1
|
Chi X, Chen R, Yang X, He X, Pan Z, Yao C, Peng H, Yang H, Huang W, Chen Z. Discovery of Novel DDR1 Inhibitors through a Hybrid Virtual Screening Pipeline, Biological Evaluation and Molecular Dynamics Simulations. ACS Med Chem Lett 2025; 16:602-610. [PMID: 40236534 PMCID: PMC11995236 DOI: 10.1021/acsmedchemlett.4c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/18/2025] [Accepted: 02/20/2025] [Indexed: 04/17/2025] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy with limited therapeutic options for many patients. Discoidin domain receptor 1 (DDR1), a transmembrane tyrosine kinase receptor, has been implicated in AML progression and represents a promising therapeutic target. In this study, we employed a hybrid virtual screening workflow that integrates deep learning-based binding affinity predictions with molecular docking techniques to identify potential DDR1 inhibitors. A multistage screening process involving PSICHIC, KarmaDock, Vina-GPU, and similarity-based scoring was conducted, leading to the selection of seven candidate compounds. The biological evaluation identified Compound 4 as a novel DDR1 inhibitor, demonstrating significant DDR1 inhibitory activity with an IC50 of 46.16 nM and a 99.86% inhibition rate against Z-138 cells at 10 μM. Molecular dynamics simulations and binding free energy calculations further validated the stability and strong binding interactions of Compound 4 with DDR1. This study highlights the utility of combining deep learning models with traditional molecular docking techniques to accelerate the discovery of potent and selective DDR1 inhibitors. The identified compounds hold promise for further development as targeted therapies for AML.
Collapse
Affiliation(s)
- Xinglong Chi
- Department
of Hematology, Tongde Hospital of Zhejiang
Province, No. 234, Gucui Road, Hangzhou 310012, Zhejiang, P.R. China
- Affiliated
Yongkang First People’s Hospital and School of Pharmaceutical
Sciences, Hangzhou Medical College, Hangzhou 310053, P.R. China
| | - Roufen Chen
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinle Yang
- College
of Pharmaceutical Sciences, Zhejiang University
of Technology, Hangzhou 310014, China
| | - Xinjun He
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhichao Pan
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenpeng Yao
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huilin Peng
- Department
of Lymphoma, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Haiyan Yang
- Department
of Lymphoma, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Wenhai Huang
- Affiliated
Yongkang First People’s Hospital and School of Pharmaceutical
Sciences, Hangzhou Medical College, Hangzhou 310053, P.R. China
| | - Zhilu Chen
- Department
of Hematology, Tongde Hospital of Zhejiang
Province, No. 234, Gucui Road, Hangzhou 310012, Zhejiang, P.R. China
| |
Collapse
|
2
|
Nokin MJ, Darbo E, Richard E, San José S, de Hita S, Prouzet-Mauleon V, Turcq B, Gerardelli L, Crake R, Velasco V, Koopmansch B, Lambert F, Xue JY, Sang B, Horne J, Ziemons E, Villanueva A, Blomme A, Herfs M, Cataldo D, Calvayrac O, Porporato P, Nadal E, Lito P, Jänne PA, Ricciuti B, Awad MM, Ambrogio C, Santamaría D. In vivo vulnerabilities to GPX4 and HDAC inhibitors in drug-persistent versus drug-resistant BRAF V600E lung adenocarcinoma. Cell Rep Med 2024; 5:101663. [PMID: 39094577 PMCID: PMC11384943 DOI: 10.1016/j.xcrm.2024.101663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
The current targeted therapy for BRAFV600E-mutant lung cancer consists of a dual blockade of RAF/MEK kinases often combining dabrafenib/trametinib (D/T). This regimen extends survival when compared to single-agent treatments, but disease progression is unavoidable. By using whole-genome CRISPR screening and RNA sequencing, we characterize the vulnerabilities of both persister and D/T-resistant cellular models. Oxidative stress together with concomitant induction of antioxidant responses is boosted by D/T treatment. However, the nature of the oxidative damage, the choice of redox detoxification systems, and the resulting therapeutic vulnerabilities display stage-specific differences. Persister cells suffer from lipid peroxidation and are sensitive to ferroptosis upon GPX4 inhibition in vivo. Biomarkers of lipid peroxidation are detected in clinical samples following D/T treatment. Acquired alterations leading to mitogen-activated protein kinase (MAPK) reactivation enhance cystine transport to boost GPX4-independent antioxidant responses. Similarly to BRAFV600E-mutant melanoma, histone deacetylase (HDAC) inhibitors decrease D/T-resistant cell viability and extend therapeutic response in vivo.
