1
|
Turnier JL, Vandenbergen SM, McClune ME, Goudsmit C, Matossian S, Riebschleger M, Saad N, Madison JA, Mohan S, Gudjonsson JE, Tsoi LC, Berthier CC, Kahlenberg JM. Tape strip expression profiling of juvenile dermatomyositis skin reveals mitochondrial dysfunction contributing to disease endotype. JCI Insight 2025; 10:e179875. [PMID: 40080076 PMCID: PMC12016934 DOI: 10.1172/jci.insight.179875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
Skin inflammation in juvenile dermatomyositis (JDM) can signal disease onset or flare, and the persistence of cutaneous disease can prevent complete disease remission. The noninvasive study of cutaneous expression signatures through tape stripping (TS) holds the potential to reveal mechanisms underlying disease heterogeneity and organ-specific inflammation. The objectives of this study were to (a) define TS expression signatures in lesional and nonlesional JDM skin, (b) analyze TS signatures to identify JDM disease endotypes, and (c) compare TS and blood signatures. Although JDM lesional skin demonstrated interferon signaling as the top upregulated pathway, nonlesional skin uniquely highlighted pathways involved in metabolism, angiogenesis, and calcium signaling. Both lesional and nonlesional skin shared inflammasome pathway dysregulation. Using unsupervised clustering of skin expression data, we identified a treatment-refractory JDM subgroup distinguished by upregulation of genes associated with mitochondrial dysfunction. The treatment-refractory JDM subgroup also demonstrated higher interferon, angiogenesis, and innate immune expression scores in skin and blood, though scores were more pronounced in skin as compared with blood. TS expression signatures in JDM provided insight into disease mechanisms and molecular subgroups. Skin, as compared with blood, transcriptional profiles served as more sensitive markers to classify disease subgroups and identify candidate treatment targets.
Collapse
Affiliation(s)
- Jessica L. Turnier
- Division of Pediatric Rheumatology, Department of Pediatrics
- Division of Rheumatology, Department of Internal Medicine
| | | | | | | | | | | | - Nadine Saad
- Division of Pediatric Rheumatology, Department of Pediatrics
| | - Jacqueline A. Madison
- Division of Pediatric Rheumatology, Department of Pediatrics
- Division of Rheumatology, Department of Internal Medicine
| | - Smriti Mohan
- Division of Pediatric Rheumatology, Department of Pediatrics
| | - Johann E. Gudjonsson
- Division of Rheumatology, Department of Internal Medicine
- Department of Dermatology
| | - Lam C. Tsoi
- Department of Dermatology
- Department of Computational Medicine and Bioinformatics
- Department of Biostatistics; and
| | - Celine C. Berthier
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
2
|
Klein B, Reynolds MB, Xu B, Gharaee-Kermani M, Gao Y, Berthier CC, Henning S, Tsoi LC, Loftus SN, McNeely KE, Goudsmit CM, Victory AM, Dobry C, Hile GA, Ma F, Turnier JL, Gudjonsson JE, O'Riordan MX, Kahlenberg JM. Epidermal ZBP1 stabilizes mitochondrial Z-DNA to drive UV-induced IFN signaling in autoimmune photosensitivity. Sci Immunol 2025; 10:eado1710. [PMID: 40053607 DOI: 10.1126/sciimmunol.ado1710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/14/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025]
Abstract
Photosensitivity is observed in numerous autoimmune diseases and drives poor quality of life and disease flares. Elevated epidermal type I interferon (IFN) production primes for photosensitivity and enhanced inflammation, but the substrates that sustain and amplify this cycle remain undefined. We show that IFN-induced Z-DNA binding protein 1 (ZBP1) stabilizes ultraviolet (UV) B-induced cytosolic Z-DNA derived from oxidized mitochondrial DNA. ZBP1 is up-regulated in the epidermis of adult and pediatric patients with autoimmune photosensitivity. In patient-derived samples, lupus keratinocytes accumulate extensive cytosolic Z-DNA after UVB exposure, and transfection of keratinocytes with Z-DNA results in stronger IFN production through cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) activation compared with the more conventional B-DNA. ZBP1 knockdown abrogates UVB-induced IFN responses, whereas overexpression results in a lupus-like phenotype with spontaneous Z-DNA accumulation and IFN production. Our results highlight Z-DNA and ZBP1 as critical mediators for UVB-induced inflammation and uncover how type I IFNs prime for cutaneous inflammation in photosensitivity.
Collapse
Affiliation(s)
- Benjamin Klein
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mack B Reynolds
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Bin Xu
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mehrnaz Gharaee-Kermani
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Yiqing Gao
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Celine C Berthier
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Svenja Henning
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Shannon N Loftus
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kelsey E McNeely
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Christine M Goudsmit
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Amanda M Victory
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Craig Dobry
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Grace A Hile
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Feiyang Ma
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Jessica L Turnier
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Johann E Gudjonsson
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Mary X O'Riordan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Zhang H, Zhang Z, Fan K, Chen H, Guo Y, Mo X. Decoding the genetic landscape of juvenile dermatomyositis: insights from phosphorylation-associated single nucleotide polymorphisms. Immunogenetics 2024; 76:291-304. [PMID: 39085621 DOI: 10.1007/s00251-024-01350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Genome-wide association studies (GWASs) have identified genetic susceptibility loci associated with juvenile dermatomyositis (JDM). Single nucleotide polymorphisms related to phosphorylation (phosSNPs) are critical nonsynonymous mutations exerting substantial influence on gene expression regulation. The aim of this study was to identify JDM susceptibility genes in the GWAS loci by the use of phosSNPs. We explored quantitative trait loci (QTLs) among the phosSNPs associated with JDM using data from eQTL (bulk tissues and single-cell) and pQTL studies. For gene expression and protein levels significantly influenced by JDM-associated phosSNPs, we assessed their associations with JDM through MR analyses. Additionally, we conducted differential expression gene analyses, incorporating single-cell transcriptomic profiling of 6 JDM cases and 11 juvenile controls (99,396 cells). We identified 31 phosSNPs situated in the 6p21 locus that were associated with JDM. Half of these phosSNPs showed effects on gene expression in various cells and circulating protein levels. In MR analyses, we established associations between the expression levels of pivotal JDM-associated genes, including MICB, C4A, HLA-DRB1, HLA-DRB5, and PSMB9, in skin, muscle, or blood cells and circulating levels of C4A, with JDM. Utilizing single-cell eQTL data, we identified a total of 276 association signals across 14 distinct immune cell types for 28 phosSNPs. Further insights were gained through single-cell differential expression analysis, revealing differential expression of PSMB9, HLA-A, HLA-B, HLA-C, HLA-DPB1, HLA-DQA1, HLA-DQB1, and HLA-DRB1 in immune cells. The present study pinpointed phosSNPs within susceptibility genes for JDM and unraveled the intricate relationships among these SNPs, gene expression levels, and JDM.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhentao Zhang
- Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Kedi Fan
- Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Hongru Chen
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Yufan Guo
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215000, People's Republic of China.
| | - Xingbo Mo
- Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
- Center for Genetic Epidemiology and Genomics, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China.
