1
|
He Y, Wang X. A comprehensive investigation of associations between cell death pathways and molecular and clinical features in pan-cancer. Clin Transl Oncol 2025; 27:2731-2749. [PMID: 39487950 DOI: 10.1007/s12094-024-03769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Regulated cell death (RCD) pathways play significant roles in tumorigenesis. However, systematic investigation into correlations between RCD and various molecular and clinical features, particularly anti-tumor immunity and immunotherapy response in pan-cancer remains lacking. METHODS Using the single-sample gene set enrichment analysis, we quantified the activities of six RCD pathways (apoptosis, autophagy, ferroptosis, cuproptosis, necroptosis, and pyroptosis) in each cancer specimen. Then, we explored associations of these six RCD pathways with tumor immunity, genomic instability, tumor phenotypes and clinical features, and responses to immunotherapy and targeted therapies in pan-cancer by statistical analyses. RESULTS Our results showed that the RCD (except autophagy) activities were oncogenic signatures, as evidenced by their hyperactivation in late stage or metastatic cancer patients, positive correlations with tumor proliferation, stemness, genomic instability and intratumor heterogeneity, and correlation with worse survival outcomes in cancer. In contrast, autophagy was a tumor suppressive signature as its associations with molecular and clinical features in cancer shows an opposite pattern compared to the other RCD pathways. Furthermore, heightened RCD (except cuproptosis) activities were correlated with increased sensitivity to immune checkpoint inhibitors. Additionally, elevated activities of pyroptosis, autophagy, cuproptosis and necroptosis were associated with increased drug sensitivity in a broad spectrum of anti-tumor targeted therapies, while the elevated activity of ferroptosis was correlated with decreased sensitivity to numerous targeted therapies. CONCLUSION RCD (except autophagy) activities correlate with unfavorable cancer prognosis, while the autophagy activity correlate with favorable clinical outcomes. RCD (except cuproptosis) activities are positive biomarkers for anti-tumor immunity and immunotherapy response.
Collapse
Affiliation(s)
- Yin He
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Intelligent Pharmacy Interdisciplinary Research Center, China Pharmaceutical University, Nanjing, 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Intelligent Pharmacy Interdisciplinary Research Center, China Pharmaceutical University, Nanjing, 211198, China.
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China.
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
2
|
Eneh S, Hartikainen JM, Heikkinen S, Sironen R, Tengström M, Kosma VM, Ahuja S, Mannermaa A. High expression of miR-7974 predicts poor prognosis and is associated with autophagy in estrogen receptor-positive breast cancer. PLoS One 2025; 20:e0322179. [PMID: 40300005 PMCID: PMC12040258 DOI: 10.1371/journal.pone.0322179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/17/2025] [Indexed: 05/01/2025] Open
Abstract
Estrogen receptor-positive (ER+) breast cancers (BC) cause death despite well-established treatments. MicroRNAs (miRNAs) have potential as biomarkers specific to cancer subtypes and tissues, therefore miRNA-based biomarkers could help improve patient survival. In this study, we investigated a relatively unknown miRNA, miR-7974. We utilized small RNA data from 204 breast tissue samples to study miR-7974 association with clinicopathological features and outcomes for BC patients. Additionally, in vitro and in ovo methods were used to identify miR-7974 role at molecular and cellular level in MCF-7 cells. Findings were validated using MDA-MB-453 cells. MiR-7974 was upregulated in many clinicopathological features of BC (P<0.05). Furthermore, the highest expression of miR-7974 was associated with poor relapse-free survival in ER+ BC patients [hazard ratio (HR)=8.70; 95% confidence interval (CI)=3.28-23.06; P=1.37x10-05] and poor BC-specific survival in patients receiving only surgical treatment (HR=8.36; 95% CI=1.01-69.06; P=0.049). Our studies revealed that miR-7974 targets autophagy gene, MAP1LC3B, identified as direct miR-7974 target (P<0.05) in MCF-7 cells. In vitro analyses indicated overexpressing miR-7974 had anti-proliferative effect in MCF7 and MDA-MB-453 cells. Overall, our results demonstrate potential prognostic role of miR-7974 in ER+ BC.
Collapse
Affiliation(s)
- Stralina Eneh
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jaana M. Hartikainen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Multidisciplinary Cancer Research Community (Cancer RC), University of Eastern Finland, Kuopio, Finland
- Genome Center of Eastern Finland, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Reijo Sironen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Multidisciplinary Cancer Research Community (Cancer RC), University of Eastern Finland, Kuopio, Finland
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Maria Tengström
- Cancer Center, Department of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Veli-Matti Kosma
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Multidisciplinary Cancer Research Community (Cancer RC), University of Eastern Finland, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland.
| | - Saket Ahuja
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Arto Mannermaa
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Multidisciplinary Cancer Research Community (Cancer RC), University of Eastern Finland, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
3
|
Yibcharoenporn C, Muanprasat C, Moonwiriyakit A, Satitsri S, Pathomthongtaweechai N. AMPK in Intestinal Health and Disease: A Multifaceted Therapeutic Target for Metabolic and Inflammatory Disorders. Drug Des Devel Ther 2025; 19:3029-3058. [PMID: 40291159 PMCID: PMC12024487 DOI: 10.2147/dddt.s507489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/04/2025] [Indexed: 04/30/2025] Open
Abstract
The intestines play essential roles in nutrient absorption and immune function and help maintain a protective barrier. Disruptions to its function can result in various diseases, including metabolic disorders, inflammation, and cancer. As a key regulator of cellular energy levels, 5'-adenosine monophosphate-activated protein kinase (AMPK) is essential for intestinal health. Beyond its established metabolic role, emerging evidence suggests that AMPK exerts profound effects on intestinal cell physiology, influencing cell proliferation and differentiation, inflammation, autophagy, barrier integrity, and smooth muscle contractility. Here, we explore the structure and regulation of AMPK, as well as its diverse roles in intestinal diseases and potential as a therapeutic target. Our findings reveal that AMPK is a multifaceted regulator of intestinal health, modulating various cellular processes and intestinal diseases. It plays a dual role in cancer, acting as both a tumor suppressor and promoter, and it regulates inflammatory pathways, autophagy, tight junction formation, and smooth muscle contractility. Both natural and synthetic AMPK activators offer promise as therapeutic agents. This review of AMPK's mechanisms and activators offers valuable insights for developing novel therapies for intestinal disorders. Further research is needed to fully define AMPK's roles and therapeutic potential.
Collapse
Affiliation(s)
- Chamnan Yibcharoenporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Aekkacha Moonwiriyakit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Saravut Satitsri
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Nutthapoom Pathomthongtaweechai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| |
Collapse
|
4
|
Hu WM, Jiang WJ. A prognostic model for laryngeal squamous cell carcinoma based on the mitochondrial metabolism-related genes. Transl Cancer Res 2025; 14:966-979. [PMID: 40104737 PMCID: PMC11912054 DOI: 10.21037/tcr-24-1436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/17/2024] [Indexed: 03/20/2025]
Abstract
Background Mitochondrial metabolism-related genes (MMRGs) have emerged as potential therapeutic targets in cancer. This study aimed to construct a prognosis model based on MMRGs for patients with laryngeal squamous cell carcinoma (LSCC). Methods Differentially expressed MMRGs in LSCC were identified from The Cancer Genome Atlas (TCGA) and Molecular Signatures Database (MSigDB). Their functions were characterized by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). A prognostic model was established using univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses, and its performance was evaluated using Kaplan-Meier and receiver operating characteristic (ROC) curves. Gene set enrichment analysis (GSEA) was performed to elucidate the biological pathways associated with the hub prognostic MMRGs. Genetic perturbation similarity analysis (GPSA) was used to determine the regulatory network of hub genes. Additionally, the correlation of the hub MMRGs with the immune microenvironment and drug sensitivity was investigated. Results We identified 308 differentially expressed MMRGs, enriched in various metabolic processes and pathways. The prognostic model comprising four hub MMRGs (POLD1, PON2, SMS, and THEM5) accurately predicted patient outcomes, with the high-risk group exhibiting poorer survival. Additionally, high expression of POLD1 and THEM5 while low expression of PON2 and SMS indicated better prognosis for LSCC patients. GSEA revealed pathways correlated with each prognostic MMRG, such as PI3K-AKT-mTOR signaling pathways, while GPSA identified key regulatory genes interacting with four hub MMRGs. Furthermore, differences in the tumor immune microenvironment and somatic mutation profiles were observed between high- and low-risk groups. Finally, the correlation of four hub MMRGs with 30 drug sensitivity was revealed. Conclusions This study highlights the prognostic significance of MMRGs in LSCC and underscores their potential as biomarkers for LSCC therapy.