Collapse
Affiliation(s)
- Marie-Julie Nokin
- University of Bordeaux, INSERM U1218, ACTION Laboratory, IECB, 33600 Pessac, France; Laboratory of Biology of Tumor and Development (LBTD), GIGA-Cancer, University of Liege, 4000 Liege, Belgium.
| | - Elodie Darbo
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, 33000 Bordeaux, France
| | - Elodie Richard
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, 33000 Bordeaux, France
| | - Sonia San José
- University of Bordeaux, INSERM U1218, ACTION Laboratory, IECB, 33600 Pessac, France; Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Sergio de Hita
- University of Bordeaux, INSERM U1218, ACTION Laboratory, IECB, 33600 Pessac, France; Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, 33000 Bordeaux, France; Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Valérie Prouzet-Mauleon
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, 33000 Bordeaux, France; CRISP'edit, TBMCore, University of Bordeaux, CNRS UAR 3427, INSERM US05, 33000 Bordeaux, France
| | - Béatrice Turcq
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, 33000 Bordeaux, France; CRISP'edit, TBMCore, University of Bordeaux, CNRS UAR 3427, INSERM US05, 33000 Bordeaux, France
| | - Laura Gerardelli
- Laboratory of Biology of Tumor and Development (LBTD), GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Rebekah Crake
- Laboratory of Biology of Tumor and Development (LBTD), GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Valérie Velasco
- Department of Biopathology, Institut Bergonié, 33076 Bordeaux, France
| | - Benjamin Koopmansch
- Department of Human Genetics, University Hospital Center of Liege, 4000 Liege, Belgium
| | - Frederic Lambert
- Department of Human Genetics, University Hospital Center of Liege, 4000 Liege, Belgium
| | - Jenny Y Xue
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ben Sang
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julie Horne
- Laboratory of Pharmaceutical Analytical Chemistry, CIRM, University of Liege, 4000 Liege, Belgium
| | - Eric Ziemons
- Laboratory of Pharmaceutical Analytical Chemistry, CIRM, University of Liege, 4000 Liege, Belgium
| | - Alberto Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO); Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet del Llobregat, 08908 Barcelona, Spain
| | - Arnaud Blomme
- Laboratory of Cancer Signaling, GIGA-Stem Cells, University of Liege, 4000 Liege, Belgium
| | - Michael Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Didier Cataldo
- Laboratory of Biology of Tumor and Development (LBTD), GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Olivier Calvayrac
- Cancer Research Centre of Toulouse, INSERM UMR1037, CNRS UMR5071, 31100 Toulouse, France
| | - Paolo Porporato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Ernest Nadal
- Molecular Mechanisms of Cancer Program, Department of Medical Oncology, Catalan Institute of Oncology (ICO), Preclinical and Experimental Research in Thoracic Tumors (PReTT) Group, Oncobell Program, IDIBELL, L'Hospitalet del Llobregat, 08908 Barcelona, Spain
| | - Piro Lito
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Biagio Ricciuti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Mark M Awad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy.
| | - David Santamaría
- University of Bordeaux, INSERM U1218, ACTION Laboratory, IECB, 33600 Pessac, France; Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
3
|
Shen XT, Xie SZ, Zheng X, Zou TT, Hu BY, Xu J, Liu L, Xu YF, Wang XF, Wang H, Wang S, Zhu L, Yu KK, Zhu WW, Lu L, Zhang JB, Chen JH, Dong QZ, Yang LY, Qin LX. Cirrhotic-extracellular matrix attenuates aPD-1 treatment response by initiating immunosuppressive neutrophil extracellular traps formation in hepatocellular carcinoma. Exp Hematol Oncol 2024; 13:20. [PMID: 38388466 PMCID: PMC10882882 DOI: 10.1186/s40164-024-00476-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is closely associatedwith chronic liver diseases, particularly liver cirrhosis, which has an altered extracellular matrix (ECM) composition. The influence and its mechanism of the cirrhotic-ECM on the response of HCC to immune checkpoint inhibitor (ICI) remains less clarified. METHODS In silico, proteomic and pathological assessment of alteration of cirrhotic-ECM were applied in clinical cohort. Multiple pre-clinical models with ECM manipulation were used to evaluate cirrhotic-ECM's effect on ICI treatment. In silico, flow cytometry and IHC were applied to explore how cirrhotic-ECM affect HCC microenvironment. In vitro and in vivo experiments were carried out to identify the mechanism of how cirrhotic-ECM undermined ICI treatment. RESULTS We defined "a pro-tumor cirrhotic-ECM" which was featured as the up-regulation of collagen type 1 (Col1). Cirrhotic-ECM/Col1 was closely related to impaired T cell function and limited anti PD-1 (aPD-1) response of HCC patients from the TCGA pan cancer cohort and the authors' institution, as well as in multiple pre-clinical models. Mechanically, cirrhotic-ECM/Col1 orchestrated an immunosuppressive microenvironment (TME) by triggering Col1-DDR1-NFκB-CXCL8 axis, which initiated neutrophil extracellular traps (NETs) formation to shield HCC cells from attacking T cells and impede approaching T cells. Nilotinib, an inhibitor of DDR1, reversed the neutrophils/NETs dominant TME and efficiently enhanced the response of HCC to aPD-1. CONCLUSIONS Cirrhotic-ECM modulated a NETs enriched TME in HCC, produced an immune suppressive TME and weakened ICI efficiency. Col1 receptor DDR1 could be a potential target synergically used with ICI to overcome ECM mediated ICI resistance. These provide a mechanical insight and novel strategy to overcome the ICI resistance of HCC.