| |
Collapse
|
4
|
Sparling AC, Ward JM, Sarkar K, Schiffenbauer A, Farhadi PN, Smith MA, Rahman S, Zerrouki K, Miller FW, Li JL, Casey KA, Rider LG. Neutrophil and mononuclear leukocyte pathways and upstream regulators revealed by serum proteomics of adult and juvenile dermatomyositis. Arthritis Res Ther 2024; 26:196. [PMID: 39529136 PMCID: PMC11552237 DOI: 10.1186/s13075-024-03421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVES Serum protein abundance was assessed in adult and juvenile dermatomyositis (DM and JDM) patients to determine differentially regulated proteins, altered pathways, and candidate disease activity biomarkers. METHODS Serum protein expression from 17 active adult DM and JDM patients each was compared to matched, healthy control subjects by a multiplex immunoassay. Pathway analysis and protein clustering of the differentially regulated proteins were examined to assess underlying mechanisms. Candidate disease activity biomarkers were identified by correlating protein expression with disease activity measures. RESULTS Seventy-eight of 172 proteins were differentially expressed in the sera of DM and JDM patients compared to healthy controls. Forty-eight proteins were differentially expressed in DM, 32 proteins in JDM, and 14 proteins in both DM and JDM. Twelve additional differentially expressed proteins were identified after combining the DM and JDM cohorts. C-X-C motif chemokine ligand 10 (CXCL10) was the most strongly upregulated protein in both DM and JDM sera. Other highly upregulated proteins in DM included S100 calcium binding protein A12 (S100A12), CXCL9, and nicotinamide phosphoribosyltransferase (NAMPT), while highly upregulated proteins in JDM included matrix metallopeptidase 3 (MMP3), growth differentiation factor 15 (GDF15), and von Willebrand factor (vWF). Pathway analysis indicated that phosphoinositide 3-kinase (PI3K), p38 mitogen-activated protein kinase (MAPK), and toll-like receptor 7 (TLR7) signaling were activated in DM and JDM. Additional pathways specific to DM or JDM were identified. A protein cluster associated with neutrophils and mononuclear leukocytes and a cluster of interferon-associated proteins were observed in both DM and JDM. Twenty-two proteins in DM and 24 proteins in JDM sera correlated with global, muscle, and/or skin disease activity. Seven proteins correlated with disease activity measures in both DM and JDM sera. IL-1 receptor like 1 (IL1RL1) emerged as a candidate global disease activity biomarker in DM and JDM. CONCLUSION Coordinate analysis of protein expression in DM and JDM patient sera by a multiplex immunoassay validated previous gene expression studies and identified novel dysregulated proteins, altered signaling pathways, and candidate disease activity biomarkers. These findings may further inform the assessment of DM and JDM patients and aid in the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- A Clare Sparling
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Building 10, CRC Rm 6-5700, MSC 1301 10 Center Drive, Bethesda, MD, 20892-1301, USA
| | - James M Ward
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Kakali Sarkar
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Building 10, CRC Rm 6-5700, MSC 1301 10 Center Drive, Bethesda, MD, 20892-1301, USA
| | - Adam Schiffenbauer
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Building 10, CRC Rm 6-5700, MSC 1301 10 Center Drive, Bethesda, MD, 20892-1301, USA
| | - Payam Noroozi Farhadi
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Building 10, CRC Rm 6-5700, MSC 1301 10 Center Drive, Bethesda, MD, 20892-1301, USA
| | | | - Saifur Rahman
- BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Frederick W Miller
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Kerry A Casey
- BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Lisa G Rider
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Building 10, CRC Rm 6-5700, MSC 1301 10 Center Drive, Bethesda, MD, 20892-1301, USA.
| |
Collapse
|
5
|
Nishide M, Shimagami H, Kumanogoh A. Single-cell analysis in rheumatic and allergic diseases: insights for clinical practice. Nat Rev Immunol 2024; 24:781-797. [PMID: 38914790 DOI: 10.1038/s41577-024-01043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/26/2024]
Abstract
Since the advent of single-cell RNA sequencing (scRNA-seq) methodology, single-cell analysis has become a powerful tool for exploration of cellular networks and dysregulated immune responses in disease pathogenesis. Advanced bioinformatics tools have enabled the combined analysis of scRNA-seq data and information on various cell properties, such as cell surface molecular profiles, chromatin accessibility and spatial information, leading to a deeper understanding of pathology. This Review provides an overview of the achievements in single-cell analysis applied to clinical samples of rheumatic and allergic diseases, including rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, allergic airway diseases and atopic dermatitis, with an expanded scope beyond peripheral blood cells to include local diseased tissues. Despite the valuable insights that single-cell analysis has provided into disease pathogenesis, challenges remain in translating single-cell findings into clinical practice and developing personalized treatment strategies. Beyond understanding the atlas of cellular diversity, we discuss the application of data obtained in each study to clinical practice, with a focus on identifying biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Hiroshi Shimagami
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
6
|
Zhang E, Yan Q, Sun Y, Li J, Chen L, Zou J, Zeng S, Jiang J, Li J. Integrative Analysis of Lactylome and Proteome of Hypertrophic Scar To Identify Pathways or Proteins Associated with Disease Development. J Proteome Res 2024; 23:3367-3382. [PMID: 39012622 DOI: 10.1021/acs.jproteome.3c00901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Lactylation (Kla), a recently discovered post-translational modification derived from lactate, plays crucial roles in various cellular processes. However, the specific influence of lactylation on the biological processes underlying hypertrophic scar formation remains unclear. In this study, we present a comprehensive profiling of the lactylome and proteome in both hypertrophic scars and adjacent normal skin tissues. A total of 1023 Kla sites originating from 338 nonhistone proteins were identified based on lactylome analysis. Proteome analysis in hypertrophic scar and adjacent skin samples revealed the identification of 2008 proteins. It is worth noting that Kla exhibits a preference for genes associated with ribosome function as well as glycolysis/gluconeogenesis in both normal skin and hypertrophic scar tissues. Furthermore, the functional enrichment analysis demonstrated that differentially lactyled proteins are primarily involved in proteoglycans, HIF-1, and AMPK signaling pathways. The combined analysis of the lactylome and proteome data highlighted a significant upregulation of 14 lactylation sites in hypertrophic scar tissues. Overall, our investigation unveiled the significant involvement of protein lactylation in the regulation of ribosome function as well as glycolysis/gluconeogenesis, potentially contributing to the formation of hypertrophic scars.
Collapse
Affiliation(s)
- Enyuan Zhang
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Qiyue Yan
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Yue Sun
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Jingyun Li
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Ling Chen
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Jijun Zou
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, Jiangsu, China
| | - Siqi Zeng
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Jingbin Jiang
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Jun Li
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| |
Collapse
|
7
|
Tang X, Zhang Y, Zhang H, Zhang N, Dai Z, Cheng Q, Li Y. Single-Cell Sequencing: High-Resolution Analysis of Cellular Heterogeneity in Autoimmune Diseases. Clin Rev Allergy Immunol 2024; 66:376-400. [PMID: 39186216 DOI: 10.1007/s12016-024-09001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/27/2024]
Abstract
Autoimmune diseases (AIDs) are complex in etiology and diverse in classification but clinically show similar symptoms such as joint pain and skin problems. As a result, the diagnosis is challenging, and usually, only broad treatments can be available. Consequently, the clinical responses in patients with different types of AIDs are unsatisfactory. Therefore, it is necessary to conduct more research to figure out the pathogenesis and therapeutic targets of AIDs. This requires research technologies with strong extraction and prediction capabilities. Single-cell sequencing technology analyses the genomic, epigenomic, or transcriptomic information at the single-cell level. It can define different cell types and states in greater detail, further revealing the molecular mechanisms that drive disease progression. These advantages enable cell biology research to achieve an unprecedented resolution and scale, bringing a whole new vision to life science research. In recent years, single-cell technology especially single-cell RNA sequencing (scRNA-seq) has been widely used in various disease research. In this paper, we present the innovations and applications of single-cell sequencing in the medical field and focus on the application contributing to the differential diagnosis and precise treatment of AIDs. Despite some limitations, single-cell sequencing has a wide range of applications in AIDs. We finally present a prospect for the development of single-cell sequencing. These ideas may provide some inspiration for subsequent research.
Collapse
Affiliation(s)
- Xuening Tang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yudi Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
8
|
Xu B, Musai J, Tan YS, Hile GA, Swindell WR, Klein B, Qin JT, Sarkar MK, Gudjonsson JE, Kahlenberg JM. A Critical Role for IFN-β Signaling for IFN-κ Induction in Keratinocytes. FRONTIERS IN LUPUS 2024; 2:1359714. [PMID: 38707772 PMCID: PMC11065136 DOI: 10.3389/flupu.2024.1359714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Background/Purpose Cutaneous lupus erythematosus (CLE) affects up to 70% of patients with systemic lupus erythematosus (SLE), and type I interferons (IFNs) are important promoters of SLE and CLE. Our previous work identified IFN-kappa (IFN-κ), a keratinocyte-produced type I IFN, as upregulated in non-lesional and lesional lupus skin and as a critical regulator for enhanced UVB-mediated cell death in SLE keratinocytes. Importantly, the molecular mechanisms governing regulation of IFN-κ expression have been relatively unexplored. Thus, this study sought to identify critical regulators of IFN-κ and identified a novel role for IFN-beta (IFN-β). Methods Human N/TERT keratinocytes were treated with the RNA mimic poly (I:C) or 50 mJ/cm2 ultraviolet B (UVB), followed by mRNA expression quantification by RT-qPCR in the presence or absence neutralizing antibody to the type I IFN receptor (IFNAR). IFNB and STAT1 knockout (KO) keratinocytes were generated using CRISPR/Cas9. Results Time courses of poly(I:C) and UVB treatment revealed a differential expression of IFNB, which was upregulated between 3-6 hours and IFNK, which was upregulated 24 hours after stimulation. Intriguingly, only IFNK expression was substantially abrogated by neutralizing antibodies to IFNAR, suggesting that IFNK upregulation required type I IFN signaling for induction. Indeed, deletion of IFNB abrogated IFNK expression. Further exploration confirmed a role for type I IFN-triggered STAT1 activation. Conclusion Collectively, our work describes a novel mechanistic paradigm in keratinocytes in which initial IFN-κ induction in response to poly(I:C) and UVB is IFNβ1-dependent, thus describing IFNK as both an IFN gene and an interferon-stimulated gene.
