1
|
Ito J, Miyake K, Chiba T, Takahashi K, Uchida Y, Blackshear PJ, Asahara H, Karasuyama H. Tristetraprolin-mediated mRNA destabilization regulates basophil inflammatory responses. Allergol Int 2025; 74:263-273. [PMID: 39550253 DOI: 10.1016/j.alit.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/01/2024] [Accepted: 10/19/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Basophils, despite being the least common granulocytes, play crucial roles in type 2 immune responses, such as chronic allergic inflammation and protective immunity against parasites. However, the molecular mechanisms regulating basophil activation and inflammatory molecule production remain poorly understood. Therefore, we investigated the role of RNA-binding proteins, specifically tristetraprolin (TTP), in regulating inflammatory molecule production in basophils. METHODS Using antigen/IgE-stimulated basophils from wild-type (WT) and TTP-knockout (TTP-KO) mice, we performed bulk RNA sequencing, transcriptome-wide mRNA stability assays, and protein analyses. We also examined mRNA expression and protein production of inflammatory molecules in TTP-KO basophils under stimulation with IL-33 or LPS. Furthermore, we evaluated the in vivo significance of TTP in basophils using basophil-specific TTP-deficient mice and a hapten oxazolone-induced atopic dermatitis model. RESULTS TTP expression was upregulated in basophils following stimulation with antigen/IgE, IL-33, or LPS. Under these stimuli, TTP-KO basophils exhibited elevated mRNA expression of inflammatory molecules, such as Il4, Areg, Ccl3, and Cxcl2, compared to WT basophils. Transcriptome-wide mRNA stability assays revealed that TTP deficiency prolonged the mRNA half-life of these inflammatory mediators. Notably, the production of these inflammatory proteins was significantly increased in TTP-KO basophils. Moreover, basophil-specific TTP-deficient mice showed exacerbated oxazolone-induced atopic dermatitis-like skin allergic inflammation. CONCLUSIONS TTP is a key regulator of basophil activation, controlling the production of inflammatory mediators through mRNA destabilization. Our in vivo findings demonstrate that the absence of TTP in basophils significantly aggravates allergic skin inflammation, highlighting its potential as a therapeutic target for allergic diseases.
Collapse
Affiliation(s)
- Junya Ito
- Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan; Department of Systems BioMedicine, Institute of Science Tokyo, Tokyo, Japan
| | - Kensuke Miyake
- Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan.
| | - Tomoki Chiba
- Department of Systems BioMedicine, Institute of Science Tokyo, Tokyo, Japan
| | - Kazufusa Takahashi
- Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| | - Yutaro Uchida
- Department of Systems BioMedicine, Institute of Science Tokyo, Tokyo, Japan
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA; Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Institute of Science Tokyo, Tokyo, Japan
| | - Hajime Karasuyama
- Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Ferri DM, Ayre M, Ariza Bareño L, Stedile M, DiGaudio AV, Fernandez Ugazio G, Kordon EC, Blackshear PJ, Urtreger A, Raimondi AR. TTP as Tumor Suppressor and Inflammatory Regulator in Oral Carcinogenesis. J Dent Res 2025:220345251316828. [PMID: 40077848 DOI: 10.1177/00220345251316828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
The stability of messenger RNA (mRNA) is controlled by proteins that bind to adenosine-uridine-rich sequences (AREs) in their 3' untranslated regions (3'UTR), known as AU-binding proteins. One of these proteins is tristetraprolin (TTP; encoded by Zfp36), which promotes degradation of mRNAs with AREs in their 3'UTR. TTP accelerates the decay of its target transcripts, many of which encode proinflammatory mediators that promote tumorigenesis. TTP underexpression has been reported in multiple cancer types. Oral squamous cell carcinoma is an aggressive disease characterized by high morbidity and few therapeutic options. The role of TTP has not been studied in oral epithelium homeostasis nor in its carcinogenesis. Herein, using tissue-specific TTP knockout mice (TTP-KO), we show that TTP expression is relevant for oral epithelium homeostasis. TTP-KO mice developed dysplastic lesions in the tongue along with inflammatory infiltrates in the connective tissue. Analysis of the inflammatory infiltrate revealed the presence of mast cells (MCs), CD45+ cells, and CD11b+ cells, with the MCs being the most abundant cell type and associated with cyclooxygenase-2 expression. Recruitment of MCs was dependent on tumor necrosis factor-α (TNFα) upon TTP ablation in the tongue. Although the infiltration of MCs was dependent on TNFα activity, this did not affect the development of tongue dysplasia. We analyzed the status of the NF-κB pathway, finding its activation. In addition, we demonstrate that K-ras activation combined with Zfp36 deletion leads to the rapid onset of the oral tongue phenotype and significantly reduces mouse survival. Our results support the notion that TTP expression protects against oral carcinogenesis, regulates the inflammatory infiltrate, and maintains the epithelial microenvironment, potentially serving as a barrier to tumorigenesis.