Collapse
Affiliation(s)
- Wei-Ming Hu
- Head and Neck & Otolaryngology Center, Plastic Surgery Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Wen-Jing Jiang
- Head and Neck & Otolaryngology Center, Plastic Surgery Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
5
|
Jiang P, Chipurupalli S, Yoo BH, Liu X, Rosen KV. Inactivation of necroptosis-promoting protein MLKL creates a therapeutic vulnerability in colorectal cancer cells. Cell Death Dis 2025; 16:118. [PMID: 39979285 PMCID: PMC11842741 DOI: 10.1038/s41419-025-07436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
Mortality from colorectal cancer (CRC) is significant, and novel CRC therapies are needed. A pseudokinase MLKL typically executes necroptotic cell death, and MLKL inactivation protects cells from such death. However, we found unexpectedly that MLKL gene knockout enhanced CRC cell death caused by a protein synthesis inhibitor homoharringtonine used for chronic myeloid leukemia treatment. In an effort to explain this finding, we observed that MLKL gene knockout reduces the basal CRC cell autophagy and renders such autophagy critically dependent on the presence of VPS37A, a component of the ESCRT-I complex. We further found that the reason why homoharringtonine enhances CRC cell death caused by MLKL gene knockout is that homoharringtonine activates p38 MAP kinase and thereby prevents VPS37A from supporting autophagy in MLKL-deficient cells. We observed that the resulting inhibition of the basal autophagy in CRC cells triggers their parthanatos, a cell death type driven by poly(ADP-ribose) polymerase hyperactivation. Finally, we discovered that a pharmacological MLKL inhibitor necrosulfonamide strongly cooperates with homoharringtonine in suppressing CRC cell tumorigenicity in mice. Thus, while MLKL promotes cell death during necroptosis, MLKL supports the basal autophagy in CRC cells and thereby protects them from death. MLKL inactivation reduces such autophagy and renders the cells sensitive to autophagy inhibitors, such as homoharringtonine. Hence, MLKL inhibition creates a therapeutic vulnerability that could be utilized for CRC treatment.
Collapse
Affiliation(s)
- Peijia Jiang
- Departments of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Sandhya Chipurupalli
- Departments of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Byong Hoon Yoo
- Departments of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Xiaoyang Liu
- Departments of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Kirill V Rosen
- Departments of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
6
|
Liu Y, Wang H, Zhang S, Peng N, Hai S, Zhao H, Liu J, Liu W. The role of mitochondrial biogenesis, mitochondrial dynamics and mitophagy in gastrointestinal tumors. Cancer Cell Int 2025; 25:46. [PMID: 39955547 PMCID: PMC11829463 DOI: 10.1186/s12935-025-03685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/09/2025] [Indexed: 02/17/2025] Open
Abstract
Gastrointestinal tumors remain the leading causes of cancer-related deaths, and their morbidity and mortality remain high, which imposes a great socio-economic burden globally. Mitochondrial homeostasis depend on proper function and interaction of mitochondrial biogenesis, mitochondrial dynamics (fission and fusion) and mitophagy. Recent studies have demonstrated close implication of mitochondrial homeostasis in gastrointestinal tumorigenesis and development. In this review, we summarized the research progress on gastrointestinal tumors and mitochondrial quality control, as well as the underlying molecular mechanisms. It is anticipated that the comprehensive understanding of mitochondrial homeostasis in gastrointestinal carcinogenesis would benefit the application of mitochondria-targeted therapies for gastrointestinal tumors in future.
Collapse
Affiliation(s)
- Yihong Liu
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Hao Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shen Zhang
- Department of Gastroenterology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Na Peng
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Shuangshuang Hai
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Haibo Zhao
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Jingwei Liu
- Department of Anus and Intestine Surgery, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| | - Weixin Liu
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| |
Collapse
|
7
|
Liu X, Sun X, Mu W, Li Y, Bu W, Yang T, Zhang J, Liu R, Ren J, Zhou J, Li P, Shi Y, Shao C. Autophagic flux-lipid droplet biogenesis cascade sustains mitochondrial fitness in colorectal cancer cells adapted to acidosis. Cell Death Discov 2025; 11:21. [PMID: 39856069 PMCID: PMC11761495 DOI: 10.1038/s41420-025-02301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Cancer development is associated with adaptation to various stressful conditions, such as extracellular acidosis. The adverse tumor microenvironment also selects for increased malignancy. Mitochondria are integral in stress sensing to allow for tumor cells to adapt to stressful conditions. Here, we show that colorectal cancer cells adapted to acidic microenvironment (CRC-AA) are more reliant on oxidative phosphorylation than their parental cells, and the acetyl-CoA in CRC-AA cells are generated from fatty acids and glutamine, but not from glucose. Consistently, CRC-AA cells exhibit increased mitochondrial mass and fitness that depends on an upregulated autophagic flux-lipid droplet axis. Lipid droplets (LDs) function as a buffering system to store the fatty acids derived from autophagy and to protect mitochondria from lipotoxicity in CRC-AA cells. Blockade of LD biogenesis causes mitochondrial dysfunction that can be rescued by inhibiting carnitine palmitoyltransferase 1 α (CPT1α). High level of mitochondrial superoxide is essential for the AMPK activation, resistance to apoptosis, high autophagic flux and mitochondrial function in CRC-AA cells. Thus, our results demonstrate that the cascade of autophagic flux and LD formation plays an essential role in sustaining mitochondrial fitness to promote cancer cell survival under chronic acidosis. Our findings provide insight into the pro-survival metabolic plasticity in cancer cells under microenvironmental or therapeutic stress and imply that this pro-survival cascade may potentially be targeted in cancer therapy.
Collapse
Affiliation(s)
- Xiaojie Liu
- The Third Affiliated of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, China
- Biochip Laboratory, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, China
| | - Xue Sun
- The Third Affiliated of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Wenqing Mu
- The Third Affiliated of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Yanan Li
- The Third Affiliated of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Wenqing Bu
- The Third Affiliated of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Tingting Yang
- The Third Affiliated of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Jia Zhang
- The Third Affiliated of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Rui Liu
- The Third Affiliated of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Jiayu Ren
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jin Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Peishan Li
- The Third Affiliated of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Yufang Shi
- The Third Affiliated of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Changshun Shao
- The Third Affiliated of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, China.
| |
Collapse
|
8
|
Agir N, Georgakopoulos-Soares I, Zaravinos A. A Multi-Omics Analysis of a Mitophagy-Related Signature in Pan-Cancer. Int J Mol Sci 2025; 26:448. [PMID: 39859167 PMCID: PMC11765132 DOI: 10.3390/ijms26020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Mitophagy, an essential process within cellular autophagy, has a critical role in regulating key cellular functions such as reproduction, metabolism, and apoptosis. Its involvement in tumor development is complex and influenced by the cellular environment. Here, we conduct a comprehensive analysis of a mitophagy-related gene signature, composed of PRKN, PINK1, MAP1LC3A, SRC, BNIP3L, BECN1, and OPTN, across various cancer types, revealing significant differential expression patterns associated with molecular subtypes, stages, and patient outcomes. Pathway analysis revealed a complex interplay between the expression of the signature and potential effects on the activity of various cancer-related pathways in pan-cancer. Immune infiltration analysis linked the mitophagy signature with certain immune cell types, particularly OPTN with immune infiltration in melanoma. Methylation patterns correlated with gene expression and immune infiltration. Mutation analysis also showed frequent alterations in PRKN (34%), OPTN (21%), PINK1 (28%), and SRC (15%), with implications for the tumor microenvironment. We also found various correlations between the expression of the mitophagy-related genes and sensitivity in different drugs, suggesting that targeting this signature could improve therapy efficacy. Overall, our findings underscore the importance of mitophagy in cancer biology and drug resistance, as well as its potential for informing treatment strategies.