Collapse
Affiliation(s)
- Xiao-Tian Shen
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Sun-Zhe Xie
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xin Zheng
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Tian-Tian Zou
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Bei-Yuan Hu
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Jing Xu
- Department of Dermatology, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Lu Liu
- Department of Infection Disease, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Yun-Feng Xu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xu-Feng Wang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Hao Wang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Shun Wang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Le Zhu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Kang-Kang Yu
- Department of Infection Disease, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Wen-Wei Zhu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Ju-Bo Zhang
- Department of Infection Disease, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Jin-Hong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Lu-Yu Yang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Cancer Metastasis Institute, Fudan University, Shanghai, China.
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Cancer Metastasis Institute, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Maitz K, Valadez-Cosmes P, Raftopoulou S, Kindler O, Kienzl M, Bolouri H, Houghton AM, Schicho R, Heinemann A, Kargl J. Altered Treg Infiltration after Discoidin Domain Receptor 1 (DDR1) Inhibition and Knockout Promotes Tumor Growth in Lung Adenocarcinoma. Cancers (Basel) 2023; 15:5767. [PMID: 38136314 PMCID: PMC10742023 DOI: 10.3390/cancers15245767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Discoidin domain receptor 1 (DDR1), a tyrosine kinase receptor, has been associated with poor prognosis in patients with non-small cell lung cancer (NSCLC). However, its role in tumorigenesis remains poorly understood. This work aimed to explore the impact of DDR1 expression on immune cell infiltration in lung adenocarcinoma. Pharmacological inhibition and knockout of DDR1 were used in an immunocompetent mouse model of KRAS/p53-driven lung adenocarcinoma (LUAD). Tumor cells were engrafted subcutaneously, after which tumors were harvested for investigation of immune cell composition via flow cytometry. The Cancer Genome Atlas (TCGA) cohort was used to perform gene expression analysis of 509 patients with LUAD. Pharmacological inhibition and knockout of DDR1 increased the tumor burden, with DDR1 knockout tumors showing a decrease in CD8+ cytotoxic T cells and an increase in CD4+ helper T cells and regulatory T cells. TCGA analysis revealed that low-DDR1-expressing tumors showed higher FoxP3 (regulatory T-cell marker) expression than high-DDR1-expressing tumors. Our study showed that under certain conditions, the inhibition of DDR1, a potential therapeutic target in cancer treatment, might have negative effects, such as inducing a pro-tumorigenic tumor microenvironment. As such, further investigations are necessary.
Collapse
Affiliation(s)
- Kathrin Maitz
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Paulina Valadez-Cosmes
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Sofia Raftopoulou
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Oliver Kindler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Melanie Kienzl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Hamid Bolouri
- Center for Systems Immunology, Benaroya Research Center, Seattle, WA 98101, USA
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - A. McGarry Houghton
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA 98195, USA
| | - Rudolf Schicho
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| |
Collapse
|
5
|
Dean DC, Feng W, Walker RL, Thanindratarn P, Temple HT, Trent JC, Rosenberg AE, Hornicek FJ, Duan Z. Discoidin Domain Receptor Tyrosine Kinase 1 (DDR1) Is a Novel Therapeutic Target in Liposarcoma: A Tissue Microarray Study. Clin Orthop Relat Res 2023; 481:2140-2153. [PMID: 37768856 PMCID: PMC10567009 DOI: 10.1097/corr.0000000000002865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/22/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Liposarcoma is the most commonly diagnosed subtype of soft tissue sarcoma. As these tumors often arise near vital organs and neurovascular structures, complete resection can be challenging; consequently, recurrence rates are high. Additionally, available chemotherapeutic agents have shown limited benefit and substantial toxicities. There is, therefore, a clear and unmet need for novel therapeutics for liposarcoma. Discoidin domain receptor tyrosine kinase 1 (DDR1) is involved in adhesion, proliferation, differentiation, migration, and metastasis in several cancers. However, the expression and clinical importance of DDR1 in liposarcoma are unknown. QUESTIONS/PURPOSES The purposes of this study were to assess (1) the expression, (2) the association between DDR1 and survival, and (3) the functional roles of DDR1 in liposarcoma. METHODS The correlation between DDR1 expression in tumor tissues and clinicopathological features and survival was assessed via immunohistochemical staining of a liposarcoma tissue microarray. It contained 53 samples from 42 patients with liposarcoma and 11 patients with lipoma. The association between DDR1 and survival in liposarcoma was analyzed by Kaplan-Meier plots and log-rank tests. The DDR1 knockout liposarcoma cell lines were generated by CRISPR-Cas9 technology. The DDR1-specific and highly selective DDR1 inhibitor 7RH was applied to determine the impact of DDR1 expression on liposarcoma cell growth and proliferation. In addition, the effect of DDR1 inhibition on liposarcoma growth was further accessed in a three-dimensional cell culture model to mimic DDR1 effects in vivo. RESULTS The results demonstrate elevated expression of DDR1 in all liposarcoma subtypes relative to benign lipomas. Specifically, high DDR1 expression was seen in 55% (23 of 42) of liposarcomas and no benign lipomas. However, DDR1 expression was not found to be associated with poor survival in patients with liposarcoma. DDR1 knockout or treatment of 7RH showed decreased liposarcoma cell growth and proliferation. CONCLUSION DDR1 is aberrantly expressed in liposarcoma, and it contributes to several markers of oncogenesis in these tumors. CLINICAL RELEVANCE This work supports DDR1 as a promising therapeutic target in liposarcoma.
