1
|
Ruple BA, Simmons JM, Liem RI, Bunsawat K. The vulnerable preterm heart: tale from the two chambers. Am J Physiol Heart Circ Physiol 2025; 328:H1176-H1178. [PMID: 40257379 DOI: 10.1152/ajpheart.00254.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Affiliation(s)
- Bradley A Ruple
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Jonah M Simmons
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Robert I Liem
- Division of Hematology, Oncology and Stem Cell Transplant, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, United States
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Kanokwan Bunsawat
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
2
|
Koopmans T, van Rooij E. Molecular gatekeepers of endogenous adult mammalian cardiomyocyte proliferation. Nat Rev Cardiol 2025:10.1038/s41569-025-01145-y. [PMID: 40195566 DOI: 10.1038/s41569-025-01145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
Irreversible cardiac fibrosis, cardiomyocyte death and chronic cardiac dysfunction after myocardial infarction pose a substantial global health-care challenge, with no curative treatments available. To regenerate the injured heart, cardiomyocytes must proliferate to replace lost myocardial tissue - a capability that adult mammals have largely forfeited to adapt to the demanding conditions of life. Using various preclinical models, our understanding of cardiomyocyte proliferation has progressed remarkably, leading to the successful reactivation of cell cycle induction in adult animals, with functional recovery after cardiac injury. Central to this success is the targeting of key pathways and structures that drive cardiomyocyte maturation after birth - nucleation and ploidy, sarcomere structure, developmental signalling, chromatin and epigenetic regulation, the microenvironment and metabolic maturation - forming a complex regulatory framework that allows efficient cellular contraction but restricts cardiomyocyte proliferation. In this Review, we explore the molecular pathways underlying these core mechanisms and how their manipulation can reactivate the cell cycle in cardiomyocytes, potentially contributing to cardiac repair.
Collapse
Affiliation(s)
- Tim Koopmans
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands.
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
3
|
Cohen ED, Yee M, Roethlin K, Prelipcean I, Small EM, Porter GA, O'Reilly MA. Whole genome transcriptomics reveal distinct atrial versus ventricular responses to neonatal hyperoxia. Am J Physiol Heart Circ Physiol 2025; 328:H832-H845. [PMID: 40047849 DOI: 10.1152/ajpheart.00039.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Preterm infants exposed to supplemental oxygen (hyperoxia) are at risk for developing heart failure later in life. Exposing rodents in early postnatal life to hyperoxia causes heart failure that resembles cardiac disease seen in adult humans who were born preterm. Neonatal hyperoxia exposure affects the left atrium and left ventricle differently, inhibiting the proliferation and survival of atrial cardiomyocytes while enhancing cardiomyocyte differentiation in the ventricle. In this study, whole genome transcriptomics revealed the left atria of neonatal mice are more responsive to hyperoxia than the left ventricle, with the expression of 4,285 genes affected in the atrium and 1,743 in the ventricle. Although hyperoxia activated p53 target genes in both chambers, it caused greater DNA damage, phosphorylation of the DNA damage responsive ataxia-telangiectasia mutated (ATM) kinase, mitochondrial stress, and apoptosis in the atrium. In contrast, hyperoxia induced the expression of genes involved in DNA repair and stress granules in the ventricle. Atrial cells also showed a greater loss of extracellular matrix and superoxide dismutase 3 (SOD3) expression, possibly contributing to the enlargement of the left atrium and reduced velocity of blood flow across the mitral valve seen in mice exposed to hyperoxia. Diastolic dysfunction and heart failure in hyperoxia-exposed mice may thus stem from its effects on the left atrium, suggesting chamber-specific therapies may be needed to address diastolic dysfunction and heart failure in people who were born preterm.NEW & NOTEWORTHY Preterm infants often require oxygen (hyperoxia) at birth, but early exposure increases the risk of heart failure later in life. Previously, we showed neonatal mice exposed to hyperoxia develop adult diastolic dysfunction and heart failure like preterm-born humans. In this study, RNA-sequencing reveals hyperoxia induces broader transcriptional changes in the atrium than ventricle, including upregulation of stress pathways and loss of superoxide dismutase 3 and extracellular matrix genes, highlighting the atrium's heightened vulnerability to hyperoxia.