Collapse
Affiliation(s)
- D M Ferri
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - M Ayre
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - L Ariza Bareño
- Universidad de Buenos Aires, Instituto de Oncología Ángel H. Roffo, Área Investigación, Buenos Aires, Argentina
| | - M Stedile
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - A V DiGaudio
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - G Fernandez Ugazio
- Departamento de Patología, Hospital Zubizarreta, Buenos Aires, Argentina
| | - E C Kordon
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
| | - P J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - A Urtreger
- Universidad de Buenos Aires, Instituto de Oncología Ángel H. Roffo, Área Investigación, Buenos Aires, Argentina
| | - A R Raimondi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Buenos Aires, Argentina
| |
Collapse
|
3
|
Jiang H, Zhang Y, Hu G, Ji P, Ming J, Li Y, Zhou Y. RNA-binding protein HNRNPD promotes chondrocyte senescence and osteoarthritis progression through upregulating FOXM1. Commun Biol 2024; 7:1695. [PMID: 39719453 DOI: 10.1038/s42003-024-07407-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024] Open
Abstract
Osteoarthritis (OA) is a common age-related disease that is correlated with a high number of senescent chondrocytes in joint tissues. Heterogeneous nuclear ribonucleoprotein D (HNRNPD) is an RNA-binding protein whose expression imbalance is associated with cell senescence, but the role of HNRNPD in the occurrence and development of OA has not been reported. In this study, HNRNPD was found to be associated with the chondrocyte senescence process. We determined the factors at the posttranscriptional level that regulated the expression of the genes that induce OA and found that HNRNPD was specifically highly expressed in OA-induced rat cartilage and in human OA cartilage. Recombinant adeno-associated virus (rAAV)-mediated HNRNPD gene overexpression alone did not significantly regulate the occurrence and development of OA in the physiological state of the joint. However, rAAV-HNRNPD significantly exacerbated experimental OA in rats subjected to destabilization of the medial meniscus. Overexpression of HNRNPD promoted mitochondrial dysfunction and the expression of FOXM1, which acts as a direct target. Furthermore, downregulation of FOXM1 in chondrocytes weakened the HNRNPD-mediated promotion of chondrocyte senescence and mitochondrial dysfunction. Our results suggest that the RNA-binding protein HNRNPD promotes chondrocyte senescence in the pathology of OA by upregulating FOXM1.
Collapse
Affiliation(s)
- Huanyu Jiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yubiao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Geliang Hu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Piyao Ji
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianghua Ming
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yaming Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China.
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Uehara Y, Suzukawa M, Horie M, Igarashi S, Minegishi M, Takada K, Saito A, Nagase H. ZFP36 family expression is suppressed by Th2 cells in asthma, leading to enhanced synthesis of inflammatory cytokines and cell surface molecules. Cell Immunol 2024; 403-404:104859. [PMID: 39067169 DOI: 10.1016/j.cellimm.2024.104859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Asthma is a chronic inflammatory airway disease, in which inflammatory cytokines play a pivotal role. The zinc finger binding protein 36 (ZFP36) family includes ZFP36, ZFP36L1, and ZFP36L2 and is among the RNA-binding proteins (RBPs) reported to cause inflammation. The present study aimed to clarify the roles of the ZFP36 family in asthma, particularly highlighting the relationship between the ZFP36 family and Th2 cells, which are key players in type 2 inflammation in asthma. Real-time PCR analysis revealed the preferential expression of ZFP36 family mRNAs in human white blood cells. Gene expression analysis using public datasets from the GEO database (https://www.ncbi.nlm.nih.gov/gds) showed significantly suppressed expression of ZFP36 family mRNAs in patients with asthma compared to that in healthy controls. Using multiple cytokine assays, Th2 cell transfection with ZFP36 family siRNAs enhanced the expression of inflammatory cytokines IL-8, IFN-γ, CCL3/MIP-1α, CCL4/MIP-1β, and TNF-α and cell surface molecules CCR4 (CD194) and PSGL-1 (CD162). Treatment with IL-2, 4, and 15 significantly suppressed, and corticosteroid significantly enhanced the expressions of ZFP36 family mRNAs by Th2 cells. In conclusion, the ZFP36 family expressed by Th2 cells was suppressed in patients with asthma, leading to the enhanced expression of cytokines and cell surface molecules. Suppressed ZFP36 expression in asthma may be involved in the enhancement of airway inflammation, and the ZFP36 family may be a therapeutic target for inflammatory diseases, including asthma.
