, where low-grade inflammation favours NET release, resulting in elevated histones in the circulation.
Collapse
Affiliation(s)
- Clara Skjølberg
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Laura Degani
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Inga Sileikaite-Morvaközi
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|
8
|
Tao S, Yang Y, Wu C, Yang J, Wang Z, Zhou F, Liang K, Deng Y, Li J, Li J. Nanocapsuled Neutrophil Extracellular Trap Scavenger Combating Chronic Infectious Bone Destruction Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411274. [PMID: 39823437 PMCID: PMC11904938 DOI: 10.1002/advs.202411274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/29/2024] [Indexed: 01/19/2025]
Abstract
Chronic infectious bone destruction diseases, such as periodontitis, pose a significant global health challenge. Repairing the bone loss caused by these chronic infections remains challenging. In addition to pathogen removal, regulating host immunity is imperative. The retention of neutrophil extracellular traps (NETs) in chronic infectious niches is found to be a barrier to inflammation resolution. However, whether ruining the existing NETs within the local infectious bone lesions can contribute to inflammation resolve and bone repair remains understudied. Herein, a nanocapsuled delivery system that scavenges NETs dual-responsively to near-infrared light as a switch and to NETs themselves as a microenvironment sensor is designed. Besides, the photothermal and photodynamic effects endow the nanocapsules with antibacterial properties. Together with the ability to clear NETs, these features facilitate the restoration of the normal host response. The immunocorrective properties and inherent pro-osteogenic effects finally promote local bone repair. Together, the NET scavenging nanocapsules address the challenge of impaired bone repair in chronic infections due to biased host response caused by excessive NETs. This study provides new concepts and strategies for repairing bone destruction attributable to chronic infections via correcting biased host responses in chronic infectious diseases.
Collapse
Affiliation(s)
- Siying Tao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yingming Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ziyou Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Fangjie Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
9
|
Boughanem H, Torres-Peña JD, Arenas-de Larriva AP, Romero-Cabrera JL, Gómez-Luna P, Martín-Piedra L, Rodríguez-Cantalejo F, Tinahones FJ, Yubero Serrano EM, Soehnlein O, Perez-Martinez P, Delgado-Lista J, López-Miranda J. Mediterranean diet, neutrophil count, and carotid intima-media thickness in secondary prevention: the CORDIOPREV study. Eur Heart J 2025; 46:719-729. [PMID: 39661486 PMCID: PMC11842968 DOI: 10.1093/eurheartj/ehae836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/03/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND AND AIMS Several studies have supported the role of innate immune system as a key factor in the sterile inflammation underlying the pathophysiology of atherosclerosis in mice. However, its involvement in humans remains unclear. This study aimed to explore the association between neutrophil count, and the intima-media thickness of common carotid arteries (IMT-CC), as well as the potential impact of long-term dietary interventions on these associations. METHODS A comprehensive analysis was conducted within the framework of the CORDIOPREV study, a long-term secondary prevention study involving dietary interventions with either a Mediterranean or a low-fat diet. The study evaluated the relationship between absolute neutrophil count and neutrophil-related ratios with IMT-CC at baseline and after 5 and 7 years of dietary intervention. RESULTS At baseline, patients in the highest tertile of neutrophil count had a higher IMT-CC and number of carotid plaques, when compared to lowest tertile (P < .01 and P < .05, respectively). Logistic regression analyses supported this association. Elevated neutrophil count, neutrophil-to-erythrocyte ratio, and neutrophil-to-HDL ratio were associated with an increased likelihood of having an IMT-CC >.9 mm {odds ratio (OR) 1.17 [95% confidence interval (CI) 1.04-1.35], OR 2.21 (95% CI 1.24-4.12), and OR 1.96 (95% CI 1.09-3.55), respectively}, after adjustment for all variables, which was corroborated by linear regression. Furthermore, a linear mixed-effect model analysis from a longitudinal analysis spanning 5 and 7 years revealed an increase in 1 unit of neutrophils/μl at these time points was associated with a mean increase of .004 (.002) mm in the IMT-CC (P = .031) after adjustment for all variables. Interestingly, in patients exhibiting regression in IMT-CC after 7 years of follow-up, those following a Mediterranean diet showed a significant decrease in neutrophil count after 5 and 7 years (both with P < .05), compared to baseline. CONCLUSIONS These findings suggest that neutrophils may represent a promising target for preventing atherosclerosis. A Mediterranean diet could serve as an effective dietary strategy to reduce neutrophil levels and potentially slow the progression of atherosclerosis, offering a new neutrophil-reducing therapy concept. Further research is essential to gain deeper insights into the role of neutrophils in the pathophysiology of atherosclerotic cardiovascular disease in humans.
Collapse
Affiliation(s)
- Hatim Boughanem
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, 14004 Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José D Torres-Peña
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, 14004 Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonio Pablo Arenas-de Larriva
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, 14004 Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan L Romero-Cabrera
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, 14004 Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Purificación Gómez-Luna
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, 14004 Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Martín-Piedra
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, 14004 Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Francisco J Tinahones
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010 Malaga, Spain
- Institute of Biomedical Research in Malaga (IBIMA)-Bionand Platform, University of Malaga, 29590 Malaga, Spain
| | - Elena M Yubero Serrano
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, 14004 Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Oliver Soehnlein
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, 48149 Münster, Germany
| | - Pablo Perez-Martinez
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, 14004 Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, 14004 Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José López-Miranda
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, 14004 Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
10
|
Manoj H, Gomes SM, Thimmappa PY, Nagareddy PR, Jamora C, Joshi MB. Cytokine signalling in formation of neutrophil extracellular traps: Implications for health and diseases. Cytokine Growth Factor Rev 2025; 81:27-39. [PMID: 39681501 DOI: 10.1016/j.cytogfr.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Neutrophils, as essential component of the innate immune response, form a crucial part in the defence mechanisms through the release of extracellular traps (NETs). These web-like structures, composed of chromatin and antimicrobial proteins, are essential for the entrapment and inactivation of pathogens. However, either constitutive formation or inefficient clearance of NETs leads to adverse effects such as fibrosis, thrombosis, delayed wound healing and tissue damage in multiple diseases associated with sterile inflammation. This dichotomy casts NETs as both protective agents and harmful factors in several diseases such as autoimmune diseases, metabolic syndromes, systemic infections, and malignancies. Besides microbes and their products, variety of stimulants including pro-inflammatory cytokines induce NETs. The complex interactions and cross talk among the pro-inflammatory cytokines including IL-8, IL-6, GM-CSF, TNF-α, IFNs, and IL-1β activate neutrophils to form NETs and also contributes to a vicious circle of inflammatory cascade, leading to increased inflammation, oxidative stress, and thrombotic events. Emerging evidence indicates that the dysregulated cytokine milieus in diseases, such as diabetes mellitus, obesity, atherosclerosis, stroke, rheumatoid arthritis, and systemic lupus erythematosus, potentiate NETs release, thereby promoting disease development. Thus, neutrophils represent both critical effectors and potential therapeutic targets, underscoring their importance in the context of cytokine-mediated therapies for a spectrum of diseases. In the present review, we describe various cytokines and associated signalling pathways activating NETs formation in different human pathologies. Further, the review identifies potential strategies to pharmacologically modulate cytokine pathways to reduce NETs.
Collapse
Affiliation(s)
- Haritha Manoj
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sarah Michael Gomes
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pooja Yedehalli Thimmappa
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Prabhakara R Nagareddy
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma, OK, USA
| | - Colin Jamora
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh 201314, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
11
|
Wang H, Huang Z, Wang J, Yue S, Hou Y, Ren R, Zhang Y, Cheng Y, Zhang R, Mu Y. Predictive value of system immune-inflammation index for the severity of coronary stenosis in patients with coronary heart disease and diabetes mellitus. Sci Rep 2024; 14:31370. [PMID: 39732905 PMCID: PMC11682039 DOI: 10.1038/s41598-024-82826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Coronary heart disease (CHD) has been recognized as a chronic progressive inflammatory disorder, and Diabetes mellitus (DM) is an independent risk factor for the pathogenesis of CHD. Recent research has underscored the systemic immune-inflammation index (SII) as a potent prognostic indicator for individuals suffering from acute coronary syndrome (ACS). This study aimed to delve into the relationship between SII and the degree of coronary atherosclerotic stenosis in non-acute myocardial infarction patients with or without DM. We enrolled a total of 2760 patients with cardiovascular disease between November 2023 and May 2024. All eligible participants were divided into the CHD group and the DM & CHD group according to the existence of comorbid DM. Our study revealed that the SII values were significantly higher in diabetic patients with CHD compared to those with CHD alone (P < 0.05). Furthermore, among patients with both CHD and DM, higher SII values were associated with a greater likelihood of developing complex, triple-branch coronary artery lesions, while the opposite trend was observed in CHD populations (P < 0.05). In the regression model completely adjusted for potential confounders, the correlation between high SII levels and co-existing DM status in CHD patients persisted as statistically significant even after attaining guideline-recommended LDL-C and TG goals (P < 0.05). Moreover, our findings demonstrated a significant link between SII levels and the severity of coronary artery stenosis as assessed by coronary angiography, particularly in the DM and CHD patient cohorts (P < 0.05). Further stratified analysis revealed a novel finding that SII levels in DM and CHD patients maintained a positive linear relationship with coronary plaque burden even under stringent glycemic control (P < 0.01, r = 0.37), whereas this correlation was absent in CHD patients who had FBG of 7 mmol/L or lower upon admission (P < 0.01, r < 0.30). These important findings underscore the SII as an independent predictor of the severity of coronary plaque burden in diabetic patients with CHD, offering valuable insights that can aid clinicians in refining risk stratification and implementing personalized management strategies for those at elevated risk.
Collapse
Affiliation(s)
- Haiming Wang
- Department of Endocrinology, The First Clinical Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese People's Liberation Army, Beijing, 100853, China
| | - Zhihang Huang
- Department of Cardiovascular Medicine, Xiang' An Hospital of Xiamen University, Xiamen, 361101, China
| | - Jing Wang
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Shuai Yue
- Department of Cardiovascular Medicine, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, 100853, China
| | - Yu Hou
- Department of Endocrinology, The First Clinical Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Rui Ren
- Department of Endocrinology, The First Clinical Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yue Zhang
- Department of Endocrinology, The First Clinical Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Cheng
- Department of Endocrinology, The First Clinical Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Ran Zhang
- Department of Cardiovascular Medicine, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, 100853, China.
| | - Yiming Mu
- Department of Endocrinology, The First Clinical Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
12
|
Wang Y, Wang C, Li J. Neutrophil extracellular traps: a catalyst for atherosclerosis. Mol Cell Biochem 2024; 479:3213-3227. [PMID: 38401035 DOI: 10.1007/s11010-024-04931-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/05/2024] [Indexed: 02/26/2024]
Abstract
Neutrophil extracellular traps (NETs) are network-like structures released by activated neutrophils. They consist mainly of double-stranded DNA, histones, and neutrophil granule proteins. Continuous release of NETs in response to external stimuli leads to activation of surrounding platelets and monocytes/macrophages, resulting in damage to endothelial cells (EC) and vascular smooth muscle cells (VSMC). Some clinical trials have demonstrated the association between NETs and the severity and prognosis of atherosclerosis. Furthermore, experimental findings have shed light on the molecular mechanisms by which NETs contribute to atherogenesis. NETs play a significant role in the formation of atherosclerotic plaques. This review focuses on recent advancements in the understanding of the relationship between NETs and atherosclerosis. It explores various aspects, including the formation of NETs in atherosclerosis, clinical trials investigating NET-induced atherosclerosis, the mechanisms by which NETs promote atherogenesis, and the translational implications of NETs. Ultimately, we aim to propose new research directions for the diagnosis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yinyu Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Cuiping Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Jiayan Li
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
13
|
Zhao B, Zhao Y, Sun X. Mechanism and therapeutic targets of circulating immune cells in diabetic retinopathy. Pharmacol Res 2024; 210:107505. [PMID: 39547465 DOI: 10.1016/j.phrs.2024.107505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Diabetic retinopathy (DR) continues to be the leading cause of preventable vision loss among working-aged adults, marked by immune dysregulation within the retinal microenvironment. Typically, the retina is considered as an immune-privileged organ, where circulating immune cells are restricted from entry under normal conditions. However, during the progression of DR, this immune privilege is compromised as circulating immune cells breach the barrier and infiltrate the retina. Increasing evidence suggests that vascular and neuronal degeneration in DR is largely driven by the infiltration of immune cells, particularly neutrophils, monocyte-derived macrophages, and lymphocytes. This review delves into the mechanisms and therapeutic targets associated with these immune cell populations in DR, offering a promising and innovative approach to managing the disease.
