1
|
Liu JG, Yu L, Guo XL, He XM, Li M, Gao RY, Zhao BH, Li QY, Zhu WJ, Xu P, Gu XH, Chen YA, Yin XL, Shang Y, Guo ZH, Mao JH, Hu YX, Lu LM, Hua J, Zhang H, Li Y. Characterizing the immune landscape of tumor-infiltrating lymphocytes in non-small cell lung cancer. Genes Immun 2025:10.1038/s41435-025-00330-w. [PMID: 40325180 DOI: 10.1038/s41435-025-00330-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/11/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Tumor-Infiltrating Lymphocytes (TILs) immunotherapy is a highly promising treatment for Non-small Cell Lung Cancer (NSCLC), which is responsible for 18% of all cancer-related deaths. The heterogeneity of TILs remains poorly understood. Here, we utilized combined single-cell RNA (scRNA)/T cell receptor sequencing (scTCR-seq) data from lung adenocarcinoma (LUAD) patients. Naïve CD4+ and effector memory CD8+ T cells were increased in tumor tissue compared with circulating blood samples. Activated signaling pathways were detected, and GZMA was identified as a potential novel diagnostic biomarker. During the transitional phase, macrophages (FTL) and dendritic (AIF1) cells transported the most CD3 TCR clones to T cells, while cytotoxicity CD8+ T (NKG7) cells transported to terminal exhausted CD8+ T cells. In both transition and expansion phases, T helper cells (CXCL13) are transported to regulatory T cells (Tregs). Additionally, we investigated the expression profiles of key cytokines, checkpoint receptors, and their ligands. Cytotoxicity CD8+ T cells (CCL5 and IFNG), T helper cells (FTL, TNFRSF4, and TIGIT), and regulatory T cells (CTLA4, TIGIT and FTL) exhibited functional roles in both primary and metastatic tumor stages. Taken together, our study provides a single-cell resolution of the TIL immune landscape and suggests potential treatment strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Jin-Guo Liu
- Department of Oncology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Lin Yu
- Department of Pathology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Xian-Ling Guo
- Department of Oncology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Xue-Min He
- Department of Oncology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Man Li
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Ren-Yuan Gao
- Department of Abdominal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Bing-Hui Zhao
- Department of Radiology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Qian-Yu Li
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Wen-Jing Zhu
- Department of Orthopedics, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Ping Xu
- Standard BioTools, Shanghai, China
| | - Xiao-Hua Gu
- Department of Interventional Therapy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong-An Chen
- Department of Oncology, No. 455 Hospital of Chinese People's Liberation Army, The Navy Medical University, Shanghai, China
| | - Xiao-Lan Yin
- Department of Oncology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Yan Shang
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zhen-Hong Guo
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, China
| | - Jia-Hao Mao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yang-Xi Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Li-Ming Lu
- Central Laboratory, Shanghai Chest Hospital and Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Hua
- SPH Biotherapeutics (Shanghai) Limited, Cellular Therapeutics Center for Cancers, Shanghai, China
| | - Hua Zhang
- SPH Biotherapeutics (Shanghai) Limited, Cellular Therapeutics Center for Cancers, Shanghai, China
| | - Yue Li
- SPH Biotherapeutics (Shanghai) Limited, Cellular Therapeutics Center for Cancers, Shanghai, China.
| |
Collapse
|
2
|
Husain I, Shah H, Jordan CZ, Natesh NR, Fay OK, Chen Y, Privratsky JR, Kitai H, Souma T, Varghese S, Howell DN, Thorp EB, Luo X. Targeting allograft inflammatory factor 1 reprograms kidney macrophages to enhance repair. J Clin Invest 2025; 135:e185146. [PMID: 39836477 PMCID: PMC11870741 DOI: 10.1172/jci185146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
The role of macrophages (MΦs) remains incompletely understood in kidney injury and repair. The plasticity of MΦs offers an opportunity to polarize them toward mediating injury resolution in both native and transplanted kidneys undergoing ischemia and/or rejection. Here, we show that infiltrating kidney MΦs augmented their own allograft inflammatory factor 1 (AIF-1) expression after injury. Aif1 genetic deletion led to MΦ polarization toward a reparative phenotype while halting the development of kidney fibrosis. The enhanced repair was mediated by higher levels of antiinflammatory and proregenerative markers, leading to a reduction in cell death and an increase in proliferation of kidney tubular epithelial cells after ischemia followed by reperfusion injury (I/RI). Adoptive transfer of Aif1-/- MΦs into Aif1+/+ mice conferred protection against I/RI. Conversely, depletion of MΦs reversed the tissue-reparative effects in Aif1-/- mice. We further demonstrated increased expression of AIF-1 in human kidney biopsies from native kidneys with acute kidney injury or chronic kidney disease, as well as in biopsies from kidney allografts undergoing acute or chronic rejection. We conclude that AIF-1 is a MΦ marker of renal inflammation, and its targeting uncouples MΦ reparative functions from profibrotic functions. Thus, therapies inhibiting AIF-1 when ischemic injury is inevitable have the potential to reduce the global burden of kidney disease.