Collapse
Affiliation(s)
- Yuki Uehara
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo, 204-8585, Japan; Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Maho Suzukawa
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo, 204-8585, Japan.
| | - Masafumi Horie
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Sayaka Igarashi
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo, 204-8585, Japan
| | - Masaaki Minegishi
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo, 204-8585, Japan
| | - Kazufumi Takada
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo, 204-8585, Japan; Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Nagase
- Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-Ku, Tokyo, 173-8605, Japan
| |
Collapse
|
5
|
Berkowitz JS, Tabib T, Xiao H, Sadej GM, Khanna D, Fuschiotti P, Lafyatis RA, Das J. Cell Type-Specific Biomarkers of Systemic Sclerosis Disease Severity Capture Cell-Intrinsic and Cell-Extrinsic Circuits. Arthritis Rheumatol 2023; 75:1819-1830. [PMID: 37096444 PMCID: PMC10543405 DOI: 10.1002/art.42536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/04/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is a multifactorial autoimmune fibrotic disorder involving complex rewiring of cell-intrinsic and cell-extrinsic signaling coexpression networks involving a range of cell types. However, the rewired circuits as well as corresponding cell-cell interactions remain poorly understood. To address this, we used a predictive machine learning framework to analyze single-cell RNA-sequencing data from 24 SSc patients across the severity spectrum as quantified by the modified Rodnan skin score (MRSS). METHODS We used a least absolute shrinkage and selection operator (LASSO)-based predictive machine learning approach on the single-cell RNA-sequencing data set to identify predictive biomarkers of SSc severity, both across and within cell types. The use of L1 regularization helps prevent overfitting on high-dimensional data. Correlation network analyses were coupled to the LASSO model to identify cell-intrinsic and cell-extrinsic co-correlates of the identified biomarkers of SSc severity. RESULTS We found that the uncovered cell type-specific predictive biomarkers of MRSS included previously implicated genes in fibroblast and myeloid cell subsets (e.g., SFPR2+ fibroblasts and monocytes), as well as novel gene biomarkers of MRSS, especially in keratinocytes. Correlation network analyses revealed novel cross-talk between immune pathways and implicated keratinocytes in addition to fibroblast and myeloid cells as key cell types involved in SSc pathogenesis. We then validated the uncovered association of key gene expression and protein markers in keratinocytes, KRT6A and S100A8, with SSc skin disease severity. CONCLUSION Our global systems analyses reveal previously uncharacterized cell-intrinsic and cell-extrinsic signaling coexpression networks underlying SSc severity that involve keratinocytes, myeloid cells, and fibroblasts.
Collapse
Affiliation(s)
- Jacob S Berkowitz
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hanxi Xiao
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gabrielle M. Sadej
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dinesh Khanna
- Division of Rheumatology, Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Patrizia Fuschiotti
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert A. Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Fatima I, Chen G, Botchkareva NV, Sharov AA, Thornton D, Wilkinson HN, Hardman MJ, Grutzkau A, Pedro de Magalhaes J, Seluanov A, Smith ESJ, Gorbunova V, Mardaryev AN, Faulkes CG, Botchkarev VA. Skin Aging in Long-Lived Naked Mole-Rats Is Accompanied by Increased Expression of Longevity-Associated and Tumor Suppressor Genes. J Invest Dermatol 2022; 142:2853-2863.e4. [PMID: 35691364 PMCID: PMC9613526 DOI: 10.1016/j.jid.2022.04.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 10/31/2022]
Abstract
Naked mole-rats (NMRs) (Heterocephalus glaber) are long-lived mammals that possess a natural resistance to cancer and other age-related pathologies, maintaining a healthy life span >30 years. In this study, using immunohistochemical and RNA-sequencing analyses, we compare skin morphology, cellular composition, and global transcriptome signatures between young and aged (aged 3‒4 vs. 19‒23 years, respectively) NMRs. We show that similar to aging in human skin, aging in NMRs is accompanied by a decrease in epidermal thickness; keratinocyte proliferation; and a decline in the number of Merkel cells, T cells, antigen-presenting cells, and melanocytes. Similar to that in human skin aging, expression levels of dermal collagens are decreased, whereas matrix metalloproteinase 9 and matrix metalloproteinase 11 levels increased in aged versus in young NMR skin. RNA-sequencing analyses reveal that in contrast to human or mouse skin aging, the transcript levels of several longevity-associated (Igfbp3, Igf2bp3, Ing2) and tumor-suppressor (Btg2, Cdkn1a, Cdkn2c, Dnmt3a, Hic1, Socs3, Sfrp1, Sfrp5, Thbs1, Tsc1, Zfp36) genes are increased in aged NMR skin. Overall, these data suggest that specific features in the NMR skin aging transcriptome might contribute to the resistance of NMRs to spontaneous skin carcinogenesis and provide a platform for further investigations of NMRs as a model organism for studying the biology and disease resistance of human skin.