Collapse
Affiliation(s)
- Bowen Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xufang Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
14
|
Qi M, Huang H, Li Z, Quan J, Wang J, Huang F, Zhang X, Chen P, Liu A, Gao Z, Bai R, Chen C, Su X, Kong X. Qingxin Jieyu Granule alleviates myocardial infarction through inhibiting neutrophil extracellular traps via activating ANXA1/FPR2 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156147. [PMID: 39418972 DOI: 10.1016/j.phymed.2024.156147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Myocardial infarction (MI), representing the most severe manifestation of coronary artery disease (CAD), stands as a primary concern in the prevention and management of cardiovascular diseases. Clinical evidence demonstrates that Qingxin Jieyu Granule (QXJYG) is efficacious in treatment of MI patients. However, the mechanisms underlying its therapeutic effects remain to be elucidated. PURPOSE This study aimed to evaluate the effects of QXJYG on MI and investigate its underlying mechanisms. MATERIALS AND METHODS The MI model in rats was developed through ligating the left anterior descending (LAD) artery. The effect of QXJYG on cardiac function impairment in MI rats was assessed by echocardiography, while the improvement of cardiomyocyte morphology and myocardial fibrosis after treatment with QXJYG was evaluated through hematoxylin-eosin (H&E) staining and Masson staining. The chemical constituents of QXJYG in blood were identified by using the UPLC-Q-TOF/MS technique. Furthermore, the molecular mechanism underlying the QXJYG therapeutic effect in MI was postulated based on the disease gene-drug target network analysis. Other technical methods such as ELISA, immunohistochemical staining, Western Blot analysis and application of pharmacological inhibitors were employed to verify the effectiveness of QXJYG in treating MI and explore its potential molecular targets. RESULTS The cardiac function in experimental rats post-MI was significantly impaired, as evidenced by an enlarged infarction area, disordered arrangement of cardiomyocytes, and aggravated myocardial fibrosis. QXJYG treatment significantly enhanced the cardiac function and reduced the pathological damage of the cardiac tissue in MI rats. Through the network pharmacology analysis, we identified that FPR2 might be a potential target of QXJYG in its cardiac protection role. QXJYG markedly downregulated the level of neutrophil extracellular traps (NETs) in MI rats, specifically manifested as a significant reduction in the Histone-DNA level and expression of myeloperoxidase (MPO) and citrullinated histone H3 (CitH3) proteins. Furthermore, QXJYG upregulated the levels of ANXA1 and FPR2 proteins in MI rats. The level of FPR2 was markedly reduced in MI rats upon administration of WRW4, a specific inhibitor of FPR2, which was associated with exacerbated MI injury and an elevated level of NETs. When WRW4 was co-administered with QXJYG, the cardioprotective effects of QXJYG on MI were significantly diminished. However, the addition of DNase I did not result in significant changes of the outcomes in MI rats after QXJYG intervention. CONCLUSION QXJYG treatment alleviates cardiac tissue injury in MI rats by inhibiting NETs through activating the ANXA1/FPR2 axis. The findings extend our understanding of the therapeutic effectiveness of QXJYG and offer a scientific foundation for the clinical utilization of QXJYG.
Collapse
Affiliation(s)
- Mingzhu Qi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Helan Huang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhuohang Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jianye Quan
- Medical Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingbo Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fengyu Huang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xinzhuo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peiping Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - An Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhuye Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Chang Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xiaohui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
15
|
Sun X, Ding H, Li X, Wu Y, Huang X. Disulfiram-loaded nanovesicles hydrogel promotes healing of diabetic wound. J Transl Med 2024; 22:1066. [PMID: 39593097 PMCID: PMC11600750 DOI: 10.1186/s12967-024-05875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Traditional methods for treating diabetic wounds are limited in effectiveness because of their long healing times, the risk of immune rejection, and susceptibility to infection. Suppressing neutrophil extracellular traps (NETs) is an effective strategy for reducing persistent inflammation in diabetic wounds. Although disulfiram (DSF) can inhibit the significant increase of NETs in diabetic wounds, oral DSF suffers from rapid and harmful metabolism in the liver. To address these challenges, we developed a nanomedicine formulation in which DSF was incorporated into the hydrogel. METHODS In this study, we developed a DSF-laden sodium alginate hydrogel wound dressing, DEP@SA, and characterized its composition, properties, and performance. We examined the effects of DEP@SA on inflammatory phase-related markers such as NETs and their pathway proteins, inflammatory factors, and macrophage phenotypes in a high-glucose environment in vivo and in vitro. In addition, the effects of DEP@SA on tissue regenerative capacity such as epidermal proliferative migration and angiogenesis, were also assessed. RESULTS The results showed that by utilizing extracellular vesicles as a drug delivery system, we effectively mitigated the degradation of DSF via direct contact with aqueous solutions and ensured the stability of DSF@SA, which could then be applied to diabetic wounds. The inflammatory phase-related indicators revealed that DSF@SA effectively reduced inflammation levels, decreased NETs formation, suppressed the Caspase-1/GSDMD pathway in neutrophils, and promoted the polarization of M2 macrophages. Moreover, the hydrogel accelerated wound healing by promoting angiogenesis and re-epithelialization, thereby shortening the diabetic wound healing time. CONCLUSIONS This study confirmed that the DSF@SA composite dressing has the potential to enhance diabetic wound repair and offers a novel approach for drug reutilization.
Collapse
Affiliation(s)
- Xingzi Sun
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, China
| | - Hanxi Ding
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, China
| | - Xingyu Li
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, China.
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, China.
| |
Collapse
|
16
|
Liu W, Hardaway BD, Kim E, Pauli J, Wettich JL, Yalcinkaya M, Hsu CC, Xiao T, Reilly MP, Tabas I, Maegdefessel L, Schlepckow K, Haass C, Wang N, Tall AR. Inflammatory crosstalk impairs phagocytic receptors and aggravates atherosclerosis in clonal hematopoiesis in mice. J Clin Invest 2024; 135:e182939. [PMID: 39531316 PMCID: PMC11684819 DOI: 10.1172/jci182939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Clonal hematopoiesis (CH) increases inflammasome-linked atherosclerosis, but the mechanisms by which CH mutant cells transmit inflammatory signals to nonmutant cells are largely unknown. To address this question, we transplanted 1.5% Jak2V617F (Jak2VF) bone marrow (BM) cells with 98.5% WT BM cells into hyperlipidemic Ldlr-/- mice. Low-allele-burden (LAB) mice showed accelerated atherosclerosis with increased features of plaque instability, decreased levels of the macrophage phagocytic receptors c-Mer tyrosine kinase (MERTK) and triggering receptor expressed on myeloid cells 2 (TREM2), and increased neutrophil extracellular traps (NETs). These changes were reversed when Jak2VF BM was transplanted with Il1r1-/- BM. LAB mice with noncleavable MERTK in WT BM showed improvements in necrotic core and fibrous cap formation and reduced NETs. An agonistic TREM2 antibody (4D9) markedly increased fibrous caps in both control and LAB mice, eliminating the difference between the groups. Mechanistically, 4D9 increased TREM2+PDGFB+ macrophages and PDGF receptor-α+ fibroblast-like cells in the cap region. TREM2 and PDGFB mRNA levels were positively correlated in human carotid plaques and coexpressed in macrophages. In summary, low frequencies of Jak2VF mutations promoted atherosclerosis via IL-1 signaling from Jak2VF to WT macrophages and neutrophils, promoting cleavage of phagocytic receptors and features of plaque instability. Therapeutic approaches that stabilize MERTK or TREM2 could promote plaque stabilization, especially in CH- and inflammasome-driven atherosclerosis.
Collapse
Affiliation(s)
- Wenli Liu
- Division of Molecular Medicine, Department of Medicine, and
| | | | - Eunyoung Kim
- Division of Cardiology, Department of Medicine, Columbia University, New York, New York, USA
| | - Jessica Pauli
- Institute of Molecular Vascular Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany
| | - Justus Leonard Wettich
- Institute of Molecular Vascular Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany
| | | | | | - Tong Xiao
- Division of Molecular Medicine, Department of Medicine, and
| | - Muredach P. Reilly
- Division of Cardiology, Department of Medicine, Columbia University, New York, New York, USA
| | - Ira Tabas
- Division of Molecular Medicine, Department of Medicine, and
| | - Lars Maegdefessel
- Institute of Molecular Vascular Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Kai Schlepckow
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Metabolic Biochemistry, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nan Wang
- Division of Molecular Medicine, Department of Medicine, and
| | - Alan R. Tall
- Division of Molecular Medicine, Department of Medicine, and
| |
Collapse
|
17
|
Ajoolabady A, Pratico D, Lin L, Mantzoros CS, Bahijri S, Tuomilehto J, Ren J. Inflammation in atherosclerosis: pathophysiology and mechanisms. Cell Death Dis 2024; 15:817. [PMID: 39528464 PMCID: PMC11555284 DOI: 10.1038/s41419-024-07166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/26/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Atherosclerosis imposes a heavy burden on cardiovascular health due to its indispensable role in the pathogenesis of cardiovascular disease (CVD) such as coronary artery disease and heart failure. Ample clinical and experimental evidence has corroborated the vital role of inflammation in the pathophysiology of atherosclerosis. Hence, the demand for preclinical research into atherosclerotic inflammation is on the horizon. Indeed, the acquisition of an in-depth knowledge of the molecular and cellular mechanisms of inflammation in atherosclerosis should allow us to identify novel therapeutic targets with translational merits. In this review, we aimed to critically discuss and speculate on the recently identified molecular and cellular mechanisms of inflammation in atherosclerosis. Moreover, we delineated various signaling cascades and proinflammatory responses in macrophages and other leukocytes that promote plaque inflammation and atherosclerosis. In the end, we highlighted potential therapeutic targets, the pros and cons of current interventions, as well as anti-inflammatory and atheroprotective mechanisms.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Ling Lin
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | | | - Suhad Bahijri
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Jaakko Tuomilehto
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Public Health, University of Helsinki, Helsinki, Finland.
- Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| |
Collapse
|
18
|
Xie R, Sher KHJ, Tang SYC, Yam IYL, Lee CH, Wu Q, Yap DYH. Dysregulation of neutrophil extracellular traps (NETs)-related genes in the pathogenesis of diabetic kidney disease - Results from bioinformatics analysis and translational studies. Clin Immunol 2024; 268:110379. [PMID: 39396625 DOI: 10.1016/j.clim.2024.110379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/24/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
The role of Neutrophil extracellular traps (NETs) in the immunopathogenesis of Diabetic Kidney Disease (DKD) remains elusive. We used a machine learning approach to identify differentially expressed genes (DEGs) associated with NETs in human DKD kidney biopsy datasets and validated the results using single-nucleus RNA sequencing datasets. The expressions of these candidate genes and related cytokines were verified in blood obtained from DKD patients. Three NETs-associated genes (ITGAM, ITGB2 and TLR7) were identified, which all showed significant upregulation in both glomerular and tubulointerstitial compartments in human DKD kidneys. DKD patients showed significantly higher number of activated neutrophils with increased ITGAM and ITGB2 expression, higher serum IL-6 but lower IL-10, compared to healthy controls (p all <0.01). This study suggests that dysregulation of NETs-associated genes ITGAM and ITGB2 are related to the pathogenesis of DKD, and may serve as novel diagnostic markers and therapeutic targets in DKD.