Collapse
Affiliation(s)
- Irma Husain
- Division of Nephrology, Department of Medicine, and
- Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Holly Shah
- Division of Nephrology, Department of Medicine, and
| | | | - Naveen R. Natesh
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina, USA
| | | | | | | | - Hiroki Kitai
- Division of Nephrology, Department of Medicine, and
| | | | - Shyni Varghese
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina, USA
- Department of Mechanical Engineering and Materials Science, and
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
| | | | - Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, and
- Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
3
|
DeBerge M, Glinton K, Lantz C, Ge ZD, Sullivan DP, Patil S, Lee BR, Thorp MI, Mullick A, Yeh S, Han S, van der Laan AM, Niessen HWM, Luo X, Sibinga NES, Thorp EB. Mechanical regulation of macrophage metabolism by allograft inflammatory factor 1 leads to adverse remodeling after cardiac injury. NATURE CARDIOVASCULAR RESEARCH 2025; 4:83-101. [PMID: 39747455 DOI: 10.1038/s44161-024-00585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/12/2024] [Indexed: 01/04/2025]
Abstract
Myocardial infarction (MI) mobilizes macrophages, the central protagonists of tissue repair in the infarcted heart. Although necessary for repair, macrophages also contribute to adverse remodeling and progression to heart failure. In this context, specific targeting of inflammatory macrophage activation may attenuate maladaptive responses and enhance cardiac repair. Allograft inflammatory factor 1 (AIF1) is a macrophage-specific protein expressed in a variety of inflammatory settings, but its function after MI is unknown. Here we identify a maladaptive role for macrophage AIF1 after MI in mice. Mechanistic studies show that AIF1 increases actin remodeling in macrophages to promote reactive oxygen species-dependent activation of hypoxia-inducible factor (HIF)-1α. This directs a switch to glycolytic metabolism to fuel macrophage-mediated inflammation, adverse ventricular remodeling and progression to heart failure. Targeted knockdown of Aif1 using antisense oligonucleotides improved cardiac repair, supporting further exploration of macrophage AIF1 as a therapeutic target after MI.
Collapse
Affiliation(s)
- Matthew DeBerge
- Department of Anesthesiology, Critical Care, and Pain Medicine, The University of Texas Health Science Center, Houston, TX, USA.
- Department of Pathology, Northwestern University, Chicago, IL, USA.
| | | | - Connor Lantz
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Zhi-Dong Ge
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - David P Sullivan
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Swapna Patil
- Department of Anesthesiology, Critical Care, and Pain Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Bo Ryung Lee
- Department of Anesthesiology, Critical Care, and Pain Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Minori I Thorp
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | | | - Steve Yeh
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Shuling Han
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Anja M van der Laan
- Department of Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans W M Niessen
- Department of Pathology and Cardiac Surgery, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Nicholas E S Sibinga
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Edward B Thorp
- Department of Pathology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
4
|
Chen L, Zhao Y, Li M, Lv G. Proteome-wide Mendelian randomization highlights AIF1 and HLA-DQA2 as targets for primary sclerosing cholangitis. Hepatol Int 2024; 18:517-528. [PMID: 37950809 DOI: 10.1007/s12072-023-10608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/09/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND Primary sclerosing cholangitis (PSC) is a kind of cholestatic liver disease without effective therapies and its pathogenesis is largely unknown. METHODS We performed the proteome-wide Mendelian randomization (MR) design to estimate the causal associations of protein levels with PSC risk. Therein, genetic associations with 4,907 plasma protein levels were extracted from a proteome-wide genome-wide association study (GWAS) with 35,559 individuals and those with PSC were obtained from the International PSC Study Group (2,871 cases and 12,019 controls) and the FinnGen study (1,491 cases and 301,383 controls). The colocalization analysis was performed to detect causal variants shared by proteins and PSC. The identified proteins were further enriched in pathways and diseases. A phenome-wide association screening was performed and potential drugs were assessed as well. RESULTS The results indicated that genetically predicted plasma levels of 14 proteins were positively associated with an increased risk of PSC and 8 proteins were inversely associated with PSC risk in both PSC GWAS data sets, and they all survived in sensitivity analyses. The colocalization indicated that AIF1 (allograft inflammatory factor 1) and HLA-DQA2 (major histocompatibility complex, class II, DQ alpha 2) were shared proteins with PSC, and they should be direct targets for PSC. The phenome-wide screening suggested that variants located at AIF1 or HLA-DQA2 region were closely associated with several autoimmune diseases, such as rheumatoid arthritis, implicating the shared pathogenesis among them. CONCLUSIONS Our study highly pinpointed two candidate targets (AIF1 and HLA-DQA2) for PSC.
