1
|
Tso P, Bernier-Latmani J, Petrova TV, Liu M. Transport functions of intestinal lymphatic vessels. Nat Rev Gastroenterol Hepatol 2025; 22:127-145. [PMID: 39496888 DOI: 10.1038/s41575-024-00996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/06/2024]
Abstract
Lymphatic vessels are crucial for fluid absorption and the transport of peripheral immune cells to lymph nodes. However, in the small intestine, the lymphatic fluid is rich in diet-derived lipids incorporated into chylomicrons and gut-specific immune cells. Thus, intestinal lymphatic vessels have evolved to handle these unique cargoes and are critical for systemic dietary lipid delivery and metabolism. This Review covers mechanisms of lipid absorption from epithelial cells to the lymphatics as well as unique features of the gut microenvironment that affect these functions. Moreover, we discuss details of the intestinal lymphatics in gut immune cell trafficking and insights into the role of inter-organ communication. Lastly, we highlight the particularities of fat absorption that can be harnessed for efficient lipid-soluble drug distribution for novel therapies, including the ability of chylomicron-associated drugs to bypass first-pass liver metabolism for systemic delivery. In all, this Review will help to promote an understanding of intestinal lymphatic-systemic interactions to guide future research directions.
Collapse
Affiliation(s)
- Patrick Tso
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Min Liu
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
2
|
Nishida K, Ueno S, Seino Y, Hidaka S, Murao N, Asano Y, Fujisawa H, Shibata M, Takayanagi T, Ohbayashi K, Iwasaki Y, Iizuka K, Okuda S, Tanaka M, Fujii T, Tochio T, Yabe D, Yamada Y, Sugimura Y, Hirooka Y, Hayashi Y, Suzuki A. Impaired Fat Absorption from Intestinal Tract in High-Fat Diet Fed Male Mice Deficient in Proglucagon-Derived Peptides. Nutrients 2024; 16:2270. [PMID: 39064713 PMCID: PMC11280123 DOI: 10.3390/nu16142270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Proglucagon-derived peptides (PDGPs) including glucagon (Gcg), GLP-1, and GLP-2 regulate lipid metabolism in the liver, adipocytes, and intestine. However, the mechanism by which PGDPs participate in alterations in lipid metabolism induced by high-fat diet (HFD) feeding has not been elucidated. (2) Methods: Mice deficient in PGDP (GCGKO) and control mice were fed HFD for 7 days and analyzed, and differences in lipid metabolism in the liver, adipose tissue, and duodenum were investigated. (3) Results: GCGKO mice under HFD showed lower expression levels of the genes involved in free fatty acid (FFA) oxidation such as Hsl, Atgl, Cpt1a, Acox1 (p < 0.05), and Pparα (p = 0.05) mRNA in the liver than in control mice, and both FFA and triglycerides content in liver and adipose tissue weight were lower in the GCGKO mice. On the other hand, phosphorylation of hormone-sensitive lipase (HSL) in white adipose tissue did not differ between the two groups. GCGKO mice under HFD exhibited lower expression levels of Pparα and Cd36 mRNA in the duodenum as well as increased fecal cholesterol contents compared to HFD-controls. (4) Conclusions: GCGKO mice fed HFD exhibit a lesser increase in hepatic FFA and triglyceride contents and adipose tissue weight, despite reduced β-oxidation in the liver, than in control mice. Thus, the absence of PGDP prevents dietary-induced fatty liver development due to decreased lipid uptake in the intestinal tract.