Collapse
Affiliation(s)
- Nora Agir
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus;
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus;
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| |
Collapse
|
9
|
Xu Z, Zhao G, Zhang L, Qiao C, Wang H, Wei H, Liu R, Liu P, Zhang Y, Zhu W, You W. Tong-Xie-Yao-Fang induces mitophagy in colonic epithelial cells to inhibit colitis-associated colorectal cancer. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118541. [PMID: 38992403 DOI: 10.1016/j.jep.2024.118541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/10/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Based on the core pathogenesis of hepatosplenic disorder and qi transformation disorder in ulcerative colitis, Tong-Xie-Yao-Fang (TXYF) is a classical traditional Chinese medicine commonly used to treat ulcerative colitis. Our study revealed that it has the potential to prevent colitis-associated colorectal cancer, which embodies the academic concept in traditional Chinese medicine of treating the disease before it develops. AIM OF THE STUDY This study was aimed at evaluating the therapeutic role of TXYF in treating colitis-associated colorectal cancer and exploring its possible underlying mechanisms. MATERIALS AND METHODS A colitis-associated colorectal cancer model was established in mice using azoxymethane and dextran sulfate sodium salt to examine the therapeutic effect of TXYF. The mouse body weights were observed. Hematoxylin-eosin staining was used to evaluate mouse colon histopathology. Colon cancer cells and colon epithelial cells were used to explore the potential molecular mechanisms. The proliferation and apoptosis of cells were detected by CCK8 and cell colony assays, flow cytometry and western blotting. The epithelial-mesenchymal transition (EMT) and mitophagy markers were examined by immunohistochemistry, western blotting, quantitative real-time PCR and immunofluorescence staining. RESULTS TXYF inhibited the tumorigenesis of mice with colitis-associated colorectal cancer and the growth of inflammatory colon cells. TXYF induced mitophagy in colon cancer cells through the PTEN-induced putative kinase 1 (PINK1)/Parkin pathway to reverse EMT, which was consistent with the results in mice with colitis-associated colorectal cancer. CONCLUSIONS The results of the present study demonstrated that TXYF effectively inhibited the progression of colitis-associated colorectal cancer through the PINK1/Parkin pathway, which provides new evidence for prevention strategies for this disease.
Collapse
Affiliation(s)
- Zitong Xu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Gang Zhao
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Lize Zhang
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Cuixia Qiao
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Hao Wang
- Department of President's Office, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Hongyun Wei
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Ruiqing Liu
- Department of Gastroenterological Surgery, The Affiliated Hospital of Qingdao University, Shandong, 266000, China.
| | - Penglin Liu
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Yuejuan Zhang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Shandong, 266000, China.
| | - Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Shandong, 266000, China.
| | - Wenli You
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| |
Collapse
|
10
|
Sepehr A, Aghamohammad S, Ghanavati R, Bavandpour AK, Talebi M, Rohani M, Pourshafie MR. The inhibitory effects of the novel Lactobacillus cocktail on colorectal cancer development through modulating BMP signaling pathway: In vitro and in vivo study. Heliyon 2024; 10:e36554. [PMID: 39281652 PMCID: PMC11402137 DOI: 10.1016/j.heliyon.2024.e36554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
This study investigates the impact of a five-strain Lactobacillus cocktail (comprising two strains of L. plantarum, and one strain each of L. brevis, L. reuteri, and L. rhamnosus) on colorectal cancer (CRC) modulation by targeting the bone morphogenetic proteins (BMP) signaling pathway. Both in vitro and in vivo (models were employed. The antiproliferative effects of the Lactobacillus cocktail on HT-29 cells were assessed via the MTT assay. Mice were divided into three groups: a negative control (treated with PBS), a positive control (treated with azoxymethane (AOM)/dextran sulfate sodium (DSS) + PBS), and a test group (treated with AOM/DSS + Lactobacillus cocktail in PBS). The role of the Lactobacillus cocktail in inhibiting the BMP signaling pathway was evaluated using qRT-PCR for gene expression analysis and western blotting for β-catenin protein assessment in both models. The MTT assay results demonstrated a significant, time-dependent reduction in HT-29 cell proliferation. qRT-PCR indicated downregulation of the BMP signaling pathway in treated cells, which subsequently led to decreased expression of the hes1 gene, crucial for cell differentiation and proliferation control. This inhibitory effect was corroborated in the mice model, showing significant downregulation of BMP pathway genes and hes1 in the AOM/DSS/Lactobacillus cocktail-treated group. Additionally, western blotting revealed a marked decrease in β-catenin expression in both in vitro and in vivo experiments. Collectively, these findings suggest that the Lactobacillus cocktail may aid in CRC prevention by downregulating the BMP signaling pathway.
Collapse
Affiliation(s)
- Amin Sepehr
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Ali Karimi Bavandpour
- Department of Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| | - Malihe Talebi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
11
|
Ben Ahmed A, Scache J, Mortuaire M, Lefebvre T, Vercoutter-Edouart AS. Downregulation of O-GlcNAc transferase activity impairs basal autophagy and late endosome positioning under nutrient-rich conditions in human colon cells. Biochem Biophys Res Commun 2024; 724:150198. [PMID: 38852504 DOI: 10.1016/j.bbrc.2024.150198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
Autophagy is a critical catabolic pathway that enables cells to survive and adapt to stressful conditions, especially nutrient deprivation. The fusion of autophagic vacuoles with lysosomes is the final step of autophagy, which degrades the engulfed contents into metabolic precursors for re-use by the cell. O-GlcNAc transferase (OGT) plays a crucial role in regulating autophagy flux in response to nutrient stress, particularly by targeting key proteins involved in autophagosome-lysosome fusion. However, the role of OGT in basal autophagy, which occurs at a low and constitutive levels under growth conditions, remains poorly understood. Silencing or inhibition of OGT was used to compare the effect of OGT downregulation on autophagy flux in the non-cancerous CCD841CoN and cancerous HCT116 human colon cell lines under nutrient-rich conditions. We provide evidence that the reduction of OGT activity impairs the maturation of autophagosomes, thereby blocking the completion of basal autophagy in both cell lines. Additionally, OGT inhibition results in the accumulation of lysosomes and enlarged late endosomes in the perinuclear region, as demonstrated by confocal imaging. This is associated with a defect in the localization of the small GTPase Rab7 to these organelles. The regulation of transport and fusion events between the endosomal and lysosomal compartments is crucial for maintaining the autophagic flux. These findings suggest an interplay between OGT and the homeostasis of the endolysosomal network in human cells.
Collapse
Affiliation(s)
- Awatef Ben Ahmed
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Jodie Scache
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Marlène Mortuaire
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Tony Lefebvre
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | | |
Collapse
|
12
|
Haque PS, Kapur N, Barrett TA, Theiss AL. Mitochondrial function and gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2024; 21:537-555. [PMID: 38740978 PMCID: PMC12036329 DOI: 10.1038/s41575-024-00931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Mitochondria are dynamic organelles that function in cellular energy metabolism, intracellular and extracellular signalling, cellular fate and stress responses. Mitochondria of the intestinal epithelium, the cellular interface between self and enteric microbiota, have emerged as crucial in intestinal health. Mitochondrial dysfunction occurs in gastrointestinal diseases, including inflammatory bowel diseases and colorectal cancer. In this Review, we provide an overview of the current understanding of intestinal epithelial cell mitochondrial metabolism, function and signalling to affect tissue homeostasis, including gut microbiota composition. We also discuss mitochondrial-targeted therapeutics for inflammatory bowel diseases and colorectal cancer and the evolving concept of mitochondrial impairment as a consequence versus initiator of the disease.
Collapse
Affiliation(s)
- Parsa S Haque
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Neeraj Kapur
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Terrence A Barrett
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA.