Collapse
Grants
- HL168812 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL144776 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL133761 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL144867 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL169961 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- AG070585 HHS | NIH | National Institute on Aging (NIA)
- ES001247 HHS | NIH | National Institute of Environmental Health Sciences (DEHS)
- KL2 TR001999 NCATS NIH HHS
Collapse
Affiliation(s)
- E David Cohen
- Department of Pediatrics, Division of Cardiology, School of Medicine and Dentistry, The University of Rochester, Rochester, New York, United States
| | - Min Yee
- Department of Pediatrics, Division of Neonatology, School of Medicine and Dentistry, The University of Rochester, Rochester, New York, United States
| | - Kyle Roethlin
- Department of Pediatrics, Division of Neonatology, School of Medicine and Dentistry, The University of Rochester, Rochester, New York, United States
| | - Irina Prelipcean
- Department of Pediatrics, Division of Cardiology, School of Medicine and Dentistry, The University of Rochester, Rochester, New York, United States
| | - Eric M Small
- Department of Medicine, School of Medicine and Dentistry, The University of Rochester, Rochester, New York, United States
| | - George A Porter
- Department of Pediatrics, Division of Cardiology, School of Medicine and Dentistry, The University of Rochester, Rochester, New York, United States
| | - Michael A O'Reilly
- Department of Pediatrics, Division of Neonatology, School of Medicine and Dentistry, The University of Rochester, Rochester, New York, United States
| |
Collapse
|
4
|
Chen D, Xing ZX, Li SP, Lu T, Wang JX, Wu YX, Pang QF. Preconception maternal hyperoxia exposure causes cardiac insufficiency through induction of mitochondrial toxicity in mice offspring. Reprod Toxicol 2025; 133:108864. [PMID: 39988061 DOI: 10.1016/j.reprotox.2025.108864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/22/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Although essential, excessive oxygen is toxic. The adverse effects of maternal hyperoxygenation have recently garnered attention. However, the potential toxicity of maternal hyperoxia exposure before pregnancy and its effects on offspring development remain unclear. This study aims to investigate the cardiac developmental toxicity of maternal pre-pregnancy hyperoxia exposure on the offspring. Our findings reveal that preconception maternal hyperoxia exposure leads to growth retardation, cardiac insufficiency, and remodeling in both male and female offspring. Additionally, maternal pre-pregnancy hyperoxia exposure induces mitochondrial damage characterized by reduced oxidative phosphorylation, inhibited tricarboxylic acid (TCA) cycle, and decreased ATP production in the cardiac tissues of offspring mice. Supplementation of sodium propionate during lactation significantly improves growth retardation, mitigates metabolic remodeling, and partially restores cardiac function in hyperoxia-exposed offspring. In conclusion, our study suggests that maternal hyperoxia exposure before pregnancy leads to cardiac insufficiency in murine offspring. These findings may have important implications for mitigating maternal high oxygen toxicity on offspring development and disease risk, especially the cardiotoxic effects of hyperoxia on offspring development.
Collapse
Affiliation(s)
- Dan Chen
- A Department of physiopathology, Wuxi School of Medicine, Jiangnan university, Wuxi, Jiangsu Province 214122, China.