Collapse
Affiliation(s)
- Dylan C. Dean
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wenlong Feng
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Robert L. Walker
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pichaya Thanindratarn
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Orthopedic Surgery, Chulabhorn hospital, HRH Princess Chulabhorn College of Medical Science, Bangkok, Thailand
| | - H. Thomas Temple
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jonathan C. Trent
- Department of Medicine, Division of Medical Oncology, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrew E. Rosenberg
- Departments of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Francis J. Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
6
|
Elser M, Vehlow A, Juratli TA, Cordes N. Simultaneous inhibition of discoidin domain receptor 1 and integrin αVβ3 radiosensitizes human glioblastoma cells. Am J Cancer Res 2023; 13:4597-4612. [PMID: 37970361 PMCID: PMC10636682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/13/2023] [Indexed: 11/17/2023] Open
Abstract
Glioblastomas (GBM) are the most common primary brain tumors in adults and associated with poor clinical outcomes due to therapy resistances and destructive growth. Interactions of cancer cells with the extracellular matrix (ECM) play a pivotal role in therapy resistances and tumor progression. In this study, we investigate the functional dependencies between the discoidin domain receptor 1 (DDR1) and the integrin family of cell adhesion molecules for the radioresponse of human glioblastoma cells. By means of an RNA interference screen on DDR1 and all known integrin subunits, we identified co-targeting of DDR1/integrin β3 to most efficiently reduce clonogenicity, enhance cellular radiosensitivity and diminish repair of DNA double strand breaks (DSB). Simultaneous pharmacological inhibition of DDR1 with DDR1-IN-1 and of integrins αVβ3/αVβ5 with cilengitide resulted in confirmatory data in a panel of 2D grown glioblastoma cultures and 3D gliospheres. Mechanistically, we found that key DNA repair proteins ATM and DNA-PK are altered upon DDR1/integrin αVβ3/integrin αVβ5 inhibition, suggesting a link to DNA repair mechanisms. In sum, the radioresistance of human glioblastoma cells can effectively be declined by co-deactivation of DDR1, integrin αVβ3 and integrin αVβ5.
Collapse
Affiliation(s)
- Marc Elser
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden01307 Dresden, Germany
| | - Anne Vehlow
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden01307 Dresden, Germany
| | - Tareq A Juratli
- Department of Neurosurgery, Division of Neuro-Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden01307 Dresden, Germany
| | - Nils Cordes
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology-OncoRay01328 Dresden, Germany
- German Cancer Consortium, Partner Site Dresden, German Cancer Research Center69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden01307 Dresden, Germany
| |
Collapse
|
7
|
Xiong YX, Zhang XC, Zhu JH, Zhang YX, Pan YL, Wu Y, Zhao JP, Liu JJ, Lu YX, Liang HF, Zhang ZG, Zhang WG. Collagen I-DDR1 signaling promotes hepatocellular carcinoma cell stemness via Hippo signaling repression. Cell Death Differ 2023; 30:1648-1665. [PMID: 37117273 PMCID: PMC10307904 DOI: 10.1038/s41418-023-01166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023] Open
Abstract
Cancer stem cells (CSCs) are a minority population of cancer cells with stemness and multiple differentiation potentials, leading to cancer progression and therapeutic resistance. However, the concrete mechanism of CSCs in hepatocellular carcinoma (HCC) remains obscure. We found that in advanced HCC tissues, collagen I was upregulated, which is consistent with the expression of its receptor DDR1. Accordingly, high collagen I levels accompanied by high DDR1 expression are associated with poor prognoses in patients with HCC. Collagen I-induced DDR1 activation enhanced HCC cell stemness in vitro and in vivo. Mechanistically, DDR1 interacts with CD44, which acts as a co-receptor that amplifies collagen I-induced DDR1 signaling, and collagen I-DDR1 signaling antagonized Hippo signaling by facilitating the recruitment of PP2AA to MST1, leading to exaggerated YAP activation. The combined inhibition of DDR1 and YAP synergistically abrogated HCC cell stemness in vitro and tumorigenesis in vivo. A radiomic model based on T2 weighted images can noninvasively predict collagen I expression. These findings reveal the molecular basis of collagen I-DDR1 signaling inhibiting Hippo signaling and highlight the role of CD44/DDR1/YAP axis in promoting cancer cell stemness, suggesting that DDR1 and YAP may serve as novel prognostic biomarkers and therapeutic targets in HCC.