Collapse
Affiliation(s)
- Bin Xu
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Jon Musai
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Yee Sun Tan
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Grace A Hile
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - William R Swindell
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Dallas, Texas, 75390-9175
| | - Benjamin Klein
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - J Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mrinal K Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | | | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| |
Collapse
|
9
|
Sharmeen S, Christopher-Stine L, Salvemini JN, Gorevic P, Clark R, Yao Q. Amyopathic dermatomyositis may be on the spectrum of autoinflammatory disease: A clinical review. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2024; 5:42-48. [PMID: 38571935 PMCID: PMC10985708 DOI: 10.1515/rir-2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 06/13/2023] [Indexed: 04/05/2024]
Abstract
Systemic autoinflammatory diseases (SAIDs) are distinct from autoimmune diseases. The former primarily results from abnormal innate immune response and genetic testing is crucial for disease diagnosis. Similar cutaneous involvement is a main feature for both SAID and dermatomyositis (DM), so they can be confused with each other. A literature search of PubMed and MEDLINE was conducted for relevant articles. The similarities and differences between these two types of diseases were analyzed. We found phenotypic similarities between these two types of disorders. Accumulating data supports a major role of the innate immune system and a similar cytokine profile. Molecular testing using an autoinflammatory disease gene panel may help identify SAID patients from the DM population and may offer therapeutic benefit using interleukin-1 (IL-1) inhibitors. A subset of DM, notably amyopathic dermatomyositis in the absence of autoantibodies may be on the spectrum of autoinflammatory disease.
Collapse
Affiliation(s)
- Saika Sharmeen
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | | | - Joann N. Salvemini
- Department of Dermatology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Peter Gorevic
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Richard Clark
- Department of Dermatology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Qingping Yao
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
10
|
Klein B, Reynolds MB, Xu B, Gharaee-Kermani M, Gao Y, Berthier CC, Henning S, Loftus SN, McNeely KE, Victory AM, Dobry C, Hile GA, Ma F, Turnier JL, Gudjonsson JE, O’Riordan MX, Kahlenberg JM. Epidermal ZBP1 stabilizes mitochondrial Z-DNA to drive UV-induced IFN signaling in autoimmune photosensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576771. [PMID: 38328232 PMCID: PMC10849619 DOI: 10.1101/2024.01.23.576771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Photosensitivity is observed in numerous autoimmune diseases and drives poor quality of life and disease flares. Elevated epidermal type I interferon (IFN) production primes for photosensitivity and enhanced inflammation, but the substrates that sustain and amplify this cycle remain undefined. Here, we show that IFN-induced Z-DNA binding protein 1 (ZBP1) stabilizes ultraviolet (UV)B-induced cytosolic Z-DNA derived from oxidized mitochondrial DNA. ZBP1 is significantly upregulated in the epidermis of adult and pediatric patients with autoimmune photosensitivity. Strikingly, lupus keratinocytes accumulate extensive cytosolic Z-DNA after UVB, and transfection of keratinocytes with Z-DNA results in stronger IFN production through cGAS-STING activation compared to B-DNA. ZBP1 knockdown abrogates UV-induced IFN responses, whereas overexpression results in a lupus-like phenotype with spontaneous Z-DNA accumulation and IFN production. Our results highlight Z-DNA and ZBP1 as critical mediators for UVB-induced inflammation and uncover how type I IFNs prime for cutaneous inflammation in photosensitivity.
Collapse
Affiliation(s)
- Benjamin Klein
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Mack B. Reynolds
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor
| | - Bin Xu
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Mehrnaz Gharaee-Kermani
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Yiqing Gao
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Celine C. Berthier
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Svenja Henning
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Shannon N. Loftus
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Kelsey E. McNeely
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Amanda M. Victory
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Craig Dobry
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Grace A. Hile
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Feiyang Ma
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Jessica L. Turnier
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Michigan, Ann Arbor
| | | | - Mary X. O’Riordan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor
| | - J. Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
11
|
Essouma M. Autoimmune inflammatory myopathy biomarkers. Clin Chim Acta 2024; 553:117742. [PMID: 38176522 DOI: 10.1016/j.cca.2023.117742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The autoimmune inflammatory myopathy disease spectrum, commonly known as myositis, is a group of systemic diseases that mainly affect the muscles, skin and lungs. Biomarker assessment helps in understanding disease mechanisms, allowing for the implementation of precise strategies in the classification, diagnosis, and management of these diseases. This review examines the pathogenic mechanisms and highlights current data on blood and tissue biomarkers of autoimmune inflammatory myopathies.
Collapse
Affiliation(s)
- Mickael Essouma
- Network of Immunity in Infections, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Cameroon
| |
Collapse
|
12
|
Lafi And ZK, Mohammed BJ. Relationship between vitamin D receptor genotypes (FOK1rs2228570) and IL18 gene expression in sample of multiple sclerosis Iraqi patients. Hum Antibodies 2024; 32:1-8. [PMID: 38339924 DOI: 10.3233/hab-230010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
BACKGROUND Multiple Sclerosis known as MS, this chronic inflammatory demyelinating condition affects the nervous system. It is a heterogenic and multifactorial disease. The goal of the current study was to investigate the relationship between MS patients' IL18 gene expression and the vitamin D receptor gene polymorphism (FOK1rs2228570). OBJECTIVE The aim of the study to investigate the association of vitamin D receptor (FOK1rs2228570) gene polymorphism and pro inflammatory cytokine (IL18) gene expression among multiple sclerosis Iraqi patients. Detection VDR polymorphism and determine whether this SNP is involved in susceptibility to multiple sclerosis and estimation IL18 gene expression and explore its relation with multiple sclerosis susceptibility. METHODS Blood samples were taken from 75 MS patients in Iraq (30 men and 45 women), as well as from 75 volunteers who seemed to be in a favorable state of health and fell within the age range of 20 to 50 years. Tetra-ARMS Polymerase Chain Reaction (Tetra-ARMS PCR) was used to find polymorphisms in the vitamin D receptor (VDR) gene, and Real-time Polymerase Chain Reaction (RT-PCR) was used to measure IL18 gene expression. RESULTS The findings from the analysis of VDR gene polymorphism in patients with MS indicated that the wild-type genotype T/T was present in 8 individuals, accounting for 10.6%, the heterogeneous genotype TC was 36 (48%), and the homogeneous genotype CC was 31 (41.3%), whilst T allele frequency was 52(34.6%) and C allele was 98(65.3%) with (P⩽ 0.01) significant difference and even as in control T/T genotype was 49(65.3%), TC genotype was 21(28%), CC genotype was 5(6.66%), T allele frequency was 119(79.3%) and C allele was 31(20.6%) with significant difference (P⩽ 0.001). While estimation of IL18 expression showed high elevation in patients' group (2.59 ± 0.51 fold) by significance difference (P⩽ 0.5) when compared to control group (1.35 ± 0.14 fold). The relationship between IL18 gene expression with VDR variant in MS patients demonstrated a significant rise (2.9 ± 0.51 fold) at CC genotype patients in IL18 folding gene expression, followed by (4.6 ± 0.17 fold) in TC genotype patients and finally (1.4 ± 0.08 fold) in TT genotype patients with highly significant (P⩽ 0.01). CONCLUSION The VDR(FOK1rs2228570) genotype was significantly correlated with IL18 expression in MS patients from Iraq.