Collapse
Affiliation(s)
- Ruiyan Xie
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Hong Kong 999077, HKSAR, China
| | - Ka Ho Jason Sher
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Hong Kong 999077, HKSAR, China
| | - Sin Yu Cindy Tang
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Hong Kong 999077, HKSAR, China
| | - Irene Ya Lin Yam
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Hong Kong 999077, HKSAR, China
| | - C H Lee
- Division of Endocrinology & Metabolism, Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Shenzhen 518028, HKSAR, China
| | - Qiongli Wu
- Shenzhen Experimental Education School, Shenzhen, China
| | - Desmond Yat Hin Yap
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Hong Kong 999077, HKSAR, China.
| |
Collapse
|
19
|
Zhao X, Wang Q, Wang W, Lu S. Increased neutrophil extracellular traps caused by diet-induced obesity delay fracture healing. FASEB J 2024; 38:e70126. [PMID: 39446097 PMCID: PMC11580727 DOI: 10.1096/fj.202401523r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/28/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Obesity, recognized as a risk factor for nonunion, detrimentally impacts bone health, with significant physical and economic repercussions for affected individuals. Nevertheless, the precise pathomechanisms by which obesity impairs fracture healing remain insufficiently understood. Multiple studies have identified neutrophil granulocytes as key players in the systemic immune response, being the predominant immune cells in early fracture hematomas. This study identified a previously unreported critical period for neutrophil infiltration into the callus. In vivo experiments demonstrated that diet-induced obesity (DIO) mice showed earlier neutrophil infiltration, along with increased formation of neutrophil extracellular traps (NETs), compared to control mice during the endochondral phase of fracture repair. Furthermore, Padi4 knockout was found to reduce NET formation and mitigate the fracture healing delays caused by high-fat diets. Mechanistically, in vitro analyses revealed that NETs, by activating NLRP3 inflammasomes, inhibited the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and concurrently promoted M1-like macrophage polarization. These findings establish a connection between NET formation during the endochondral phase and delayed fracture healing, suggesting that targeting NETs could serve as a promising therapeutic approach for addressing obesity-induced delays in fracture recovery.
Collapse
Affiliation(s)
- Xuan Zhao
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Qijun Wang
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Wei Wang
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Shibao Lu
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| |
Collapse
|
20
|
Zhang JJ, Ni P, Song Y, Gao MJ, Guo XY, Zhao BQ. Effective protective mechanisms of HO-1 in diabetic complications: a narrative review. Cell Death Discov 2024; 10:433. [PMID: 39389941 PMCID: PMC11466965 DOI: 10.1038/s41420-024-02205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Diabetes mellitus is a metabolic disorder with persistent hyperglycemia caused by a variety of underlying factors. Chronic hyperglycemia can lead to diverse serious consequences and diversified complications, which pose a serious threat to patients. Among the major complications are cardiovascular disease, kidney disease, diabetic foot ulcers, diabetic retinopathy, and neurological disorders. Heme oxygenase 1 (HO-1) is a protective enzyme with antioxidant, anti-inflammatory and anti-apoptotic effects, which has been intensively studied and plays an important role in diabetic complications. By inducing the expression and activity of HO-1, it can enhance the antioxidant, anti-inflammatory, and anti-apoptotic capacity of tissues, and thus reduce the degree of damage in diabetic complications. The present study aims to review the relationship between HO-1 and the pathogenesis of diabetes and its complications. HO-1 is involved in the regulation of macrophage polarization and promotes the M1 state (pro-inflammatory) towards to the M2 state (anti-inflammatory). Induction of HO-1 expression in dendritic cells inhibits them maturation and secretion of pro-inflammatory cytokines and promotes regulatory T cell (Treg cell) responses. The induction of HO-1 can reduce the production of reactive oxygen species, thereby reducing oxidative stress and inflammation. Besides, HO-1 also has an important effect in novel programmed cell death such as pyroptosis and ferroptosis, thereby playing a protective role against diabetes. In conclusion, HO-1 plays a significant role in the occurrence and development of diabetic complications and is closely associated with a variety of complications. HO-1 is anticipated to serve as a novel target for addressing diabetic complications, and it holds promise as a potential therapeutic agent for diabetes and its associated complications. We hope to provide inspiration and ideas for future studies in the mechanism and targets of HO-1 through this review.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Ping Ni
- Clinical Medicine, Hubei University of Science and Technology, Xianning, China
| | - Yi Song
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Man-Jun Gao
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Xi-Ying Guo
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China.
| | - Bao-Qing Zhao
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China.
| |
Collapse
|
21
|
Babuta M, Morel C, de Carvalho Ribeiro M, Calenda C, Ortega-Ribera M, Thevkar Nagesh P, Copeland C, Zhuang Y, Wang Y, Cho Y, Joshi R, Brezani V, Hawryluk D, Datta AA, Mehta J, Nasser I, Szabo G. Neutrophil extracellular traps activate hepatic stellate cells and monocytes via NLRP3 sensing in alcohol-induced acceleration of MASH fibrosis. Gut 2024; 73:1854-1869. [PMID: 38777573 PMCID: PMC11458363 DOI: 10.1136/gutjnl-2023-331447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/24/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Alcohol use in metabolic dysfunction-associated steatohepatitis (MASH) is associated with an increased risk of fibrosis and liver-related death. Here, we aimed to identify a mechanism through which repeated alcohol binges exacerbate liver injury in a high fat-cholesterol-sugar diet (MASH diet)-induced model of MASH. DESIGN C57BL/6 mice received either chow or the MASH diet for 3 months with or without weekly alcohol binges. Neutrophil infiltration, neutrophil extracellular traps (NETs) and fibrosis were evaluated. RESULTS We found that alcohol binges in MASH increase liver injury and fibrosis. Liver transcriptomic profiling revealed differential expression of genes involved in extracellular matrix reorganisation, neutrophil activation and inflammation compared with alcohol or the MASH diet alone. Alcohol binges specifically increased NET formation in MASH livers in mice, and NETs were also increased in human livers with MASH plus alcohol use. We discovered that cell-free NETs are sensed via Nod-like receptor protein 3 (NLRP3). Furthermore, we show that cell-free NETs in vitro induce a profibrotic phenotype in hepatic stellate cells (HSCs) and proinflammatory monocytes. In vivo, neutrophil depletion using anti-Ly6G antibody or NET disruption with deoxyribonuclease treatment abrogated monocyte and HSC activation and ameliorated liver damage and fibrosis. In vivo, inhibition of NLRP3 using MCC950 or NLRP3 deficiency attenuated NET formation, liver injury and fibrosis in MASH plus alcohol diet-fed mice (graphical abstract). CONCLUSION Alcohol binges promote liver fibrosis via NET-induced activation of HSCs and monocytes in MASH. Our study highlights the potential of inhibition of NETs and/or NLRP3, as novel therapeutic strategies to combat the profibrotic effects of alcohol in MASH.
Collapse
Affiliation(s)
- Mrigya Babuta
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Caroline Morel
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Marcelle de Carvalho Ribeiro
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Charles Calenda
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Martí Ortega-Ribera
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Prashanth Thevkar Nagesh
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Copeland
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Yuan Zhuang
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Yanbo Wang
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Yeonhee Cho
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Radhika Joshi
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Viliam Brezani
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Danielle Hawryluk
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Aditi Ashish Datta
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Jeeval Mehta
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Imad Nasser
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Gyongyi Szabo
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Zhang K, Jia R, Zhang Q, Xiang S, Wang N, Xu L. Metabolic dysregulation-triggered neutrophil extracellular traps exacerbate acute liver failure. FEBS Lett 2024; 598:2450-2462. [PMID: 39155145 DOI: 10.1002/1873-3468.14971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/24/2024] [Accepted: 05/27/2024] [Indexed: 08/20/2024]
Abstract
Acute liver failure (ALF) is an acute liver disease with a high mortality rate in clinical practice, characterized histologically by extensive hepatocellular necrosis and massive neutrophil infiltration. However, the role of these abnormally infiltrating neutrophils during ALF development is unclear. Here, in an ALF mouse model, metabolites were identified that promote the formation of neutrophil extracellular traps (NETs) in the liver, subsequently influencing macrophage differentiation and disease progression. ALF occurs with abnormalities in hepatic and intestinal metabolites. Abnormal metabolites (LTD4 and glutathione) can directly, or indirectly via reactive oxygen species, promote NET formation of infiltrating neutrophils, which subsequently regulate macrophages in a pro-inflammatory M1-like state, inducing an amplification of the destructive effects of inflammation. Together, this study provides new insights into the role of NETs in the pathogenesis of ALF.
Collapse
Affiliation(s)
- Kangnan Zhang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Rongrong Jia
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Qinghui Zhang
- Department of Clinical Laboratory, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Shihao Xiang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Na Wang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, China
| |
Collapse
|
23
|
Cui YY, Yang YH, Zheng JY, Ma HH, Han X, Liao CS, Zhou M. Elevated neutrophil extracellular trap levels in periodontitis: Implications for keratinization and barrier function in gingival epithelium. J Clin Periodontol 2024; 51:1210-1221. [PMID: 38839576 DOI: 10.1111/jcpe.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 04/18/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024]
Abstract
AIM To explore the levels of neutrophil extracellular traps (NETs) in patients with periodontitis and examine their effects on keratinization, barrier function of human gingival keratinocytes (HGKs) and the associated mechanisms. MATERIALS AND METHODS Saliva, gingival crevicular fluid (GCF), clinical periodontal parameters and gingival specimens were collected from 10 healthy control subjects and 10 patients with stage II-IV periodontitis to measure the NET levels. Subsequently, mRNA and protein levels of keratinization and barrier indicators, as well as intracellular calcium and epithelial barrier permeability, were analysed in HGKs after NET stimulation. RESULTS The study showed that NET levels significantly elevated in patients with periodontitis, across multiple specimens including saliva, GCF and gingival tissues. Stimulation of HGKs with NETs resulted in a decrease in the expressions of involucrin, cytokeratin 10, zonula occludens 1 and E-cadherin, along with decreased intracellular calcium levels and increased epithelial barrier permeability. Furthermore, the inhibition of keratinization by NETs is ERK-KLF4-dependent. CONCLUSIONS This study indicates that NETs impair the barrier function of HGKs and suppress keratinization through ERK/KLF4 axis. These findings provide potential targets for therapeutic approaches in periodontitis to address impaired gingival keratinization.
Collapse
Affiliation(s)
- Ya-Yun Cui
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Periodontology, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Yi-Heng Yang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia-Yi Zheng
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui-Hui Ma
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xue Han
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Periodontology, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Chong-Shan Liao
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Periodontology, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Min Zhou
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Periodontology, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| |
Collapse
|
24
|
Li R, Xiong Y, Ma L, Peng C, Qi S, Gao R, Wang P, Li F, Li J, Li Q, Chen A. Neutrophil extracellular traps promote macrophage inflammation in psoriasis. Clin Immunol 2024; 266:110308. [PMID: 39002794 DOI: 10.1016/j.clim.2024.110308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/23/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Psoriasis is a chronic inflammatory skin disease connected with immune dysregulation. Macrophages are key inflammatory cells in psoriasis but the specific mechanism of their activation is not fully understood. Neutrophil extracellular traps (NETs) have been shown to regulate macrophage function. Here, we found that NET deposition was increased in psoriasis lesions. Peptidylarginine deaminase 4 (PAD4, a key enzyme for NET formation) deficiency attenuated skin lesions and inflammation in an imiquimod-induced psoriatic mouse model. Furthermore, the STING signaling pathway was markedly activated in psoriasis and abolished by PAD4 deficiency. PAD4-deficient mice treated with the STING agonist DMXAA exhibited more severe symptoms and inflammation than control mice. Mechanistically, the STING inhibitor C-176 inhibited NET-induced macrophage inflammation and further inhibited the proliferation of HaCaT cells. Our findings suggest an important role of NETs in the pathogenesis of psoriasis, and activation of macrophage STING/NF-κB signaling pathway might involve in NETs related psoriasis.
