1
|
Abstract
Vascular disease is a major cause of morbidity and mortality in patients with systemic autoimmune diseases, particularly systemic lupus erythematosus (SLE). Although comorbid cardiovascular risk factors are frequently present in patients with SLE, they do not explain the high burden of premature vascular disease. Profound innate and adaptive immune dysregulation seems to be the primary driver of accelerated vascular damage in SLE. In particular, evidence suggests that dysregulation of type 1 interferon (IFN-I) and aberrant neutrophils have key roles in the pathogenesis of vascular damage. IFN-I promotes endothelial dysfunction directly via effects on endothelial cells and indirectly via priming of immune cells that contribute to vascular damage. SLE neutrophils are vasculopathic in part because of their increased ability to form immunostimulatory neutrophil extracellular traps. Despite improvements in clinical care, cardiovascular disease remains the leading cause of mortality among patients with SLE, and treatments that improve vascular outcomes are urgently needed. Improved understanding of the mechanisms of vascular injury in inflammatory conditions such as SLE could also have implications for common cardiovascular diseases, such as atherosclerosis and hypertension, and may ultimately lead to personalized therapeutic approaches to the prevention and treatment of this potentially fatal complication.
Collapse
Affiliation(s)
- William G Ambler
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
2
|
Crisafulli L, Brindisi M, Liturri MG, Sobacchi C, Ficara F. PBX1: a TALE of two seasons-key roles during development and in cancer. Front Cell Dev Biol 2024; 12:1372873. [PMID: 38404687 PMCID: PMC10884236 DOI: 10.3389/fcell.2024.1372873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Pre-B cell leukemia factor 1 (PBX1) is a Three Aminoacid Loop Extension (TALE) homeodomain-containing transcription factor playing crucial roles in organ pattering during embryogenesis, through the formation of nuclear complexes with other TALE class and/or homeobox proteins to regulate target genes. Its contribution to the development of several organs has been elucidated mainly through the study of murine knockout models. A crucial role for human development has been recently highlighted through the discovery of different de novo pathogenic PBX1 variants in children affected by developmental defects. In the adult, PBX1 is expressed in selected tissues such as in the brain, in the gastro-intestinal and urinary systems, or in hematopoietic stem and progenitor cells, while in other organs is barely detectable. When involved in the t(1;19) chromosomal translocation it acts as an oncogene, since the resulting fusion protein drives pre-B cell leukemia, due to the induction of target genes not normally targeted by the native protein. Its aberrant expression has been associated to tumor development, progression, or therapy-resistance as in breast cancer, ovarian cancer or myeloproliferative neoplasm (MPN). On the other hand, in colorectal cancer PBX1 functions as a tumor suppressor, highlighting its context-dependent role. We here discuss differences and analogies of PBX1 roles during embryonic development and in cancer, focusing mainly on the most recent discoveries.
Collapse
Affiliation(s)
- Laura Crisafulli
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council, Milan, Italy
| | - Matteo Brindisi
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council, Milan, Italy
| | | | - Cristina Sobacchi
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council, Milan, Italy
| | - Francesca Ficara
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council, Milan, Italy
| |
Collapse
|
3
|
Blachut D, Przywara-Chowaniec B, Tomasik A, Kukulski T, Morawiec B. Update of Potential Biomarkers in Risk Prediction and Monitoring of Atherosclerosis in Systemic Lupus Erythematosus to Prevent Cardiovascular Disease. Biomedicines 2023; 11:2814. [PMID: 37893187 PMCID: PMC10604001 DOI: 10.3390/biomedicines11102814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Systemic lupus erythematosus is a chronic connective tissue disease associated with an increased risk of premature atherosclerosis. It is estimated that approximately 10% of SLE patients develop significant atherosclerosis each year, which is responsible for premature cardiovascular disease that is largely asymptomatic. This review summarizes the most recent reports from the past few years on biomarkers of atherosclerosis in SLE, mainly focusing on immune markers. Persistent chronic inflammation of the vascular wall is an important cause of cardiovascular disease (CVD) events related to endothelial dysfunction, cell proliferation, impaired production and function of nitric oxide and microangiopathic changes. Studies on pathogenic immune mediators involved in atherosclerosis will be crucial research avenues for preventing CVD.