Collapse
Affiliation(s)
- Koki Nishida
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Shinji Ueno
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Yusuke Seino
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan; (D.Y.); (Y.Y.)
| | - Shihomi Hidaka
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Naoya Murao
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan; (D.Y.); (Y.Y.)
| | - Yuki Asano
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Haruki Fujisawa
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Megumi Shibata
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Takeshi Takayanagi
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Kento Ohbayashi
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan; (K.O.); (Y.I.)
| | - Yusaku Iwasaki
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan; (K.O.); (Y.I.)
| | - Katsumi Iizuka
- Department of Clinical Nutrition, Fujita Health University, Toyoake 470-1192, Japan;
| | - Shoei Okuda
- Graduate School of Bioscience and Biotechnology, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (S.O.); (M.T.)
| | - Mamoru Tanaka
- Graduate School of Bioscience and Biotechnology, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (S.O.); (M.T.)
| | - Tadashi Fujii
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Japan; (T.F.); (T.T.); (Y.H.)
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake 470-1101, Japan
- BIOSIS Lab. Co., Ltd., Toyoake 470-1192, Japan
| | - Takumi Tochio
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Japan; (T.F.); (T.T.); (Y.H.)
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake 470-1101, Japan
- BIOSIS Lab. Co., Ltd., Toyoake 470-1192, Japan
| | - Daisuke Yabe
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan; (D.Y.); (Y.Y.)
- Center for One Medicine Innovative Translational Research, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yuuichiro Yamada
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan; (D.Y.); (Y.Y.)
| | - Yoshihisa Sugimura
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Yoshiki Hirooka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Japan; (T.F.); (T.T.); (Y.H.)
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake 470-1101, Japan
- BIOSIS Lab. Co., Ltd., Toyoake 470-1192, Japan
| | - Yoshitaka Hayashi
- Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan;
- Department of Endocrinology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Atsushi Suzuki
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| |
Collapse
|
3
|
Morrow NM, Morissette A, Mulvihill EE. Immunomodulation and inflammation: Role of GLP-1R and GIPR expressing cells within the gut. Peptides 2024; 176:171200. [PMID: 38555054 DOI: 10.1016/j.peptides.2024.171200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are peptide hormones produced by enteroendocrine cells in the small intestine. Despite being produced in the gut, the leveraging of their role in potentiating glucose-stimulated insulin secretion, also known as the incretin effect, has distracted from discernment of direct intestinal signaling circuits. Both preclinical and clinical evidence have highlighted a role for the incretins in inflammation. In this review, we highlight the discoveries of GLP-1 receptor (GLP-1R)+ natural (TCRαβ and TCRγδ) and induced (TCRαβ+CD4+ cells and TCRαβ+CD8αβ+) intraepithelial lymphocytes. Both endogenous signaling and pharmacological activation of GLP-1R impact local and systemic inflammation, the gut microbiota, whole-body metabolism, as well as the control of GLP-1 bioavailability. While GIPR signaling has been documented to impact hematopoiesis, the impact of these bone marrow-derived cells in gut immunology is not well understood. We uncover gaps in the literature of the evaluation of the impact of sex in these GLP-1R and GIP receptor (GIPR) signaling circuits and provide speculations of the maintenance roles these hormones play within the gut in the fasting-refeeding cycles. GLP-1R agonists and GLP-1R/GIPR agonists are widely used as treatments for diabetes and weight loss, respectively; however, their impact on gut homeostasis has not been fully explored. Advancing our understanding of the roles of GLP-1R and GIPR signaling within the gut at homeostasis as well as metabolic and inflammatory diseases may provide targets to improve disease management.
Collapse
Affiliation(s)
- Nadya M Morrow
- The University of Ottawa Heart Institute, 40 Ruskin Street, H-3229A, Ottawa, Ontario KIY 4W7, Canada; Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, 451 Smyth Rd, Ottawa, Ontario K1H 8L1, Canada
| | - Arianne Morissette
- The University of Ottawa Heart Institute, 40 Ruskin Street, H-3229A, Ottawa, Ontario KIY 4W7, Canada
| | - Erin E Mulvihill
- The University of Ottawa Heart Institute, 40 Ruskin Street, H-3229A, Ottawa, Ontario KIY 4W7, Canada; Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, 451 Smyth Rd, Ottawa, Ontario K1H 8L1, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; Montreal Diabetes Research Group, Montreal, Quebec, Canada; Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.