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA.
| |
Collapse
|
13
|
Köse SG, Güleç Taşkıran AE. Mechanisms of drug resistance in nutrient-depleted colorectal cancer cells: insights into lysosomal and mitochondrial drug sequestration. Biol Open 2024; 13:bio060448. [PMID: 39445740 PMCID: PMC11554266 DOI: 10.1242/bio.060448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
This Review delves into the mechanisms behind drug resistance in colorectal cancer (CRC), particularly examining the role of nutrient depletion and its contribution to multidrug resistance (MDR). The study highlights metabolic adaptations of cancer cells as well as metabolic adaptations of cancer cells under low nutrient availability, including shifts in glycolysis and lipid metabolism. It emphasizes the significance of MDR1 and its encoded efflux transporter, P-glycoprotein (P-gp/B1), in mediating drug resistance and how pathways such as HIF1α, AKT, and mTOR influence the expression of P-gp/B1 under limited nutrient availability. Additionally, the Review explores the dual roles of autophagy in drug sensitivity and resistance under nutrient limited conditions. It further investigates the involvement of lysosomes and mitochondria, focusing on their roles in drug sequestration and the challenges posed by lysosomal entrapment facilitated by non-enzymatic processes and ABC transporters like P-gp/B1. Finally, the Review underscores the importance of understanding the interplay between drug sequestration, lysosomal functions, nutrient depletion, and MDR1 gene modulation. It suggests innovative strategies, including structural modifications and nanotechnology, as promising approaches to overcoming drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Serra Gülse Köse
- Molecular Biology and Genetics Department, Baskent University, Ankara 06790, Turkey
| | | |
Collapse
|
14
|
Tseng YT, Tsai CC, Chen PC, Lin BY, Hsu SCN, Huang SP, Huang B. Mechanical shear flow regulates the malignancy of colorectal cancer cells. Kaohsiung J Med Sci 2024; 40:650-659. [PMID: 38757734 DOI: 10.1002/kjm2.12844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Colorectal cancer (CRC) is notable for its high mortality and high metastatic characteristics. The shear force generated by bloodstream provides mechanical signals regulating multiple responses of cells, including metastatic cancer cells, dispersing in blood vessels. We, therefore, studied the effect of shear flow on circulating CRC cells in the present study. The CRC cell line SW620 was subjected to shear flow of 12.5 dynes/cm2 for 1 and 2 h separately. Resulting elevated caspase-9 and -3 indicated that shear flow initiated the apoptosis of SW620. Enlarged cell size associated with a higher level of cyclin D1 was coincident with the flow cytometric results indicating that the cell cycle was arrested at the G1 phase. An elevated phosphor-eNOSS1177 increased the production of nitric oxide and led to reactive oxygen species-mediated oxidative stress. Shear flow also regulated epithelial-mesenchymal transition (EMT) by increasing E-cadherin and ZO-1 while decreasing Snail and Twist1. The migration and invasion of sheared SW620 were also substantially decreased. Further investigations showed that mitochondrial membrane potential was significantly decreased, whereas mitochondrial mass and ATP production were not changed. In addition to the shear flow of 12.5 dynes/cm2, the expressions of EMT were compared at lower (6.25 dynes/cm2) and at higher (25 dynes/cm2) shear flow. The results showed that lower shear flow increased mesenchymal characteristics and higher shear flow increased epithelial characteristics. Shear flow reduces the malignancy of CRC in their metastatic dispersal that opens up new ways to improve cancer therapies by applying a mechanical shear flow device.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Chung Tsai
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Department of Pediatrics, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Ping-Chen Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Bo-Yan Lin
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sodio C N Hsu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Ping Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Bin Huang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Brockmueller A, Ruiz de Porras V, Shakibaei M. Curcumin and its anti-colorectal cancer potential: From mechanisms of action to autophagy. Phytother Res 2024; 38:3525-3551. [PMID: 38699926 DOI: 10.1002/ptr.8220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Colorectal cancer (CRC) development and progression, one of the most common cancers globally, is supported by specific mechanisms to escape cell death despite chemotherapy, including cellular autophagy. Autophagy is an evolutionarily highly conserved degradation pathway involved in a variety of cellular processes, such as the maintenance of cellular homeostasis and clearance of foreign bodies, and its imbalance is associated with many diseases. However, the role of autophagy in CRC progression remains controversial, as it has a dual function, affecting either cell death or survival, and is associated with cellular senescence in tumor therapy. Indeed, numerous data have been presented that autophagy in cancers serves as an alternative to cell apoptosis when the latter is ineffective or in apoptosis-resistant cells, which is why it is also referred to as programmed cell death type II. Curcumin, one of the active constituents of Curcuma longa, has great potential to combat CRC by influencing various cellular signaling pathways and epigenetic regulation in a safe and cost-effective approach. This review discusses the efficacy of curcumin against CRC in vitro and in vivo, particularly its modulation of autophagy and apoptosis in various cellular pathways. While clinical studies have assessed the potential of curcumin in cancer prevention and treatment, none have specifically examined its role in autophagy. Nonetheless, we offer an overview of potential correlations to support the use of this polyphenol as a prophylactic or co-therapeutic agent in CRC.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Vicenç Ruiz de Porras
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Barcelona, Spain
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
16
|
Singla S, Jena G. Studies on the mechanism of local and extra-intestinal tissue manifestations in AOM-DSS-induced carcinogenesis in BALB/c mice: role of PARP-1, NLRP3, and autophagy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4321-4337. [PMID: 38091080 DOI: 10.1007/s00210-023-02878-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/28/2023] [Indexed: 05/23/2024]
Abstract
Colitis-associated colorectal cancer (CACC) is one of the devastating complications of long-term inflammatory bowel disease and is associated with substantial morbidity and mortality. Combination of azoxymethane (AOM) and dextran sulfate sodium (DSS) has been extensively used for inflammation-mediated colon tumor development due to its reproducibility, potency, histological and molecular changes, and resemblance to human CACC. In the tumor microenvironment and extra-intestinal tissues, PARP-1, NLRP3 inflammasome, and autophagy's biological functions are complicated and encompass intricate interactions between these molecular components. The focus of the present investigation is to determine the colonic and extra-intestinal tissue damage induced by AOM-DSS and related molecular mechanisms. Azoxymethane (10 mg/kg, i.p.; single injection) followed by DSS (3 cycles, 7 days per cycle) over a period of 10 weeks induced colitis-associated colon cancer in male BALB/c mice. By initiating carcinogenesis with a single injection of azoxymethane (AOM) and then establishing inflammation with dextran sulfate sodium (DSS), a two-stage murine model for CACC was developed. Biochemical parameters, ELISA, histopathological and immunohistochemical analysis, and western blotting have been performed to evaluate the colonic, hepatic, testicular and pancreatic damage. In addition, the AOM/DSS-induced damage has been assessed by analyzing the expression of a variety of molecular targets, including proliferating cell nuclear antigen (PCNA), interleukin-10 (IL-10), AMP-activated protein kinase (AMPK), poly (ADP-ribose) polymerase-1 (PARP-1), cysteine-associated protein kinase-1 (caspase-1), NLR family pyrin domain containing 3 (NLRP3), beclin-1, and interleukin-1β (IL-1β). Present findings revealed that AOM/DSS developed tumors in colon tissue followed by extra-intestinal hepatic, testicular, and pancreatic damages.