Collapse
Affiliation(s)
- Ruolin Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunjie Xiong
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linqiang Ma
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuan Peng
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuangxin Qi
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rufei Gao
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Ping Wang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengzeng Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junlong Li
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qifu Li
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Aijun Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
25
|
Dai Y, Junho CVC, Schieren L, Wollenhaupt J, Sluimer JC, van der Vorst EPC, Noels H. Cellular metabolism changes in atherosclerosis and the impact of comorbidities. Front Cell Dev Biol 2024; 12:1446964. [PMID: 39188527 PMCID: PMC11345199 DOI: 10.3389/fcell.2024.1446964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024] Open
Abstract
Cell activation and nutrient dysregulation are common consequences of atherosclerosis and its preceding risk factors, such as hypertension, dyslipidemia, and diabetes. These diseases may also impact cellular metabolism and consequently cell function, and the other way around, altered cellular metabolism can impact disease development and progression through altered cell function. Understanding the contribution of altered cellular metabolism to atherosclerosis and how cellular metabolism may be altered by co-morbidities and atherosclerosis risk factors could support the development of novel strategies to lower the risk of CVD. Therefore, we briefly review disease pathogenesis and the principles of cell metabolic pathways, before detailing changes in cellular metabolism in the context of atherosclerosis and comorbidities. In the hypoxic, inflammatory and hyperlipidemic milieu of the atherosclerotic plaque riddled with oxidative stress, metabolism shifts to increase anaerobic glycolysis, the pentose-phosphate pathway and amino acid use. We elaborate on metabolic changes for macrophages, neutrophils, vascular endothelial cells, vascular smooth muscle cells and lymphocytes in the context of atherosclerosis and its co-morbidities hypertension, dyslipidemia, and diabetes. Since causal relationships of specific key genes in a metabolic pathway can be cell type-specific and comorbidity-dependent, the impact of cell-specific metabolic changes must be thoroughly explored in vivo, with a focus on also systemic effects. When cell-specific treatments become feasible, this information will be crucial for determining the best metabolic intervention to improve atherosclerosis and its interplay with co-morbidities.
Collapse
Affiliation(s)
- Yusang Dai
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Physical Examination Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Carolina Victoria Cruz Junho
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Luisa Schieren
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Julia Wollenhaupt
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Judith C. Sluimer
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
26
|
Long D, Mao C, Xu Y, Zhu Y. The emerging role of neutrophil extracellular traps in ulcerative colitis. Front Immunol 2024; 15:1425251. [PMID: 39170617 PMCID: PMC11335521 DOI: 10.3389/fimmu.2024.1425251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Ulcerative colitis (UC) is characterized by chronic non-recessive inflammation of the intestinal mucosa involving both innate and adaptive immune responses. Currently, new targeted therapies are urgently needed for UC, and neutrophil extracellular traps (NETs) are new therapeutic options. NETs are DNA-based networks released from neutrophils into the extracellular space after stimulation, in which a variety of granule proteins, proteolytic enzymes, antibacterial peptides, histones, and other network structures are embedded. With the deepening of the studies on NETs, their regulatory role in the development of autoimmune and autoinflammatory diseases has received extensive attention in recent years. Increasing evidence indicates that excess NETs exacerbate the inflammatory response in UC, disrupting the structure and function of the intestinal mucosal barrier and increasing the risk of thrombosis. Although NETs are usually assigned a deleterious role in promoting the pathological process of UC, they also appear to have a protective role in some models. Despite such progress, comprehensive reviews describing the therapeutic promise of NETs in UC remain limited. In this review, we discuss the latest evidence for the formation and degradation of NETs, focusing on their double-edged role in UC. Finally, the potential implications of NETs as therapeutic targets for UC will be discussed. This review aims to provide novel insights into the pathogenesis and therapeutic options for UC.
Collapse
Affiliation(s)
- Dan Long
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chenhan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
27
|
Chen Z, Chen C, Lai K, Wu C, Wu F, Chen Z, Ye K, Xie J, Ma H, Chen H, Wang Y, Xu Y. GSDMD and GSDME synergy in the transition of acute kidney injury to chronic kidney disease. Nephrol Dial Transplant 2024; 39:1344-1359. [PMID: 38244230 DOI: 10.1093/ndt/gfae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND AND HYPOTHESIS Acute kidney injury (AKI) could progress to chronic kidney disease (CKD) and the AKI-CKD transition has major clinical significance. A growing body of evidence has unveiled the role of pyroptosis in kidney injury. We postulate that GSDMD and GSDME exert cumulative effects on the AKI-CKD transition by modulating different cellular responses. METHODS We established an AKI-CKD transition model induced by folic acid in wildtype (WT), Gsdmd-/-, Gsdme-/-, and Gsdmd-/-Gsdme-/- mice. Tubular injury, renal fibrosis and inflammatory responses were evaluated. In vitro studies were conducted to investigate the interplay among tubular cells, neutrophils, and macrophages. RESULTS Double deletion of Gsdmd and Gsdme conferred heightened protection against AKI, mitigating inflammatory responses, including the formation of neutrophil extracellular traps (NETs), macrophage polarization and differentiation, and ultimately renal fibrosis, compared with wildtype mice and mice with single deletion of either Gsdmd or Gsdme. Gsdme, but not Gsdmd deficiency, shielded tubular cells from pyroptosis. GSDME-dependent tubular cell death stimulated NETs formation and prompted macrophage polarization towards a pro-inflammatory phenotype. Gsdmd deficiency suppressed NETs formation and subsequently hindered NETs-induced macrophage-to-myofibroblast transition (MMT). CONCLUSION GSDMD and GSDME collaborate to contribute to AKI and subsequent renal fibrosis induced by folic acid. Synchronous inhibition of GSDMD and GSDME could be an innovative therapeutic strategy for mitigating the AKI-CKD transition.
Collapse
Affiliation(s)
- Zhengyue Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Caiming Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Kunmei Lai
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chengkun Wu
- School of Medicine, Nankai University, Tianjin, China
| | - Fan Wu
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhimin Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Keng Ye
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jingzhi Xie
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Huabin Ma
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hong Chen
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yujia Wang
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
28
|
Chen P, Li X. NLRP3 inflammasome in atherosclerosis: Mechanisms and targeted therapies. Front Pharmacol 2024; 15:1430236. [PMID: 39144618 PMCID: PMC11322363 DOI: 10.3389/fphar.2024.1430236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Atherosclerosis (AS) is the primary pathology behind various cardiovascular diseases and the leading cause of death and disability globally. Recent evidence suggests that AS is a chronic vascular inflammatory disease caused by multiple factors. In this context, the NLRP3 inflammasome, acting as a signal transducer of the immune system, plays a critical role in the onset and progression of AS. The NLRP3 inflammasome is involved in endothelial injury, foam cell formation, and pyroptosis in AS. Therefore, targeting the NLRP3 inflammasome offers a new treatment strategy for AS. This review highlights the latest insights into AS pathogenesis and the pharmacological therapies targeting the NLRP3 inflammasome, focusing on optimal targets for small molecule inhibitors. These insights are valuable for rational drug design and the pharmacological assessment of new targeted NLRP3 inflammasome inhibitors in treating AS.
Collapse
Affiliation(s)
- Pengfei Chen
- Marine College, Shandong University, Weihai, China
| | - Xia Li
- Marine College, Shandong University, Weihai, China
- Shandong Kelun Pharmaceutical Co, Ltd., Binzhou, China
| |
Collapse
|
29
|
Shetty S, Duesman SJ, Patel S, Huynh P, Toh P, Shroff S, Das A, Chowhan D, Keller B, Alvarez J, Fisher-Foye R, Sebra R, Beaumont K, McAlpine CS, Rajbhandari P, Rajbhandari AK. Sex-specific role of high-fat diet and stress on behavior, energy metabolism, and the ventromedial hypothalamus. Biol Sex Differ 2024; 15:55. [PMID: 39010139 PMCID: PMC11247790 DOI: 10.1186/s13293-024-00628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Scientific evidence highlights the influence of biological sex on the relationship between stress and metabolic dysfunctions. However, there is limited understanding of how diet and stress concurrently contribute to metabolic dysregulation in both males and females. Our study aimed to investigate the combined effects of high-fat diet (HFD) induced obesity and repeated stress on fear-related behaviors, metabolic, immune, and hypothalamic outcomes in male and female mice. METHODS To investigate this, we used a highly reliable rodent behavioral model that faithfully recapitulates key aspects of post-traumatic stress disorder (PTSD)-like fear. We subjected mice to footshock stressor followed by a weekly singular footshock stressor or no stressor for 14 weeks while on either an HFD or chow diet. At weeks 10 and 14 we conducted glucose tolerance and insulin sensitivity measurements. Additionally, we placed the mice in metabolic chambers to perform indirect calorimetric measurements. Finally, we collected brain and peripheral tissues for cellular analysis. RESULTS We observed that HFD-induced obesity disrupted fear memory extinction, increased glucose intolerance, and affected energy expenditure specifically in male mice. Conversely, female mice on HFD exhibited reduced respiratory exchange ratio (RER), and a significant defect in glucose tolerance only when subjected to repeated stress. Furthermore, the combination of repeated stress and HFD led to sex-specific alterations in proinflammatory markers and hematopoietic stem cells across various peripheral metabolic tissues. Single-nuclei RNA sequencing (snRNAseq) analysis of the ventromedial hypothalamus (VMH) revealed microglial activation in female mice on HFD, while male mice on HFD exhibited astrocytic activation under repeated stress. CONCLUSIONS Overall, our findings provide insights into complex interplay between repeated stress, high-fat diet regimen, and their cumulative effects on health, including their potential contribution to the development of PTSD-like stress and metabolic dysfunctions, emphasizing the need for further research to fully understand these interconnected pathways and their implications for health.
Collapse
Affiliation(s)
- Sanutha Shetty
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Samuel J Duesman
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sanil Patel
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pacific Huynh
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pamela Toh
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sanjana Shroff
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anika Das
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Excellence in Youth Education, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Disha Chowhan
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Keller
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Johana Alvarez
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rachel Fisher-Foye
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert Sebra
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristin Beaumont
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cameron S McAlpine
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Prashant Rajbhandari
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Disease Mechanism and Therapeutics Program, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Abha K Rajbhandari
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
30
|
Tang W, Ma J, Chen K, Wang K, Chen Z, Chen C, Li X, Wang Y, Shu Y, Zhang W, Yuan X, Shi G, Chen T, Wang P, Chen Y. Berbamine ameliorates DSS-induced colitis by inhibiting peptidyl-arginine deiminase 4-dependent neutrophil extracellular traps formation. Eur J Pharmacol 2024; 975:176634. [PMID: 38710356 DOI: 10.1016/j.ejphar.2024.176634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/29/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease with immune dysregulation affecting colon inflammatory response. Recent studies have highlighted that neutrophil extracellular traps (NETs) play an important role in the pathogenesis of UC. Berbamine (BBM), one of the bioactive ingredients extracted from Chinese herbal medicine Berberis vulgaris L, has attracted intensive attentions due to its significant anti-inflammatory activity and a marketing drug for treating leukemia in China. However, the exact role and potential molecular mechanism of BBM against UC remains elusive. In the present study, our results showed that BBM could markedly improve the pathological phenotype and the colon inflammation in mice with dextran sulfate sodium (DSS)-induced colitis. Then, comprehensive approaches combining network pharmacology and molecular docking analyses were employed to predict the therapeutic potential of BBM in treating UC by peptidyl-arginine deiminase 4 (PAD4), a crucial molecule involved in NETs formation. The molecular docking results showed BBM had a high affinity for PAD4 with a binding energy of -9.3 kcal/mol Moreover, PAD4 expression and NETs productions, including citrullination of histone H3 (Cit-H3), neutrophil elastase (NE), myeloperoxidase (MPO) in both neutrophils and colonic tissue were reduced after BBM administration. However, in the mice with DSS-induced colitis pretreated with GSK484, a PAD4-specific inhibitor, BBM could not further reduce disease related indexes, expression of PAD4 and NETs productions. Above all, the identification of PAD4 as a potential target for BBM to inhibit NETs formation in colitis provides novel insights into the development of BBM-derived drugs for the clinical management of UC.