| |
Collapse
|
4
|
Fadzeyeva E, Locatelli CA, Trzaskalski NA, Nguyen MA, Capozzi ME, Vulesevic B, Morrow NM, Ghorbani P, Hanson AA, Lorenzen-Schmidt I, Doyle MA, Seymour R, Varin EM, Fullerton MD, Campbell JE, Mulvihill EE. Pancreas-derived DPP4 is not essential for glucose homeostasis under metabolic stress. iScience 2023; 26:106748. [PMID: 37216093 PMCID: PMC10192926 DOI: 10.1016/j.isci.2023.106748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/09/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Mice systemically lacking dipeptidyl peptidase-4 (DPP4) have improved islet health, glucoregulation, and reduced obesity with high-fat diet (HFD) feeding compared to wild-type mice. Some, but not all, of this improvement can be linked to the loss of DPP4 in endothelial cells (ECs), pointing to the contribution of non-EC types. The importance of intra-islet signaling mediated by α to β cell communication is becoming increasingly clear; thus, our objective was to determine if β cell DPP4 regulates insulin secretion and glucose tolerance in HFD-fed mice by regulating the local concentrations of insulinotropic peptides. Using β cell double incretin receptor knockout mice, β cell- and pancreas-specific Dpp4-/- mice, we reveal that β cell incretin receptors are necessary for DPP4 inhibitor effects. However, although β cell DPP4 modestly contributes to high glucose (16.7 mM)-stimulated insulin secretion in isolated islets, it does not regulate whole-body glucose homeostasis.
Collapse
Affiliation(s)
- Evgenia Fadzeyeva
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Cassandra A.A. Locatelli
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Natasha A. Trzaskalski
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - My-Anh Nguyen
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Megan E. Capozzi
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701, USA
| | - Branka Vulesevic
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Nadya M. Morrow
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Peyman Ghorbani
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
| | - Antonio A. Hanson
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Ilka Lorenzen-Schmidt
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Mary-Anne Doyle
- Division of Endocrinology & Metabolism, Department of Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Richard Seymour
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Elodie M. Varin
- Lunenfeld Tanenbaum Research Institute, Toronto, ON M5G 1X5, Canada
| | - Morgan D. Fullerton
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, Ottawa, ON K1H 8M5, Canada
| | - Jonathan E. Campbell
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701, USA
| | - Erin E. Mulvihill
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Centre for Infection, Immunity and Inflammation, Ottawa, ON K1H 8M5, Canada
- Montreal Diabetes Research Group, Montreal, QC H2X 0A9, Canada
| |
Collapse
|
5
|
Abdalqadir N, Adeli K. GLP-1 and GLP-2 Orchestrate Intestine Integrity, Gut Microbiota, and Immune System Crosstalk. Microorganisms 2022; 10:2061. [PMID: 36296337 PMCID: PMC9610230 DOI: 10.3390/microorganisms10102061] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022] Open
Abstract
The intestine represents the body's largest interface between internal organs and external environments except for its nutrient and fluid absorption functions. It has the ability to sense numerous endogenous and exogenous signals from both apical and basolateral surfaces and respond through endocrine and neuronal signaling to maintain metabolic homeostasis and energy expenditure. The intestine also harbours the largest population of microbes that interact with the host to maintain human health and diseases. Furthermore, the gut is known as the largest endocrine gland, secreting over 100 peptides and other molecules that act as signaling molecules to regulate human nutrition and physiology. Among these gut-derived hormones, glucagon-like peptide 1 (GLP-1) and -2 have received the most attention due to their critical role in intestinal function and food absorption as well as their application as key drug targets. In this review, we highlight the current state of the literature that has brought into light the importance of GLP-1 and GLP-2 in orchestrating intestine-microbiota-immune system crosstalk to maintain intestinal barrier integrity, inflammation, and metabolic homeostasis.