Collapse
Affiliation(s)
- Dominika Blachut
- 2nd Department of Cardiology, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland
| | | | | | | | | |
Collapse
|
4
|
Park YP, Roach T, Soh S, Zeumer-Spataro L, Choi SC, Ostrov DA, Yang Y, Morel L. Molecular Mechanisms of Lupus Susceptibility Allele PBX1D. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:727-734. [PMID: 37486226 PMCID: PMC10530199 DOI: 10.4049/jimmunol.2300362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
Pre-B cell leukemia homeobox 1 (PBX1) controls chromatin accessibility to a large number of genes in various cell types. Its dominant negative splice isoform, PBX1D, which lacks the DNA and Hox-binding domains, is expressed more frequently in the CD4+ T cells from lupus-prone mice and patients with systemic lupus erythematosus than healthy control subjects. PBX1D overexpression in CD4+ T cells impaired regulatory T cell homeostasis and expanded inflammatory CD4+ T cells. In this study, we showed that PBX1 message expression is downregulated by activation in CD4+ T cells as well as in B cells. PBX1D protein was less stable than the normal isoform, PBX1B, and it is degraded through the ubiquitin-proteasome-dependent pathway. The DNA binding domain lacking in PBX1D has two putative ubiquitin binding sites, K292 and K293, that are predicted to be in direct contact with DNA. Mutation of K292-293 reduced PBX1B stability to a level similar to PBX1D and abrogated DNA binding. In addition, contrary to PBX1B, PBX1D is retained in the cytoplasm without the help of the cofactors MEIS or PREP1, indicating a different requirement for nuclear translocation. Overall, these findings suggest that multiple post-transcriptional mechanisms are responsible for PBX1D loss of function and induction of CD4+ T cell inflammatory phenotypes in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Yuk Pheel Park
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Tracoyia Roach
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL32610, USA
| | - Sujung Soh
- Research Institute of Women’s Health, Sookmyung Women’s University, 100 Cheongparo 47-gil, Yongsan-Gu, Seoul 04310, South Korea, USA
| | - Leilani Zeumer-Spataro
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL32610, USA
| | - Seung-Chul Choi
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - David A. Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL32610, USA
| | - Young Yang
- Research Institute of Women’s Health, Sookmyung Women’s University, 100 Cheongparo 47-gil, Yongsan-Gu, Seoul 04310, South Korea, USA
| | - Laurence Morel
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| |
Collapse
|
5
|
Liu Y, Yu X, Zhang W, Zhang X, Wang M, Ji F. Mechanistic insight into premature atherosclerosis and cardiovascular complications in systemic lupus erythematosus. J Autoimmun 2022; 132:102863. [PMID: 35853760 DOI: 10.1016/j.jaut.2022.102863] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is associated with a significant risk of cardiovascular disease (CVD), which substantially increases disease mortality and morbidity. The overall mechanisms associated with the development of premature atherosclerosis and CVD in SLE remain unclear, but has been considered as a result of an intricate interplay between the profound immune dysregulation and traditional CVD risk factors. Aberrant systemic inflammation in SLE may lead to an abnormal lipid profile and dysfunction, which can further fuel the pro-atherosclerotic environment. The existence of a strong imbalance between endothelial damage and vascular repair/angiogenesis promotes vascular injury, which is the early step in the progression of atherosclerotic CVD. Profound innate and adaptive immune dysregulation, characterized by excessive type I interferon burden, aberrant macrophage, platelet and complements activation, neutrophil dysregulation and neutrophil extracellular traps formation, uncontrolled T cell activation, and excessive autoantibody production and immune complex formation, have been proposed to promote accelerated CVD in SLE. While designing targeted therapies to correct the dysregulated immune activation may be beneficial in the treatment of SLE-related CVD, much additional work is needed to determine how to translate these findings into clinical practice. Additionally, a number of biomarkers display diagnostic potentials in improving CVD risk stratification in SLE, further prospective studies will help understand which biomarker(s) will be the most impactful one(s) in assessing SLE-linked CVD. Continued efforts to identify novel mechanisms and to establish criteria for assessing CVD risk as well as predicting CVD progression are in great need to improve CVD outcomes in SLE.