Collapse
|
13
|
Karasawa R, Yudoh K, Sato T, Tanaka M, Sabbagh SE, Flegel WA, Mammen AL, Jarvis JN, Rider LG. Association of anti-TPM4 autoantibodies with vasculopathic cutaneous manifestations in juvenile dermatomyositis. Rheumatology (Oxford) 2023; 62:3757-3762. [PMID: 37144941 PMCID: PMC10629777 DOI: 10.1093/rheumatology/kead203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
OBJECTIVES AECAs are detected in multiple forms of vasculitis or vasculopathy, including JDM. High levels of tropomyosin alpha-4 chain (TPM4) gene expression in cutaneous lesions and TPM4 protein expression in some endothelial cells (ECs) have been proven. Furthermore, the presence of autoantibodies to tropomyosin proteins have been discovered in DM. We therefore investigated whether anti-TPM4 autoantibodies are an AECA in JDM and are correlated with clinical features of JDM. METHODS The expression of TPM4 protein in cultured normal human dermal microvascular ECs was investigated by Western blotting. Plasma samples from 63 children with JDM, 50 children with polyarticular JIA (pJIA) and 40 healthy children (HC) were tested for the presence of anti-TPM4 autoantibodies using an ELISA. Clinical features were compared between JDM patients with and without anti-TPM4 autoantibodies. RESULTS Autoantibodies to TPM4 were detected in the plasma of 30% of JDM, 2% of pJIA (P < 0.0001) and 0% of HC (P < 0.0001). In JDM, anti-TPM4 autoantibodies were associated with the presence of cutaneous ulcers (53%; P = 0.02), shawl sign rash (47%; P = 0.03), mucous membrane lesions (84%; P = 0.04) and subcutaneous edema (42%; P < 0.05). Anti-TPM4 autoantibodies significantly correlated with the use of intravenous steroids and IVIG therapy in JDM (both P = 0.01). The total number of medications received was higher in patients with anti-TPM4 autoantibodies (P = 0.02). CONCLUSION Anti-TPM4 autoantibodies are detected frequently in children with JDM and are novel myositis-associated autoantibodies. Their presence correlates with vasculopathic and other cutaneous manifestations of JDM that may be indicative of more refractory disease.
Collapse
Affiliation(s)
- Rie Karasawa
- Department of Frontier Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kazuo Yudoh
- Department of Frontier Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Toshiko Sato
- Department of Frontier Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Megumi Tanaka
- Department of Frontier Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Sara E Sabbagh
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
- Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Willy A Flegel
- Department of Transfusion Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Andrew L Mammen
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - James N Jarvis
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Genetics, Genomics, and Bioinformatics Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Lisa G Rider
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Wang X, Wang L, Wen X, Zhang L, Jiang X, He G. Interleukin-18 and IL-18BP in inflammatory dermatological diseases. Front Immunol 2023; 14:955369. [PMID: 36742296 PMCID: PMC9889989 DOI: 10.3389/fimmu.2023.955369] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Interleukin (IL)-18, an interferon-γ inducer, belongs to the IL-1 family of pleiotropic pro-inflammatory factors, and IL-18 binding protein (IL-18BP) is a native antagonist of IL-18 in vivo, regulating its activity. Moreover, IL-18 exerts an influential function in host innate and adaptive immunity, and IL-18BP has elevated levels of interferon-γ in diverse cells, suggesting that IL-18BP is a negative feedback inhibitor of IL-18-mediated immunity. Similar to IL-1β, the IL-18 cytokine is produced as an indolent precursor that requires further processing into an active cytokine by caspase-1 and mediating downstream signaling pathways through MyD88. IL-18 has been implicated to play a role in psoriasis, atopic dermatitis, rosacea, and bullous pemphigoid in human inflammatory skin diseases. Currently, IL-18BP is less explored in treating inflammatory skin diseases, while IL-18BP is being tested in clinical trials for other diseases. Thereby, IL-18BP is a prospective therapeutic target.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Zhang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Xian Jiang, ; Gu He,
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Xian Jiang, ; Gu He,
| |
Collapse
|
15
|
Ding L, Li X, Zhu H, Luo H. Single-Cell Sequencing in Rheumatic Diseases: New Insights from the Perspective of the Cell Type. Aging Dis 2022; 13:1633-1651. [PMID: 36465169 PMCID: PMC9662270 DOI: 10.14336/ad.2022.0323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/23/2022] [Indexed: 11/02/2023] Open
Abstract
Rheumatic diseases are a group of highly heterogeneous autoimmune and inflammatory disorders involving multiple systems. Dysfunction of immune and non-immune cells participates in the complex pathogenesis of rheumatic diseases. Therefore, studies on the abnormal activation of cell subtypes provided a specific basis for understanding the pathogenesis of rheumatic diseases, which promoted the accuracy of disease diagnosis and the effectiveness of various treatments. However, there was still a far way to achieve individualized precision medicine as the result of heterogeneity among cell subtypes. To obtain the biological information of cell subtypes, single-cell sequencing, a cutting-edge technology, is used for analyzing their genomes, transcriptomes, epigenetics, and proteomics. Novel results identified multiple cell subtypes in tissues of patients with rheumatic diseases by single-cell sequencing. Consequently, we provide an overview of recent applications of single-cell sequencing in rheumatic disease and cross-tissue to understand the cell subtypes and functions.
Collapse
Affiliation(s)
- Liqing Ding
- The Department of Rheumatology and Immunology, Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Xiaojing Li
- The Department of Rheumatology and Immunology, Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Honglin Zhu
- The Department of Rheumatology and Immunology, Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
| | - Hui Luo
- The Department of Rheumatology and Immunology, Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
| |
Collapse
|
16
|
Zheng M, Hu Z, Zhou W, Kong Y, Wu R, Zhang B, Long H, Jia S, Lu Q, Zhao M. Single-cell transcriptome reveals immunopathological cell composition of skin lesions in subacute cutaneous lupus erythematosus. Clin Immunol 2022; 245:109172. [DOI: 10.1016/j.clim.2022.109172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022]
|
17
|
Wong LS, Lee CH, Yen YT. Increased Epidermal Nerve Growth Factor without Small-Fiber Neuropathy in Dermatomyositis. Int J Mol Sci 2022; 23:ijms23169030. [PMID: 36012289 PMCID: PMC9408946 DOI: 10.3390/ijms23169030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Small-fiber neuropathy (SFN) is suggested to be involved in the pathogenesis of some types of autoimmune connective tissue diseases. SFN with a reduction in epidermal nerve fibers might affect sensory fibers and cause neuropathic symptoms, such as pruritus and pain, which are common in both dermatomyositis (DM) and cutaneous lupus erythematosus (CLE). Nerve growth factor (NGF) has been recognized as important in nociception by regulating epidermal nerve fiber density and sensitizing the peripheral nervous system. The present study aimed to investigate whether SFN was associated with the cutaneous manifestations of DM and CLE. We also investigated the relationship between SFN and axon guidance molecules, such as NGF, amphiregulin (AREG), and semaphorin (Sema3A) in DM and CLE. To explore the molecular signaling, interleukin (IL)-18 and IL-31, which have been implicated in the cutaneous manifestation and neuropathic symptoms in DM, were examined in keratinocytes. Our results revealed that intraepidermal nerve fiber density (IENFD) was unchanged in patients with DM, but significantly reduced in IENFD in patients with CLE compared with healthy control. Increased epidermal expression of NGF and decreased expression of Sema3A were demonstrated in patients with DM. Furthermore, IL-18 and IL-31 both induced the production of NGF from keratinocytes. Taken together, IL-18 and IL-31 mediated epidermal NGF expression might contribute to the cutaneous neuropathic symptoms in DM, while SFN might be important for CLE.