Collapse
Affiliation(s)
- Shivani Singla
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S, Nagar, Punjab, 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S, Nagar, Punjab, 160062, India.
| |
Collapse
|
17
|
Yu L, Gao Y, Bao Q, Xu M, Lu J, Du W. Effects of N6-methyladenosine modification on metabolic reprogramming in digestive tract tumors. Heliyon 2024; 10:e24414. [PMID: 38293446 PMCID: PMC10826742 DOI: 10.1016/j.heliyon.2024.e24414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
N6-methyladenosine (m6A), the most abundant RNA modification within cells, participates in various biological and pathological processes, including self-renewal, invasion and proliferation, drug resistance, and stem cell characteristics. The m6A methylation plays a crucial role in tumors by regulating multiple RNA processes such as transcription, processing, and translation. Three protein types are primarily involved in m6A methylation: methyltransferases (such as METTL3, METTL14, ZC3H13, and KIAA1429), demethylases (such as FTO, ALKBH5), and RNA-binding proteins (such as the family of YTHDF, YTHDC1, YTHDC2, and IGF2BPs). Various metabolic pathways are reprogrammed in digestive tumors to meet the heightened growth demands and sustain cellular functionality. Recent studies have highlighted the extensive impact of m6A on the regulation of digestive tract tumor metabolism, further modulating tumor initiation and progression. Our review aims to provide a comprehensive understanding of the expression patterns, functional roles, and regulatory mechanisms of m6A in digestive tract tumor metabolism-related molecules and pathways. The characterization of expression profiles of m6A regulatory factors and in-depth studies on m6A methylation in digestive system tumors may provide new directions for clinical prediction and innovative therapeutic interventions.
Collapse
Affiliation(s)
- Liang Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuan Gao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qiongling Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Min Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Weibo Du
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
18
|
Zhang J, Chen C, Yan W, Fu Y. New sights of immunometabolism and agent progress in colitis associated colorectal cancer. Front Pharmacol 2024; 14:1303913. [PMID: 38273841 PMCID: PMC10808433 DOI: 10.3389/fphar.2023.1303913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Colitis associated colorectal cancer is a disease with a high incidence and complex course that develops from chronic inflammation and deteriorates after various immune responses and inflammation-induced attacks. Colitis associated colorectal cancer has the characteristics of both immune diseases and cancer, and the similarity of treatment models contributes to the similar treatment dilemma. Immunometabolism contributes to the basis of life and is the core of many immune diseases. Manipulating metabolic signal transduction can be an effective way to control the immune process, which is expected to become a new target for colitis associated colorectal cancer therapy. Immune cells participate in the whole process of colitis associated colorectal cancer development by transforming their functional condition via changing their metabolic ways, such as glucose, lipid, and amino acid metabolism. The same immune and metabolic processes may play different roles in inflammation, dysplasia, and carcinoma, so anti-inflammation agents, immunomodulators, and agents targeting special metabolism should be used in combination to prevent and inhibit the development of colitis associated colorectal cancer.
Collapse
Affiliation(s)
- Jingyue Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyue Chen
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Singhal R, Kotla NK, Solanki S, Huang W, Bell HN, El-Derany MO, Castillo C, Shah YM. Disruption of hypoxia-inducible factor-2α in neutrophils decreases colitis-associated colon cancer. Am J Physiol Gastrointest Liver Physiol 2024; 326:G53-G66. [PMID: 37933447 PMCID: PMC11208019 DOI: 10.1152/ajpgi.00182.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
Neutrophils are abundant immune cells in the colon tumor microenvironment. Studies have shown that neutrophils are recruited into hypoxic foci in colon cancer. However, the impact of hypoxia signaling on neutrophil function and its involvement in colon tumorigenesis remain unclear. To address this, we generated mice with a deletion of hypoxia-inducible factor (HIF)-1α or HIF-2α in neutrophils driven by the MRP8Cre (HIF-1αΔNeu) or (HIF-2αΔNeu) and littermate controls. In an azoxymethane (AOM)/dextran sulfate sodium (DSS) model of colon cancer, the disruption of neutrophils-HIF-1α did not result in any significant changes in body weight, colon length, tumor size, proliferation, or burden. However, the disruption of HIF-2α in neutrophils led to a slight increase in body weight, a significant decrease in the number of tumors, and a reduction in tumor size and volume compared with their littermate controls. Histological analysis of colon tissue from mice with HIF-2α-deficient neutrophils revealed notable reductions in proliferation as compared with control mice. In addition, we observed reduced levels of proinflammatory cytokines, such as TNF-α and IL-1β, in neutrophil-specific HIF-2α-deficient mice in both the tumor tissue as well as the neutrophils. Importantly, it is worth noting that the reduced tumorigenesis associated with HIF-2α deficiency in neutrophils was not evident in already established syngeneic tumors or a DSS-induced inflammation model, indicating a potential role of HIF-2α specifically in colon tumorigenesis. In conclusion, we found that the loss of neutrophil-specific HIF-2α slows colon tumor growth and progression by reducing the levels of inflammatory mediators.NEW & NOTEWORTHY Despite the importance of hypoxia and neutrophils in colorectal cancer (CRC), the contribution of neutrophil-specific HIFs to colon tumorigenesis is not known. We describe that neutrophil HIF-1α has no impact on colon cancer, whereas neutrophil HIF-2α loss reduces CRC growth by decreasing proinflammatory and immunosuppressive cytokines. Furthermore, neutrophil HIF-2α does not reduce preestablished tumor growth or inflammation-induced colitis. The present study offers novel potential of neutrophil HIF-2α as a therapeutic target in CRC.
Collapse
Affiliation(s)
- Rashi Singhal
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Nikhil Kumar Kotla
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Sumeet Solanki
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Wesley Huang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
- Cellular and Molecular Biology and Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, United States
| | - Hannah N Bell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Marwa O El-Derany
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Cristina Castillo
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
20
|
Jin C, Wang T, Yang Y, Zhou P, Li J, Wu W, Lv X, Ma G, Wang A. Rational targeting of autophagy in colorectal cancer therapy: From molecular interactions to pharmacological compounds. ENVIRONMENTAL RESEARCH 2023; 227:115721. [PMID: 36965788 DOI: 10.1016/j.envres.2023.115721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
The abnormal progression of tumors has been a problem for treatment of cancer and therapeutic should be directed towards targeting main mechanisms involved in tumorigenesis in tumors. The genomic mutations can result in changes in biological mechanisms in human cancers. Colorectal cancer is one of the most malignant tumors of gastrointestinal tract and its treatment has been faced some difficulties due to development of resistance in tumor cells and also, their malignant behavior. Hence, new therapeutic modalities for colorectal cancer are being investigated. Autophagy is a "self-digestion" mechanism that is responsible for homeostasis preserving in cells and its aberrant activation/inhibition can lead to tumorigenesis. The current review focuses on the role of autophagy mechanism in colorectal cancer. Autophagy may be associated with increase/decrease in progression of colorectal cancer due to mutual function of this molecular mechanism. Pro-survival autophagy inhibits apoptosis to increase proliferation and survival rate of colorectal tumor cells and it is also involved in cancer metastasis maybe due to EMT induction. In contrast, pro-death autophagy decreases growth and invasion of colorectal tumor cells. The status of autophagy (upregulation and down-regulation) is a determining factor for therapy response in colorectal tumor cells. Therefore, targeting autophagy can increase sensitivity of colorectal tumor cells to chemotherapy and radiotherapy. Interestingly, nanoparticles can be employed for targeting autophagy in cancer therapy and they can both induce/suppress autophagy in tumor cells. Furthermore, autophagy modulators can be embedded in nanostructures in improving tumor suppression and providing cancer immunotherapy.
