1
|
Zhang Z, Yong P, Hu Q, Du S. Myomaker and Myomixer are required for craniofacial myoblast fusion in zebrafish. Dev Dyn 2025. [PMID: 40317819 DOI: 10.1002/dvdy.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Craniofacial and trunk skeletal muscles are derived from different progenitor populations during development. Trunk skeletal muscles contain mostly multinucleated myofibers that are formed through myoblast fusion. However, myoblast fusion in craniofacial muscles and its molecular regulation are not well understood. Recent studies revealed that genetic mutations in MYOMAKER and MYOMIXER fusogens in humans cause Carey-Fineman-Ziter Syndrome (CFZS), characterized by facial weakness and lower jaw deformity. RESULTS Previous studies in zebrafish revealed that knockout of myomaker and myomixer resulted in deformed craniofacial formation. To establish the causal connection between loss of fusogen function and craniofacial deformities, we characterized myoblast fusion in zebrafish craniofacial muscles. Our results demonstrate that myomaker and myomixer are expressed in both slow and fast craniofacial muscles, and loss of these fusogens results in defects in craniofacial myoblast fusion. Interestingly, unlike trunk muscles of early embryos and larvae that show fast-fiber-specific fusogen expression and fusion while slow muscle fusion only occurs at 3 weeks post-fertilization, both slow and fast craniofacial muscles fuse as early as 3 days post-fertilization. CONCLUSIONS Collectively, this study demonstrates that myomaker and myomixer are expressed in both slow and fast-twitch craniofacial muscles and are essential for myoblast fusion and the development of craniofacial muscles.
Collapse
Affiliation(s)
- Zhanxiong Zhang
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pengzheng Yong
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Qiaomu Hu
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Esper ME, Brun CE, Lin AYT, Feige P, Catenacci MJ, Sincennes MC, Ritso M, Rudnicki MA. Intrinsic Muscle Stem Cell Dysfunction Contributes to Impaired Regeneration in the mdx Mouse. J Cachexia Sarcopenia Muscle 2025; 16:e13682. [PMID: 39723578 DOI: 10.1002/jcsm.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a devastating disease characterized by progressive muscle wasting that leads to diminished lifespan. In addition to the inherent weakness of dystrophin-deficient muscle, the dysfunction of resident muscle stem cells (MuSC) significantly contributes to disease progression. METHODS Using the mdx mouse model of DMD, we performed an in-depth characterization of disease progression and MuSC function in dystrophin-deficient skeletal muscle using immunohistology, isometric force measurements, transcriptomic analysis and transplantation assays. We examined the architectural and functional changes in mdx skeletal muscle from 13 and 52 weeks of age and following acute cardiotoxin (CTX) injury. We also studied MuSC dynamics and function under homeostatic conditions, during regeneration post-acute injury, and following engraftment using a combination of histological and transcriptomic analyses. RESULTS Dystrophin-deficient skeletal muscle undergoes progressive changes with age and delayed regeneration in response to acute injury. Muscle hypertrophy, deposition of collagen and an increase in small myofibres occur with age in the tibialis anterior (TA) and diaphragm muscles in mdx mice. Dystrophic mdx mouse TA muscles become hypertrophic with age, whereas diaphragm atrophy is evident in 1-year-old mdx mice. Maximum tetanic force is comparable between genotypes in the TA, but maximum specific force is reduced by up to 38% between 13 and 52 weeks in the mdx mouse. Following acute injury, myofibre hyperplasia and hypotrophy and delayed recovery of maximum tetanic force occur in the mdx TA. We also find defective MuSC polarity and reduced numbers of myocytes in mdx muscle following acute injury. We observed a 50% and 30% decrease in PAX7+ and MYOG+ cells, respectively, at 5 days post CTX injury (5 dpi) in the mdx TA. A similar decrease in mdx progenitor cell proportion is observed by single cell RNA sequencing of myogenic cells at 5 dpi. The global expression of commitment-related genes is also reduced at 5 dpi. We find a 46% reduction in polarized PARD3 in mdx MuSCs. Finally, mdx MuSCs exhibit elevated PAX7+ cell engraftment with significantly fewer donor-derived myonuclei in regenerated myofibres. CONCLUSIONS Our study provides evidence that dystrophin deficiency in MuSCs and myofibres together contributes to progression of DMD. Ongoing muscle damage stimulates MuSC activation; however, aberrant intrinsic MuSC polarity and stem cell commitment deficits due to the loss of dystrophin impair muscle regeneration. Our study provides in vivo validation that dystrophin-deficient MuSCs undergo fewer asymmetric cell divisions, instead favouring symmetric expansion.
Collapse
Affiliation(s)
- Marie E Esper
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Caroline E Brun
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Institut NeuroMyoGène, Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS UMR5261, University Claude Bernard Lyon 1, Lyon, France
| | - Alexander Y T Lin
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Peter Feige
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Marie J Catenacci
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Marie-Claude Sincennes
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Centre Armand-Frappier santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Unité de recherche mixte INRS-UQAC en santé durable, Laval, Canada
| | - Morten Ritso
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
3
|
Yong P, Zhang Z, Du S. Ectopic expression of Myomaker and Myomixer in slow muscle cells induces slow muscle fusion and myofiber death. J Genet Genomics 2024; 51:1187-1203. [PMID: 39209151 PMCID: PMC11570343 DOI: 10.1016/j.jgg.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Zebrafish embryos possess two major types of myofibers, the slow and fast fibers, with distinct patterns of cell fusion. The fast muscle cells can fuse, while the slow muscle cells cannot. Here, we show that myomaker is expressed in both slow and fast muscle precursors, whereas myomixer is exclusive to fast muscle cells. The loss of Prdm1a, a regulator of slow muscle differentiation, results in strong myomaker and myomixer expression and slow muscle cell fusion. This abnormal fusion is further confirmed by the direct ectopic expression of myomaker or myomixer in slow muscle cells of transgenic models. Using the transgenic models, we show that the heterologous fusion between slow and fast muscle cells can alter slow muscle cell migration and gene expression. Furthermore, the overexpression of myomaker and myomixer also disrupts membrane integrity, resulting in muscle cell death. Collectively, this study identifies that the fiber-type-specific expression of fusogenic proteins is critical for preventing inappropriate fusion between slow and fast fibers in fish embryos, highlighting the need for precise regulation of fusogenic gene expression to maintain muscle fiber integrity and specificity.