Collapse
Affiliation(s)
- Yi-Xiao Xiong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Xiao-Chao Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing-Han Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Yu-Xin Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Yong-Long Pan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Yu Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Jian-Ping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Jun-Jie Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Yuan-Xiang Lu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Hui-Fang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
| | - Zhan-Guo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
| | - Wan-Guang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Bhoopathi P, Mannangatti P, Das SK, Fisher PB, Emdad L. Chemoresistance in pancreatic ductal adenocarcinoma: Overcoming resistance to therapy. Adv Cancer Res 2023; 159:285-341. [PMID: 37268399 DOI: 10.1016/bs.acr.2023.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a prominent cause of cancer deaths worldwide, is a highly aggressive cancer most frequently detected at an advanced stage that limits treatment options to systemic chemotherapy, which has provided only marginal positive clinical outcomes. More than 90% of patients with PDAC die within a year of being diagnosed. PDAC is increasing at a rate of 0.5-1.0% per year, and it is expected to be the second leading cause of cancer-related mortality by 2030. The resistance of tumor cells to chemotherapeutic drugs, which can be innate or acquired, is the primary factor contributing to the ineffectiveness of cancer treatments. Although many PDAC patients initially responds to standard of care (SOC) drugs they soon develop resistance caused partly by the substantial cellular heterogeneity seen in PDAC tissue and the tumor microenvironment (TME), which are considered key factors contributing to resistance to therapy. A deeper understanding of molecular mechanisms involved in PDAC progression and metastasis development, and the interplay of the TME in all these processes is essential to better comprehend the etiology and pathobiology of chemoresistance observed in PDAC. Recent research has recognized new therapeutic targets ushering in the development of innovative combinatorial therapies as well as enhancing our comprehension of several different cell death pathways. These approaches facilitate the lowering of the therapeutic threshold; however, the possibility of subsequent resistance development still remains a key issue and concern. Discoveries, that can target PDAC resistance, either alone or in combination, have the potential to serve as the foundation for future treatments that are effective without posing undue health risks. In this chapter, we discuss potential causes of PDAC chemoresistance and approaches for combating chemoresistance by targeting different pathways and different cellular functions associated with and mediating resistance.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
9
|
Yang L, Zhang Y, Tang Y, Wang Y, Jiang P, Liu F, Feng N. A pan-cancer analysis of DDR1 in prognostic signature and tumor immunity, drug resistance. Sci Rep 2023; 13:5779. [PMID: 37031216 PMCID: PMC10082773 DOI: 10.1038/s41598-023-27975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/11/2023] [Indexed: 04/10/2023] Open
Abstract
Disk-like domain receptor 1 (DDR1) is a crucial regulator of pro-inflammatory mediators and matrix-degrading enzymes. Although mounting evidence supports a vital role for DDR1 in the tumorigenesis of some cancers, no pan-cancer analysis of DDR1 has been reported. Therefore, we aimed to explore the prognostic value of DDR1 in 33 cancer types and investigate its potential immune function. We used a range of bioinformatics approaches to explore the potential carcinogenic role of DDR1 in multiple cancers. We found that DDR1 was expressed at high levels in most cancers. DDR1 expression was positively or negatively associated with prognosis in different cancers. DDR1 expression was significantly associated with DNA methylation in 8 cancers, while there was a correlation between DDR1 expression and RNA methylation-related genes and mismatch repair gene in most cancers. Furthermore, DDR1 expression was significantly associated with microsatellite instability in 6 cancers and tumor mutation burden in 11 cancers. In addition, DDR1 expression was also significantly correlated with immune cell infiltration, tumor microenvironment, immune-related genes, and drug resistance in various cancers. In conclusion, DDR1 can serve as a potential therapeutic target and prognostic marker for various malignancies due to its vital role in tumorigenesis and tumor immunity.
Collapse
Affiliation(s)
- Longfei Yang
- Medical School of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Yuwei Zhang
- Medical School of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Yifan Tang
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Yang Wang
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Peng Jiang
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Fengping Liu
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214028, Jiangsu, China.
| | - Ninghan Feng
- Medical School of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China.