Collapse
Affiliation(s)
- Wenwen Tang
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Jiaze Ma
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Kaidi Chen
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Kuiling Wang
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Zepeng Chen
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Chen Chen
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Xun Li
- Institute for Molecular Bioscience, the University of Queensland, Brisbane, 4702, Australia
| | - Yuji Wang
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Yi Shu
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Wei Zhang
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Xiaomin Yuan
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Guoping Shi
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Tuo Chen
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China; Institute for Molecular Bioscience, the University of Queensland, Brisbane, 4702, Australia.
| | - Peimin Wang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China.
| | - Yugen Chen
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Collaborative Innovation Center of Chinese Medicine in Prevention and Treatment of Tumor, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China.
| |
Collapse
|
31
|
Bulnes JF, González L, Velásquez L, Orellana MP, Venturelli PM, Martínez G. Role of inflammation and evidence for the use of colchicine in patients with acute coronary syndrome. Front Cardiovasc Med 2024; 11:1356023. [PMID: 38993522 PMCID: PMC11236697 DOI: 10.3389/fcvm.2024.1356023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
Acute Coronary Syndrome (ACS) significantly contributes to cardiovascular death worldwide. ACS may arise from the disruption of an atherosclerotic plaque, ultimately leading to acute ischemia and myocardial infarction. In the pathogenesis of atherosclerosis, inflammation assumes a pivotal role, not solely in the initiation and complications of atherosclerotic plaque formation, but also in the myocardial response to ischemic insult. Acute inflammatory processes, coupled with time to reperfusion, orchestrate ischemic and reperfusion injuries, dictating infarct magnitude and acute left ventricular (LV) remodeling. Conversely, chronic inflammation, alongside neurohumoral activation, governs persistent LV remodeling. The interplay between chronic LV remodeling and recurrent ischemic episodes delineates the progression of the disease toward heart failure and cardiovascular death. Colchicine exerts anti-inflammatory properties affecting both the myocardium and atherosclerotic plaque by modulating the activity of monocyte/macrophages, neutrophils, and platelets. This modulation can potentially result in a more favorable LV remodeling and forestalls the recurrence of ACS. This narrative review aims to delineate the role of inflammation across the different phases of ACS pathophysiology and describe the mechanistic underpinnings of colchicine, exploring its purported role in modulating each of these stages.
Collapse
Affiliation(s)
- Juan Francisco Bulnes
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leticia González
- Centro de Imágenes Biomédicas, Departamento de Radiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leonardo Velásquez
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Paz Orellana
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Muñoz Venturelli
- Centro de Estudios Clínicos, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Gonzalo Martínez
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago, Chile
- Heart Research Institute, Sydney, NSW, Australia
| |
Collapse
|
32
|
Chen Y, Wei Y, Tang W. The role of hydrogen in the prevention and treatment of coronary atherosclerotic heart disease. Eur J Pharmacol 2024; 972:176586. [PMID: 38615891 DOI: 10.1016/j.ejphar.2024.176586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Coronary atherosclerotic heart disease (CHD) is a primary cardiovascular disease caused by atherosclerosis (AS), which is characterized by chronic inflammation and lipid oxidative deposition. Molecular hydrogen (H2) is an effective anti-inflammatory agent and has potential to ameliorate glycolipid metabolism disorders, which is believed to exert beneficial effects on the prevention and treatment of CHD. It is suggested that H2 reduces inflammation in CHD by regulating multiple pathways, including NF-κB inflammatory pathway, pyroptosis, mitophagy, endoplasmic reticulum (ER) stress, and Nrf2 antioxidant pathway. Additionally, H2 may improve glycolipid metabolism by mediation of PI3K and AMPK signalling pathways, contributing to inhibition of the occurrence and development of CHD. This review elaborates pathogenesis of CHD and evaluates the role of H2 in CHD. Moreover, possible molecular mechanisms have been discussed and speculated, aiming to provide more strategies and directions for subsequent studies of H2 in CHD.
Collapse
Affiliation(s)
- Yunxi Chen
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, PR China
| | - Youzhen Wei
- Hydrogen Medicine Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, 271000, PR China; Research Center for Translational Medicine, Jinan People's Hospital, Shandong First Medical University, Jinan, Shandong, 271100, PR China.
| | - Wenjie Tang
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, PR China; Research Institute of Regenerative Medicine, East Hospital, Tongji University, 1800 Yuntai Road, Shanghai, 200123, PR China.
| |
Collapse
|
33
|
Chong S, Mu G, Cen X, Xiang Q, Cui Y. Effects of PCSK9 on thrombosis and haemostasis in a variety of metabolic states: Lipids and beyond (Review). Int J Mol Med 2024; 53:57. [PMID: 38757360 PMCID: PMC11093556 DOI: 10.3892/ijmm.2024.5381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors are widely recognised as being able to induce a potent reduction in low‑density lipoprotein‑cholesterol. An increasing number of studies have suggested that PCSK9 also influences the haemostatic system by altering platelet function and the coagulation cascade. These findings have significant implications for anti‑PCSK9 therapy in patients with specific coagulation conditions, including expanded indications, dose adjustments and drug interactions. The present review summarises the changes in PCSK9 levels in individuals with liver diseases, chronic kidney diseases, diabetes mellitus, cancer and other disease states, and discusses their impact on thrombosis and haemostasis. Furthermore, the structure, effects and regulatory mechanisms of PCSK9 on platelets, coagulation factors, inflammatory cells and endothelial cells during coagulation and haemostasis are described.
Collapse
Affiliation(s)
- Shan Chong
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Guangyan Mu
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, P.R. China
| | - Xinan Cen
- Department of Hematology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Qian Xiang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, P.R. China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, P.R. China
| |
Collapse
|
34
|
Sircana MC, Erre GL, Castagna F, Manetti R. Crosstalk between Inflammation and Atherosclerosis in Rheumatoid Arthritis and Systemic Lupus Erythematosus: Is There a Common Basis? Life (Basel) 2024; 14:716. [PMID: 38929699 PMCID: PMC11204900 DOI: 10.3390/life14060716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in patients with rheumatoid arthritis and systemic lupus erythematosus. Traditional cardiovascular risk factors, although present in lupus and rheumatoid arthritis, do not explain such a high burden of early cardiovascular disease in the context of these systemic connective tissue diseases. Over the past few years, our understanding of the pathophysiology of atherosclerosis has changed from it being a lipid-centric to an inflammation-centric process. In this review, we examine the pathogenesis of atherosclerosis in systemic lupus erythematosus and rheumatoid arthritis, the two most common systemic connective tissue diseases, and consider them as emblematic models of the effect of chronic inflammation on the human body. We explore the roles of the inflammasome, cells of the innate and acquired immune system, neutrophils, macrophages, lymphocytes, chemokines and soluble pro-inflammatory cytokines in rheumatoid arthritis and systemic lupus erythematosus, and the roles of certain autoantigens and autoantibodies, such as oxidized low-density lipoprotein and beta2-glycoprotein, which may play a pathogenetic role in atherosclerosis progression.
Collapse
Affiliation(s)
| | | | | | - Roberto Manetti
- Department of Medical, Surgical and Pharmacology, University of Sassari, 07100 Sassari, Italy; (G.L.E.); (F.C.)
| |
Collapse
|
35
|
Liang Y, Lin J, Huang B, Weng M, Zhen T, Yang L, Chen Y, Li Q, Wan J. NET-Related Gene as Potential Diagnostic Biomarkers for Diabetic Tubulointerstitial Injury. J Diabetes Res 2024; 2024:4815488. [PMID: 38766319 PMCID: PMC11101254 DOI: 10.1155/2024/4815488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 05/22/2024] Open
Abstract
Background: Tubulointerstitial injury plays a pivotal role in the progression of diabetic kidney disease (DKD), yet the link between neutrophil extracellular traps (NETs) and diabetic tubulointerstitial injury is still unclear. Methods: We analyzed microarray data (GSE30122) from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) associated with DKD's tubulointerstitial injury. Functional and pathway enrichment analyses were conducted to elucidate the involved biological processes (BP) and pathways. Weighted gene coexpression network analysis (WGCNA) identified modules associated with DKD. LASSO regression and random forest selected NET-related characteristic genes (NRGs) related to DKD tubulointerstitial injury. Results: Eight hundred ninety-eight DEGs were identified from the GSE30122 dataset. A significant module associated with diabetic tubulointerstitial injury overlapped with 15 NRGs. The hub genes, CASP1 and LYZ, were identified as potential biomarkers. Functional enrichment linked these genes with immune cell trafficking, metabolic alterations, and inflammatory responses. NRGs negatively correlated with glomerular filtration rate (GFR) in the Neph v5 database. Immunohistochemistry (IHC) validated increased NRGs in DKD tubulointerstitial injury. Conclusion: Our findings suggest that the CASP1 and LYZ genes may serve as potential diagnostic biomarkers for diabetic tubulointerstitial injury. Furthermore, NRGs involved in diabetic tubulointerstitial injury could emerge as prospective targets for the diagnosis and treatment of DKD.
Collapse
Affiliation(s)
- Yufeng Liang
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Nephrology, The Second Hospital of Longyan, Longyan, Fujian 364000, China
| | - Jiaqun Lin
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Binsan Huang
- Department of Nephrology, The Second Hospital of Longyan, Longyan, Fujian 364000, China
| | - Mengjie Weng
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Tingting Zhen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Liyan Yang
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yongping Chen
- Department of Nephrology, The Second Hospital of Longyan, Longyan, Fujian 364000, China
| | - Qiu Li
- Department of Nephrology, The Second Hospital of Longyan, Longyan, Fujian 364000, China
| | - Jianxin Wan
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
36
|
Du L, Ma C, Liu B, Liu W, Zhu Y, Wang Z, Chen T, Huang L, Pang Y. Green Synthesis of Blumea balsamifera Oil Nanoemulsions Stabilized by Natural Emulsifiers and Its Effect on Wound Healing. Molecules 2024; 29:1994. [PMID: 38731484 PMCID: PMC11085480 DOI: 10.3390/molecules29091994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, we developed a green and multifunctional bioactive nanoemulsion (BBG-NEs) of Blumea balsamifera oil using Bletilla striata polysaccharide (BSP) and glycyrrhizic acid (GA) as natural emulsifiers. The process parameters were optimized using particle size, PDI, and zeta potential as evaluation parameters. The physicochemical properties, stability, transdermal properties, and bioactivities of the BBG-NEs under optimal operating conditions were investigated. Finally, network pharmacology and molecular docking were used to elucidate the potential molecular mechanism underlying its wound-healing properties. After parameter optimization, BBG-NEs exhibited excellent stability and demonstrated favorable in vitro transdermal properties. Furthermore, it displayed enhanced antioxidant and wound-healing effects. SD rats wound-healing experiments demonstrated improved scab formation and accelerated healing in the BBG-NE treatment relative to BBO and emulsifier groups. Pharmacological network analyses showed that AKT1, CXCL8, and EGFR may be key targets of BBG-NEs in wound repair. The results of a scratch assay and Western blotting assay also demonstrated that BBG-NEs could effectively promote cell migration and inhibit inflammatory responses. These results indicate the potential of the developed BBG-NEs for antioxidant and skin wound applications, expanding the utility of natural emulsifiers. Meanwhile, this study provided a preliminary explanation of the potential mechanism of BBG-NEs to promote wound healing through network pharmacology and molecular docking, which provided a basis for the mechanistic study of green multifunctional nanoemulsions.