Collapse
Affiliation(s)
- Lai-San Wong
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Yu-Ta Yen
- Department of Dermatology, Fooyin University Hospital, Pingtung 928, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Correspondence: ; Tel.: +886-8-8323146; Fax: +886-7-7337612
| |
Collapse
|
18
|
Ihim SA, Abubakar SD, Zian Z, Sasaki T, Saffarioun M, Maleknia S, Azizi G. Interleukin-18 cytokine in immunity, inflammation, and autoimmunity: Biological role in induction, regulation, and treatment. Front Immunol 2022; 13:919973. [PMID: 36032110 PMCID: PMC9410767 DOI: 10.3389/fimmu.2022.919973] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/25/2022] [Indexed: 12/13/2022] Open
Abstract
Interleukin-18 (IL-18) is a potent pro-inflammatory cytokine involved in host defense against infections and regulates the innate and acquired immune response. IL-18 is produced by both hematopoietic and non-hematopoietic cells, including monocytes, macrophages, keratinocytes and mesenchymal cell. IL-18 could potentially induce inflammatory and cytotoxic immune cell activities leading to autoimmunity. Its elevated levels have been reported in the blood of patients with some immune-related diseases, including rheumatoid arthritis, systemic lupus erythematosus, type I diabetes mellitus, atopic dermatitis, psoriasis, and inflammatory bowel disease. In the present review, we aimed to summarize the biological properties of IL-18 and its pathological role in different autoimmune diseases. We also reported some monoclonal antibodies and drugs targeting IL-18. Most of these monoclonal antibodies and drugs have only produced partial effectiveness or complete ineffectiveness in vitro, in vivo and human studies. The ineffectiveness of these drugs targeting IL-18 may be largely due to the loophole caused by the involvement of other cytokines and proteins in the signaling pathway of many inflammatory diseases besides the involvement of IL-18. Combination drug therapies, that focus on IL-18 inhibition, in addition to other cytokines, are highly recommended to be considered as an important area of research that needs to be explored.
Collapse
Affiliation(s)
- Stella Amarachi Ihim
- Department of Molecular and Cellular Pharmacology, University of Shizuoka, Shizuoka, Japan
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
- Department of Science Laboratory Technology, University of Nigeria, Nsukka, Nigeria
| | - Sharafudeen Dahiru Abubakar
- Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
- Department of Medical Laboratory Science, College of Medical Science, Ahmadu Bello University, Zaria, Nigeria
| | - Zeineb Zian
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Takanori Sasaki
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mohammad Saffarioun
- Biopharmaceutical Research Center, AryoGen Pharmed Inc., Alborz University of Medical Sciences, Karaj, Iran
| | - Shayan Maleknia
- Biopharmaceutical Research Center, AryoGen Pharmed Inc., Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- *Correspondence: Gholamreza Azizi,
| |
Collapse
|
19
|
Castillo R, Albayda J. Refractory alopecia universalis associated with dermatomyositis successfully treated with tofacitinib. Mod Rheumatol Case Rep 2022; 6:199-202. [PMID: 35253877 PMCID: PMC11132691 DOI: 10.1093/mrcr/rxac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/26/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022]
Abstract
Dermatomyositis (DM) and alopecia areata are two diseases characterised by aberrant interferon signalling. While patchy alopecia of the scalp is a known feature of DM, alopecia universalis, which involves hair loss over the entire body, has rarely been reported in conjunction with DM. Herein, we report the case of a 30-year-old female with DM who developed refractory cutaneous disease and alopecia universalis that were successfully treated with tofacitinib. This could suggest that concomitant severe alopecia and refractory cutaneous DM may reflect a strong baseline interferon gene signature that may predict responsiveness to janus kinase inhibitors.
Collapse
Affiliation(s)
- Rochelle Castillo
- Department of Medicine, Division of Rheumatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Jemima Albayda
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
You R, He X, Zeng Z, Zhan Y, Xiao Y, Xiao R. Pyroptosis and Its Role in Autoimmune Disease: A Potential Therapeutic Target. Front Immunol 2022; 13:841732. [PMID: 35693810 PMCID: PMC9174462 DOI: 10.3389/fimmu.2022.841732] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
Autoimmune diseases are a group of heterogeneous diseases with diverse clinical manifestations that can be divided into systemic and organ-specific. The common etiology of autoimmune diseases is the destruction of immune tolerance and the production of autoantibodies, which attack specific tissues and/or organs in the body. The pathogenesis of autoimmune diseases is complicated, and genetic, environmental, infectious, and even psychological factors work together to cause aberrant innate and adaptive immune responses. Although the exact mechanisms are unclear, recently, excessive exacerbation of pyroptosis, as a bond between innate and adaptive immunity, has been proven to play a crucial role in the development of autoimmune disease. Pyroptosis is characterized by pore formation on cell membranes, as well as cell rupture and the excretion of intracellular contents and pro-inflammatory cytokines, such as IL-1β and IL-18. This overactive inflammatory programmed cell death disrupts immune system homeostasis and promotes autoimmunity. This review examines the molecular structure of classical inflammasomes, including NLRP3, AIM2, and P2X7-NLRP3, as the switches of pyroptosis, and their molecular regulation mechanisms. The sophisticated pyroptosis pathways, including the canonical caspase-1-mediated pathway, the noncanonical caspase-4/5/11-mediated pathway, the emerging caspase-3-mediated pathway, and the caspase-independent pathway, are also described. We highlight the recent advances in pyroptosis in autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, Sjögren's syndrome and dermatomyositis, and attempt to identify its potential advantages as a therapeutic target or prognostic marker in these diseases.
Collapse
Affiliation(s)
- Ruixuan You
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xinglan He
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Zhan
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangfan Xiao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
21
|
Chen HW, Barber G, Chong BF. The Genetic Landscape of Cutaneous Lupus Erythematosus. Front Med (Lausanne) 2022; 9:916011. [PMID: 35721085 PMCID: PMC9201079 DOI: 10.3389/fmed.2022.916011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cutaneous lupus erythematosus (CLE) is an autoimmune connective tissue disease that can exist as a disease entity or within the context of systemic lupus erythematosus (SLE). Over the years, efforts to elucidate the genetic underpinnings of CLE and SLE have yielded a wealth of information. This review examines prior studies investigating the genetics of CLE at the DNA and RNA level and identifies future research areas. In this literature review, we examined the English language literature captured within the MEDLINE and Embase databases using pre-defined search terms. First, we surveyed studies investigating various DNA studies of CLE. We identified three predominant areas of focus in HLA profiling, complement deficiencies, and genetic polymorphisms. An increased frequency of HLA-B8 has been strongly linked to CLE. In addition, multiple genes responsible for mediating innate immune response, cell growth, apoptosis, and interferon response confer a higher risk of developing CLE, specifically TREX1 and SAMHD1. There was a strong association between C2 complement deficiency and CLE. Second, we reviewed literature studying aberrations in the transcriptomes of patients with CLE. We reviewed genetic aberrations initiated by environmental insults, and we examined the interplay of dysregulated inflammatory, apoptotic, and fibrotic pathways in the context of the pathomechanism of CLE. These current learnings will serve as the foundation for further advances in integrating personalized medicine into the care of patients with CLE.
Collapse
|
22
|
Abstract
The idiopathic inflammatory myopathies (IIM) are rare, heterogeneous systemic autoimmune disorders, characterized by inflammation of skeletal muscle and multi-organ involvement. Studies to identify genetic risk factors and dysregulated gene expression in IIM aim to increase our understanding of disease pathogenesis. Genome-wide association studies have confirmed the HLA region as the most strongly associated region in IIM, with different associations between clinically-defined subgroups. Associated genes are involved in both the innate and adaptive immune response, while identification of variants reported in other autoimmune disorders suggests shared biological pathways. Targeted imputation analysis has identified key associated amino acid residues within HLA molecules that may influence antigen recognition. These amino acids increase risk for specific clinical phenotypes and autoantibody subgroups, and suggest that serology-defined subgroups may be more homogeneous. Recent data support the contribution of rare genetic variation to disease susceptibility in IIM, including mitochondrial DNA variation in sporadic inclusion body myositis and somatic mutations and loss of heterozygosity in cancer-associated myositis. Gene expression studies in skeletal muscle, blood and skin from individuals with IIM has confirmed the role of interferon signalling and other dysregulated pathways, and identified cell-type specific signatures. These dysregulated genes differentiate IIM subgroups and identify potential biomarkers. Here, we review recent genetic studies in IIM, and how these inform our understanding of disease pathogenesis and provide mechanistic insights into biological pathways.