Collapse
Affiliation(s)
- Iqra Fatima
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Guodong Chen
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Natalia V Botchkareva
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Andrey A Sharov
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Daniel Thornton
- Genomics of Aging and Rejuvenation Laboratory, Institute of Life Course and Medical Sciences, Univeristy of Liverpool, Liverpool, United Kingdom
| | - Holly N Wilkinson
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Matthew J Hardman
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Andreas Grutzkau
- Deutsches Rheuma-Forschungszentrum Berlin, Institute of the Leibniz Association, Berlin, Germany
| | - Joao Pedro de Magalhaes
- Genomics of Aging and Rejuvenation Laboratory, Institute of Life Course and Medical Sciences, Univeristy of Liverpool, Liverpool, United Kingdom
| | - Andrei Seluanov
- Department of Biology, School of Arts & Sciences, University of Rochester, Rochester, New York, USA; Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Ewan St J Smith
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Vera Gorbunova
- Department of Biology, School of Arts & Sciences, University of Rochester, Rochester, New York, USA; Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Andrei N Mardaryev
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Chris G Faulkes
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Vladimir A Botchkarev
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
7
|
Quadri M, Marconi A, Sandhu SK, Kiss A, Efimova T, Palazzo E. Investigating Cutaneous Squamous Cell Carcinoma in vitro and in vivo: Novel 3D Tools and Animal Models. Front Med (Lausanne) 2022; 9:875517. [PMID: 35646967 PMCID: PMC9131878 DOI: 10.3389/fmed.2022.875517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/19/2022] [Indexed: 12/07/2022] Open
Abstract
Cutaneous Squamous Cell Carcinoma (cSCC) represents the second most common type of skin cancer, which incidence is continuously increasing worldwide. Given its high frequency, cSCC represents a major public health problem. Therefore, to provide the best patients’ care, it is necessary having a detailed understanding of the molecular processes underlying cSCC development, progression, and invasion. Extensive efforts have been made in developing new models allowing to study the molecular pathogenesis of solid tumors, including cSCC tumors. Traditionally, in vitro studies were performed with cells grown in a two-dimensional context, which, however, does not represent the complexity of tumor in vivo. In the recent years, new in vitro models have been developed aiming to mimic the three-dimensionality (3D) of the tumor, allowing the evaluation of tumor cell-cell and tumor-microenvironment interaction in an in vivo-like setting. These models include spheroids, organotypic cultures, skin reconstructs and organoids. Although 3D models demonstrate high potential to enhance the overall knowledge in cancer research, they lack systemic components which may be solved only by using animal models. Zebrafish is emerging as an alternative xenotransplant model in cancer research, offering a high-throughput approach for drug screening and real-time in vivo imaging to study cell invasion. Moreover, several categories of mouse models were developed for pre-clinical purpose, including xeno- and syngeneic transplantation models, autochthonous models of chemically or UV-induced skin squamous carcinogenesis, and genetically engineered mouse models (GEMMs) of cSCC. These models have been instrumental in examining the molecular mechanisms of cSCC and drug response in an in vivo setting. The present review proposes an overview of in vitro, particularly 3D, and in vivo models and their application in cutaneous SCC research.