Collapse
Affiliation(s)
- Lingfeng Du
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (L.D.); (C.M.); (B.L.); (W.L.)
| | - Chunfang Ma
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (L.D.); (C.M.); (B.L.); (W.L.)
| | - Bingnan Liu
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (L.D.); (C.M.); (B.L.); (W.L.)
| | - Wei Liu
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (L.D.); (C.M.); (B.L.); (W.L.)
| | - Yue Zhu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Y.Z.); (Z.W.)
- Nano-Drug Technology Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Zuhua Wang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Y.Z.); (Z.W.)
- Nano-Drug Technology Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Teng Chen
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Y.Z.); (Z.W.)
- Nano-Drug Technology Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuxin Pang
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (L.D.); (C.M.); (B.L.); (W.L.)
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Y.Z.); (Z.W.)
- Yunfu Traditional Chinese Medicine Resources and Germplasm Resources Database Management Center, Yunfu 527325, China
| |
Collapse
|
37
|
Xie M, He Z, Bin B, Wen N, Wu J, Cai X, Sun X. Bulk and single-cell RNA sequencing analysis with 101 machine learning combinations reveal neutrophil extracellular trap involvement in hepatic ischemia-reperfusion injury and early allograft dysfunction. Int Immunopharmacol 2024; 131:111874. [PMID: 38493695 DOI: 10.1016/j.intimp.2024.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Hepatic ischaemia-reperfusion injury (HIRI) is a major clinical concern during the perioperative period and is closely associated with early allograft dysfunction (EAD), acute rejection (AR) and long-term graft survival. Neutrophil extracellular traps (NETs) are extracellular structures formed by the release of decondensed chromatin and granular proteins following neutrophil stimulation. There is growing evidence that NETs are involved in the progression of various liver transplantation complications, including ischaemia-reperfusion injury (IRI). This study aimed to comprehensively analyse the expression patterns of NET-related genes (NRGs) in HIRI, identify HIRI subtypes with distinct characteristics, and develop a reliable EAD prediction model. METHODS Microarray, bulk RNA-seq, and single-cell sequencing datasets were obtained from the GEO database. Initially, differentially expressed NRGs (DE-NRGs) were identified using differential gene expression analyses. We then utilised a non-negative matrix factorisation (NMF) algorithm to classify HIRI samples. Subsequently, we employed machine learning algorithms to screen the hub NRGs related to EAD and developed an EAD prediction model based on these hub NRGs. Concurrently, we assessed the expression patterns of hub NRGs at the single-cell level using the HIRI. Additionally, we validated C5AR1 expression and its effect on HIRI and NETs formation in a rat orthotopic liver transplantation (OLT) model. RESULTS In this study, we identified 11 DE-NRGs in the HIRI context. Based on these 11 DE-NRGs, HIRI samples were classified into two distinct clusters. Cluster1 exhibited a low expression of DE-NRGs, minimal neutrophil infiltration, mild inflammation, and a low incidence of EAD. Conversely, Cluster2 displayed the opposite phenotype, with an activated inflammatory subtype and a higher incidence of EAD. Furthermore, an EAD prediction model was developed using the four hub NRGs associated with EAD. Based on risk scores, HIRI samples were classified into high- and low-risk groups. The OLT model confirmed substantial upregulation of C5AR1 expression in the liver tissue, accompanied by increased formation of NETs. Treatment with a C5AR1 antagonist improved liver function, reduced tissue inflammation, and decreased NETs formation. CONCLUSIONS This study distinguished two apparent HIRI subtypes, established a predictive model for EAD, and validated the effect of C5AR1 on HIRI. These findings provide novel perspectives for the development of advanced clinical strategies to enhance the outcomes of liver transplant recipients.
Collapse
Affiliation(s)
- Manling Xie
- Departments of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhen He
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China; Guangxi Clinical Research Center for Organ Transplantation, Nanning, China; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
| | - Bing Bin
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China; Guangxi Clinical Research Center for Organ Transplantation, Nanning, China; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
| | - Ning Wen
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China; Guangxi Clinical Research Center for Organ Transplantation, Nanning, China; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
| | - Jihua Wu
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China; Guangxi Clinical Research Center for Organ Transplantation, Nanning, China; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China.
| | - Xiaoyong Cai
- Departments of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Xuyong Sun
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China; Guangxi Clinical Research Center for Organ Transplantation, Nanning, China; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China.
| |
Collapse
|
38
|
Gu X, Yu Z, Qian T, Jin Y, Xu G, Li J, Gu J, Li M, Tao K. Transcriptomic analysis identifies the shared diagnostic biomarkers and immune relationship between Atherosclerosis and abdominal aortic aneurysm based on fatty acid metabolism gene set. Front Mol Biosci 2024; 11:1365447. [PMID: 38660376 PMCID: PMC11040089 DOI: 10.3389/fmolb.2024.1365447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Background Epidemiological research has demonstrated that there is a connection between lipid metabolism disorder and an increased risk of developing arteriosclerosis (AS) and abdominal aortic aneurysm (AAA). However, the precise relationship between lipid metabolism, AS, and AAA is still not fully understood. The objective of this study was to examine the pathways and potential fatty acid metabolism-related genes (FRGs) that are shared between AS and AAA. Methods AS- and AAA-associated datasets were retrieved from the Gene Expression Omnibus (GEO) database, and the limma package was utilized to identify differentially expressed FRGs (DFRGs) common to both AS and AAA patients. Functional enrichment analysis was conducted on the (DFRGs), and a protein-protein interaction (PPI) network was established. The selection of signature genes was performed through the utilization of least absolute shrinkage and selection operator (LASSO) regression and random forest (RF). Subsequently, a nomogram was developed using the results of the screening process, and the crucial genes were validated in two separate external datasets (GSE28829 and GSE17901) as well as clinical samples. In the end, single-sample gene set enrichment analysis (ssGSEA) was utilized to assess the immune cell patterns in both AS and AAA. Additionally, the correlation between key crosstalk genes and immune cell was evaluated. Results In comparison to control group, both AS and AAA patients exhibited a decrease in fatty acid metabolism score. We found 40 DFRGs overlapping in AS and AAA, with lipid and amino acid metabolism critical in their pathogenesis. PCBD1, ACADL, MGLL, BCKDHB, and IDH3G were identified as signature genes connecting AS and AAA. Their expression levels were confirmed in validation datasets and clinical samples. The analysis of immune infiltration showed that neutrophils, NK CD56dim cells, and Tem cells are important in AS and AAA development. Correlation analysis suggested that these signature genes may be involved in immune cell infiltration. Conclusion The fatty acid metabolism pathway appears to be linked to the development of both AS and AAA. Furthermore, PCBD1, ACADL, MGLL, BCKDHB, and IDH3G have the potential to serve as diagnostic markers for patients with AS complicated by AAA.
Collapse
Affiliation(s)
- Xuefeng Gu
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu Province, China
| | - Zhongxian Yu
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu Province, China
| | - Tianwei Qian
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu Province, China
| | - Yiqi Jin
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Guoxiong Xu
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Jiang Li
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Jianfeng Gu
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu Province, China
| | - Ming Li
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu Province, China
| | - Ke Tao
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu Province, China
| |
Collapse
|
39
|
Cyr Y, Bozal FK, Barcia Durán JG, Newman AAC, Amadori L, Smyrnis P, Gourvest M, Das D, Gildea M, Kaur R, Zhang T, Wang KM, Von Itter R, Schlegel PM, Dupuis SD, Sanchez BF, Schmidt AM, Fisher EA, van Solingen C, Giannarelli C, Moore KJ. The IRG1-itaconate axis protects from cholesterol-induced inflammation and atherosclerosis. Proc Natl Acad Sci U S A 2024; 121:e2400675121. [PMID: 38564634 PMCID: PMC11009655 DOI: 10.1073/pnas.2400675121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Atherosclerosis is fueled by a failure to resolve lipid-driven inflammation within the vasculature that drives plaque formation. Therapeutic approaches to reverse atherosclerotic inflammation are needed to address the rising global burden of cardiovascular disease (CVD). Recently, metabolites have gained attention for their immunomodulatory properties, including itaconate, which is generated from the tricarboxylic acid-intermediate cis-aconitate by the enzyme Immune Responsive Gene 1 (IRG1/ACOD1). Here, we tested the therapeutic potential of the IRG1-itaconate axis for human atherosclerosis. Using single-cell RNA sequencing (scRNA-seq), we found that IRG1 is up-regulated in human coronary atherosclerotic lesions compared to patient-matched healthy vasculature, and in mouse models of atherosclerosis, where it is primarily expressed by plaque monocytes, macrophages, and neutrophils. Global or hematopoietic Irg1-deficiency in mice increases atherosclerosis burden, plaque macrophage and lipid content, and expression of the proatherosclerotic cytokine interleukin (IL)-1β. Mechanistically, absence of Irg1 increased macrophage lipid accumulation, and accelerated inflammation via increased neutrophil extracellular trap (NET) formation and NET-priming of the NLRP3-inflammasome in macrophages, resulting in increased IL-1β release. Conversely, supplementation of the Irg1-itaconate axis using 4-octyl itaconate (4-OI) beneficially remodeled advanced plaques and reduced lesional IL-1β levels in mice. To investigate the effects of 4-OI in humans, we leveraged an ex vivo systems-immunology approach for CVD drug discovery. Using CyTOF and scRNA-seq of peripheral blood mononuclear cells treated with plasma from CVD patients, we showed that 4-OI attenuates proinflammatory phospho-signaling and mediates anti-inflammatory rewiring of macrophage populations. Our data highlight the relevance of pursuing IRG1-itaconate axis supplementation as a therapeutic approach for atherosclerosis in humans.