Collapse
|
23
|
Jamerson TA, Li Q, Sreeskandarajan S, Budunova IV, He Z, Kang J, Gudjonsson JE, Patrick MT, Tsoi LC. Roles Played by Stress-Induced Pathways in Driving Ethnic Heterogeneity for Inflammatory Skin Diseases. Front Immunol 2022; 13:845655. [PMID: 35572606 PMCID: PMC9095822 DOI: 10.3389/fimmu.2022.845655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/23/2022] [Indexed: 12/25/2022] Open
Abstract
Immune-mediated skin conditions (IMSCs) are a diverse group of autoimmune diseases associated with significant disease burden. Atopic dermatitis and psoriasis are among the most common IMSCs in the United States and have disproportionate impact on racial and ethnic minorities. African American patients are more likely to develop atopic dermatitis compared to their European American counterparts; and despite lower prevalence of psoriasis among this group, African American patients can suffer from more extensive disease involvement, significant post-inflammatory changes, and a decreased quality of life. While recent studies have been focused on understanding the heterogeneity underlying disease mechanisms and genetic factors at play, little emphasis has been put on the effect of psychosocial or psychological stress on immune pathways, and how these factors contribute to differences in clinical severity, prevalence, and treatment response across ethnic groups. In this review, we explore the heterogeneity of atopic dermatitis and psoriasis between African American and European American patients by summarizing epidemiological studies, addressing potential molecular and environmental factors, with a focus on the intersection between stress and inflammatory pathways.
Collapse
Affiliation(s)
- Taylor A. Jamerson
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Qinmengge Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | | | - Irina V. Budunova
- Department of Dermatology, Northwestern Medicine, Northwestern University, Chicago, IL, United States,Department of Urology, Northwestern Medicine, Northwestern University, Chicago, IL, United States
| | - Zhi He
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Jian Kang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Johann E. Gudjonsson
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Matthew T. Patrick
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Lam C. Tsoi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States,Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States,Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States,*Correspondence: Lam C. Tsoi,
| |
Collapse
|
24
|
Prasov L, Bohnsack BL, El Husny AS, Tsoi LC, Guan B, Kahlenberg JM, Almeida E, Wang H, Cowen EW, De Jesus AA, Jani P, Billi AC, Moroi SE, Wasikowski R, Almeida I, Almeida LN, Kok F, Garnai SJ, Mian SI, Chen MY, Warner BM, Ferreira CR, Goldbach-Mansky R, Hur S, Brooks BP, Richards JE, Hufnagel RB, Gudjonsson JE. DDX58(RIG-I)-related disease is associated with tissue-specific interferon pathway activation. J Med Genet 2022; 59:294-304. [PMID: 33495304 PMCID: PMC8310534 DOI: 10.1136/jmedgenet-2020-107447] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/10/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Singleton-Merten syndrome (SGMRT) is a rare immunogenetic disorder that variably features juvenile open-angle glaucoma (JOAG), psoriasiform skin rash, aortic calcifications and skeletal and dental dysplasia. Few families have been described and the genotypic and phenotypic spectrum is poorly defined, with variants in DDX58 (DExD/H-box helicase 58) being one of two identified causes, classified as SGMRT2. METHODS Families underwent deep systemic phenotyping and exome sequencing. Functional characterisation with in vitro luciferase assays and in vivo interferon signature using bulk and single cell RNA sequencing was performed. RESULTS We have identified a novel DDX58 variant c.1529A>T p.(Glu510Val) that segregates with disease in two families with SGMRT2. Patients in these families have widely variable phenotypic features and different ethnic background, with some being severely affected by systemic features and others solely with glaucoma. JOAG was present in all individuals affected with the syndrome. Furthermore, detailed evaluation of skin rash in one patient revealed sparse inflammatory infiltrates in a unique distribution. Functional analysis showed that the DDX58 variant is a dominant gain-of-function activator of interferon pathways in the absence of exogenous RNA ligands. Single cell RNA sequencing of patient lesional skin revealed a cellular activation of interferon-stimulated gene expression in keratinocytes and fibroblasts but not in neighbouring healthy skin. CONCLUSIONS These results expand the genotypic spectrum of DDX58-associated disease, provide the first detailed description of ocular and dermatological phenotypes, expand our understanding of the molecular pathogenesis of this condition and provide a platform for testing response to therapy.
Collapse
Affiliation(s)
- Lev Prasov
- Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Brenda L Bohnsack
- Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Ophthalmology, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Ophthalmology, Northwestern University, Chicago, IL, USA
| | - Antonette S El Husny
- Children and Adolescents' Health Care Unit, Bettina Ferro De Souza University Hospital, Federal University of Para, Belem, Brazil
| | - Lam C Tsoi
- Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Bin Guan
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, Maryland, USA
| | - J Michelle Kahlenberg
- Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Haitao Wang
- Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Edward W Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Adriana A De Jesus
- Translational Autoinflammatory Diseases Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Priyam Jani
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Allison C Billi
- Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sayoko E Moroi
- Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Rachael Wasikowski
- Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Izabela Almeida
- Ophthalmology and Visual Sciences, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Sarah J Garnai
- Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Shahzad I Mian
- Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Marcus Y Chen
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Blake M Warner
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | - Carlos R Ferreira
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Sun Hur
- Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, Maryland, USA
| | - Julia E Richards
- Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, Maryland, USA
| | - Johann E Gudjonsson
- Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
25
|
Theocharidis G, Tekkela S, Veves A, McGrath JA, Onoufriadis A. Single-cell transcriptomics in human skin research: available technologies, technical considerations, and disease applications. Exp Dermatol 2022; 31:655-673. [PMID: 35196402 PMCID: PMC9311140 DOI: 10.1111/exd.14547] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/18/2022] [Indexed: 11/28/2022]
Abstract
Single‐cell technologies have revolutionized research in the last decade, including for skin biology. Single‐cell RNA sequencing has emerged as a powerful tool allowing the dissection of human disease pathophysiology at unprecedented resolution by assessing cell‐to‐cell variation, facilitating identification of rare cell populations and elucidating cellular heterogeneity. In dermatology, this technology has been widely applied to inflammatory skin disorders, fibrotic skin diseases, wound healing complications and cutaneous neoplasms. Here, we discuss the available technologies and technical considerations of single‐cell RNA sequencing and describe its applications to a broad spectrum of dermatological diseases.
Collapse
Affiliation(s)
- Georgios Theocharidis
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Stavroula Tekkela
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John A McGrath
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Alexandros Onoufriadis
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|
26
|
Habib I, Anjum F, Mohammad T, Sulaimani MN, Shafie A, Almehmadi M, Yadav DK, Sohal SS, Hassan MI. Differential gene expression and network analysis in head and neck squamous cell carcinoma. Mol Cell Biochem 2022; 477:1361-1370. [PMID: 35142951 DOI: 10.1007/s11010-022-04379-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignancy with a poor prognosis, whose biomarkers have not been studied in great detail. We have collected genomic data of HNSCC patients from The Cancer Genome Atlas (TCGA) and analyzed them to get deeper insights into the gene expression pattern. Initially, 793 differentially expressed genes (DEGs) were categorized, and their enrichment analysis was performed. Later, a protein-protein interaction network for the DEGs was constructed using the STRING plugin in Cytoscape to study their interactions. A set of 10 hub genes was selected based on Maximal Clique Centrality score, and later their survival analysis was studied. The elucidated set of 10 genes, i.e., PRAME, MAGEC2, MAGEA12, LHX1, MAGEA3, CSAG1, MAGEA6, LCE6A, LCE2D, LCE2C, referred to as potential candidates to be explored as HNSCC biomarkers. The Kaplan-Meier overall survival of the selected genes suggested that the alterations in the candidate genes were linked to the decreased survival of the HNSCC patients. Altogether, the results of this study signify that the genomic alterations and differential expression of the selected genes can be explored in therapeutic interpolations of HNSCC, exploiting early diagnosis and target-propelled therapy.
Collapse
Affiliation(s)
- Insan Habib
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City, 21924, South Korea.