Collapse
Affiliation(s)
- Pengzheng Yong
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, United States of America
| | - Zhanxiong Zhang
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, United States of America
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, United States of America.
| |
Collapse
|
4
|
Tripathi G, Dourson A, Wayland J, Khanna S, Hoffmann M, Govindarajan T, Morales FM, Queme L, Millay D, Jankowski MP. Synaptic-like coupling of macrophages to myofibers regulates muscle repair. RESEARCH SQUARE 2024:rs.3.rs-5290399. [PMID: 39574892 PMCID: PMC11581056 DOI: 10.21203/rs.3.rs-5290399/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Peripheral injury responses essential for muscle repair and nociception require complex interactions of target tissues, immune cells and primary sensory neurons. Nociceptors and myofibers both react robustly to signals generated from circulating immune cells, which promote repair, growth, and regeneration of muscle while simultaneously modulating peripheral sensitization. Here, we found that macrophages form a synaptic-like contact with myofibers to hasten repair after acute incision injury and to facilitate regeneration after major muscle damage. Transient chemogenetic activation of macrophages enhanced calcium dependent membrane repair, induced muscle calcium waves in vivo , elicited low level electrical activity in the muscles and enhanced myonuclear accretion. Under severe injury, macrophage activation could also modulate pain-like behaviors. This study identifies a novel mechanism by which synaptic-like functions of macrophages impacts muscle repair after tissue damage.
Collapse
|
5
|
Suzuki N, Kanzaki M, Koide M, Izumi R, Fujita R, Takahashi T, Ogawa K, Yabe Y, Tsuchiya M, Suzuki M, Harada R, Ohno A, Ono H, Nakamura N, Ikeda K, Warita H, Osana S, Oikawa Y, Toyohara T, Abe T, Rui M, Ebihara S, Nagatomi R, Hagiwara Y, Aoki M. Sporadic inclusion body myositis-derived myotube culture revealed muscle cell-autonomous expression profiles. PLoS One 2024; 19:e0306021. [PMID: 39088432 PMCID: PMC11293708 DOI: 10.1371/journal.pone.0306021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/10/2024] [Indexed: 08/03/2024] Open
Abstract
Sporadic inclusion body myositis (sIBM) is a muscle disease in older people and is characterized by inflammatory cell invasion into intact muscle fibers and rimmed vacuoles. The pathomechanism of sIBM is not fully elucidated yet, and controversy exists as to whether sIBM is a primary autoimmune disease or a degenerative muscle disease with secondary inflammation. Previously, we established a method of collecting CD56-positive myoblasts from human skeletal muscle biopsy samples. We hypothesized that the myoblasts derived from these patients are useful to see the cell-autonomous pathomechanism of sIBM. With these resources, myoblasts were differentiated into myotubes, and the expression profiles of cell-autonomous pathology of sIBM were analyzed. Myoblasts from three sIBM cases and six controls were differentiated into myotubes. In the RNA-sequencing analysis of these "myotube" samples, 104 differentially expressed genes (DEGs) were found to be significantly upregulated by more than twofold in sIBM, and 13 DEGs were downregulated by less than twofold. For muscle biopsy samples, a comparative analysis was conducted to determine the extent to which "biopsy" and "myotube" samples differed. Fifty-three DEGs were extracted of which 32 (60%) had opposite directions of expression change (e.g., increased in biopsy vs decreased in myotube). Apolipoprotein E (apoE) and transmembrane protein 8C (TMEM8C or MYMK) were commonly upregulated in muscle biopsies and myotubes from sIBM. ApoE and myogenin protein levels were upregulated in sIBM. Given that enrichment analysis also captured changes in muscle contraction and development, the triggering of muscle atrophy signaling and abnormal muscle differentiation via MYMK or myogenin may be involved in the pathogenesis of sIBM. The presence of DEGs in sIBM suggests that the myotubes formed from sIBM-derived myoblasts revealed the existence of muscle cell-autonomous degeneration in sIBM. The catalog of DEGs will be an important resource for future studies on the pathogenesis of sIBM focusing on primary muscle degeneration.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Masashi Koide
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Rumiko Izumi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Fujita
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tadahisa Takahashi
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kazumi Ogawa
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yutaka Yabe
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | - Masako Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryuhei Harada
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiyuki Ohno
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroya Ono
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, National Hospital Organization Iwate Hospital, Ichinoseki, Iwate, Japan
| | - Naoko Nakamura
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kensuke Ikeda
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shion Osana
- Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Yoshitsugu Oikawa
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takafumi Toyohara
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Muliang Rui
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoru Ebihara
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryoichi Nagatomi
- Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Yoshihiro Hagiwara
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
6
|
Feng L, Chen Z, Bian H. Skeletal muscle: molecular structure, myogenesis, biological functions, and diseases. MedComm (Beijing) 2024; 5:e649. [PMID: 38988494 PMCID: PMC11234433 DOI: 10.1002/mco2.649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024] Open
Abstract
Skeletal muscle is an important motor organ with multinucleated myofibers as its smallest cellular units. Myofibers are formed after undergoing cell differentiation, cell-cell fusion, myonuclei migration, and myofibril crosslinking among other processes and undergo morphological and functional changes or lesions after being stimulated by internal or external factors. The above processes are collectively referred to as myogenesis. After myofibers mature, the function and behavior of skeletal muscle are closely related to the voluntary movement of the body. In this review, we systematically and comprehensively discuss the physiological and pathological processes associated with skeletal muscles from five perspectives: molecule basis, myogenesis, biological function, adaptive changes, and myopathy. In the molecular structure and myogenesis sections, we gave a brief overview, focusing on skeletal muscle-specific fusogens and nuclei-related behaviors including cell-cell fusion and myonuclei localization. Subsequently, we discussed the three biological functions of skeletal muscle (muscle contraction, thermogenesis, and myokines secretion) and its response to stimulation (atrophy, hypertrophy, and regeneration), and finally settled on myopathy. In general, the integration of these contents provides a holistic perspective, which helps to further elucidate the structure, characteristics, and functions of skeletal muscle.