Collapse
Affiliation(s)
- Nyan Abdalqadir
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1H3, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biology, College of Science, University of Sulaimani, Sulaymaniyah 46001, Iraq
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1H3, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
6
|
Abstract
Postprandial hyperlipidaemia is an important feature of diabetic dyslipidaemia and plays an important role in the development of cardiovascular disease in individuals with type 2 diabetes. Postprandial hyperlipidaemia in type 2 diabetes is secondary to increased chylomicron production by the enterocytes and delayed catabolism of chylomicrons and chylomicron remnants. Insulin and some intestinal hormones (e.g. glucagon-like peptide-1 [GLP-1]) influence intestinal lipid metabolism. In individuals with type 2 diabetes, insulin resistance and possibly reduced GLP-1 secretion are involved in the pathophysiology of postprandial hyperlipidaemia. Several factors are involved in the overproduction of chylomicrons: (1) increased expression of microsomal triglyceride transfer protein, which is a key enzyme in chylomicron synthesis; (2) higher stability and availability of apolipoprotein B-48; and (3) increased de novo lipogenesis. Individuals with type 2 diabetes present with disorders of cholesterol metabolism in the enterocytes with reduced absorption and increased synthesis. The increased production of chylomicrons in type 2 diabetes is also associated with a reduction in their catabolism, mostly because of a reduction in activity of lipoprotein lipase. Modification of the microbiota, which is observed in type 2 diabetes, may also generate disorders of intestinal lipid metabolism, but human data remain limited. Some glucose-lowering treatments significantly influence intestinal lipid absorption and transport. Postprandial hyperlipidaemia is reduced by metformin, pioglitazone, alpha-glucosidase inhibitors, dipeptidyl peptidase 4 inhibitors and GLP-1 agonists. The most pronounced effect is observed with GLP-1 agonists, which reduce chylomicron production significantly in individuals with type 2 diabetes and have a direct effect on the intestine by reducing the expression of genes involved in intestinal lipoprotein metabolism. The effect of sodium-glucose cotransporter 2 inhibitors on intestinal lipid metabolism needs to be clarified.
Collapse
Affiliation(s)
- Bruno Vergès
- Endocrinology-Diabetology Department, University-Hospital, Dijon, France.
- Inserm UMR 1231, Medical School, University of Burgundy-Franche Comté, Dijon, France.
| |
Collapse
|
7
|
Ussher JR, Greenwell AA, Nguyen MA, Mulvihill EE. Cardiovascular Effects of Incretin-Based Therapies: Integrating Mechanisms With Cardiovascular Outcome Trials. Diabetes 2022; 71:173-183. [PMID: 35050311 PMCID: PMC8914293 DOI: 10.2337/dbi20-0049] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023]
Abstract
As the worldwide prevalence of diabetes and obesity continues to rise, so does the risk of debilitating cardiovascular complications. Given the significant association between diabetes and cardiovascular risk, the actions of glucose-lowering therapies within the cardiovascular system must be clearly defined. Incretin hormones, including GLP-1 (glucagon-like peptide 1) and GIP (glucose-dependent insulinotropic polypeptide), are gut hormones secreted in response to nutrient intake that maintain glycemic control by regulating insulin and glucagon release. GLP-1 receptor agonists (GLP-1Ras) and dipeptidyl peptidase 4 inhibitors (DPP-4is) represent two drug classes used for the treatment of type 2 diabetes mellitus (T2DM) that improve glucose regulation through stimulating the actions of gut-derived incretin hormones or inhibiting their degradation, respectively. Despite both classes acting to potentiate the incretin response, the potential cardioprotective benefits afforded by GLP-1Ras have not been recapitulated in cardiovascular outcome trials (CVOTs) evaluating DPP-4is. This review provides insights through discussion of clinical and preclinical studies to illuminate the physiological mechanisms that may underlie and reconcile observations from GLP-1Ra and DPP-4i CVOTs. Furthermore, critical knowledge gaps and areas for further investigation will be emphasized to guide future studies and, ultimately, facilitate improved clinical management of cardiovascular disease in T2DM.