Collapse
Affiliation(s)
- Yannick Cyr
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Fazli K. Bozal
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | | | - Alexandra A. C. Newman
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Letizia Amadori
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Panagiotis Smyrnis
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Morgane Gourvest
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Dayasagar Das
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Michael Gildea
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Ravneet Kaur
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Tracy Zhang
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Kristin M. Wang
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Richard Von Itter
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - P. Martin Schlegel
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Munich81675, Germany
| | - Samantha D. Dupuis
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Bernard F. Sanchez
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Ann Marie Schmidt
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
- Division of Endocrinology, Diabetes and Metabolism, New York University Langone Health, New York, NY10016
| | - Edward A. Fisher
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY10016
| | - Coen van Solingen
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Chiara Giannarelli
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
- Department of Pathology, New York University Grossman School of Medicine, New York, NY10016
| | - Kathryn J. Moore
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY10016
| |
Collapse
|
40
|
Xiang P, Jiang M, Chen X, Chen L, Cheng Y, Luo X, Zhou H, Zheng Y. Targeting Grancalcin Accelerates Wound Healing by Improving Angiogenesis in Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305856. [PMID: 38308197 PMCID: PMC11005700 DOI: 10.1002/advs.202305856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/19/2023] [Indexed: 02/04/2024]
Abstract
Chronic diabetic wounds are a serious complication of diabetes and often result in limb amputations and confer high mortality rates. The proinflammatory secretome in the wound perpetuates defective neovascularization and contributes to dysregulated tissue repair. This study aims to design a gelatin methacrylamide (GelMA) hydrogel to sustained the release of grancalcin-neutralizing antibody (GCA-NAb) and evaluate it as a potential scaffold to promote diabetic wound healing. Results show that the expression of grancalcin(GCA), a protein secreted by bone marrow-derived immune cells, is elevated in the wound sites of individuals and animals with diabetic ulcers. Genetic inhibition of grancalcin expression accelerates vascularization and healing in an animal model. Mechanistic studies show that grancalcin binds to transient receptor potential melastatin 8(TRPM8) and partially inactivates its downstream signaling pathways, thereby impairing angiogenesis in vitro and ex vivo. Systemic or topical administration of a GCA-NAb accelerate wound repair in mice with diabetes. The data suggest that GCA is a potential therapeutic target for the treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Peng Xiang
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Meng Jiang
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Xin Chen
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Linyun Chen
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Yalun Cheng
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Xianghang Luo
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Haiyan Zhou
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Yongjun Zheng
- Department of Burn Surgerythe First Affiliated Hospital of Naval Medical UniversityShanghai200433China
| |
Collapse
|
41
|
Nguyen HT, Vu MP, Nguyen TTM, Nguyen TT, Kieu TVO, Duong HY, Pham PT, Hoang TH. Association of the neutrophil-to-lymphocyte ratio with the occurrence of venous thromboembolism and arterial thrombosis. J Int Med Res 2024; 52:3000605241240999. [PMID: 38606734 PMCID: PMC11015807 DOI: 10.1177/03000605241240999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
OBJECTIVE This study aimed to assess the association of the neutrophil-to-lymphocyte ratio (NLR) with the occurrence of venous thromboembolism (VTE) and arterial thrombosis (AT). METHODS This was a retrospective cross-sectional study including 585 medical records obtained from all consecutive patients who were suspected of having thrombosis. RESULTS The AT group had a higher neutrophil count and NLR and a lower lymphocyte count than the non-thrombosis group. Receiver operating characteristic curve analysis showed the ability of the NLR to predict the presence of AT. The cut-off value for the NLR was 4.44. No distinction was found in the NLR between the VTE and non-thrombosis groups. Regression analysis showed that a high NLR was an independent factor related to the presence of AT. Patients with an NLR ≥ 4.44 had a higher risk of AT than those with an NLR < 4.44 (odds ratio = 2.015, 95% confidence interval: 1.180-3.443). CONCLUSION A high NLR may be considered a predictive factor for the occurrence of AT, but an association with the presence of VTE was not found.
Collapse
Affiliation(s)
- Ha Thanh Nguyen
- Department of Hematology, Hanoi Medical University, Hanoi, Vietnam
| | - Minh Phuong Vu
- Department of Hematology, Hanoi Medical University, Hanoi, Vietnam
- Hematology and Blood Transfusion Center, Bach Mai Hospital, Hanoi, Vietnam
| | - Thi Tuyet Mai Nguyen
- Department of Hematology, Hanoi Medical University, Hanoi, Vietnam
- Hematology and Blood Transfusion Center, Bach Mai Hospital, Hanoi, Vietnam
| | - Tuan Tung Nguyen
- Hematology and Blood Transfusion Center, Bach Mai Hospital, Hanoi, Vietnam
| | - Thi Van Oanh Kieu
- Hematology and Blood Transfusion Center, Bach Mai Hospital, Hanoi, Vietnam
| | - Hai Yen Duong
- Hematology and Blood Transfusion Center, Bach Mai Hospital, Hanoi, Vietnam
| | - Phuong Thao Pham
- Department of Hematology, Hanoi Medical University, Hanoi, Vietnam
- Hematology and Blood Transfusion Center, Bach Mai Hospital, Hanoi, Vietnam
| | - Thi Hue Hoang
- Department of Hematology, Hanoi Medical University, Hanoi, Vietnam
- Hematology and Blood Transfusion Center, Bach Mai Hospital, Hanoi, Vietnam
| |
Collapse
|
42
|
Zhu Y, Wang T, Yang Y, Wang Z, Chen X, Wang L, Niu R, Sun Z, Zhang C, Luo Y, Hu Y, Gu W. Low shear stress exacerbates atherosclerosis by inducing the generation of neutrophil extracellular traps via Piezo1-mediated mechanosensation. Atherosclerosis 2024; 391:117473. [PMID: 38412763 DOI: 10.1016/j.atherosclerosis.2024.117473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a chronic lipid-driven inflammatory disease largely influenced by hemodynamics. Neutrophil extracellular trap (NET)-mediated inflammation plays an important role in atherosclerosis. However, little is known about the relationship between low shear stress (LSS) and NET generation, as well as the underlying mechanism. METHODS We induced LSS by partial ligation of the left carotid artery in high-fat diet-fed male ApoE-/- mice. To further validate the direct relationship between LSS and NET formation invitro, differentiated human promyelocytic leukemia HL-60 cells and bone marrow-derived neutrophils were suspended in fluid flow under normal or low shear stress using a parallel-plate flow chamber system. RESULTS Four weeks after surgery, ligated carotid arteries had more lipid deposition, larger plaque area, and increased NET formation than unligated arteries. Inhibition of NETosis could significantly reduce plaque formation in ApoE-/- mice. Invitro, LSS could promote NET generation directly through downregulation of Piezo1, a mechanosensitive ion channel. Downregulation of Piezol could activate neutrophils and promote NETosis in static conditions. Conversely, Yoda1-evoked activation of Piezo1 attenuated LSS-induced NETosis. Mechanistically, downregulation of Piezo1 resulted in decreased Ca2+ influx and increased histone deacetylase 2 (HDAC2), which increased reactive oxygen species levels and led to NETosis. LSS-induced NET generation also promoted apoptosis and adherence of endothelial cells. CONCLUSION LSS directly promotes NETosis through the Piezo1-HDAC2 axis in atherosclerosis progression. This study uncovers the essential role of Piezo1-mediated mechanical signaling in NET generation and plaque formation, which provides a promising therapeutic strategy for atherosclerosis.
Collapse
Affiliation(s)
- Ying Zhu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Tian Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China; College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yan Yang
- Department of Cardiovascular Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zining Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Xiaohui Chen
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Liu Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Ruyan Niu
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Zixin Sun
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Chong Zhang
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Yijie Hu
- Department of Cardiovascular Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Wei Gu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
43
|
Lu XR, Tao Q, Qin Z, Liu XW, Li SH, Bai LX, Ge WB, Liu YX, Li JY, Yang YJ. A combined transcriptomics and proteomics approach to reveal the mechanism of AEE relieving hyperlipidemia in ApoE -/- mice. Biomed Pharmacother 2024; 173:116400. [PMID: 38484560 DOI: 10.1016/j.biopha.2024.116400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Hyperlipidemia caused by abnormal lipid metabolism has reached epidemic proportions. This phenomenon is also common in companion animals. Previous studies showed that AEE significantly improves abnormal blood lipids in hyperlipidemia rats and mice, but its mechanism is still not clear enough. In this study, the mechanism and potential key pathways of AEE on improving hyperlipidemia in mice were investigated through the transcriptome and proteome study of ApoE-/- mice liver and the verification study on high-fat HepG2 cells. The results showed that AEE significantly decreased the serum TC and LDL-C levels of hyperlipidemia ApoE-/- mice, and significantly increased the enzyme activity of CYP7A1. After AEE intervention, the results of mice liver transcriptome and proteome showed that differential genes and proteins were enriched in lipid metabolism-related pathways. The results of RT-qPCR showed that AEE significantly regulated the expression of genes related to lipid metabolism in mice liver tissue. AEE significantly upregulated the protein expression of CYP7A1 in hyperlipidemia ApoE-/- mice liver tissue. The results in vitro showed that AEE significantly decreased the levels of TC and TG, and improved lipid deposition in high-fat HepG2 cells. AEE significantly increased the expression of CYP7A1 protein in high-fat HepG2 cells. AEE regulates the expression of genes related to lipid metabolism in high-fat HepG2 cells, mainly by FXR-SHP-CYP7A1 and FGF19-TFEB-CYP7A1 pathways. To sum up, AEE can significantly improve the hyperlipidemia status of ApoE-/- mice and the lipid deposition of high-fat HepG2 cells, and its main pathway is probably the bile acid metabolism-related pathway centered on CYP7A1.
Collapse
Affiliation(s)
- Xiao-Rong Lu
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Qi Tao
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Zhe Qin
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Shi-Hong Li
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Li-Xia Bai
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Wen-Bo Ge
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Ya-Xian Liu
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Jian-Yong Li
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| | - Ya-Jun Yang
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| |
Collapse
|
44
|
Wu F, Chen C, Lin G, Wu C, Xie J, Lin K, Dai X, Chen Z, Ye K, Yuan Y, Chen Z, Ma H, Lin Z, Xu Y. Caspase-11/GSDMD contributes to the progression of hyperuricemic nephropathy by promoting NETs formation. Cell Mol Life Sci 2024; 81:114. [PMID: 38436813 PMCID: PMC10912150 DOI: 10.1007/s00018-024-05136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/06/2024] [Accepted: 01/21/2024] [Indexed: 03/05/2024]
Abstract
Hyperuricemia is an independent risk factor for chronic kidney disease (CKD) and promotes renal fibrosis, but the underlying mechanism remains largely unknown. Unresolved inflammation is strongly associated with renal fibrosis and is a well-known significant contributor to the progression of CKD, including hyperuricemia nephropathy. In the current study, we elucidated the impact of Caspase-11/Gasdermin D (GSDMD)-dependent neutrophil extracellular traps (NETs) on progressive hyperuricemic nephropathy. We found that the Caspase-11/GSDMD signaling were markedly activated in the kidneys of hyperuricemic nephropathy. Deletion of Gsdmd or Caspase-11 protects against the progression of hyperuricemic nephropathy by reducing kidney inflammation, proinflammatory and profibrogenic factors expression, NETs generation, α-smooth muscle actin expression, and fibrosis. Furthermore, specific deletion of Gsdmd or Caspase-11 in hematopoietic cells showed a protective effect on renal fibrosis in hyperuricemic nephropathy. Additionally, in vitro studies unveiled the capability of uric acid in inducing Caspase-11/GSDMD-dependent NETs formation, consequently enhancing α-smooth muscle actin production in macrophages. In summary, this study demonstrated the contributory role of Caspase-11/GSDMD in the progression of hyperuricemic nephropathy by promoting NETs formation, which may shed new light on the therapeutic approach to treating and reversing hyperuricemic nephropathy.
Collapse
Affiliation(s)
- Fan Wu
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Caiming Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Guo Lin
- Department of Intensive Care Unit, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Chengkun Wu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jingzhi Xie
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Kongwen Lin
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xingchen Dai
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Zhengyue Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Keng Ye
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Ying Yuan
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Zhimin Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Huabin Ma
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Zishan Lin
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
45
|
McQueen P, Molina D, Pinos I, Krug S, Taylor AJ, LaFrano MR, Kane MA, Amengual J. Finasteride delays atherosclerosis progression in mice and is associated with a reduction in plasma cholesterol in men. J Lipid Res 2024; 65:100507. [PMID: 38272355 PMCID: PMC10899056 DOI: 10.1016/j.jlr.2024.100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
Finasteride is commonly prescribed to treat benign prostate hyperplasia and male-pattern baldness in cis men and, more recently, trans individuals. However, the effect of finasteride on cardiovascular disease remains elusive. We evaluated the role of finasteride on atherosclerosis using low-density lipoprotein (LDL) receptor-deficient (Ldlr-/-) mice. Next, we examined the relevance to humans by analyzing the data deposited between 2009 and 2016 in the National Health and Nutrition Examination Survey. We show that finasteride reduces total plasma cholesterol and delays the development of atherosclerosis in Ldlr-/- mice. Finasteride reduced monocytosis, monocyte recruitment to the lesion, macrophage lesion content, and necrotic core area, the latter of which is an indicator of plaque vulnerability in humans. RNA sequencing analysis revealed a downregulation of inflammatory pathways and an upregulation of bile acid metabolism, oxidative phosphorylation, and cholesterol pathways in the liver of mice taking finasteride. Men reporting the use of finasteride showed lower plasma levels of cholesterol and LDL-cholesterol than those not taking the drug. Our data unveil finasteride as a potential treatment to delay cardiovascular disease in people by improving the plasma lipid profile.