Collapse
Affiliation(s)
- Lan‐Ting Feng
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Zhi‐Nan Chen
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Huijie Bian
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| |
Collapse
|
7
|
Dugdale HF, Levy Y, Jungbluth H, Oldfors A, Ochala J. Aberrant myonuclear domains and impaired myofiber contractility despite marked hypertrophy in MYMK-related, Carey-Fineman-Ziter Syndrome. Acta Neuropathol Commun 2024; 12:80. [PMID: 38790073 PMCID: PMC11127446 DOI: 10.1186/s40478-024-01783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/10/2024] [Indexed: 05/26/2024] Open
Abstract
Carey Fineman Ziter Syndrome (CFZS) is a rare autosomal recessive disease caused by mutations in the MYMK locus which encodes the protein, myomaker. Myomaker is essential for fusion and concurrent myonuclei donation of muscle progenitors during growth and development. Strikingly, in humans, MYMK mutations appear to prompt myofiber hypertrophy but paradoxically, induce generalised muscle weakness. As the underlying cellular mechanisms remain unexplored, the present study aimed to gain insights by combining myofiber deep-phenotyping and proteomic profiling. Hence, we isolated individual muscle fibers from CFZS patients and performed mechanical, 3D morphological and proteomic analyses. Myofibers from CFZS patients were ~ 4x larger than controls and possessed ~ 2x more myonuclei than those from healthy subjects, leading to disproportionally larger myonuclear domain volumes. These greater myonuclear domain sizes were accompanied by smaller intrinsic cellular force generating-capacities in myofibers from CFZS patients than in control muscle cells. Our complementary proteomic analyses indicated remodelling in 233 proteins particularly those associated with cellular respiration. Overall, our findings suggest that myomaker is somewhat functional in CFZS patients, but the associated nuclear accretion may ultimately lead to non-functional hypertrophy and altered energy-related mechanisms in CFZS patients. All of these are likely contributors of the muscle weakness experienced by CFZS patients.
Collapse
Affiliation(s)
- Hannah F Dugdale
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Yotam Levy
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Heinz Jungbluth
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Anders Oldfors
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Julien Ochala
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Wherley TJ, Thomas S, Millay DP, Saunders T, Roy S. Molecular regulation of myocyte fusion. Curr Top Dev Biol 2024; 158:53-82. [PMID: 38670716 PMCID: PMC11503471 DOI: 10.1016/bs.ctdb.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Myocyte fusion is a pivotal process in the development and regeneration of skeletal muscle. Failure during fusion can lead to a range of developmental as well as pathological consequences. This review aims to comprehensively explore the intricate processes underlying myocyte fusion, from the molecular to tissue scale. We shed light on key players, such as the muscle-specific fusogens - Myomaker and Myomixer, in addition to some lesser studied molecules contributing to myocyte fusion. Conserved across vertebrates, Myomaker and Myomixer play a crucial role in driving the merger of plasma membranes of fusing myocytes, ensuring the formation of functional muscle syncytia. Our multiscale approach also delves into broader cell and tissue dynamics that orchestrate the timing and positioning of fusion events. In addition, we explore the relevance of muscle fusogens to human health and disease. Mutations in fusogen genes have been linked to congenital myopathies, providing unique insights into the molecular basis of muscle diseases. We conclude with a discussion on potential therapeutic avenues that may emerge from manipulating the myocyte fusion process to remediate skeletal muscle disorders.
Collapse
Affiliation(s)
- Tanner J Wherley
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Serena Thomas
- Warwick Medical School, University of Warwick, Coventry, United Kingdom; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Timothy Saunders
- Warwick Medical School, University of Warwick, Coventry, United Kingdom; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore.
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Department of Pediatrics, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
9
|
Dos Santos M, Shah AM, Zhang Y, Bezprozvannaya S, Chen K, Xu L, Lin W, McAnally JR, Bassel-Duby R, Liu N, Olson EN. Opposing gene regulatory programs governing myofiber development and maturation revealed at single nucleus resolution. Nat Commun 2023; 14:4333. [PMID: 37468485 DOI: 10.1038/s41467-023-40073-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
Skeletal muscle fibers express distinct gene programs during development and maturation, but the underlying gene regulatory networks that confer stage-specific myofiber properties remain unknown. To decipher these distinctive gene programs and how they respond to neural activity, we generated a combined multi-omic single-nucleus RNA-seq and ATAC-seq atlas of mouse skeletal muscle development at multiple stages of embryonic, fetal, and postnatal life. We found that Myogenin, Klf5, and Tead4 form a transcriptional complex that synergistically activates the expression of muscle genes in developing myofibers. During myofiber maturation, the transcription factor Maf acts as a transcriptional switch to activate the mature fast muscle gene program. In skeletal muscles of mutant mice lacking voltage-gated L-type Ca2+ channels (Cav1.1), Maf expression and myofiber maturation are impaired. These findings provide a transcriptional atlas of muscle development and reveal genetic links between myofiber formation, maturation, and contraction.