| | - Zhi-Xuan Xing
- A Department of physiopathology, Wuxi School of Medicine, Jiangnan university, Wuxi, Jiangsu Province 214122, China
| | - Sheng-Peng Li
- A Department of physiopathology, Wuxi School of Medicine, Jiangnan university, Wuxi, Jiangsu Province 214122, China
| | - Tao Lu
- A Department of physiopathology, Wuxi School of Medicine, Jiangnan university, Wuxi, Jiangsu Province 214122, China
| | - Jia-Xin Wang
- A Department of physiopathology, Wuxi School of Medicine, Jiangnan university, Wuxi, Jiangsu Province 214122, China
| | - Ya-Xian Wu
- A Department of physiopathology, Wuxi School of Medicine, Jiangnan university, Wuxi, Jiangsu Province 214122, China
| | - Qing-Feng Pang
- A Department of physiopathology, Wuxi School of Medicine, Jiangnan university, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
5
|
Khan TJ, Semenkovich CF, Zayed MA. De novo lipid synthesis in cardiovascular tissue and disease. Atherosclerosis 2025; 400:119066. [PMID: 39616863 DOI: 10.1016/j.atherosclerosis.2024.119066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024]
Abstract
Most tissues have the capacity for endogenous lipid synthesis. A crucial foundational pathway for lipid synthesis is de novo lipid synthesis (DNL), a ubiquitous and complex metabolic process that occurs at high levels in the liver, adipose and brain tissue. Under normal physiological conditions, DNL is vital in converting excess carbohydrates into fatty acids. DNL is linked to other pathways, including the endogenous synthesis of phospholipids and sphingolipids. However, abnormal lipid synthesis can contribute to various pathologies and clinical conditions. Experimental studies involving dietary restriction and in vivo genetic modifications provide compelling evidence demonstrating the significance of lipid synthesis in maintaining normal cardiovascular tissue function. Similarly, clinical investigations suggest altered lipid synthesis can harm cardiac and arterial tissues, thereby influencing cardiovascular disease (CVD) development and progression. Consequently, there is increased interest in exploring pharmacological interventions that target lipid synthesis metabolic pathways as potential strategies to alleviate CVD. Here we review the physiological and pathological impact of endogenous lipid synthesis and its implications for CVD. Since lipid synthesis can be targeted pharmacologically, enhancing our understanding of the molecular and biochemical mechanisms underlying lipid generation and cardiovascular function may prompt new insights into CVD and its treatment.
Collapse
Affiliation(s)
- Tariq J Khan
- Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA
| | - Clay F Semenkovich
- Washington University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, St. Louis, MO, USA; Washington University School of Medicine, Department of Cell Biology and Physiology, St. Louis, MO, USA
| | - Mohamed A Zayed
- Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA; Washington University School of Medicine, Department of Surgery, Division of Surgical Sciences, St. Louis, MO, USA; Washington University School of Medicine, Department of Radiology, St. Louis, MO, USA; Washington University School of Medicine, Division of Molecular Cell Biology, St. Louis, MO, USA; Washington University, McKelvey School of Engineering, Department of Biomedical Engineering, St. Louis, MO, USA; Veterans Affairs St. Louis Health Care System, St. Louis, MO, USA.
| |
Collapse
|
6
|
Liz CF, Proença E. Oxygen in the newborn period: Could the oxygen reserve index offer a new perspective? Pediatr Pulmonol 2025; 60:e27343. [PMID: 39436049 DOI: 10.1002/ppul.27343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Abstract
Oxygen therapy has been one of the main challenges in neonatal intensive care units (NICU). The guidelines currently in use try to balance the burden of hypoxia and hyperoxia such as retinopathy of prematurity, bronchopulmonary dysplasia, and death. The goal of this paper is to review neonatal oxygenation and the impact of hyperoxia and hypoxia in neonatal outcomes as well as review the available literature concerning the use of Oxygen Reserve Index (ORiTM) in clinical practice and its potential in Neonatology, particularly in NICU. Pulse oximetry has been used to monitor oxygenation in newborns with the advantage of being a noninvasive and continuous parameter, however it has limitations in detecting hyperoxemic states due to the flattening of the hemoglobin dissociation curve. The ORiTM is a new parameter that has been used to detect moderate hyperoxia and, when used in addiction to spO2, could be helpful in both hypoxia and hyperoxia. Studies using this tool are mainly in the adult population, during anesthetic procedures with only a small number of studies being performed in pediatric context. Oxygen targets remain a major problem for neonatal population and regardless of the efforts made to establish a safe oxygenation range, a more individualized approach seems to be the more appropriate pathway. ORiTM monitoring could help defining how much oxygen is too much for each newborn. Despite its promising potential, ORiTM is still a recent technology that requires more studies to determine its true potential in clinical practice.