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Xue Yu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Wenduo Zhang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Fusui Ji
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| |
Collapse
|
6
|
Kim B, Lee CJ, Won HH, Lee SH. Genetic Variants Associated with Supernormal Coronary Arteries. J Atheroscler Thromb 2022; 30:467-480. [PMID: 35793981 PMCID: PMC10164599 DOI: 10.5551/jat.63554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AIMS Genetic and medical insights from studies on cardioprotective phenotypes aid the development of novel therapeutics. This study identified genetic variants associated with supernormal coronary arteries using genome-wide association study data and the corresponding genes based on expression quantitative trait loci (eQTL). METHODS Study participants were selected from two Korean cohorts according to inclusion criteria that included males with high cardiovascular risk (Framingham risk score ≥ 14, 10-year risk ≥ 16%) but with normal coronary arteries (supernormal group) or coronary artery disease (control group). After screening 12,309 individuals, males meeting the supernormal phenotype (n=72) and age-matched controls (n=94) were enrolled. Genetic variants associated with the supernormal phenotype were identified using Firth's logistic regression, and eQTL was used to evaluate whether the identified variants influence the expression of particular genes in human tissues. RESULTS Approximately 5 million autosomal variants were tested for association with the supernormal phenotype, and 10 independent loci suggestive of supernormal coronary arteries (p<5.0 ×10 -5) were identified. The lead variants were seven intergenic single-nucleotide polymorphisms (SNPs), including one near PBX1, and three intronic SNPs, including one in PPFIA4. Of these variants or their proxies, rs9630089, rs6427989, and rs4984694 were associated with expression levels of SLIT1 and ARHGAP19, PPFIA4, and METTL26 in human tissues, respectively. These eQTL results supported their potential biological relevance. CONCLUSIONS This study identified genetic variants and eQTL genes associated with supernormal coronary arteries. These results suggest candidate genes representing potential therapeutic targets for coronary artery disease.
Collapse
Affiliation(s)
- Beomsu Kim
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center
| | - Chan Joo Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine
| |
Collapse
|
7
|
Elshikha AS, Teng XY, Kanda N, Li W, Choi SC, Abboud G, Terrell M, Fredenburg K, Morel L. TLR7 Activation Accelerates Cardiovascular Pathology in a Mouse Model of Lupus. Front Immunol 2022; 13:914468. [PMID: 35860280 PMCID: PMC9289616 DOI: 10.3389/fimmu.2022.914468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
We report a novel model of lupus-associated cardiovascular pathology accelerated by the TLR7 agonist R848 in lupus-prone B6.Sle1.Sle2.Sle3 (TC) mice. R848-treated TC mice but not non-autoimmune C57BL/6 (B6) controls developed microvascular inflammation and myocytolysis with intracellular vacuolization. This histopathology was similar to antibody-mediated rejection after heart transplant, although it did not involve complement. The TC or B6 recipients of serum or splenocytes from R848-treated TC mice developed a reactive cardiomyocyte hypertrophy, which also presents spontaneously in old TC mice as well as in TC.Rag-/- mice that lack B and T cells. Each of these cardiovascular lesions correspond to abnormalities that have been reported in lupus patients. Lymphoid and non-lymphoid immune cells as well as soluble factors contribute to lupus-associated cardiovascular lesions in TC mice, which can now be dissected using this model with and without R848 treatment.