Collapse
Affiliation(s)
- John R. Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda A. Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - My-Anh Nguyen
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Erin E. Mulvihill
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
- Corresponding author: Erin E. Mulvihill,
| |
Collapse
|
8
|
McLean BA, Wong CK, Kaur KD, Seeley RJ, Drucker DJ. Differential importance of endothelial and hematopoietic cell GLP-1Rs for cardiometabolic versus hepatic actions of semaglutide. JCI Insight 2021; 6:153732. [PMID: 34673572 PMCID: PMC8663785 DOI: 10.1172/jci.insight.153732] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/30/2021] [Indexed: 01/24/2023] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are used to treat diabetes and obesity and reduce rates of major cardiovascular events, such as stroke and myocardial infarction. Nevertheless, the identity of GLP-1R–expressing cell types mediating the cardiovascular benefits of GLP-1RA remains incompletely characterized. Herein, we investigated the importance of murine Glp1r expression within endothelial and hematopoietic cells. Mice with targeted inactivation of Glp1r in Tie2+ cells exhibited reduced levels of Glp1r mRNA transcripts in aorta, liver, spleen, blood, and gut. Glp1r expression in bone marrow cells was very low and not further reduced in Glp1rTie2–/– mice. The GLP-1RA semaglutide reduced the development of atherosclerosis induced by viral PCSK9 expression in both Glp1rTie2+/+ and Glp1rTie2–/– mice. Hepatic Glp1r mRNA transcripts were reduced in Glp1rTie2–/– mice, and liver Glp1r expression was localized to γδ T cells. Moreover, semaglutide reduced hepatic Tnf, Abcg1, Tgfb1, Cd3g, Ccl2, and Il2 expression; triglyceride content; and collagen accumulation in high-fat, high-cholesterol diet–fed Glp1rTie2+/+ mice but not Glp1rTie2–/– mice. Collectively, these findings demonstrate that Tie2+ endothelial or hematopoietic cell GLP-1Rs are dispensable for the antiatherogenic actions of GLP-1RA, whereas Tie2-targeted GLP-1R+ cells are required for a subset of the antiinflammatory actions of semaglutide in the liver.
Collapse
Affiliation(s)
- Brent A McLean
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Chi Kin Wong
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kiran Deep Kaur
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Morrow NM, Hanson AA, Mulvihill EE. Distinct Identity of GLP-1R, GLP-2R, and GIPR Expressing Cells and Signaling Circuits Within the Gastrointestinal Tract. Front Cell Dev Biol 2021; 9:703966. [PMID: 34660576 PMCID: PMC8511495 DOI: 10.3389/fcell.2021.703966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
Enteroendocrine cells directly integrate signals of nutrient content within the gut lumen with distant hormonal responses and nutrient disposal via the production and secretion of peptides, including glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP-1) and glucagon-like peptide 2 (GLP-2). Given their direct and indirect control of post-prandial nutrient uptake and demonstrated translational relevance for the treatment of type 2 diabetes, malabsorption and cardiometabolic disease, there is significant interest in the locally engaged circuits mediating these metabolic effects. Although several specific populations of cells in the intestine have been identified to express endocrine receptors, including intraepithelial lymphocytes (IELs) and αβ and γδ T-cells (Glp1r+) and smooth muscle cells (Glp2r+), the definitive cellular localization and co-expression, particularly in regards to the Gipr remain elusive. Here we review the current state of the literature and evaluate the identity of Glp1r, Glp2r, and Gipr expressing cells within preclinical and clinical models. Further elaboration of our understanding of the initiating G-protein coupled receptor (GPCR) circuits engaged locally within the intestine and how they become altered with high-fat diet feeding can offer insight into the dysregulation observed in obesity and diabetes.