Collapse
Affiliation(s)
- Canhui Jin
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Tianbao Wang
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Yanhui Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Pin Zhou
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Juncheng Li
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Wenhao Wu
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Xin Lv
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Guoqing Ma
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Aihong Wang
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China.
| |
Collapse
|
21
|
Xiang J, Gong W, Liu J, Zhang H, Li M, Wang R, Lv Y, Sun P. Identification of DLL3-related genes affecting the prognosis of patients with colon adenocarcinoma. Front Genet 2023; 14:1098190. [PMID: 37274780 PMCID: PMC10233108 DOI: 10.3389/fgene.2023.1098190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/24/2023] [Indexed: 06/07/2023] Open
Abstract
Background: Delta-like ligand 3 (DLL3) is one of the NOTCH family of ligands, which plays a pro- or anti-carcinogenic role in some cancers. But the role of DLL3 in colon adenocarcinoma (COAD) has not been studied in depth. Materials and methods: First, we used Kaplan-Meier (K-M) curve to evaluate the effect of DLL3 on the prognosis of COAD in The Cancer Genome Atlas (TCGA), which was further validated in clinical samples for immunohistochemistry. Then we screened for differentially expressed genes (DEGs) of DLL3 by analyzing datasets of COAD samples from Gene Expression Omnibus (GEO) and TCGA. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and Gene Set Enrichment Analysis (GSEA) were conducted to explore the underlying mechanisms of DLL3-related in the development and prognosis of COAD. On the basis of DLL3-related signature genes, a prognostic model and a nomogram were constructed. Finally, CIBERSORT was applied to assess the proportion of immune cell types in COAD sample. Results: Survival analysis showed a significant difference in overall survival between high- and low-expression group (p = 0.0092), with COAD patients in the high-group having poorer 5-year survival rate. Gene functional enrichment analysis revealed that DLL3-related DEGs were mainly enriched in tumor- and immunity-related signaling pathways, containing AMPK pathway and mitophagy-animal. The comparison of COAD tumor and normal, DLL3 high- and low-expression groups by GSEA found that AMPK signaling pathway and mitophagy-animal were inhibited. Nomogram constructed from DLL3-related signature genes had a good predictive effect on the prognosis of COAD. We found the highest correlation between DLL3 and interstitial dendritic cell (iDC), natural killer (NK) cell and Interstitial dendritic cell (Tem). DLL3 was also revealed to be diagnostic for COAD. In clinical sample, we identified higher DLL3 expression in colon cancer tissue than in adjacent control (p < 0.0001) and in metastasis than in primary lesion (p = 0.0056). DLL3 expression was associated with stage and high DLL3 expression was observed to predict poorer overall survival (p = 0.004). Conclusion: It suggested that DLL3 may offer prognostic value and therapeutic potential for individualized treatment of COAD, and that it may has a diagnostic role in COAD.
Collapse
Affiliation(s)
- Jinyu Xiang
- Departments of Oncology, Yantai Yuhuangding Hospital, Shandong University, Yantai, Shandong, China
| | - Wenjing Gong
- Departments of Oncology, Yantai Yuhuangding Hospital, Shandong University, Yantai, Shandong, China
| | - Jiannan Liu
- Departments of Oncology, Yantai Yuhuangding Hospital, Shandong University, Yantai, Shandong, China
| | - Huijuan Zhang
- Departments of Oncology, Yantai Yuhuangding Hospital, Shandong University, Yantai, Shandong, China
| | - Ming Li
- Departments of Oncology, Yantai Yuhuangding Hospital, Shandong University, Yantai, Shandong, China
| | - Rujian Wang
- Departments of Oncology, Yantai Yuhuangding Hospital, Shandong University, Yantai, Shandong, China
| | - Yaodong Lv
- Departments of Neurology, Yantai Yuhuangding Hospital, Shandong University, Yantai, Shandong, China
| | - Ping Sun
- Departments of Oncology, Yantai Yuhuangding Hospital, Shandong University, Yantai, Shandong, China
| |
Collapse
|
22
|
Chen B, Das NK, Talukder I, Singhal R, Castillo C, Andren A, Mancias JD, Lyssiotis CA, Shah YM. PTEN-induced kinase PINK1 supports colorectal cancer growth by regulating the labile iron pool. J Biol Chem 2023; 299:104691. [PMID: 37037306 PMCID: PMC10196865 DOI: 10.1016/j.jbc.2023.104691] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023] Open
Abstract
Mitophagy is a cargo-specific autophagic process that recycles damaged mitochondria to promote mitochondrial turnover. PTEN-induced putative kinase 1 (PINK1) mediates the canonical mitophagic pathway. However, the role of PINK1 in diseases where mitophagy has been purported to play a role, such as colorectal cancer, is unclear. Our results here demonstrate that higher PINK1 expression is positively correlated with decreased colon cancer survival, and mitophagy is required for colon cancer growth. We show that doxycycline-inducible knockdown (KD) of PINK1 in a panel of colon cancer cell lines inhibited proliferation, whereas disruption of other mitophagy receptors did not impact cell growth. We observed that PINK KD led to a decrease in mitochondrial respiration, membrane hyperpolarization, accumulation of mitochondrial DNA, and depletion of antioxidant glutathione. In addition, mitochondria are important hubs for the utilization of iron and synthesizing iron-dependent cofactors such as heme and iron sulfur clusters. We observed an increase in the iron storage protein ferritin and a decreased labile iron pool in the PINK1 KD cells, but total cellular iron or markers of iron starvation/overload were not affected. Finally, cellular iron storage and the labile iron pool are maintained via autophagic degradation of ferritin (ferritinophagy). We found overexpressing nuclear receptor coactivator 4, a key adaptor for ferritinophagy, rescued cell growth and the labile iron pool in PINK1 KD cells. These results indicate that PINK1 integrates mitophagy and ferritinophagy to regulate intracellular iron availability and is essential for maintaining intracellular iron homeostasis to support survival and growth in colorectal cancer cells.
Collapse
Affiliation(s)
- Brandon Chen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nupur K Das
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Indrani Talukder
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rashi Singhal
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cristina Castillo
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Anthony Andren
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph D Mancias
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
23
|
Weng JS, Huang JP, Yu W, Xiao J, Lin F, Lin KN, Zang WD, Ye Y, Lin JP. Mitophagy-related gene signature predicts prognosis, immune infiltration and chemotherapy sensitivity in colorectal cancer. World J Gastrointest Oncol 2023; 15:546-561. [PMID: 37009318 PMCID: PMC10052665 DOI: 10.4251/wjgo.v15.i3.546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/23/2022] [Accepted: 02/23/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Mitophagy plays essential role in the development and progression of colorectal cancer (CRC). However, the effect of mitophagy-related genes in CRC remains largely unknown.
AIM To develop a mitophagy-related gene signature to predict the survival, immune infiltration and chemotherapy response of CRC patients.
METHODS Non-negative matrix factorization was used to cluster CRC patients from Gene Expression Omnibus database (GSE39582, GSE17536, and GSE37892) based on mitophagy-related gene expression. The CIBERSORT method was applied for the evaluation of the relative infiltration levels of immune cell types. The performance signature in predicting chemotherapeutic sensitivity was generated using data from the Genomics of Drug Sensitivity in Cancer database.
RESULTS Three clusters with different clinicopathological features and prognosis were identified. Higher enrichment of activated B cells and CD4+ T cells were observed in cluster III patients with the most favorable prognosis. Next, a risk model based on mitophagy-related genes was developed. Patients in training and validation sets were categorized into low-risk and high-risk subgroups. Low risk patients showed significantly better prognosis, higher enrichment of immune activating cells and greater response to chemotherapy (oxaliplatin, irinotecan, and 5-fluorouracil) compared to high-risk patients. Further experiments identified CXCL3 as novel regulator of cell proliferation and mitophagy.
CONCLUSION We revealed the biological roles of mitophagy-related genes in the immune infiltration, and its ability to predict patients’ prognosis and response to chemotherapy in CRC. These interesting findings would provide new insight into the therapeutic management of CRC patients.