Collapse
Affiliation(s)
| | - Elisa Proença
- Neonatology Department, Centro Hospitalar de Santo António
| |
Collapse
|
7
|
Cohen ED, Roethlin K, Yee M, Woeller CF, Brookes PS, Porter GA, O'Reilly MA. PPARγ drives mitochondrial stress signaling and the loss of atrial cardiomyocytes in newborn mice exposed to hyperoxia. Redox Biol 2024; 76:103351. [PMID: 39276392 PMCID: PMC11417530 DOI: 10.1016/j.redox.2024.103351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
Diastolic dysfunction is increasingly common in preterm infants exposed to supplemental oxygen (hyperoxia). Previous studies in neonatal mice showed hyperoxia suppresses fatty acid synthesis genes required for proliferation and survival of atrial cardiomyocytes. The loss of atrial cardiomyocytes creates a hypoplastic left atrium that inappropriately fills the left ventricle during diastole. Here, we show that hyperoxia stimulates adenosine monophosphate-activated kinase (AMPK) and peroxisome proliferator activated receptor-gamma (PPARγ) signaling in atrial cardiomyocytes. While both pathways can regulate lipid homeostasis, PPARγ was the primary pathway by which hyperoxia inhibits fatty acid gene expression and inhibits proliferation of mouse atrial HL-1 cells. It also enhanced the toxicity of hyperoxia by increasing expression of activating transcription factor (ATF) 5 and other mitochondrial stress response genes. Silencing PPARγ signaling restored proliferation and survival of HL-1 cells as well as atrial cardiomyocytes in neonatal mice exposed to hyperoxia. Our findings reveal PPARγ enhances the toxicity of hyperoxia on atrial cardiomyocytes, thus suggesting inhibitors of PPARγ signaling may prevent diastolic dysfunction in preterm infants.
Collapse
Affiliation(s)
- E David Cohen
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, NY 14642, USA.
| | - Kyle Roethlin
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, NY 14642, USA
| | - Min Yee
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, NY 14642, USA
| | - Collynn F Woeller
- Department of Ophthalmology, School of Medicine and Dentistry, The University of Rochester, Rochester, NY 14642, USA
| | - Paul S Brookes
- Department of Anesthesiology, School of Medicine and Dentistry, The University of Rochester, Rochester, NY 14642, USA
| | - George A Porter
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, NY 14642, USA
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
8
|
Hernandez A, Belfleur L, Migaud M, Gassman NR. A tipping point in dihydroxyacetone exposure: mitochondrial stress and metabolic reprogramming alter survival in rat cardiomyocytes H9c2 cells. Chem Biol Interact 2024; 394:110991. [PMID: 38582340 PMCID: PMC11069339 DOI: 10.1016/j.cbi.2024.110991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Exogenous exposures to the triose sugar dihydroxyacetone (DHA) occur from sunless tanning products and electronic cigarette aerosol. Once inhaled or absorbed, DHA enters cells, is converted to dihydroxyacetone phosphate (DHAP), and incorporated into several metabolic pathways. Cytotoxic effects of DHA vary across the cell types depending on the metabolic needs of the cells, and differences in the generation of reactive oxygen species (ROS), cell cycle arrest, and mitochondrial dysfunction have been reported. We have shown that cytotoxic doses of DHA induced metabolic imbalances in glycolysis and oxidative phosphorylation in liver and kidney cell models. Here, we examine the dose-dependent effects of DHA on the rat cardiomyocyte cell line, H9c2. Cells begin to experience cytotoxic effects at low millimolar doses, but an increase in cell survival was observed at 2 mM DHA. We confirmed that 2 mM DHA increased cell survival compared to the low cytotoxic 1 mM dose and investigated the metabolic differences between these two low DHA doses. Exposure to 1 mM DHA showed changes in the cell's fuel utilization, mitochondrial reactive oxygen species (ROS), and transient changes in the glycolysis and mitochondrial energetics, which normalized 24 h after exposure. The 2 mM dose induced robust changes in mitochondrial flux through acetyl CoA and elevated expression of fatty acid synthase. Distinct from the 1 mM dose, the 2 mM exposure increased mitochondrial ROS and NAD(P)H levels, and sustained changes in LDHA/LDHB and acetyl CoA-associated enzymes were observed. Although the cells were exposed to low cytotoxic (1 mM) and non-cytotoxic (2 mM) acute doses of DHA, significant changes in mitochondrial metabolic pathways occurred. Further, the proliferation increase at the acute 2 mM DHA dose suggests a metabolic adaption occurred with sustained consequences in survival and proliferation. With increased exogenous exposure to DHA through e-cigarette aerosol, this work suggests cell metabolic changes induced by acute or potentially chronic exposures could impact cell function and survival.