Collapse
Affiliation(s)
- Matthieu Dos Santos
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Akansha M Shah
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Yichi Zhang
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Svetlana Bezprozvannaya
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, 5323 Harry Hines Boulevard, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, 5323 Harry Hines Boulevard, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Weichun Lin
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - John R McAnally
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Ning Liu
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
10
|
Hindi SM, Petrany MJ, Greenfeld E, Focke LC, Cramer AAW, Whitt MA, Khairallah RJ, Ward CW, Chamberlain JS, Podbilewicz B, Prasad V, Millay DP. Enveloped viruses pseudotyped with mammalian myogenic cell fusogens target skeletal muscle for gene delivery. Cell 2023; 186:2062-2077.e17. [PMID: 37075755 PMCID: PMC11181154 DOI: 10.1016/j.cell.2023.03.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 02/08/2023] [Accepted: 03/28/2023] [Indexed: 04/21/2023]
Abstract
Entry of enveloped viruses into cells is mediated by viral fusogenic proteins that drive membrane rearrangements needed for fusion between viral and target membranes. Skeletal muscle development also requires membrane fusion events between progenitor cells to form multinucleated myofibers. Myomaker and Myomerger are muscle-specific cell fusogens but do not structurally or functionally resemble classical viral fusogens. We asked whether the muscle fusogens could functionally substitute for viral fusogens, despite their structural distinctiveness, and fuse viruses to cells. We report that engineering of Myomaker and Myomerger on the membrane of enveloped viruses leads to specific transduction of skeletal muscle. We also demonstrate that locally and systemically injected virions pseudotyped with the muscle fusogens can deliver μDystrophin to skeletal muscle of a mouse model of Duchenne muscular dystrophy and alleviate pathology. Through harnessing the intrinsic properties of myogenic membranes, we establish a platform for delivery of therapeutic material to skeletal muscle.
Collapse
Affiliation(s)
- Sajedah M Hindi
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael J Petrany
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Elena Greenfeld
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Leah C Focke
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Alyssa A W Cramer
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael A Whitt
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Christopher W Ward
- Department of Orthopedics and Center for Biomedical Engineering and Technology (BioMET), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeffrey S Chamberlain
- Departments of Neurology, Medicine and Biochemistry, Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Vikram Prasad
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Witcher PC, Sun C, Millay DP. Expression of Myomaker and Myomerger in myofibers causes muscle pathology. Skelet Muscle 2023; 13:8. [PMID: 37127758 PMCID: PMC10150476 DOI: 10.1186/s13395-023-00317-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Skeletal muscle development and regeneration depend on cellular fusion of myogenic progenitors to generate multinucleated myofibers. These progenitors utilize two muscle-specific fusogens, Myomaker and Myomerger, which function by remodeling cell membranes to fuse to each other or to existing myofibers. Myomaker and Myomerger expression is restricted to differentiating progenitor cells as they are not detected in adult myofibers. However, Myomaker remains expressed in myofibers from mice with muscular dystrophy. Ablation of Myomaker from dystrophic myofibers results in reduced membrane damage, leading to a model where persistent fusogen expression in myofibers, in contrast to myoblasts, is harmful. METHODS Dox-inducible transgenic mice were developed to ectopically express Myomaker or Myomerger in the myofiber compartment of skeletal muscle. We quantified indices of myofiber membrane damage, such as serum creatine kinase and IgM+ myofibers, and assessed general muscle histology, including central nucleation, myofiber size, and fibrosis. RESULTS Myomaker or Myomerger expression in myofibers independently caused membrane damage at acute time points. This damage led to muscle pathology, manifesting with centrally nucleated myofibers and muscle atrophy. Dual expression of both Myomaker and Myomerger in myofibers exacerbated several aspects of muscle pathology compared to expression of either fusogen by itself. CONCLUSIONS These data reveal that while myofibers can tolerate some level of Myomaker and Myomerger, expression of a single fusogen above a threshold or co-expression of both fusogens is damaging to myofibers. These results explain the paradigm that their expression in myofibers can have deleterious consequences in muscle pathologies and highlight the need for their highly restricted expression during myogenesis and fusion.
Collapse
Affiliation(s)
- Phillip C Witcher
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chengyi Sun
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
12
|
Hindi SM, Petrany MJ, Greenfeld E, Focke LC, Cramer AA, Whitt MA, Prasad V, Chamberlain JS, Podbilewicz B, Millay DP. Enveloped viruses pseudotyped with mammalian myogenic cell fusogens target skeletal muscle for gene delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533157. [PMID: 36993357 PMCID: PMC10055243 DOI: 10.1101/2023.03.17.533157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Entry of enveloped viruses into cells is mediated by fusogenic proteins that form a complex between membranes to drive rearrangements needed for fusion. Skeletal muscle development also requires membrane fusion events between progenitor cells to form multinucleated myofibers. Myomaker and Myomerger are muscle-specific cell fusogens, but do not structurally or functionally resemble classical viral fusogens. We asked if the muscle fusogens could functionally substitute for viral fusogens, despite their structural distinctiveness, and fuse viruses to cells. We report that engineering of Myomaker and Myomerger on the membrane of enveloped viruses leads to specific transduction of skeletal muscle. We also demonstrate that locally and systemically injected virions pseudotyped with the muscle fusogens can deliver micro-Dystrophin (μDys) to skeletal muscle of a mouse model of Duchenne muscular dystrophy. Through harnessing the intrinsic properties of myogenic membranes, we establish a platform for delivery of therapeutic material to skeletal muscle.
Collapse
Affiliation(s)
- Sajedah M. Hindi
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Michael J. Petrany
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Elena Greenfeld
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Leah C. Focke
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Alyssa A.W. Cramer
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Michael A. Whitt
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Vikram Prasad
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jeffrey S. Chamberlain
- Departments of Neurology, Medicine and Biochemistry, Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Douglas P. Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
13
|
Abstract
Despite the evolutionary loss of tissue regenerative potential, robust skeletal muscle repair processes are largely retained even in higher vertebrates. In mammals, the skeletal muscle regeneration program is driven by resident stem cells termed satellite cells, guided by the coordinated activity of multiple intrinsic and extrinsic factors and other cell types. A thorough understanding of muscle repair mechanisms is crucial not only for combating skeletal myopathies, but for its prospective aid in devising therapeutic strategies to endow regenerative potential on otherwise regeneration-deficient organs. In this review, we discuss skeletal muscle regeneration from an evolutionary perspective, summarize the current knowledge of cellular and molecular mechanisms, and highlight novel paradigms of muscle repair revealed by explorations of the recent decade.