Collapse
Affiliation(s)
- Ahmed S. Elshikha
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- Department of Pharmaceutics, Zagazig University, Zagazig, Egypt
| | - Xiang Yu Teng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Nathalie Kanda
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Georges Abboud
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Morgan Terrell
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Kristianna Fredenburg
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Terrell M, Morel L. The Intersection of Cellular and Systemic Metabolism: Metabolic Syndrome in Systemic Lupus Erythematosus. Endocrinology 2022; 163:bqac067. [PMID: 35560001 PMCID: PMC9155598 DOI: 10.1210/endocr/bqac067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 11/19/2022]
Abstract
A high prevalence of metabolic syndrome (MetS) has been reported in multiple cohorts of systemic lupus erythematosus (SLE) patients, most likely as one of the consequences of autoimmune pathogenesis. Although MetS has been associated with inflammation, its consequences on the lupus immune system and on disease manifestations are largely unknown. The metabolism of immune cells is altered and overactivated in mouse models as well as in patients with SLE, and several metabolic inhibitors have shown therapeutic benefits. Here we review recent studies reporting these findings, as well as the effect of dietary interventions in clinical and preclinical studies of SLE. We also explore potential causal links between systemic and immunometabolism in the context of lupus, and the knowledge gap that needs to be addressed.
Collapse
Affiliation(s)
- Morgan Terrell
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
9
|
Roach T, Morel L. Genetic Variations Controlling Regulatory T Cell Development and Activity in Mouse Models of Lupus-Like Autoimmunity. Front Immunol 2022; 13:887489. [PMID: 35693798 PMCID: PMC9178176 DOI: 10.3389/fimmu.2022.887489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Immune homeostasis is a constant balancing act between effector T cells and regulatory T cells defined by Foxp3 expression, the transcription factor that drives their differentiation and immunosuppressive activity. Immune homeostasis is altered when Treg cells are not generated or maintained in sufficient numbers. Treg cells rendered unstable by loss of Foxp3 expression, known as ex-Treg cells, gain pro-inflammatory functions. Treg cells may also become dysfunctional and lose their suppressive capabilities. These alterations can cause an imbalance between effector and regulatory subsets, which may ultimately lead to autoimmunity. This review discusses recent studies that identified genetic factors that maintain Treg cell stability as well as preserve their suppressive function. We focus on studies associated with systemic lupus erythematosus and highlight their findings in the context of potential therapeutic gene targeting in Treg cells to reverse the phenotypic changes and functional dysregulation inducing autoimmunity.
Collapse
|
10
|
Chowdhury RR, D’Addabbo J, Huang X, Veizades S, Sasagawa K, Louis DM, Cheng P, Sokol J, Jensen A, Tso A, Shankar V, Wendel BS, Bakerman I, Liang G, Koyano T, Fong R, Nau A, Ahmad H, Gopakumar JK, Wirka R, Lee A, Boyd J, Joseph Woo Y, Quertermous T, Gulati G, Jaiswal S, Chien YH, Chan C, Davis MM, Nguyen PK. Human Coronary Plaque T Cells Are Clonal and Cross-React to Virus and Self. Circ Res 2022; 130:1510-1530. [PMID: 35430876 PMCID: PMC9286288 DOI: 10.1161/circresaha.121.320090] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Coronary artery disease is an incurable, life-threatening disease that was once considered primarily a disorder of lipid deposition. Coronary artery disease is now also characterized by chronic inflammation' notable for the buildup of atherosclerotic plaques containing immune cells in various states of activation and differentiation. Understanding how these immune cells contribute to disease progression may lead to the development of novel therapeutic strategies. METHODS We used single-cell technology and in vitro assays to interrogate the immune microenvironment of human coronary atherosclerotic plaque at different stages of maturity. RESULTS In addition to macrophages, we found a high proportion of αβ T cells in the coronary plaques. Most of these T cells lack high expression of CCR7 and L-selectin, indicating that they are primarily antigen-experienced memory cells. Notably, nearly one-third of these cells express the HLA-DRA surface marker, signifying activation through their TCRs (T-cell receptors). Consistent with this, TCR repertoire analysis confirmed the presence of activated αβ T cells (CD4<CD8), exhibiting clonal expansion of specific TCRs. Interestingly, we found that these plaque T cells had TCRs specific for influenza, coronavirus, and other viral epitopes, which share sequence homologies to proteins found on smooth muscle cells and endothelial cells, suggesting potential autoimmune-mediated T-cell activation in the absence of active infection. To better understand the potential function of these activated plaque T cells, we then interrogated their transcriptome at the single-cell level. Of the 3 T-cell phenotypic clusters with the highest expression of the activation marker HLA-DRA, 2 clusters expressed a proinflammatory and cytolytic signature characteristic of CD8 cells, while the other expressed AREG (amphiregulin), which promotes smooth muscle cell proliferation and fibrosis, and, thus, contributes to plaque progression. CONCLUSIONS Taken together, these findings demonstrate that plaque T cells are clonally expanded potentially by antigen engagement, are potentially reactive to self-epitopes, and may interact with smooth muscle cells and macrophages in the plaque microenvironment.