Collapse
Affiliation(s)
- Nadya M Morrow
- Energy Substrate Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Antonio A Hanson
- Energy Substrate Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Erin E Mulvihill
- Energy Substrate Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Montreal Diabetes Research Center CRCHUM-Pavillion R, Montreal, QC, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
10
|
Corsi F, Sorrentino L, Albasini S, Colombo F, Cigognini M, Massari A, Morasso C, Mazzucchelli S, Piccotti F, Ardizzone S, Sampietro GM, Truffi M. Circulating Fibroblast Activation Protein as Potential Biomarker in Patients With Inflammatory Bowel Disease. Front Med (Lausanne) 2021; 8:725726. [PMID: 34621763 PMCID: PMC8490650 DOI: 10.3389/fmed.2021.725726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
A major concern in the management of Inflammatory Bowel Disease (IBD) is the absence of accurate and specific biomarkers to drive diagnosis and monitor disease status timely and non-invasively. Fibroblast activation protein (FAP) represents a hallmark of IBD bowel strictures, being overexpressed in stenotic intestinal myofibroblasts. The present study aimed at evaluating the potential of circulating FAP (cFAP) as an accessible blood biomarker of IBD. Quantitative determination of cFAP was performed by enzyme-linked immunosorbent assay on plasma samples prospectively collected from patients with IBD and control subjects. A discrimination model was established on a training set of 50% patients and validated on independent samples. Results showed that cFAP concentration was reduced in patients with IBD when compared to controls (p < 0.0001). Age, sex, smoking, disease location and behavior, disease duration and therapy were not associated with cFAP. The sensitivity and specificity of cFAP in discriminating IBD from controls were 70 and 84%, respectively, based on the optimal cutoff (57.6 ng mL−1, AUC = 0.78). Predictions on the test set had 57% sensitivity, 65% specificity, and 61% accuracy. There was no strong correlation between cFAP and routine inflammatory markers in the patients' population. A subgroup analysis was performed on patients with Crohn's disease undergoing surgery and revealed that cFAP correlates with endoscopic mucosal healing. In conclusion, cFAP deserves attention as a promising blood biomarker to triage patients with suspected IBD. Moreover, it might function as a biomarker of post-operative remission in patients with Crohn's disease.
Collapse
Affiliation(s)
- Fabio Corsi
- Breast Unit, Surgery Department, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy.,Department of Biomedical and Clinical Sciences "L. Sacco", Universitá di Milano, Milan, Italy
| | - Luca Sorrentino
- Department of Biomedical and Clinical Sciences "L. Sacco", Universitá di Milano, Milan, Italy
| | - Sara Albasini
- Breast Unit, Surgery Department, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Francesco Colombo
- Division of General Surgery, ASST Fatebenefratelli Sacco, Luigi Sacco University Hospital, Milan, Italy
| | - Maria Cigognini
- Division of General Surgery, ASST Rhodense, Rho Memorial Hospital, Milan, Italy
| | - Alessandro Massari
- Division of Gastroenterology, ASST Fatebenefratelli Sacco, Luigi Sacco University Hospital, Milan, Italy
| | - Carlo Morasso
- Nanomedicine and Molecular Imaging Lab, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Serena Mazzucchelli
- Department of Biomedical and Clinical Sciences "L. Sacco", Universitá di Milano, Milan, Italy
| | - Francesca Piccotti
- Nanomedicine and Molecular Imaging Lab, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Sandro Ardizzone
- Department of Biomedical and Clinical Sciences "L. Sacco", Universitá di Milano, Milan, Italy.,Division of Gastroenterology, ASST Fatebenefratelli Sacco, Luigi Sacco University Hospital, Milan, Italy
| | | | - Marta Truffi
- Nanomedicine and Molecular Imaging Lab, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|