| |
Collapse
|
10
|
Ko S, Jung KH, Yoon YC, Han BS, Park MS, Lee YJ, Kim SE, Cho YJ, Lee P, Lim JH, Ryu JK, Kim K, Kim TY, Hong S, Lee SH, Hong SS. A novel DDR1 inhibitor enhances the anticancer activity of gemcitabine in pancreatic cancer. Am J Cancer Res 2022; 12:4326-4342. [PMID: 36225647 PMCID: PMC9548003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extracellular matrix (ECM)-rich carcinoma, which promotes chemoresistance by inhibiting drug diffusion into the tumor. Discoidin domain receptor 1 (DDR1) increases tumor progression and drug resistance by binding to collagen, a major component of tumor ECM. Therefore, DDR1 inhibition may be helpful in cancer therapeutics by increasing drug delivery efficiency and improving drug sensitivity. In this study, we developed a novel DDR1 inhibitor, KI-301690 and investigated whether it could improve the anticancer activity of gemcitabine, a cytotoxic agent widely used for the treatment of pancreatic cancer. KI-301690 synergized with gemcitabine to suppress the growth of pancreatic cancer cells. Importantly, its combination significantly attenuated the expression of major tumor ECM components including collagen, fibronectin, and vimentin compared to gemcitabine alone. Additionally, this combination effectively decreased mitochondrial membrane potential (MMP), thereby inducing apoptosis. Further, the combination synergistically inhibited cell migration and invasion. The enhanced anticancer efficacy of the co-treatment could be explained by the inhibition of DDR1/PYK2/FAK signaling, which significantly reduced tumor growth in a pancreatic xenograft model. Our results demonstrate that KI-301690 can inhibit aberrant ECM expression by DDR1/PYK2/FAK signaling pathway blockade and attenuation of ECM-induced chemoresistance observed in desmoplastic pancreatic tumors, resulting in enhanced antitumor effect through effective induction of gemcitabine apoptosis.
Collapse
Affiliation(s)
- Soyeon Ko
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Kyung Hee Jung
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Young-Chan Yoon
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Beom Seok Han
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Min Seok Park
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Yun Ji Lee
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Sang Eun Kim
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Ye Jin Cho
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Pureunchowon Lee
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Joo Han Lim
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Ji-Kan Ryu
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Kewon Kim
- Center for Catalytic Hydrocarbon Functionalization, Institute of Basic Science (IBS) and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)Daejeon 34141, Korea
| | - Tae Young Kim
- Chemical Kinomics Research Center, Korea Institute of Science and TechnologySeoul 02792, Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalization, Institute of Basic Science (IBS) and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)Daejeon 34141, Korea
| | - So Ha Lee
- Chemical Kinomics Research Center, Korea Institute of Science and TechnologySeoul 02792, Korea
| | - Soon-Sun Hong
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| |
Collapse
|
11
|
Duan X, Xu X, Zhang Y, Gao Y, Zhou J, Li J. DDR1 functions as an immune negative factor in colorectal cancer by regulating tumor-infiltrating T cell through IL-18. Cancer Sci 2022; 113:3672-3685. [PMID: 35969377 PMCID: PMC9633303 DOI: 10.1111/cas.15533] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 12/01/2022] Open
Abstract
Immunotherapies represented by programmed cell death protein 1/programmed cell death ligand 1 (PD‐1/PD‐L1) immune checkpoint inhibitors have made great progress in the field of anticancer treatment, but most colorectal cancer patients do not benefit from immunotherapy. Discoidin domain receptor 1 (DDR1), a tyrosine kinase receptor, is activated by collagen binding and overexpressed in various malignancies. However, the role of DDR1 in colorectal cancer and immunoregulation remains unclear. In this study, we found DDR1 is highly expressed in colorectal cancer tissues and negatively associated with patient survival. We demonstrated that DDR1 promotes colorectal tumor growth only in vivo. Mechanistically, DDR1 is a negative immunomodulator in colorectal cancer and is involved in low infiltration of CD4+ and CD8+ T cells by inhibiting IL‐18 synthesis. We also reported that DDR1 enhances the expression of PD‐L1 through activating the c‐Jun amino terminal kinase (JNK) signaling pathway. In conclusion, our findings elucidate the immunosuppressive role of DDR1 in colorectal cancer, which may represent a novel target to enhance the efficacy of immunotherapy in colorectal cancer.
Collapse
Affiliation(s)
- Xiaofan Duan
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Xiaoxiao Xu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Yumei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Yuan Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Jiuli Zhou
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Sirvent A, Espie K, Papadopoulou E, Naim D, Roche S. New functions of DDR1 collagen receptor in tumor dormancy, immune exclusion and therapeutic resistance. Front Oncol 2022; 12:956926. [PMID: 35936735 PMCID: PMC9355703 DOI: 10.3389/fonc.2022.956926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 01/22/2023] Open
Abstract
The tumor microenvironment facilitates cancer progression and therapeutic resistance. Tumor collagens and their architecture play an essential role in this process. However, little is known about the mechanisms by which tumor cells sense and respond to this extracellular matrix environment. Recently, the Discoidin Domain Receptor 1 (DDR1), a collagen receptor and tyrosine kinase has emerged as an important player in this malignant process, although the underlying signaling mechanisms remain unclear. Here, we review new DDR1 functions in tumor dormancy following dissemination, immune exclusion and therapeutic resistance induced by stromal collagens deposition. We also discuss the signaling mechanisms behind these tumor activities and the therapeutic strategies aiming at targeting these collagens-dependent tumor responses.