Collapse
Affiliation(s)
- Patrick McQueen
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Donald Molina
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Ivan Pinos
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Samuel Krug
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Anna J Taylor
- Carver Metabolomics Core, Roy J. Carver Biotechnology Center, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Michael R LaFrano
- Carver Metabolomics Core, Roy J. Carver Biotechnology Center, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Jaume Amengual
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, USA.
| |
Collapse
|
46
|
Chen H, Wang J, Ji Q, Jiang Z. Sodium butyrate restricts neutrophils migration and NETs formation through reducing macrophage-derived CXCL16 in calculous cholecystitis. Heliyon 2024; 10:e25189. [PMID: 38322881 PMCID: PMC10844290 DOI: 10.1016/j.heliyon.2024.e25189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Background Neutrophil extracellular traps (NETs) havebeen demonstrated to initiate gallstone formation. Cholecystitis is a common complication of gallstones. As short-chain fatty acids (SCFAs), Butyrate acid has anti-inflammatory effects and alleviates cholesterol gallstones. However, the role of Butyrate acid in NETs of calculous cholecystitis and the molecular mechanism remains unclear. The effect of Sodium butyrate on neutrophil migration and NETs formation involved in macrophages polarization and exosomalCXCL16 in calculous cholecystitis was explored in our study. Methods The number of neutrophils and NETs, macrophages polarization and exosomal CXCL16 level were analyzed in clinic samples from patients. Exosomes were obtained and verified by gradient centrifugation, transmission electron microscopy, NanoSight analysis and Western blotting. Transwell, immunofluorescence and ELISA were used to detect neutrophil migration and NETs formation. Results Our results demonstrated that a large number of neutrophils and NETs, as well as M1 macrophages and exosomal CXCL16, were found in the blood of gallstones patients, especially patients with acute calculous cholecystitis. Exosomal CXCL16 was upregulated in plasma of calculous cholecystitis patients or Lipopolysaccharide induced macrophages, and promoted neutrophil cell migration and NETs formation. Sodium butyrate reduced exosomal CXCL16 secretion through the inhibition of M1 macrophage polarization to suppress neutrophils migration and NETs formation. Conclusion Our study suggested that Sodium butyrate may inhibit neutrophils migration and NETs formation to alleviate calculous cholecystitis by reducing exosomal CXCL16 secretion from macrophage and macrophage polarization. General significance Our finding may provide a link between exosomes and neutrophils to serve as a potential therapeutic intervention in calculous cholecystitis.
Collapse
Affiliation(s)
- Hongsuo Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, China
| | - Jing Wang
- Department of Gastroenterology, the Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, China
| | - Qingyu Ji
- Department of Radiology, the Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, China
| | - Zhenyu Jiang
- Department of Gastroenterology, the Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, China
| |
Collapse
|
47
|
Pinos I, Coronel J, Albakri A, Blanco A, McQueen P, Molina D, Sim J, Fisher EA, Amengual J. β-Carotene accelerates the resolution of atherosclerosis in mice. eLife 2024; 12:RP87430. [PMID: 38319073 PMCID: PMC10945528 DOI: 10.7554/elife.87430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
β-Carotene oxygenase 1 (BCO1) catalyzes the cleavage of β-carotene to form vitamin A. Besides its role in vision, vitamin A regulates the expression of genes involved in lipid metabolism and immune cell differentiation. BCO1 activity is associated with the reduction of plasma cholesterol in humans and mice, while dietary β-carotene reduces hepatic lipid secretion and delays atherosclerosis progression in various experimental models. Here we show that β-carotene also accelerates atherosclerosis resolution in two independent murine models, independently of changes in body weight gain or plasma lipid profile. Experiments in Bco1-/- mice implicate vitamin A production in the effects of β-carotene on atherosclerosis resolution. To explore the direct implication of dietary β-carotene on regulatory T cells (Tregs) differentiation, we utilized anti-CD25 monoclonal antibody infusions. Our data show that β-carotene favors Treg expansion in the plaque, and that the partial inhibition of Tregs mitigates the effect of β-carotene on atherosclerosis resolution. Our data highlight the potential of β-carotene and BCO1 activity in the resolution of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Ivan Pinos
- Division of Nutritional Sciences, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Johana Coronel
- Department of Food Science and Human Nutrition, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Asma'a Albakri
- Division of Nutritional Sciences, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Amparo Blanco
- Division of Nutritional Sciences, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Patrick McQueen
- Division of Nutritional Sciences, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Donald Molina
- Department of Food Science and Human Nutrition, University of Illinois Urbana ChampaignUrbanaUnited States
| | - JaeYoung Sim
- Department of Food Science and Human Nutrition, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Edward A Fisher
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, New York University Grossman School of Medicine, NYU Langone Medical CenterNew YorkUnited States
| | - Jaume Amengual
- Division of Nutritional Sciences, University of Illinois Urbana ChampaignUrbanaUnited States
- Department of Food Science and Human Nutrition, University of Illinois Urbana ChampaignUrbanaUnited States
| |
Collapse
|
48
|
Takeuchi H. Left Atrial Diverticula Present in the Right Lower Pulmonary Vein Thrombus Attachment Area. Cureus 2024; 16:e53422. [PMID: 38314379 PMCID: PMC10835019 DOI: 10.7759/cureus.53422] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 02/06/2024] Open
Abstract
Left atrial diverticula (LADs) are thought to be associated with atrial fibrillation and an ischemic brain state. However, the mechanisms of LAD formation are unknown. Pulmonary vein thrombi (PVTs) can cause acute myocardial infarction (AMI) and ischemic stroke by releasing rather large particles. Additionally, PVTs can release much smaller particles, including neutrophil extracellular traps (NETs) and/or other components of NETs, such as DNA and histones. To treat these diseases, it may be crucial to know the specific traits of PVTs. However, these issues are not direct effects of PVTs on the left atrium (LA). It is unclear whether PVTs affect the LA directly. We checked the direct effects of PVTs on the LA using cardiac computed tomography (CT) and transesophageal echocardiography (TEE). The patient was a 73-year-old female with hypertension. TEE revealed extended LA thrombi from the right lower pulmonary vein, which were attached to the anterosuperior wall of the LA. Cardiac CT revealed the attaching area as a defect of enhancement and dimly revealed LAD with full thrombi on the attaching area. It was difficult to recognize the LAD at first; however, after one month of standard-dose heparin-warfarin treatment, the LAD was clearly detected using cardiac CT. LA thrombi could not be detected using cardiac CT.
Collapse
Affiliation(s)
- Hidekazu Takeuchi
- Internal Medicine (Cardiology), Takeuchi Naika Clinic, Ogachi-Gun, JPN
| |
Collapse
|
49
|
Zhao N, Yu X, Zhu X, Song Y, Gao F, Yu B, Qu A. Diabetes Mellitus to Accelerated Atherosclerosis: Shared Cellular and Molecular Mechanisms in Glucose and Lipid Metabolism. J Cardiovasc Transl Res 2024; 17:133-152. [PMID: 38091232 DOI: 10.1007/s12265-023-10470-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/23/2023] [Indexed: 02/28/2024]
Abstract
Diabetes is one of the critical independent risk factors for the progression of cardiovascular disease, and the underlying mechanism regarding this association remains poorly understood. Hence, it is urgent to decipher the fundamental pathophysiology and consequently provide new insights into the identification of innovative therapeutic targets for diabetic atherosclerosis. It is now appreciated that different cell types are heavily involved in the progress of diabetic atherosclerosis, including endothelial cells, macrophages, vascular smooth muscle cells, dependence on altered metabolic pathways, intracellular lipids, and high glucose. Additionally, extensive studies have elucidated that diabetes accelerates the odds of atherosclerosis with the explanation that these two chronic disorders share some common mechanisms, such as endothelial dysfunction and inflammation. In this review, we initially summarize the current research and proposed mechanisms and then highlight the role of these three cell types in diabetes-accelerated atherosclerosis and finally establish the mechanism pinpointing the relationship between diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Xiaoting Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Xinxin Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Yanting Song
- Department of Pathology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Fei Gao
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China.
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100069, China.
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China.
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100069, China.
| |
Collapse
|
50
|
Luo J, Qin X, Zhang X, Zhang Y, Yuan F, Shi W, Liu B, Wei Y. Prognostic implications of systemic immune-inflammation index in myocardial infarction patients with and without diabetes: insights from the NOAFCAMI-SH registry. Cardiovasc Diabetol 2024; 23:41. [PMID: 38254086 PMCID: PMC10804591 DOI: 10.1186/s12933-024-02129-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND It is well-known that systemic inflammation plays a crucial role in the pathogenesis and prognosis of acute myocardial infarction (AMI). The systemic immune-inflammation index (SII, platelet × neutrophil/lymphocyte ratio) is a novel index that is used for the characterization of the severity of systemic inflammation. Recent studies have identified the high SII level as an independent predictor of poor outcomes in patients with AMI. We aimed to investigate the prognostic implications of SII in AMI patients with and without diabetes mellitus (DM). METHODS We included 2111 patients with AMI from February 2014 to March 2018. Multivariable Cox regression analyses were performed to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) of all-cause death and cardiovascular (CV) death. Multiple imputation was used for missing covariates. RESULTS Of 2111 patients (mean age: 65.2 ± 12.2 years, 77.5% were males) analyzed, 789 (37.4%) had DM. Generalized additive model analyses showed that as the SII increased, the C-reactive protein and peak TnT elevated while the LVEF declined, and these associations were similar in patients with and without DM. During a median of 2.5 years of follow-up, 210 all-cause deaths and 154 CV deaths occurred. When treating the SII as a continuous variable, a higher log-transformed SII was significantly associated with increased all-cause mortality (HR: 1.57, 95%CI: 1.02-2.43) and CV mortality (HR: 1.85, 95%CI 1.12-3.05), and such an association was also significant in the diabetics (HRs and 95%CIs for all-cause death and CV death were 2.90 [1.40-6.01] and 3.28 [1.43-7.57], respectively) while not significant in the nondiabetics (Pinteraction for all-cause death and CV death were 0.019 and 0.049, respectively). Additionally, compared to patients with the lowest tertiles of SII, those with the highest tertiles of SII possessed significantly higher all-cause mortality (HR: 1.82, 95%CI 1.19-2.79) and CV mortality (HR: 1.82, 95%CI 1.19-2.79) after multivariable adjustment, and this relationship remained pronounced in the diabetics (HRs and 95%CIs for all-cause death and CV death were 2.00 [1.13-3.55] and 2.09 [1.10-3.98], respectively) but was not observed in the nondiabetics (HRs and 95%CIs for all-cause death and CV death were 1.21 [0.75-1.97] and 1.60 [0.89-2.90], respectively). Our restricted cubic splines analyses indicated a pronounced linear association between SII and mortality only in diabetics. CONCLUSIONS In AMI patients with DM, high SII is an independent predictor of poor survival and may be helpful for patient's risk stratification.
Collapse
Affiliation(s)
- Jiachen Luo
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai, 200072, China
| | - Xiaoming Qin
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai, 200072, China
| | - Xingxu Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai, 200072, China
| | - Yiwei Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai, 200072, China
| | - Fang Yuan
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai, 200072, China
| | - Wentao Shi
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai, 200072, China
| | - Baoxin Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai, 200072, China
| | - Yidong Wei
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai, 200072, China.
| |
Collapse
|