Collapse
Affiliation(s)
- Roshni Roy Chowdhury
- Department of Microbiology and Immunology, Stanford University
- Department of Medicine (Section of Genetic Medicine), University of Chicago
| | - Jessica D’Addabbo
- Department of Medicine (Cardiovascular Medicine), Stanford University
| | - Xianxi Huang
- The First Affiliated Hospital of Shantou University Medical College
- Stanford Cardiovascular Institute, Stanford University
| | - Stefan Veizades
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
- Edinburgh Medical School, United Kingdom
| | - Koki Sasagawa
- Department of Medicine (Cardiovascular Medicine), Stanford University
| | | | - Paul Cheng
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
| | - Jan Sokol
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
| | - Annie Jensen
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
- Institute for Immunity, Transplantation and Infection, Stanford University
| | - Alexandria Tso
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
- Institute for Immunity, Transplantation and Infection, Stanford University
| | - Vishnu Shankar
- Institute for Immunity, Transplantation and Infection, Stanford University
| | - Ben Shogo Wendel
- Institute for Immunity, Transplantation and Infection, Stanford University
| | - Isaac Bakerman
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
| | - Grace Liang
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
| | - Tiffany Koyano
- Department of Cardiothoracic Surgery, Stanford University
| | - Robyn Fong
- Department of Cardiothoracic Surgery, Stanford University
| | - Allison Nau
- Department of Microbiology and Immunology, Stanford University
| | - Herra Ahmad
- Department of Pathology, Stanford University
| | | | - Robert Wirka
- Department of Medicine (Cardiovascular Medicine), Stanford University
| | - Andrew Lee
- Stanford Cardiovascular Institute, Stanford University
- Department of Pathology, Stanford University
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Jack Boyd
- Department of Surgery, Stanford University
| | | | - Thomas Quertermous
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
| | - Gunsagar Gulati
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University
| | | | - Yueh-Hsiu Chien
- Department of Microbiology and Immunology, Stanford University
| | - Charles Chan
- Stanford Cardiovascular Institute, Stanford University
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University
| | - Mark M. Davis
- Department of Microbiology and Immunology, Stanford University
- Edinburgh Medical School, United Kingdom
- Howard Hughes Medical Institute, Stanford University
| | - Patricia K. Nguyen
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
- Institute for Immunity, Transplantation and Infection, Stanford University
| |
Collapse
|
11
|
Ryan H, Morel L, Moore E. Vascular Inflammation in Mouse Models of Systemic Lupus Erythematosus. Front Cardiovasc Med 2022; 9:767450. [PMID: 35419427 PMCID: PMC8996195 DOI: 10.3389/fcvm.2022.767450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/18/2022] [Indexed: 12/30/2022] Open
Abstract
Vascular inflammation mediated by overly activated immune cells is a significant cause of morbidity and mortality in systemic lupus erythematosus (SLE). Several mouse models to study the pathogenesis of SLE are currently in use, many of which have different mechanisms of pathogenesis. The diversity of these models allows interrogation of different aspects of the disease pathogenesis. To better determine the mechanisms by which vascular inflammation occurs in SLE, and to assist future researchers in choosing the most appropriate mouse models to study cardiovascular complications in SLE, we suggest that direct comparisons of vascular inflammation should be conducted among different murine SLE models. We also propose the use of in vitro vascular assays to further investigate vascular inflammation processes prevalent among different murine SLE models.