Collapse
Affiliation(s)
| | | | | | | | - Serge Roche
- *Correspondence: Serge Roche, ; Audrey Sirvent,
| |
Collapse
|
13
|
Gupta K, Jones JC, Farias VDA, Mackeyev Y, Singh PK, Quiñones-Hinojosa A, Krishnan S. Identification of Synergistic Drug Combinations to Target KRAS-Driven Chemoradioresistant Cancers Utilizing Tumoroid Models of Colorectal Adenocarcinoma and Recurrent Glioblastoma. Front Oncol 2022; 12:840241. [PMID: 35664781 PMCID: PMC9158132 DOI: 10.3389/fonc.2022.840241] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
Treatment resistance is observed in all advanced cancers. Colorectal cancer (CRC) presenting as colorectal adenocarcinoma (COAD) is the second leading cause of cancer deaths worldwide. Multimodality treatment includes surgery, chemotherapy, and targeted therapies with selective utilization of immunotherapy and radiation therapy. Despite the early success of anti-epidermal growth factor receptor (anti-EGFR) therapy, treatment resistance is common and often driven by mutations in APC, KRAS, RAF, and PI3K/mTOR and positive feedback between activated KRAS and WNT effectors. Challenges in the direct targeting of WNT regulators and KRAS have caused alternative actionable targets to gain recent attention. Utilizing an unbiased drug screen, we identified combinatorial targeting of DDR1/BCR-ABL signaling axis with small-molecule inhibitors of EGFR-ERBB2 to be potentially cytotoxic against multicellular spheroids obtained from WNT-activated and KRAS-mutant COAD lines (HCT116, DLD1, and SW480) independent of their KRAS mutation type. Based on the data-driven approach using available patient datasets (The Cancer Genome Atlas (TCGA)), we constructed transcriptomic correlations between gene DDR1, with an expression of genes for EGFR, ERBB2-4, mitogen-activated protein kinase (MAPK) pathway intermediates, BCR, and ABL and genes for cancer stem cell reactivation, cell polarity, and adhesion; we identified a positive association of DDR1 with EGFR, ERBB2, BRAF, SOX9, and VANGL2 in Pan-Cancer. The evaluation of the pathway network using the STRING database and Pathway Commons database revealed DDR1 protein to relay its signaling via adaptor proteins (SHC1, GRB2, and SOS1) and BCR axis to contribute to the KRAS-PI3K-AKT signaling cascade, which was confirmed by Western blotting. We further confirmed the cytotoxic potential of our lead combination involving EGFR/ERBB2 inhibitor (lapatinib) with DDR1/BCR-ABL inhibitor (nilotinib) in radioresistant spheroids of HCT116 (COAD) and, in an additional devastating primary cancer model, glioblastoma (GBM). GBMs overexpress DDR1 and share some common genomic features with COAD like EGFR amplification and WNT activation. Moreover, genetic alterations in genes like NF1 make GBMs have an intrinsically high KRAS activity. We show the combination of nilotinib plus lapatinib to exhibit more potent cytotoxic efficacy than either of the drugs administered alone in tumoroids of patient-derived recurrent GBMs. Collectively, our findings suggest that combinatorial targeting of DDR1/BCR-ABL with EGFR-ERBB2 signaling may offer a therapeutic strategy against stem-like KRAS-driven chemoradioresistant tumors of COAD and GBM, widening the window for its applications in mainstream cancer therapeutics.
Collapse
Affiliation(s)
- Kshama Gupta
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Jeremy C Jones
- Department of Oncology, Mayo Clinic, Jacksonville, FL, United States
| | | | - Yuri Mackeyev
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Pankaj K Singh
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Alfredo Quiñones-Hinojosa
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States.,Department of Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, United States.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
14
|
Zhang G, Dong R, Kong D, Liu B, Zha Y, Luo M. The Effect of GLUT1 on Survival Rate and the Immune Cell Infiltration of Lung Adenocarcinoma and Squamous Cell Carcinoma: A Meta and Bioinformatics Analysis. Anticancer Agents Med Chem 2021; 22:223-238. [PMID: 34238200 DOI: 10.2174/1871520621666210708115406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) are two major subtypes of non-small cell lung cancer (NSCLC). Studies have shown that abnormal expression of glucose transport type 1 (GLUT1) in NSCLC patients has been associated with progression, aggressiveness, and poor clinical outcome. However, the clinical effect of GLUT1 expression on LUAD and LUSC is unclear. OBJECTIVE This study aims to learn more about the character of GLUT1 in LUAD and LUSC. METHODS A meta-analysis was performed to evaluate the GLUT1 protein level, and bioinformatics analysis was used to detect the GLUT1 mRNA expression level, survival differences, and the infiltration abundance of immune cells in samples from TCGA. Meanwhile, functional and network analysis was conducted to detect important signaling pathways and key genes with the Gene Expression Omnibus (GEO) dataset. RESULTS Our results showed that GLUT1 was over-expressed both in LUAD and LUSC. LUAD patients with high GLUT1 expression had a poor prognosis. Additionally, GLUT1 was related to B cell and neutrophil infiltration of LUAD. In LUSC, GLUT1 was correlated with tumor purity, B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and dendritic cell infiltration. The GEO dataset analysis results suggested GLUT1 potentially participated in the p53 signaling pathway and metabolism of xenobiotics by cytochrome P450 and was associated with KDR, TOX3, AGR2, FOXA1, ERBB3, ANGPT1, and COL4A3 gene in LUAD and LUSC. CONCLUSION GLUT1 might be a potential biomarker for aggressive progression and poor prognosis in LUAD, and a therapeutic biomarker in LUSC.