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
27
|
Ouyang S, Liu Y, Xiao C, Zeng Q, Luo X, Hu X, Xie S. Identification of Latent Diagnostic Biomarkers and Biological Pathways in Dermatomyositis Based on WGCNA. JOURNAL OF ONCOLOGY 2021; 2021:1920111. [PMID: 35003257 PMCID: PMC8736700 DOI: 10.1155/2021/1920111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Dermatomyositis (DM) is a chronic autoimmune disease of predominantly lymphocytic infiltration mainly involving the transverse muscle. Its pathogenesis is remaining unknown. This research is designed to probe the latent pathogenesis of dermatomyositis, identify potential biomarkers, and reveal the pathogenesis of dermatomyositis through information biology analysis of gene chips. METHODS In this study, we utilised the GSE14287 and GSE11971 datasets rooted in the Gene Expression Omnibus (GEO) databank, which included a total of 62 DM samples and 9 normal samples. The datasets were combined, and the differentially expressed gene sets were subjected to weighted gene coexpression network analysis, and the hub gene was screened using a protein interaction network from genes in modules highly correlated with dermatomyositis progression. RESULTS A total of 3 key genes-myxovirus resistance-2 (MX2), oligoadenylate synthetase 1 (OAS1), and oligoadenylate synthetase 2 (OAS2)-were identified in combination with cell line samples, and the expressions of the 3 genes were verified separately. The results showed that MX2, OAS1, and OAS2 were highly expressed in LPS-treated cell lines compared to normal cell lines. The results of pathway enrichment analysis of the genes indicated that all 3 genes were enriched in the cytosolic DNA signalling and cytokine and cytokine receptor interaction signalling pathways; the results of functional enrichment analysis showed that all 3 were enriched in interferon-α response and interferon-γ response functions. CONCLUSIONS This is important for the study of the pathogenesis and objective treatment of dermatomyositis and provides important reference information for the targeted therapy of dermatomyositis.
Collapse
Affiliation(s)
- Shaxi Ouyang
- Nephrology Department and Laboratory of Kidney Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
- Changsha Clinical Research Center for Kidney Disease, Changsha, China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, China
| | - Yifang Liu
- Nephrology Department and Laboratory of Kidney Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
- Changsha Clinical Research Center for Kidney Disease, Changsha, China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, China
| | - Changjuan Xiao
- Nephrology Department and Laboratory of Kidney Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
- Changsha Clinical Research Center for Kidney Disease, Changsha, China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, China
| | - Qinghua Zeng
- Nephrology Department and Laboratory of Kidney Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
- Changsha Clinical Research Center for Kidney Disease, Changsha, China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, China
| | - Xun Luo
- Nephrology Department and Laboratory of Kidney Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
- Changsha Clinical Research Center for Kidney Disease, Changsha, China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, China
| | - Xiaofang Hu
- Department of Clinical Medicine, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, China
| | - Shuoshan Xie
- Nephrology Department and Laboratory of Kidney Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
- Changsha Clinical Research Center for Kidney Disease, Changsha, China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, China
| |
Collapse
|
28
|
Zhao Q, Chen Y, Diao L, Zhang S, Wu D, Xue F, Xia Q, Li H, Zheng J, Cao H. Identification of distinct cytokine/chemokine profiles in dermatomyositis with anti-transcriptional intermediary factor 1-γ antibody. Rheumatology (Oxford) 2021; 61:2176-2184. [PMID: 34508564 DOI: 10.1093/rheumatology/keab625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/27/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Dermatomyositis (DM) and clinically amyopathic dermatomyositis (CADM) patients with positive expression of anti-transcription intermediary factor 1-γ (anti-TIF1-γ) antibody (Ab) are characterized by distinct clinicopathological features. We aimed to determine the role of cytokine/chemokine profiles in the classification of anti-TIF1-γ positive DM/CADM patients. METHODS Serum levels of 24 cytokines/chemokines were measured in 27 anti-TIF1-γ positive DM/CADM patients by a Luminex 200 system. Principal components analysis (PCA) and unsupervised hierarchical clustering were used to reduce variables and establish patient subgroups. Spearman's correlation coefficient was calculated between cytokine/chemokine levels and disease activity markers. RESULTS Among anti-TIF1-γ positive DM/CADM patients, two distinct patient clusters were identified. The diagnosis of CADM was more common in Cluster 1 than in Cluster 2 (58.3% vs 6.7%, p = 0.008). Skin disease activity was higher in Cluster 2 than in Cluster 1 as measured by CDASI-A (38.6 ± 10.4 vs 25.3 ± 10.0, p = 0.003). Patients within Cluster 2 exhibited significant muscle weakness (MRC ≤ 3, 33.3% vs 0.0%, p = 0.047), higher levels of anti-TIF1-γ Ab (92.4 ± 20.6 vs 66.9 ± 13.9, p = 0.001), and an increased malignancy rate (73.3% vs 25.0%, p = 0.021). Cluster 2 exhibited higher serum levels of CXCL10 (564.2 ± 258.8 vs 122.0 ± 97.8, p < 0.001), CCL2 (1136.6 ± 545.4 vs 441.6 ± 163.3, p < 0.001), Galectin-9 (38879.6 ± 20009.3 vs 12612.4 ± 6640.0, p < 0.001), IL-18 (436.1 ± 188.9 vs 243.0 ± 114.5, p = 0.003), TNF-α (9.3 ± 3.8 vs 5.6 ± 2.4, p = 0.007), and TNFRI (1385.1 ± 338.2 vs 2605.6 ± 928.5, p < 0.001) than Cluster 1. CONCLUSION In anti-TIF1-γ positive DM/CADM, we identified a "skin-predominant" cluster and a "hyperinflammation" cluster based on the cytokine/chemokine profiles. Cytokine/chemokine profiles in anti-TIF1-γ positive DM/CADM can identify discrete clusters of patients with different disease patterns, organ involvements, and clinical outcomes.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Dermatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongheng Chen
- Department of Dermatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Licheng Diao
- Department of Dermatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shimin Zhang
- Department of Dermatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Wu
- Department of Dermatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Xue
- Department of Dermatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qunli Xia
- Department of Dermatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Li
- Department of Oncology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zheng
- Department of Dermatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Cao
- Department of Dermatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Estadt SN, Maz MP, Musai J, Kahlenberg JM. Mechanisms of Photosensitivity in Autoimmunity. J Invest Dermatol 2021; 142:849-856. [PMID: 34167786 DOI: 10.1016/j.jid.2021.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Aberrant responses to UV light frequently lead to the formation of skin lesions and the activation of systemic inflammation in some autoimmune diseases, especially systemic lupus erythematosus. Whereas the effects of UV light on the skin have been studied for decades, only recently have some of the mechanisms that contribute to abnormal responses to UV light in patients with autoimmune diseases been uncovered. This review will discuss the biology of UV in the epidermis and discuss the abnormal epidermal and inflammatory mechanisms that contribute to photosensitivity. Further research is required to fully understand how to normalize UV-mediated inflammation in patients with autoimmune diseases.
Collapse
Affiliation(s)
- Shannon N Estadt
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Graduate Program in Immunology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Mitra P Maz
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Graduate Program in Immunology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Jon Musai
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
30
|
Abstract
The recent updates on treatment recommendations for the management of systemic lupus erythematous have provided greater clarity in the way existing anti-inflammatory and immunomodulatory drugs are used, in treating disease activity, preventing flares, and reducing irreversible organ damage and toxicity arising from the treatments themselves. Novel therapies will provide more options in the armamentarium for treating this complex disease, but ongoing studies are needed to improve understanding of the optimal treatment algorithm to maintain quality of life and improve survival for patients.
Collapse
Affiliation(s)
- Alberta Y Hoi
- Centre for Inflammatory Diseases, Monash University, Victoria, Australia; Department of Rheumatology, Monash Health, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | - Eric F Morand
- Centre for Inflammatory Diseases, Monash University, Victoria, Australia; Department of Rheumatology, Monash Health, 246 Clayton Road, Clayton, Victoria 3168, Australia.
| |
Collapse
|
31
|
Bitar C, Chan MP. Connective Tissue Diseases in the Skin: Emerging Concepts and Updates on Molecular and Immune Drivers of Disease. Surg Pathol Clin 2021; 14:237-249. [PMID: 34023103 DOI: 10.1016/j.path.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cutaneous manifestations are common across the spectrum of autoimmune diseases. Connective tissue diseases manifesting in the skin are often difficult to classify and require integration of clinical, histopathologic, and serologic findings. This review focuses on the current understanding of the molecular and immune drivers involved in the pathogenesis of cutaneous lupus erythematosus, dermatomyositis, scleroderma/systemic sclerosis, and mixed connective tissue disease. Recent research advances have led to the emergence of new ancillary tools and useful diagnostic clues of which dermatopathologists should be aware to improve diagnostic accuracy for these diseases.