Collapse
Affiliation(s)
- Holly Ryan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Laurence Morel
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Erika Moore
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
12
|
Li W, Gong M, Park YP, Elshikha AS, Choi SC, Brown J, Kanda N, Yeh WI, Peters L, Titov AA, Teng X, Brusko TM, Morel L. Lupus susceptibility gene Esrrg modulates regulatory T cells through mitochondrial metabolism. JCI Insight 2021; 6:e143540. [PMID: 34156979 PMCID: PMC8410062 DOI: 10.1172/jci.insight.143540] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 06/16/2021] [Indexed: 01/31/2023] Open
Abstract
Estrogen-related receptor γ (Esrrg) is a murine lupus susceptibility gene associated with T cell activation. Here, we report that Esrrg controls Tregs through mitochondria homeostasis. Esrrg deficiency impaired the maintenance and function of Tregs, leading to global T cell activation and autoimmunity in aged mice. Further, Esrrg-deficient Tregs presented an impaired differentiation into follicular Tregs that enhanced follicular helper T cells' responses. Mechanistically, Esrrg-deficient Tregs presented with dysregulated mitochondria with decreased oxygen consumption as well as ATP and NAD+ production. In addition, Esrrg-deficient Tregs exhibited decreased phosphatidylinositol and TGF-β signaling pathways and increased mTOR complex 1 activation. We found that the expression of human ESRRG, which is high in Tregs, was lower in CD4+ T cells from patients with lupus than in healthy controls. Finally, knocking down ESRRG in Jurkat T cells decreased their metabolism. Together, our results reveal a critical role of Esrrg in the maintenance and metabolism of Tregs, which may provide a genetic link between lupus pathogenesis and mitochondrial dysfunction in T cells.
Collapse
Affiliation(s)
- Wei Li
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Minghao Gong
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yuk Pheel Park
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ahmed S Elshikha
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA.,Department of Pharmaceutics, Zagazig University, Zagazig, Egypt
| | - Seung-Chul Choi
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Josephine Brown
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Nathalie Kanda
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Wen-I Yeh
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Leeana Peters
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Anton A Titov
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Xiangyu Teng
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Laurence Morel
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
13
|
Datta SK. Harnessing Tolerogenic Histone Peptide Epitopes From Nucleosomes for Selective Down-Regulation of Pathogenic Autoimmune Response in Lupus (Past, Present, and Future). Front Immunol 2021; 12:629807. [PMID: 33936042 PMCID: PMC8080879 DOI: 10.3389/fimmu.2021.629807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Autoantigen-directed tolerance can be induced by certain nucleosomal histone peptide epitope/s in nanomolar dosage leading to sustained remission of disease in mice with spontaneous SLE. By contrast, lupus is accelerated by administration of intact (whole) histones, or whole nucleosomes in microparticles from apoptotic cells, or by post-translationally acetylated histone-peptides. Low-dose therapy with the histone-peptide epitopes simultaneously induces TGFβ and inhibits IL-6 production by DC in vivo, especially pDC, which then induce CD4+CD25+ Treg and CD8+ Treg cells that suppress pathogenic autoimmune response. Both types of induced Treg cells are FoxP3+ and act by producing TGFβ at close cell-to-cell range. No anaphylactic adverse reactions, or generalized immunosuppression have been detected in mice injected with the peptides, because the epitopes are derived from evolutionarily conserved histones in the chromatin; and the peptides are expressed in the thymus during ontogeny, and their native sequences have not been altered. The peptide-induced Treg cells can block severe lupus on adoptive transfer reducing inflammatory cell reaction and infiltration in the kidney. In Humans, similar potent Treg cells are generated by the histone peptide epitopes in vitro in lupus patients’ PBMC, inhibiting anti-dsDNA autoantibody and interferon production. Furthermore, the same types of Treg cells are generated in lupus patients who are in very long-term remission (2-8 years) after undergoing autologous hematopoietic stem cell transplantation. These Treg cells are not found in lupus patients treated conventionally into clinical remission (SLEDAI of 0); and consequently they still harbor pathogenic autoimmune cells, causing subclinical damage. Although antigen-specific therapy with pinpoint accuracy is suitable for straight-forward organ-specific autoimmune diseases, Systemic Lupus is much more complex. The histone peptide epitopes have unique tolerogenic properties for inhibiting Innate immune cells (DC), T cells and B cell populations that are both antigen-specifically and cross-reactively involved in the pathogenic autoimmune response in lupus. The histone peptide tolerance is a natural and non-toxic therapy suitable for treating early lupus, and also maintaining lupus patients after toxic drug therapy. The experimental steps, challenges and possible solutions for successful therapy with these peptide epitopes are discussed in this highly focused review on Systemic Lupus.