Collapse
Affiliation(s)
- Marika Quadri
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Marconi
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Simran K Sandhu
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Alexi Kiss
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Tatiana Efimova
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Elisabetta Palazzo
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
8
|
Kovarik P, Bestehorn A, Fesselet J. Conceptual Advances in Control of Inflammation by the RNA-Binding Protein Tristetraprolin. Front Immunol 2021; 12:751313. [PMID: 34603339 PMCID: PMC8484758 DOI: 10.3389/fimmu.2021.751313] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Regulated changes in mRNA stability are critical drivers of gene expression adaptations to immunological cues. mRNA stability is controlled mainly by RNA-binding proteins (RBPs) which can directly cleave mRNA but more often act as adaptors for the recruitment of the RNA-degradation machinery. One of the most prominent RBPs with regulatory roles in the immune system is tristetraprolin (TTP). TTP targets mainly inflammation-associated mRNAs for degradation and is indispensable for the resolution of inflammation as well as the maintenance of immune homeostasis. Recent advances in the transcriptome-wide knowledge of mRNA expression and decay rates together with TTP binding sites in the target mRNAs revealed important limitations in our understanding of molecular mechanisms of TTP action. Such orthogonal analyses lead to the discovery that TTP binding destabilizes some bound mRNAs but not others in the same cell. Moreover, comparisons of various immune cells indicated that an mRNA can be destabilized by TTP in one cell type while it remains stable in a different cell linage despite the presence of TTP. The action of TTP extends from mRNA destabilization to inhibition of translation in a subset of targets. This article will discuss these unexpected context-dependent functions and their implications for the regulation of immune responses. Attention will be also payed to new insights into the role of TTP in physiology and tissue homeostasis.
Collapse
Affiliation(s)
- Pavel Kovarik
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | | | | |
Collapse
|
9
|
Busada JT, Khadka S, Peterson KN, Druffner SR, Stumpo DJ, Zhou L, Oakley RH, Cidlowski JA, Blackshear PJ. Tristetraprolin Prevents Gastric Metaplasia in Mice by Suppressing Pathogenic Inflammation. Cell Mol Gastroenterol Hepatol 2021; 12:1831-1845. [PMID: 34358715 PMCID: PMC8554534 DOI: 10.1016/j.jcmgh.2021.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Aberrant immune activation is associated with numerous inflammatory and autoimmune diseases and contributes to cancer development and progression. Within the stomach, inflammation drives a well-established sequence from gastritis to metaplasia, eventually resulting in adenocarcinoma. Unfortunately, the processes that regulate gastric inflammation and prevent carcinogenesis remain unknown. Tristetraprolin (TTP) is an RNA-binding protein that promotes the turnover of numerous proinflammatory and oncogenic messenger RNAs. Here, we assess the role of TTP in regulating gastric inflammation and spasmolytic polypeptide-expressing metaplasia (SPEM) development. METHODS We used a TTP-overexpressing model, the TTPΔadenylate-uridylate rich element mouse, to examine whether TTP can protect the stomach from adrenalectomy (ADX)-induced gastric inflammation and SPEM. RESULTS We found that TTPΔadenylate-uridylate rich element mice were completely protected from ADX-induced gastric inflammation and SPEM. RNA sequencing 5 days after ADX showed that TTP overexpression suppressed the expression of genes associated with the innate immune response. Importantly, TTP overexpression did not protect from high-dose-tamoxifen-induced SPEM development, suggesting that protection in the ADX model is achieved primarily by suppressing inflammation. Finally, we show that protection from gastric inflammation was only partially due to the suppression of Tnf, a well-known TTP target. CONCLUSIONS Our results show that TTP exerts broad anti-inflammatory effects in the stomach and suggest that therapies that increase TTP expression may be effective treatments of proneoplastic gastric inflammation. Transcript profiling: GSE164349.
Collapse
Affiliation(s)
- Jonathan T. Busada
- Molecular Endocrinology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina,Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia,Correspondence Address correspondence to: Jonathan T. Busada, PhD, Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, 64 Medical Center Drive, PO Box 9177, Morgantown, West Virginia 26506.
| | - Stuti Khadka
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Kylie N. Peterson
- Molecular Endocrinology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Sara R. Druffner
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Deborah J. Stumpo
- Post-Transcriptional Gene Expression Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Lecong Zhou
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Robert H. Oakley
- Molecular Endocrinology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - John A. Cidlowski
- Molecular Endocrinology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Perry J. Blackshear
- Post-Transcriptional Gene Expression Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|