Collapse
Affiliation(s)
- Sajedah M Hindi
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| |
Collapse
|
14
|
Millay DP. Regulation of the myoblast fusion reaction for muscle development, regeneration, and adaptations. Exp Cell Res 2022; 415:113134. [PMID: 35367215 PMCID: PMC9058940 DOI: 10.1016/j.yexcr.2022.113134] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/23/2022] [Accepted: 03/28/2022] [Indexed: 12/27/2022]
Abstract
Fusion of plasma membranes is essential for skeletal muscle development, regeneration, exercise-induced adaptations, and results in a cell that contains hundreds to thousands of nuclei within a shared cytoplasm. The differentiation process in myocytes culminates in their fusion to form a new myofiber or fusion to an existing myofiber thereby contributing more synthetic material to the syncytium. The choice for two cells to fuse and become one could be a dangerous event if the two cells are not committed to an allied function. Thus, fusion events are highly regulated with positive and negative factors to fine-tune the process, and requires muscle-specific fusogens (Myomaker and Myomerger) as well as general cellular machinery to achieve the union of membranes. While a unified vertebrate myoblast fusion pathway is not yet established, recent discoveries should make this pursuit attainable. Not only does myocyte fusion impact the normal biology of skeletal muscle, but new evidence indicates dysregulation of the process impacts pathologies of skeletal muscle. Here, I will highlight the molecular players and biochemical mechanisms that drive fusion events in muscle, and discuss how this key myogenic process impacts skeletal muscle diseases.
Collapse
Affiliation(s)
- Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
15
|
Ramirez-Martinez A, Zhang Y, van den Boogaard MJ, McAnally JR, Rodriguez-Caycedo C, Chai AC, Chemello F, Massink MP, Cuppen I, Elferink MG, van Es RJ, Janssen NG, Walraven-van Oijen LP, Liu N, Bassel-Duby R, van Jaarsveld RH, Olson EN. Impaired activity of the fusogenic micropeptide Myomixer causes myopathy resembling Carey-Fineman-Ziter syndrome. J Clin Invest 2022; 132:e159002. [PMID: 35642635 PMCID: PMC9151691 DOI: 10.1172/jci159002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/21/2022] [Indexed: 01/19/2023] Open
Abstract
Skeletal muscle fibers contain hundreds of nuclei, which increase the overall transcriptional activity of the tissue and perform specialized functions. Multinucleation occurs through myoblast fusion, mediated by the muscle fusogens Myomaker (MYMK) and Myomixer (MYMX). We describe a human pedigree harboring a recessive truncating variant of the MYMX gene that eliminates an evolutionarily conserved extracellular hydrophobic domain of MYMX, thereby impairing fusogenic activity. Homozygosity of this human variant resulted in a spectrum of abnormalities that mimicked the clinical presentation of Carey-Fineman-Ziter syndrome (CFZS), caused by hypomorphic MYMK variants. Myoblasts generated from patient-derived induced pluripotent stem cells displayed defective fusion, and mice bearing the human MYMX variant died perinatally due to muscle abnormalities. In vitro assays showed that the human MYMX variant conferred minimal cell-cell fusogenicity, which could be restored with CRISPR/Cas9-mediated base editing, thus providing therapeutic potential for this disorder. Our findings identify MYMX as a recessive, monogenic human disease gene involved in CFZS, and provide new insights into the contribution of myoblast fusion to neuromuscular diseases.
Collapse
Affiliation(s)
- Andres Ramirez-Martinez
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yichi Zhang
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - John R. McAnally
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Cristina Rodriguez-Caycedo
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andreas C. Chai
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Francesco Chemello
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | - Robert J.J. van Es
- Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nard G. Janssen
- Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Ning Liu
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Eric N. Olson
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
16
|
Boyer JG, Huo J, Han S, Havens JR, Prasad V, Lin BL, Kass DA, Song T, Sadayappan S, Khairallah RJ, Ward CW, Molkentin JD. Depletion of skeletal muscle satellite cells attenuates pathology in muscular dystrophy. Nat Commun 2022; 13:2940. [PMID: 35618700 PMCID: PMC9135721 DOI: 10.1038/s41467-022-30619-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/03/2022] [Indexed: 11/11/2022] Open
Abstract
Skeletal muscle can repair and regenerate due to resident stem cells known as satellite cells. The muscular dystrophies are progressive muscle wasting diseases underscored by chronic muscle damage that is continually repaired by satellite cell-driven regeneration. Here we generate a genetic strategy to mediate satellite cell ablation in dystrophic mouse models to investigate how satellite cells impact disease trajectory. Unexpectedly, we observe that depletion of satellite cells reduces dystrophic disease features, with improved histopathology, enhanced sarcolemmal stability and augmented muscle performance. Mechanistically, we demonstrate that satellite cells initiate expression of the myogenic transcription factor MyoD, which then induces re-expression of fetal genes in the myofibers that destabilize the sarcolemma. Indeed, MyoD re-expression in wildtype adult skeletal muscle reduces membrane stability and promotes histopathology, while MyoD inhibition in a mouse model of muscular dystrophy improved membrane stability. Taken together these observations suggest that satellite cell activation and the fetal gene program is maladaptive in chronic dystrophic skeletal muscle.