Collapse
Affiliation(s)
- Syamal K Datta
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
14
|
Appleton BD, Major AS. The latest in systemic lupus erythematosus-accelerated atherosclerosis: related mechanisms inform assessment and therapy. Curr Opin Rheumatol 2021; 33:211-218. [PMID: 33394753 PMCID: PMC8049098 DOI: 10.1097/bor.0000000000000773] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Accelerated atherosclerosis is a significant comorbidity and the leading cause of death for patients with systemic lupus erythematosus (SLE). It is now apparent that SLE-accelerated atherosclerosis is not driven solely by traditional cardiovascular risk factors, adding complexity to disease characterization and mechanistic understanding. In this review, we will summarize new insights into SLE-accelerated atherosclerosis evaluation, treatment, and mechanism. RECENT FINDINGS Recent work highlights the need to incorporate inflammatory biomarkers into cardiovascular disease (CVD) risk assessments. This is especially true for SLE patients, in which mechanisms of immune dysfunction likely drive CVD progression. There is new evidence that commonly prescribed SLE therapeutics hinder atherosclerosis development. This effect is achieved both by reducing SLE-associated inflammation and by directly improving measures of atherosclerosis, emphasizing the interconnected mechanisms of the two conditions. SUMMARY SLE-accelerated atherosclerosis is most likely the consequence of chronic autoimmune inflammation. Therefore, diligent management of atherosclerosis requires assessment of SLE disease activity as well as traditional cardiovascular risk factors. This supports why many of the therapeutics classically used to control SLE also modulate atherosclerosis development. Greater understanding of the mechanisms underlying this condition will allow for the development of more targeted therapeutics and improved outcomes for SLE patients.
Collapse
Affiliation(s)
- Brenna D. Appleton
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Amy S. Major
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt Medical Center, Nashville, TN, 37232, USA
- Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN, 37212, USA
| |
Collapse
|
15
|
Dong L, He Y, Cao Y, Wang Y, Jia A, Wang Y, Yang Q, Li W, Bi Y, Liu G. Functional differentiation and regulation of follicular T helper cells in inflammation and autoimmunity. Immunology 2020; 163:19-32. [PMID: 33128768 DOI: 10.1111/imm.13282] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Follicular T helper (TFH ) cells are specialized T cells that support B cells, which are essential for humoral immunity. TFH cells express the transcription factor B-cell lymphoma 6 (Bcl-6), chemokine (C-X-C motif) receptor (CXCR) 5, the surface receptors programmed cell death protein 1 (PD-1) and inducible T-cell costimulator (ICOS), the cytokine IL-21 and other molecules. The activation, proliferation and differentiation of TFH cells are closely related to dynamic changes in cellular metabolism. In this review, we summarize the progress made in understanding the development and functional differentiation of TFH cells. Specifically, we focus on the regulatory mechanisms of TFH cell functional differentiation, including regulatory signalling pathways and the metabolic regulatory mechanisms of TFH cells. In addition, TFH cells are closely related to immune-associated diseases, including infections, autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Lin Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ying He
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yuexin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Anna Jia
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wanjie Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|