Collapse
Affiliation(s)
- Guihua Zhang
- Guizhou University School of Medicine, Guizhou University, Gui Yang, China
| | - Rong Dong
- Guizhou University School of Medicine, Guizhou University, Gui Yang, China
| | - Demiao Kong
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Gui Yang, China
| | - Bo Liu
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Gui Yang, China
| | - Yan Zha
- Guizhou University School of Medicine, Guizhou University, Gui Yang, China
| | - Meng Luo
- Guizhou University School of Medicine, Guizhou University, Gui Yang, China
| |
Collapse
|
15
|
Elkamhawy A, Lu Q, Nada H, Woo J, Quan G, Lee K. The Journey of DDR1 and DDR2 Kinase Inhibitors as Rising Stars in the Fight Against Cancer. Int J Mol Sci 2021; 22:ijms22126535. [PMID: 34207360 PMCID: PMC8235339 DOI: 10.3390/ijms22126535] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022] Open
Abstract
Discoidin domain receptor (DDR) is a collagen-activated receptor tyrosine kinase that plays critical roles in regulating essential cellular processes such as morphogenesis, differentiation, proliferation, adhesion, migration, invasion, and matrix remodeling. As a result, DDR dysregulation has been attributed to a variety of human cancer disorders, for instance, non-small-cell lung carcinoma (NSCLC), ovarian cancer, glioblastoma, and breast cancer, in addition to some inflammatory and neurodegenerative disorders. Since the target identification in the early 1990s to date, a lot of efforts have been devoted to the development of DDR inhibitors. From a medicinal chemistry perspective, we attempted to reveal the progress in the development of the most promising DDR1 and DDR2 small molecule inhibitors covering their design approaches, structure-activity relationship (SAR), biological activity, and selectivity.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Qili Lu
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
| | - Hossam Nada
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
| | - Jiyu Woo
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
| | - Guofeng Quan
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
- Correspondence:
| |
Collapse
|
16
|
Romayor I, Márquez J, Benedicto A, Herrero A, Arteta B, Olaso E. Tumor DDR1 deficiency reduces liver metastasis by colon carcinoma and impairs stromal reaction. Am J Physiol Gastrointest Liver Physiol 2021; 320:G1002-G1013. [PMID: 33851541 DOI: 10.1152/ajpgi.00078.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tumor DDR1 acts as a key factor during the desmoplastic response surrounding hepatic colorectal metastasis. Hepatic sinusoidal cell-derived soluble factors stimulate tumor DDR1 activation. DDR1 modulates matrix remodeling to promote metastasis in the liver through the interaction with hepatic stromal cells, specifically liver sinusoidal endothelial cells and hepatic stellate cells.
Collapse
Affiliation(s)
- Irene Romayor
- Tumor Microenvironment Group, Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Joana Márquez
- Tumor Microenvironment Group, Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitor Benedicto
- Tumor Microenvironment Group, Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Alba Herrero
- Tumor Microenvironment Group, Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Beatriz Arteta
- Tumor Microenvironment Group, Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Elvira Olaso
- Tumor Microenvironment Group, Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
17
|
The Yin and Yang of Discoidin Domain Receptors (DDRs): Implications in Tumor Growth and Metastasis Development. Cancers (Basel) 2021; 13:cancers13071725. [PMID: 33917302 PMCID: PMC8038660 DOI: 10.3390/cancers13071725] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The tumor microenvironment plays an important role in tumor development and metastasis. Collagens are major components of the extracellular matrix and can influence tumor development and metastasis by activating discoidin domain receptors (DDRs). This work shows the different roles of DDRs in various cancers and highlights the complexity of anti-DDR therapies in cancer treatment. Abstract The tumor microenvironment is a complex structure composed of the extracellular matrix (ECM) and nontumoral cells (notably cancer-associated fibroblasts (CAFs) and immune cells). Collagens are the main components of the ECM and they are extensively remodeled during tumor progression. Some collagens are ligands for the discoidin domain receptor tyrosine kinases, DDR1 and DDR2. DDRs are involved in different stages of tumor development and metastasis formation. In this review, we present the different roles of DDRs in these processes and discuss controversial findings. We conclude by describing emerging DDR inhibitory strategies, which could be used as new alternatives for the treatment of patients.
Collapse
|