Collapse
Affiliation(s)
- Justin G Boyer
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Jiuzhou Huo
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sarah Han
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Julian R Havens
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Vikram Prasad
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Brian L Lin
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - David A Kass
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Taejeong Song
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | | | - Christopher W Ward
- Department of Orthopedics and Center for Biomedical Engineering and Technology (BioMET), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA.
| |
Collapse
|
17
|
Ganassi M, Muntoni F, Zammit PS. Defining and identifying satellite cell-opathies within muscular dystrophies and myopathies. Exp Cell Res 2022; 411:112906. [PMID: 34740639 PMCID: PMC8784828 DOI: 10.1016/j.yexcr.2021.112906] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/12/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022]
Abstract
Muscular dystrophies and congenital myopathies arise from specific genetic mutations causing skeletal muscle weakness that reduces quality of life. Muscle health relies on resident muscle stem cells called satellite cells, which enable life-course muscle growth, maintenance, repair and regeneration. Such tuned plasticity gradually diminishes in muscle diseases, suggesting compromised satellite cell function. A central issue however, is whether the pathogenic mutation perturbs satellite cell function directly and/or indirectly via an increasingly hostile microenvironment as disease progresses. Here, we explore the effects on satellite cell function of pathogenic mutations in genes (myopathogenes) that associate with muscle disorders, to evaluate clinical and muscle pathological hallmarks that define dysfunctional satellite cells. We deploy transcriptomic analysis and comparison between muscular dystrophies and myopathies to determine the contribution of satellite cell dysfunction using literature, expression dynamics of myopathogenes and their response to the satellite cell regulator PAX7. Our multimodal approach extends current pathological classifications to define Satellite Cell-opathies: muscle disorders in which satellite cell dysfunction contributes to pathology. Primary Satellite Cell-opathies are conditions where mutations in a myopathogene directly affect satellite cell function, such as in Progressive Congenital Myopathy with Scoliosis (MYOSCO) and Carey-Fineman-Ziter Syndrome (CFZS). Primary satellite cell-opathies are generally characterised as being congenital with general hypotonia, and specific involvement of respiratory, trunk and facial muscles, although serum CK levels are usually within the normal range. Secondary Satellite Cell-opathies have mutations in myopathogenes that affect both satellite cells and muscle fibres. Such classification aids diagnosis and predicting probable disease course, as well as informing on treatment and therapeutic development.
Collapse
Affiliation(s)
- Massimo Ganassi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
18
|
Yoon JH, Lee SM, Lee Y, Kim MJ, Yang JW, Choi JY, Kwak JY, Lee KP, Yang YR, Kwon KS. Alverine citrate promotes myogenic differentiation and ameliorates muscle atrophy. Biochem Biophys Res Commun 2022; 586:157-162. [PMID: 34847441 DOI: 10.1016/j.bbrc.2021.11.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022]
Abstract
Sarcopenia is the age-related loss of muscle mass and function and no pharmacological medication has been approved for its treatment. We established an atrogin-1/MAFbx promoter assay to find drug candidates that inhibit myotube atrophy. Alverine citrate (AC) was identified using high-throughput screening of an existing drug library. AC is an established medicine for stomach and intestinal spasms. AC treatment increased myotube diameter and inhibited atrophy signals induced by either C26-conditioned medium or dexamethasone in cultured C2C12 myoblasts. AC also enhanced myoblast fusion through the upregulation of fusion-related genes during C2C12 myoblast differentiation. Oral administration of AC improves muscle mass and physical performance in aged mice, as well as hindlimb-disused mice. Taken together, our data suggest that AC may be a novel therapeutic candidate for improving muscle weakness, including sarcopenia.
Collapse
Affiliation(s)
- Jong Hyeon Yoon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Seung-Min Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | | | - Min Ju Kim
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Jae Won Yang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Jeong Yi Choi
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ju Yeon Kwak
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kwang-Pyo Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Yong Ryoul Yang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea; Aventi Inc., Daejeon, Republic of Korea.
| |
Collapse
|
19
|
Junion G, Jagla K. Diversification of muscle types in Drosophila embryos. Exp Cell Res 2022; 410:112950. [PMID: 34838813 DOI: 10.1016/j.yexcr.2021.112950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/31/2022]
Abstract
Drosophila embryonic somatic muscles represent a simple and tractable model system to study the gene regulatory networks that control diversification of cell types. Somatic myogenesis in Drosophila is initiated by intrinsic action of the mesodermal master gene twist, which activates a cascade of transcriptional outputs including myogenic differentiation factor Mef2, which triggers all aspects of the myogenic differentiation program. In parallel, the expression of a combinatorial code of identity transcription factors (iTFs) defines discrete particular features of each muscle fiber, such as number of fusion events, and specific attachment to tendon cells or innervation, thus ensuring diversification of muscle types. Here, we take the example of a subset of lateral transverse (LT) muscles and discuss how the iTF code and downstream effector genes progressively define individual LT properties such as fusion program, attachment and innervation. We discuss new challenges in the field including the contribution of posttranscriptional and epitranscriptomic regulation of gene expression in the diversification of cell types.