Collapse
Affiliation(s)
- Carole Bitar
- Department of Pathology, University of Michigan, 2800 Plymouth Road, NCRC Building 35, Ann Arbor, MI 48109, USA
| | - May P Chan
- Department of Pathology, University of Michigan, 2800 Plymouth Road, NCRC Building 35, Ann Arbor, MI 48109, USA.
| |
Collapse
|
32
|
Turnier JL, Pachman LM, Lowe L, Tsoi LC, Elhaj S, Menon R, Amoruso MC, Morgan GA, Gudjonsson JE, Berthier CC, Kahlenberg JM. Comparison of Lesional Juvenile Myositis and Lupus Skin Reveals Overlapping Yet Unique Disease Pathophysiology. Arthritis Rheumatol 2021; 73:1062-1072. [PMID: 33305541 DOI: 10.1002/art.41615] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Skin inflammation heralds systemic disease in juvenile myositis, yet we lack an understanding of pathogenic mechanisms driving skin inflammation in this disease. We undertook this study to define cutaneous gene expression signatures in juvenile myositis and identify key genes and pathways that differentiate skin disease in juvenile myositis from childhood-onset systemic lupus erythematosus (SLE). METHODS We used formalin-fixed paraffin-embedded skin biopsy samples from 15 patients with juvenile myositis (9 lesional, 6 nonlesional), 5 patients with childhood-onset SLE, and 8 controls to perform transcriptomic analysis and identify significantly differentially expressed genes (DEGs; q ≤ 5%) between patient groups. We used Ingenuity Pathway Analysis (IPA) to highlight enriched biologic pathways and validated DEGs by immunohistochemistry and quantitative real-time polymerase chain reaction. RESULTS Comparison of lesional juvenile myositis to control samples revealed 221 DEGs, with the majority of up-regulated genes representing interferon (IFN)-stimulated genes. CXCL10, CXCL9, and IFI44L represented the top 3 DEGs (fold change 23.2, 13.3, and 13.0, respectively; q < 0.0001). IPA revealed IFN signaling as the top canonical pathway. When compared to childhood-onset SLE, lesional juvenile myositis skin shared a similar gene expression pattern, with only 28 unique DEGs, including FBLN2, CHKA, and SLURP1. Notably, patients with juvenile myositis who were positive for nuclear matrix protein 2 (NXP-2) autoantibodies exhibited the strongest IFN signature and also demonstrated the most extensive Mx-1 immunostaining, both in keratinocytes and perivascular regions. CONCLUSION Lesional juvenile myositis skin demonstrates a striking IFN signature similar to that previously reported in juvenile myositis muscle and peripheral blood. Further investigation into the association of a higher IFN score with NXP-2 autoantibodies may provide insight into disease endotypes and pathogenesis.
Collapse
Affiliation(s)
| | - Lauren M Pachman
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | | | - Maria C Amoruso
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | | |
Collapse
|
33
|
Proteome study of cutaneous lupus erythematosus (CLE) and dermatomyositis skin lesions reveals IL-16 is differentially upregulated in CLE. Arthritis Res Ther 2021; 23:132. [PMID: 33931094 PMCID: PMC8086067 DOI: 10.1186/s13075-021-02511-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/12/2021] [Indexed: 11/30/2022] Open
Abstract
Background The objective of the study was to explore the disease pathways activated in the inflammatory foci of skin lesions in cutaneous lupus erythematosus (CLE) and dermatomyositis (DM). Methods Skin biopsies acquired from active CLE and DM lesions, patient (PC), and also healthy controls (HC) were investigated. Biopsy sections were examined by a pathologist, inflammatory foci were laser micro-dissected and captured, and proteins within captured tissue were detected in an unbiased manner by mass spectrometry. Protein pathway analysis was performed by the string-db.org platform. Findings of interest were confirmed by immunohistochemistry (IHC). Results Proteome investigation identified abundant expression of interferon-regulated proteins (IRP) as a common feature of CLE and DM. Interleukin (IL)-16 was the only abundant cytokine differentially expressed in CLE compared to DM. Caspase-3, an enzyme that cleaves IL-16 into its active form, was detected in low levels. Significantly higher proportion of IL-16- and caspase-3-positive cells was identified in CLE lesions in comparison with DM, PC, and HC. Proteomic results indicate more abundant complement deposition in CLE skin lesions. Conclusions Using unbiased mass spectrometry investigation of CLE and DM inflammatory infiltrates, we confirmed that high IRP expression is a common feature of both CLE and DM, while IL-16 is the only differentially expressed cytokine in CLE. IHC confirmed high expression of IL-16 and caspase-3 in CLE. Our novel molecular findings indicate that IL-16 detection could be useful in differential diagnostics between the two conditions that can display similar histopathological appearance. IL-16 could be of interest as a future therapeutic target for CLE.
Collapse
|
34
|
Castillo RL, Femia AN. Polishing the crystal ball: mining multi-omics data in dermatomyositis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:435. [PMID: 33842656 PMCID: PMC8033302 DOI: 10.21037/atm-20-5319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Precision medicine, which recognizes and upholds the uniqueness of each individual patient and the importance of discerning these inter-individual differences on a molecular scale in order to provide truly personalized medical care, is a revolutionary approach that relies on the discovery of clinically-relevant biomarkers derived from the massive amounts of data generated by epigenomic, genomic, transcriptomic, proteomic, microbiomic, and metabolomic studies, collectively known as multi-omics. If harnessed and mined appropriately with the help of ever-evolving computational and analytic methods, the collective data from omics studies has the potential to accelerate delivery of targeted medical treatment that maximizes benefit, minimizes harm, and eliminates the “fortune-telling” inextricably linked to the prevailing trial-and-error approach. For a disease such as dermatomyositis (DM), which is characterized by remarkable phenotypic heterogeneity and varying degrees of multi-organ involvement, an individualized approach that incorporates big data derived from multi-omics studies with the results of currently available serologic, histopathologic, radiologic, and electrophysiologic tests, and, most importantly, with clinical findings obtained from a thorough history and physical examination, has immense diagnostic, therapeutic, and prognostic value. In this review, we discuss omics-based research studies in DM and describe their practical applications and promising roles in guiding clinical decisions and optimizing patient outcomes.
Collapse
Affiliation(s)
- Rochelle L Castillo
- Department of Medicine, Division of Rheumatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Alisa N Femia
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
35
|
Zhu JL, Black SM, Chong BF. Role of biomarkers in the diagnosis and prognosis of patients with cutaneous lupus erythematosus. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:429. [PMID: 33842650 PMCID: PMC8033322 DOI: 10.21037/atm-20-5232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is a connective tissue disease with varying presentations, and clinical sequelae including itching, dyspigmentation, and scarring. CLE can occur as its own entity or in conjunction with systemic disease, known as systemic lupus erythematosus (SLE). Because CLE is clinically diverse, identification of a biomarker may help not only facilitate early diagnosis and management but also identify individuals at risk for poor prognosis and development of SLE. While potential biomarkers in SLE have been extensively studied, few biomarkers for CLE have been identified and incorporated into clinical practice. Anti-SS-A antibody is a commonly used biomarker for diagnosis of subacute CLE patients. Type I interferon-related proteins such as MxA and guanylate binding protein‐1 (GBP-1) and chemokines such as CXCR3, CXCL9, and CXCL10 have been identified as biomarkers that may support diagnosis and track disease activity. First-line oral treatment for CLE currently consists of anti-malarials such as hydroxychloroquine (HCQ), chloroquine (CQ), and quinacrine (QC). Studies have found that an increased myeloid dendritic cell population with higher TNF-α expression may be predictive of poor treatment response to HCQ in CLE patients. Autoantibodies against nuclear antigens (e.g., anti-double-stranded DNA and anti-Smith antibodies) and elevated erythrocyte sedimentation rate have been more commonly found in CLE patients progressing to SLE than those who have not. This review aims to summarize previous and emerging biomarkers for CLE patients.
Collapse
Affiliation(s)
- Jane L Zhu
- Department of Dermatology, University of Texas at Southwestern Medical Center, Dallas, TX, USA
| | - Samantha M Black
- Department of Dermatology, University of Texas at Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin F Chong
- Department of Dermatology, University of Texas at Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|