Collapse
Affiliation(s)
- Jin-Sen Weng
- Critical Care Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian Province, China
| | - Jie-Ping Huang
- Department of Emergency, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| | - Wei Yu
- Clinical Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian Province, China
| | - Jun Xiao
- Gastrointestinal Surgery Department, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian Province, China
| | - Fang Lin
- Critical Care Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian Province, China
| | - Kang-Ni Lin
- Critical Care Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian Province, China
| | - Wei-Dong Zang
- Gastrointestinal Surgery Department, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian Province, China
| | - Yong Ye
- Critical Care Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian Province, China
| | - Jing-Ping Lin
- Critical Care Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian Province, China
| |
Collapse
|
24
|
Kasprzak A. Autophagy and the Insulin-like Growth Factor (IGF) System in Colonic Cells: Implications for Colorectal Neoplasia. Int J Mol Sci 2023; 24:ijms24043665. [PMID: 36835075 PMCID: PMC9959216 DOI: 10.3390/ijms24043665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies worldwide. Along with apoptosis and inflammation, autophagy is one of three important mechanisms in CRC. The presence of autophagy/mitophagy in most normal mature intestinal epithelial cells has been confirmed, where it has mainly protective functions against reactive oxygen species (ROS)-induced DNA and protein damage. Autophagy regulates cell proliferation, metabolism, differentiation, secretion of mucins and/or anti-microbial peptides. Abnormal autophagy in intestinal epithelial cells leads to dysbiosis, a decline in local immunity and a decrease in cell secretory function. The insulin-like growth factor (IGF) signaling pathway plays an important role in colorectal carcinogenesis. This is evidenced by the biological activities of IGFs (IGF-1 and IGF-2), IGF-1 receptor type 1 (IGF-1R) and IGF-binding proteins (IGF BPs), which have been reported to regulate cell survival, proliferation, differentiation and apoptosis. Defects in autophagy are found in patients with metabolic syndrome (MetS), inflammatory bowel diseases (IBD) and CRC. In neoplastic cells, the IGF system modulates the autophagy process bidirectionally. In the current era of improving CRC therapies, it seems important to investigate the exact mechanisms not only of apoptosis, but also of autophagy in different populations of tumor microenvironment (TME) cells. The role of the IGF system in autophagy in normal as well as transformed colorectal cells still seems poorly understood. Hence, the aim of the review was to summarize the latest knowledge on the role of the IGF system in the molecular mechanisms of autophagy in the normal colon mucosa and in CRC, taking into account the cellular heterogeneity of the colonic and rectal epithelium.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland
| |
Collapse
|
25
|
Wolin IAV, Nascimento APM, Seeger R, Poluceno GG, Zanotto-Filho A, Nedel CB, Tasca CI, Correia SEG, Oliveira MV, Pinto-Junior VR, Osterne VJS, Nascimento KS, Cavada BS, Leal RB. The lectin DrfL inhibits cell migration, adhesion and triggers autophagy-dependent cell death in glioma cells. Glycoconj J 2023; 40:47-67. [PMID: 36522582 DOI: 10.1007/s10719-022-10095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of glioma, displaying atypical glycosylation pattern that may modulate signaling pathways involved in tumorigenesis. Lectins are glycan binding proteins with antitumor properties. The present study was designed to evaluate the antitumor capacity of the Dioclea reflexa lectin (DrfL) on glioma cell cultures. Our results demonstrated that DrfL induced morphological changes and cytotoxic effects in glioma cell cultures of C6, U-87MG and GBM1 cell lines. The action of DrfL was dependent upon interaction with glycans, and required a carbohydrate recognition domain (CRD), and the cytotoxic effect was apparently selective for tumor cells, not altering viability and morphology of primary astrocytes. DrfL inhibited tumor cell migration, adhesion, proliferation and survival, and these effects were accompanied by activation of p38MAPK and JNK (p46/54), along with inhibition of Akt and ERK1/2. DrfL also upregulated pro-apoptotic (BNIP3 and PUMA) and autophagic proteins (Atg5 and LC3 cleavage) in GBM cells. Noteworthy, inhibition of autophagy and caspase-8 were both able to attenuate cell death in GBM cells treated with DrfL. Our results indicate that DrfL cytotoxicity against GBM involves modulation of cell pathways, including MAPKs and Akt, which are associated with autophagy and caspase-8 dependent cell death.
Collapse
Affiliation(s)
- Ingrid A V Wolin
- Departamento de Bioquímica e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Ana Paula M Nascimento
- Departamento de Bioquímica e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Rodrigo Seeger
- Departamento de Bioquímica e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Gabriela G Poluceno
- Departamento de Bioquímica e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Alfeu Zanotto-Filho
- Departamento de Farmacologia e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Claudia B Nedel
- Departamento de Biologia Celular, Embriologia e Genética, Programa Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Carla I Tasca
- Departamento de Bioquímica e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Sarah Elizabeth Gomes Correia
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, CEP, 60020-181, BioMolLab, Fortaleza, Ceará, Brazil
| | - Messias Vital Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, CEP, 60020-181, BioMolLab, Fortaleza, Ceará, Brazil
| | - Vanir Reis Pinto-Junior
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, CEP, 60020-181, BioMolLab, Fortaleza, Ceará, Brazil
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, Ceará, CEP, 60020-181, Brazil
| | - Vinicius Jose Silva Osterne
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, CEP, 60020-181, BioMolLab, Fortaleza, Ceará, Brazil
| | - Kyria Santiago Nascimento
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, CEP, 60020-181, BioMolLab, Fortaleza, Ceará, Brazil
| | - Benildo Sousa Cavada
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, CEP, 60020-181, BioMolLab, Fortaleza, Ceará, Brazil
| | - Rodrigo Bainy Leal
- Departamento de Bioquímica e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|
26
|
Manzoor S, Muhammad JS, Maghazachi AA, Hamid Q. Autophagy: A Versatile Player in the Progression of Colorectal Cancer and Drug Resistance. Front Oncol 2022; 12:924290. [PMID: 35912261 PMCID: PMC9329589 DOI: 10.3389/fonc.2022.924290] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is among the topmost malignancies for both genders. Despite the high incidence rate and advances in diagnostic tools, treatment in many cases is still ineffective. Most cancerous lesions in CRC begin as benign, followed by the development of invasive forms and metastases. The development of CRC has been linked to defects in autophagy, which plays both a pro-and anti-tumor role and is mainly context-dependent. Autophagy suppression could enhance apoptosis via p53 activation, or autophagy also promotes tumor progression by maintaining tumor growth and increasing resistance to chemotherapy. Autophagy promotes the invasion and metastasis of CRC cells via increased epithelial-mesenchymal transition (EMT). Moreover, dysbiosis of gut microbiota upregulated autophagy and metastasis markers. Autophagy responses may also modulate the tumor microenvironment (TME) via regulating the differentiation process of several innate immune cells. Treatments that promote tumor cell death by stimulating or inhibiting autophagy could be beneficial if used as an adjunct treatment, but the precise role of various autophagy-modulating drugs in CRC patients is needed to be explored. In this article, we present an overview of the autophagy process and its role in the pathogenesis and therapeutic resistance of CRC. Also, we focused on the current understanding of the role of the EMT and TME, including its relation to gut microbiota and immune cells, in autophagic manipulation of CRC. We believe that there is a potential link between autophagy, TME, EMT, and drug resistance, suggesting that further studies are needed to explore this aspect.
Collapse
Affiliation(s)
- Shaista Manzoor
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Azzam A. Maghazachi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- *Correspondence: Qutayba Hamid,
| |
Collapse
|
27
|
Ferreira A, Pereira F, Reis C, Oliveira MJ, Sousa MJ, Preto A. Crucial Role of Oncogenic KRAS Mutations in Apoptosis and Autophagy Regulation: Therapeutic Implications. Cells 2022; 11:cells11142183. [PMID: 35883626 PMCID: PMC9319879 DOI: 10.3390/cells11142183] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 11/16/2022] Open
Abstract
KRAS, one of the RAS protein family members, plays an important role in autophagy and apoptosis, through the regulation of several downstream effectors. In cancer cells, KRAS mutations confer the constitutive activation of this oncogene, stimulating cell proliferation, inducing autophagy, suppressing apoptosis, altering cell metabolism, changing cell motility and invasion and modulating the tumor microenvironment. In order to inhibit apoptosis, these oncogenic mutations were reported to upregulate anti-apoptotic proteins, including Bcl-xL and survivin, and to downregulate proteins related to apoptosis induction, including thymine-DNA glycosylase (TDG) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). In addition, KRAS mutations are known to induce autophagy in order to promote cell survival and tumor progression through MAPK and PI3K regulation. Thus, these mutations confer resistance to anti-cancer drug treatment and, consequently, result in poor prognosis. Several therapies have been developed in order to overcome KRAS-induced cell death resistance and the downstream signaling pathways blockade, especially by combining MAPK and PI3K inhibitors, which demonstrated promising results. Understanding the involvement of KRAS mutations in apoptosis and autophagy regulation, might bring new avenues to the discovery of therapeutic approaches for CRCs harboring KRAS mutations.