Collapse
Affiliation(s)
- Guillaume Junion
- Genetics Reproduction and Development Institute (iGReD), CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Krzysztof Jagla
- Genetics Reproduction and Development Institute (iGReD), CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
20
|
McKellar DW, Walter LD, Song LT, Mantri M, Wang MFZ, De Vlaminck I, Cosgrove BD. Large-scale integration of single-cell transcriptomic data captures transitional progenitor states in mouse skeletal muscle regeneration. Commun Biol 2021; 4:1280. [PMID: 34773081 PMCID: PMC8589952 DOI: 10.1038/s42003-021-02810-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/19/2021] [Indexed: 01/01/2023] Open
Abstract
Skeletal muscle repair is driven by the coordinated self-renewal and fusion of myogenic stem and progenitor cells. Single-cell gene expression analyses of myogenesis have been hampered by the poor sampling of rare and transient cell states that are critical for muscle repair, and do not inform the spatial context that is important for myogenic differentiation. Here, we demonstrate how large-scale integration of single-cell and spatial transcriptomic data can overcome these limitations. We created a single-cell transcriptomic dataset of mouse skeletal muscle by integration, consensus annotation, and analysis of 23 newly collected scRNAseq datasets and 88 publicly available single-cell (scRNAseq) and single-nucleus (snRNAseq) RNA-sequencing datasets. The resulting dataset includes more than 365,000 cells and spans a wide range of ages, injury, and repair conditions. Together, these data enabled identification of the predominant cell types in skeletal muscle, and resolved cell subtypes, including endothelial subtypes distinguished by vessel-type of origin, fibro-adipogenic progenitors defined by functional roles, and many distinct immune populations. The representation of different experimental conditions and the depth of transcriptome coverage enabled robust profiling of sparsely expressed genes. We built a densely sampled transcriptomic model of myogenesis, from stem cell quiescence to myofiber maturation, and identified rare, transitional states of progenitor commitment and fusion that are poorly represented in individual datasets. We performed spatial RNA sequencing of mouse muscle at three time points after injury and used the integrated dataset as a reference to achieve a high-resolution, local deconvolution of cell subtypes. We also used the integrated dataset to explore ligand-receptor co-expression patterns and identify dynamic cell-cell interactions in muscle injury response. We provide a public web tool to enable interactive exploration and visualization of the data. Our work supports the utility of large-scale integration of single-cell transcriptomic data as a tool for biological discovery.
Collapse
Affiliation(s)
- David W McKellar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lauren D Walter
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Leo T Song
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Madhav Mantri
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Michael F Z Wang
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| | - Benjamin D Cosgrove
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
21
|
McCormack NM, Villalón E, Viollet C, Soltis AR, Dalgard CL, Lorson CL, Burnett BG. Survival motor neuron deficiency slows myoblast fusion through reduced myomaker and myomixer expression. J Cachexia Sarcopenia Muscle 2021; 12:1098-1116. [PMID: 34115448 PMCID: PMC8350220 DOI: 10.1002/jcsm.12740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 05/05/2021] [Accepted: 05/21/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Spinal muscular atrophy is an inherited neurodegenerative disease caused by insufficient levels of the survival motor neuron (SMN) protein. Recently approved treatments aimed at increasing SMN protein levels have dramatically improved patient survival and have altered the disease landscape. While restoring SMN levels slows motor neuron loss, many patients continue to have smaller muscles and do not achieve normal motor milestones. While timing of treatment is important, it remains unclear why SMN restoration is insufficient to fully restore muscle size and function. We and others have shown that SMN-deficient muscle precursor cells fail to efficiently fuse into myotubes. However, the role of SMN in myoblast fusion is not known. METHODS In this study, we show that SMN-deficient myoblasts readily fuse with wild-type myoblasts, demonstrating fusion competency. Conditioned media from wild type differentiating myoblasts do not rescue the fusion deficit of SMN-deficient cells, suggesting that compromised fusion may primarily be a result of altered membrane dynamics at the cell surface. Transcriptome profiling of skeletal muscle from SMN-deficient mice revealed altered expression of cell surface fusion molecules. Finally, using cell and mouse models, we investigate if myoblast fusion can be rescued in SMN-deficient myoblast and improve the muscle pathology in SMA mice. RESULTS We found reduced expression of the muscle fusion proteins myomaker (P = 0.0060) and myomixer (P = 0.0051) in the muscle of SMA mice. Suppressing SMN expression in C2C12 myoblast cells reduces expression of myomaker (35% reduction; P < 0.0001) and myomixer, also known as myomerger and minion, (30% reduction; P < 0.0001) and restoring SMN levels only partially restores myomaker and myomixer expression. Ectopic expression of myomixer improves myofibre number (55% increase; P = 0.0006) and motor function (35% decrease in righting time; P = 0.0089) in SMA model mice and enhances motor function (82% decrease in righting time; P < 0.0001) and extends survival (28% increase; P < 0.01) when administered in combination with an antisense oligonucleotide that increases SMN protein levels. CONCLUSIONS Here, we identified reduced expression of muscle fusion proteins as a key factor in the fusion deficits of SMN-deficient myoblasts. This discovery provides a novel target to improve SMA muscle pathology and motor function, which in combination with SMN increasing therapy could enhance clinical outcomes for SMA patients.
Collapse
Affiliation(s)
- Nikki M McCormack
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD, USA
| | - Eric Villalón
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Coralie Viollet
- Collaborative Health Initiative Research Program, Uniformed Services University of the Heath Sciences, Bethesda, MD, USA
| | - Anthony R Soltis
- Collaborative Health Initiative Research Program, Uniformed Services University of the Heath Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation, Bethesda, MD, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD, USA.,Collaborative Health Initiative Research Program, Uniformed Services University of the Heath Sciences, Bethesda, MD, USA.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Christian L Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Barrington G Burnett
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD, USA
| |
Collapse
|
22
|
Affiliation(s)
- Hannah F Dugdale
- Centre for Human and Applied Physiological Sciences, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, Guy's Campus, King's College London, London, United Kingdom
| | - Julien Ochala
- Centre for Human and Applied Physiological Sciences, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, Guy's Campus, King's College London, London, United Kingdom.,Randall Centre for Cell and Molecular Biophysics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, Guy's Campus, King's College London, London, United Kingdom.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Yaseen W, Kraft-Sheleg O, Zaffryar-Eilot S, Melamed S, Sun C, Millay DP, Hasson P. Fibroblast fusion to the muscle fiber regulates myotendinous junction formation. Nat Commun 2021; 12:3852. [PMID: 34158500 PMCID: PMC8219707 DOI: 10.1038/s41467-021-24159-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Vertebrate muscles and tendons are derived from distinct embryonic origins yet they must interact in order to facilitate muscle contraction and body movements. How robust muscle tendon junctions (MTJs) form to be able to withstand contraction forces is still not understood. Using techniques at a single cell resolution we reexamine the classical view of distinct identities for the tissues composing the musculoskeletal system. We identify fibroblasts that have switched on a myogenic program and demonstrate these dual identity cells fuse into the developing muscle fibers along the MTJs facilitating the introduction of fibroblast-specific transcripts into the elongating myofibers. We suggest this mechanism resulting in a hybrid muscle fiber, primarily along the fiber tips, enables a smooth transition from muscle fiber characteristics towards tendon features essential for forming robust MTJs. We propose that dual characteristics of junctional cells could be a common mechanism for generating stable interactions between tissues throughout the musculoskeletal system.