Collapse
Affiliation(s)
- Lanlan Chen
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Yuexuan Zhao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Mingyue Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
5
|
De Leon-Oliva D, Garcia-Montero C, Fraile-Martinez O, Boaru DL, García-Puente L, Rios-Parra A, Garrido-Gil MJ, Casanova-Martín C, García-Honduvilla N, Bujan J, Guijarro LG, Alvarez-Mon M, Ortega MA. AIF1: Function and Connection with Inflammatory Diseases. BIOLOGY 2023; 12:biology12050694. [PMID: 37237507 DOI: 10.3390/biology12050694] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/29/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Macrophages are a type of immune cell distributed throughout all tissues of an organism. Allograft inflammatory factor 1 (AIF1) is a calcium-binding protein linked to the activation of macrophages. AIF1 is a key intracellular signaling molecule that participates in phagocytosis, membrane ruffling and F-actin polymerization. Moreover, it has several cell type-specific functions. AIF1 plays important roles in the development of several diseases: kidney disease, rheumatoid arthritis, cancer, cardiovascular diseases, metabolic diseases and neurological disorders, and in transplants. In this review, we present a comprehensive review of the known structure, functions and role of AIF1 in inflammatory diseases.
Collapse
Affiliation(s)
- Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis García-Puente
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Antonio Rios-Parra
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| | - Maria J Garrido-Gil
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Carlos Casanova-Martín
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
6
|
Chinnasamy P, Casimiro I, Riascos-Bernal DF, Venkatesh S, Parikh D, Maira A, Srinivasan A, Zheng W, Tarabra E, Zong H, Jayakumar S, Jeganathan V, Pradan K, Aleman JO, Singh R, Nandi S, Pessin JE, Sibinga NES. Increased adipose catecholamine levels and protection from obesity with loss of Allograft Inflammatory Factor-1. Nat Commun 2023; 14:38. [PMID: 36596796 PMCID: PMC9810600 DOI: 10.1038/s41467-022-35683-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
Recent studies implicate macrophages in regulation of thermogenic, sympathetic neuron-mediated norepinephrine (NE) signaling in adipose tissues, but understanding of such non-classical macrophage activities is incomplete. Here we show that male mice lacking the allograft inflammatory factor-1 (AIF1) protein resist high fat diet (HFD)-induced obesity and hyperglycemia. We link this phenotype to higher adipose NE levels that stem from decreased monoamine oxidase A (MAOA) expression and NE clearance by AIF1-deficient macrophages, and find through reciprocal bone marrow transplantation that donor Aif1-/- vs WT genotype confers the obesity phenotype in mice. Interestingly, human sequence variants near the AIF1 locus associate with obesity and diabetes; in adipose samples from participants with obesity, we observe direct correlation of AIF1 and MAOA transcript levels. These findings identify AIF1 as a regulator of MAOA expression in macrophages and catecholamine activity in adipose tissues - limiting energy expenditure and promoting energy storage - and suggest how it might contribute to human obesity.