Collapse
Affiliation(s)
- Anabela Ferreira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.); (F.P.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Flávia Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.); (F.P.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (C.R.); (M.J.O.)
- Institute of Biomedical Engineering (INEB), University of Porto, 4200-135 Porto, Portugal
| | - Celso Reis
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (C.R.); (M.J.O.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Maria José Oliveira
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (C.R.); (M.J.O.)
- Institute of Biomedical Engineering (INEB), University of Porto, 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.); (F.P.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Ana Preto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.); (F.P.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- Correspondence: ; Tel.: +351-253-601524
| |
Collapse
|
28
|
Alderweireldt E, Grootaert C, De Wever O, Van Camp J. A two-front nutritional environment fuels colorectal cancer: perspectives for dietary intervention. Trends Endocrinol Metab 2022; 33:105-119. [PMID: 34887164 DOI: 10.1016/j.tem.2021.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) develops and progresses in a nutritional environment comprising a continuously changing luminal cocktail of external dietary and microbial factors on the apical side, and a dynamic host-related pool of systemic factors on the serosal side. In this review, we highlight how this two-front environment influences the bioenergetic status of colonocytes throughout CRC development from (cancer) stem cells to cancer cells in nutrient-rich and nutrient-poor conditions, and eventually to metastatic cells, which, upon entry to the circulation and during metastatic seeding, are forced to metabolically adapt. Furthermore, given the influence of diet on the two-front nutritional environment, we discuss dietary strategies that target the specific metabolic preferences of these cells, with a possible impact on colon cancer cell bioenergetics and CRC outcome.
Collapse
Affiliation(s)
- Elien Alderweireldt
- Laboratory of Food Chemistry and Human Nutrition, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Charlotte Grootaert
- Laboratory of Food Chemistry and Human Nutrition, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | - John Van Camp
- Laboratory of Food Chemistry and Human Nutrition, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
29
|
Ganzleben I, Neurath MF, Becker C. Autophagy in Cancer Therapy-Molecular Mechanisms and Current Clinical Advances. Cancers (Basel) 2021; 13:cancers13215575. [PMID: 34771737 PMCID: PMC8583685 DOI: 10.3390/cancers13215575] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Autophagy is the capability of cells to dismantle and recycle parts of themselves. This process is closely intertwined with other crucial cell functions, such as growth and control of metabolism. Autophagy is oftentimes dysregulated in cancer and offers established and advanced tumors protection against a lack of nutrients and an advantage regarding proliferation. This review will present an overview of the basics of human autophagy, its dysregulation in cancer, and approaches to target autophagy in cancer treatment in recent and current clinical trials as well as new findings of preclinical research. Abstract Autophagy is a crucial general survival tactic of mammalian cells. It describes the capability of cells to disassemble and partially recycle cellular components (e.g., mitochondria) in case they are damaged and pose a risk to cell survival or simply if their resources are urgently needed elsewhere at the time. Autophagy-associated pathomechanisms have been increasingly recognized as important disease mechanisms in non-malignant (neurodegeneration, diffuse parenchymal lung disease) and malignant conditions alike. However, the overall consequences of autophagy for the organism depend particularly on the greater context in which autophagy occurs, such as the cell type or whether the cell is proliferating. In cancer, autophagy sustains cancer cell survival under challenging, i.e., resource-depleted, conditions. However, this leads to situations in which cancer cells are completely dependent on autophagy. Accordingly, autophagy represents a promising yet complex target in cancer treatment with therapeutically induced increase and decrease of autophagic flux as important therapeutic principles.
Collapse
Affiliation(s)
- Ingo Ganzleben
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.G.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.G.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.G.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
30
|
Yan RL, Chen RH. Autophagy and cancer metabolism-The two-way interplay. IUBMB Life 2021; 74:281-295. [PMID: 34652063 DOI: 10.1002/iub.2569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022]
Abstract
Autophagy is an intracellular catabolic process that degrades cytoplasmic components for recycling in response to stressed conditions, such as nutrient deprivation. Dysregulation of autophagy is associated with various diseases, including cancer. Although autophagy plays dichotomous and context-dependent roles in cancer, evidence has emerged that cancer cells exploit autophagy for metabolic adaptation. Autophagy is upregulated in many cancer types through tumor cell-intrinsic proliferation demands and the hypoxic and nutrient-limited tumor microenvironment (TME). Autophagy-induced breakdown products then fuel into various metabolic pathways to supply tumor cells with energy and building blocks for biosynthesis and survival. This bidirectional regulation between autophagy and tumor constitutes a vicious cycle to potentiate tumor growth and therapy resistance. In addition, the pro-tumor functions of autophagy are expanded to host, including cells in TME and distant organs. Thus, inhibition of autophagy or autophagy-mediated metabolic reprogramming may be a promising strategy for anticancer therapy. Better understanding the metabolic rewiring mechanisms of autophagy for its pro-tumor effects will provide insights into patient treatment.
Collapse
Affiliation(s)
- Reui-Liang Yan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
31
|
D’Onofrio N, Martino E, Mele L, Colloca A, Maione M, Cautela D, Castaldo D, Balestrieri ML. Colorectal Cancer Apoptosis Induced by Dietary δ-Valerobetaine Involves PINK1/Parkin Dependent-Mitophagy and SIRT3. Int J Mol Sci 2021; 22:ijms22158117. [PMID: 34360883 PMCID: PMC8348679 DOI: 10.3390/ijms22158117] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding the mechanisms of colorectal cancer progression is crucial in the setting of strategies for its prevention. δ-Valerobetaine (δVB) is an emerging dietary metabolite showing cytotoxic activity in colon cancer cells via autophagy and apoptosis. Here, we aimed to deepen current knowledge on the mechanism of δVB-induced colon cancer cell death by investigating the apoptotic cascade in colorectal adenocarcinoma SW480 and SW620 cells and evaluating the molecular players of mitochondrial dysfunction. Results indicated that δVB reduced cell viability in a time-dependent manner, reaching IC50 after 72 h of incubation with δVB 1.5 mM, and caused a G2/M cell cycle arrest with upregulation of cyclin A and cyclin B protein levels. The increased apoptotic cell rate occurred via caspase-3 activation with a concomitant loss in mitochondrial membrane potential and SIRT3 downregulation. Functional studies indicated that δVB activated mitochondrial apoptosis through PINK1/Parkin pathways, as upregulation of PINK1, Parkin, and LC3B protein levels was observed (p < 0.0001). Together, these findings support a critical role of PINK1/Parkin-mediated mitophagy in mitochondrial dysfunction and apoptosis induced by δVB in SW480 and SW620 colon cancer cells.
Collapse
Affiliation(s)
- Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Napoli, Italy; (E.M.); (A.C.); (M.M.); (M.L.B.)
- Correspondence: ; Tel.: +39-081-5667513; Fax: +39-081-5665863
| | - Elisa Martino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Napoli, Italy; (E.M.); (A.C.); (M.M.); (M.L.B.)
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luciano Armanni 5, 80138 Naples, Italy;
| | - Antonino Colloca
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Napoli, Italy; (E.M.); (A.C.); (M.M.); (M.L.B.)
| | - Martina Maione
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Napoli, Italy; (E.M.); (A.C.); (M.M.); (M.L.B.)
| | - Domenico Cautela
- Stazione Sperimentale per le Industrie delle Essenze e dei Derivati dagli Agrumi (SSEA), Azienda Speciale CCIAA di Reggio Calabria, Via G. Tommasini 2, 89125 Reggio Calabria, Italy; (D.C.); (D.C.)
| | - Domenico Castaldo
- Stazione Sperimentale per le Industrie delle Essenze e dei Derivati dagli Agrumi (SSEA), Azienda Speciale CCIAA di Reggio Calabria, Via G. Tommasini 2, 89125 Reggio Calabria, Italy; (D.C.); (D.C.)
- Ministero dello Sviluppo Economico (MiSE), Via Molise 2, 00187 Roma, Italy
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Napoli, Italy; (E.M.); (A.C.); (M.M.); (M.L.B.)
| |
Collapse
|