Collapse
Affiliation(s)
- Wesal Yaseen
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ortal Kraft-Sheleg
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shelly Zaffryar-Eilot
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shay Melamed
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Chengyi Sun
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Peleg Hasson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
24
|
Zhang H, Wen J, Bigot A, Chen J, Shang R, Mouly V, Bi P. Human myotube formation is determined by MyoD-Myomixer/Myomaker axis. SCIENCE ADVANCES 2020; 6:eabc4062. [PMID: 33355126 PMCID: PMC11206528 DOI: 10.1126/sciadv.abc4062] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Myoblast fusion is essential for formations of myofibers, the basic cellular and functional units of skeletal muscles. Recent genetic studies in mice identified two long-sought membrane proteins, Myomaker and Myomixer, which cooperatively drive myoblast fusion. It is unknown whether and how human muscles, with myofibers of tremendously larger size, use this mechanism to achieve multinucleations. Here, we report an interesting fusion model of human myoblasts where Myomaker is sufficient to induce low-grade fusion, while Myomixer boosts its efficiency to generate giant myotubes. By CRISPR mutagenesis and biochemical assays, we identified MyoD as the key molecular switch of fusion that is required and sufficient to initiate Myomixer and Myomaker expression. Mechanistically, we defined the E-box motifs on promoters of Myomixer and Myomaker by which MyoD induces their expression for multinucleations of human muscle cells. Together, our study uncovered the key molecular apparatus and the transcriptional control mechanism underlying human myoblast fusion.
Collapse
Affiliation(s)
- Haifeng Zhang
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Junfei Wen
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Anne Bigot
- Center for Research in Myology UMRS974, Sorbonne Université, INSERM, Myology Institute AIM, Paris, France
| | - Jiacheng Chen
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Renjie Shang
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Vincent Mouly
- Center for Research in Myology UMRS974, Sorbonne Université, INSERM, Myology Institute AIM, Paris, France
| | - Pengpeng Bi
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA.
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
25
|
Chemello F, Wang Z, Li H, McAnally JR, Liu N, Bassel-Duby R, Olson EN. Degenerative and regenerative pathways underlying Duchenne muscular dystrophy revealed by single-nucleus RNA sequencing. Proc Natl Acad Sci U S A 2020; 117:29691-29701. [PMID: 33148801 PMCID: PMC7703557 DOI: 10.1073/pnas.2018391117] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle disorder characterized by cycles of degeneration and regeneration of multinucleated myofibers and pathological activation of a variety of other muscle-associated cell types. The extent to which different nuclei within the shared cytoplasm of a myofiber may display transcriptional diversity and whether individual nuclei within a multinucleated myofiber might respond differentially to DMD pathogenesis is unknown. Similarly, the potential transcriptional diversity among nonmuscle cell types within dystrophic muscle has not been explored. Here, we describe the creation of a mouse model of DMD caused by deletion of exon 51 of the dystrophin gene, which represents a prevalent disease-causing mutation in humans. To understand the transcriptional abnormalities and heterogeneity associated with myofiber nuclei, as well as other mononucleated cell types that contribute to the muscle pathology associated with DMD, we performed single-nucleus transcriptomics of skeletal muscle of mice with dystrophin exon 51 deletion. Our results reveal distinctive and previously unrecognized myonuclear subtypes within dystrophic myofibers and uncover degenerative and regenerative transcriptional pathways underlying DMD pathogenesis. Our findings provide insights into the molecular underpinnings of DMD, controlled by the transcriptional activity of different types of muscle and nonmuscle nuclei.
Collapse
Affiliation(s)
- Francesco Chemello
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Zhaoning Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Hui Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - John R McAnally
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
26
|
Sun C, Shen L, Zhang Z, Xie X. Therapeutic Strategies for Duchenne Muscular Dystrophy: An Update. Genes (Basel) 2020; 11:genes11080837. [PMID: 32717791 PMCID: PMC7463903 DOI: 10.3390/genes11080837] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022] Open
Abstract
Neuromuscular disorders encompass a heterogeneous group of conditions that impair the function of muscles, motor neurons, peripheral nerves, and neuromuscular junctions. Being the most common and most severe type of muscular dystrophy, Duchenne muscular dystrophy (DMD), is caused by mutations in the X-linked dystrophin gene. Loss of dystrophin protein leads to recurrent myofiber damage, chronic inflammation, progressive fibrosis, and dysfunction of muscle stem cells. Over the last few years, there has been considerable development of diagnosis and therapeutics for DMD, but current treatments do not cure the disease. Here, we review the current status of DMD pathogenesis and therapy, focusing on mutational spectrum, diagnosis tools, clinical trials, and therapeutic approaches including dystrophin restoration, gene therapy, and myogenic cell transplantation. Furthermore, we present the clinical potential of advanced strategies combining gene editing, cell-based therapy with tissue engineering for the treatment of muscular dystrophy.
Collapse
Affiliation(s)
- Chengmei Sun
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining 314400, China; (C.S.); (L.S.); (Z.Z.)
- Department of Medical Oncology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Luoan Shen
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining 314400, China; (C.S.); (L.S.); (Z.Z.)
| | - Zheng Zhang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining 314400, China; (C.S.); (L.S.); (Z.Z.)
| | - Xin Xie
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining 314400, China; (C.S.); (L.S.); (Z.Z.)
- Department of Medical Oncology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Correspondence: ; Tel.: +86-0571-87572326
| |
Collapse
|