Collapse
Affiliation(s)
- Prameladevi Chinnasamy
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Isabel Casimiro
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dario F Riascos-Bernal
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shreeganesh Venkatesh
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dippal Parikh
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alishba Maira
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aparna Srinivasan
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wei Zheng
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Elena Tarabra
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine (Endocrinology, Albert Einstein College of Medicine), Bronx, NY, USA
| | - Haihong Zong
- Department of Medicine (Endocrinology, Albert Einstein College of Medicine), Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center and Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Smitha Jayakumar
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Venkatesh Jeganathan
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kith Pradan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jose O Aleman
- Department of Medicine (Endocrinology), New York University Langone Health, New York, NY, USA
| | - Rajat Singh
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine (Endocrinology, Albert Einstein College of Medicine), Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center and Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sayan Nandi
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeffrey E Pessin
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center and Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nicholas E S Sibinga
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Einstein-Mount Sinai Diabetes Research Center and Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
7
|
Rutsch N, Chamberlain CE, Dixon W, Spector L, Letourneau-Freiberg LR, Lwin WW, Philipson LH, Zarbock A, Saintus K, Wang J, German MS, Anderson MS, Lowell CA. Diabetes With Multiple Autoimmune and Inflammatory Conditions Linked to an Activating SKAP2 Mutation. Diabetes Care 2021; 44:1816-1825. [PMID: 34172489 PMCID: PMC8385470 DOI: 10.2337/dc20-2317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/09/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Multiple genome-wide association studies have identified a strong genetic linkage between the SKAP2 locus and type 1 diabetes (T1D), but how this leads to disease remains obscure. Here, we characterized the functional consequence of a novel SKAP2 coding mutation in a patient with T1D to gain further insight into how this impacts immune tolerance. RESEARCH DESIGN AND METHODS We identified a 24-year-old individual with T1D and other autoimmune and inflammatory conditions. The proband and first-degree relatives were recruited for whole-exome sequencing. Functional studies of the protein variant were performed using a cell line and primary myeloid immune cells collected from family members. RESULTS Sequencing identified a de novo SKAP2 variant (c.457G>A, p.Gly153Arg) in the proband. Assays using monocyte-derived macrophages from the individual revealed enhanced activity of integrin pathways and a migratory phenotype in the absence of chemokine stimulation, consistent with SKAP2 p.Gly153Arg being constitutively active. The p.Gly153Arg variant, located in the well-conserved lipid-binding loop, induced similar phenotypes when expressed in a human macrophage cell line. SKAP2 p.Gly153Arg is a gain-of-function, pathogenic mutation that disrupts myeloid immune cell function, likely resulting in a break in immune tolerance and T1D. CONCLUSIONS SKAP2 plays a key role in myeloid cell activation and migration. This particular mutation in a patient with T1D and multiple autoimmune conditions implicates a role for activating SKAP2 variants in autoimmune T1D.
Collapse
Affiliation(s)
- Niklas Rutsch
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, San Francisco, CA.,The Program in Immunology, University of California, San Francisco, San Francisco, San Francisco, CA.,Department of Anesthesiology, Intensive Care, and Pain Medicine, University Hospital Münster, University of Münster, Münster, Germany
| | - Chester E Chamberlain
- Diabetes Center, University of California, San Francisco, San Francisco, San Francisco, CA.,Department of Medicine, University of California, San Francisco, San Francisco, San Francisco, CA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, San Francisco, CA
| | - Wesley Dixon
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, San Francisco, CA.,The Program in Immunology, University of California, San Francisco, San Francisco, San Francisco, CA
| | - Lauren Spector
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, San Francisco, CA.,The Program in Immunology, University of California, San Francisco, San Francisco, San Francisco, CA
| | - Lisa R Letourneau-Freiberg
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism and the Kovler Diabetes Center, The University of Chicago, Chicago, IL
| | - Wint W Lwin
- Diabetes Center, University of California, San Francisco, San Francisco, San Francisco, CA.,Department of Medicine, University of California, San Francisco, San Francisco, San Francisco, CA
| | - Louis H Philipson
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism and the Kovler Diabetes Center, The University of Chicago, Chicago, IL
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care, and Pain Medicine, University Hospital Münster, University of Münster, Münster, Germany
| | - Karline Saintus
- Diabetes Center, University of California, San Francisco, San Francisco, San Francisco, CA.,Department of Medicine, University of California, San Francisco, San Francisco, San Francisco, CA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, San Francisco, CA
| | - Juehu Wang
- Diabetes Center, University of California, San Francisco, San Francisco, San Francisco, CA.,Department of Medicine, University of California, San Francisco, San Francisco, San Francisco, CA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, San Francisco, CA
| | - Michael S German
- Diabetes Center, University of California, San Francisco, San Francisco, San Francisco, CA .,Department of Medicine, University of California, San Francisco, San Francisco, San Francisco, CA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, San Francisco, CA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, San Francisco, CA .,Department of Medicine, University of California, San Francisco, San Francisco, San Francisco, CA
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, San Francisco, CA .,The Program in Immunology, University of California, San Francisco, San Francisco, San Francisco, CA
| |
Collapse
|