Collapse
Affiliation(s)
- Arlet Hernandez
- Department of Pharmacology and Toxicology, The University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL, 35294, USA
| | - Luxene Belfleur
- Department of Pharmacology, Whiddon College of Medicine, University of South Alabama, 1660 Springhill Ave, Mobile, AL, 36604, USA
| | - Marie Migaud
- Department of Pharmacology, Whiddon College of Medicine, University of South Alabama, 1660 Springhill Ave, Mobile, AL, 36604, USA
| | - Natalie R Gassman
- Department of Pharmacology and Toxicology, The University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL, 35294, USA.
| |
Collapse
|
9
|
Park HR, Azzara D, Cohen ED, Boomhower SR, Diwadkar AR, Himes BE, O'Reilly MA, Lu Q. Identification of novel NRF2-dependent genes as regulators of lead and arsenic toxicity in neural progenitor cells. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132906. [PMID: 37939567 PMCID: PMC10842917 DOI: 10.1016/j.jhazmat.2023.132906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Lead (Pb) and arsenic (As) are prevalent metal contaminants in the environment. Exposures to these metals are associated with impaired neuronal functions and adverse effects on neurodevelopment in children. However, the molecular mechanisms by which Pb and As impair neuronal functions remain poorly understood. Here, we identified F2RL2, TRIM16L, and PANX2 as novel targets of Nuclear factor erythroid 2-related factor 2 (NRF2)-the master transcriptional factor for the oxidative stress response-that are commonly upregulated with both Pb and As in human neural progenitor cells (NPCs). Using a ChIP (Chromatin immunoprecipitation)-qPCR assay, we showed that NRF2 directly binds to the promoter region of F2RL2, TRIM16L, and PANX2 to regulate expression of these genes. We demonstrated that F2RL2, PANX2, and TRIM16L have differential effects on cell death, proliferation, and differentiation of NPCs in both the presence and absence of metal exposures, highlighting their roles in regulating NPC function. Furthermore, the analyses of the transcriptomic data on NPCs derived from autism spectrum disorder (ASD) patients revealed that dysregulation of F2RL2, TRIM16L, and PANX2 was associated with ASD genetic backgrounds and ASD risk genes. Our findings revealed that Pb and As induce a shared NRF2-dependent transcriptional response in NPCs and identified novel genes regulating NPC function. While further in vivo studies are warranted, this study provides a novel mechanism linking metal exposures to NPC function and identifies potential genes of interest in the context of neurodevelopment.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| | - David Azzara
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Ethan D Cohen
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Steven R Boomhower
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Avantika R Diwadkar
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Quan Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
10
|
Sun T, Yu H, Li D, Zhang H, Fu J. Emerging role of metabolic reprogramming in hyperoxia-associated neonatal diseases. Redox Biol 2023; 66:102865. [PMID: 37659187 PMCID: PMC10480540 DOI: 10.1016/j.redox.2023.102865] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023] Open
Abstract
Oxygen therapy is common during the neonatal period to improve survival, but it can increase the risk of oxygen toxicity. Hyperoxia can damage multiple organs and systems in newborns, commonly causing lung conditions such as bronchopulmonary dysplasia and pulmonary hypertension, as well as damage to other organs, including the brain, gut, and eyes. These conditions are collectively referred to as newborn oxygen radical disease to indicate the multi-system damage caused by hyperoxia. Hyperoxia can also lead to changes in metabolic pathways and the production of abnormal metabolites through a process called metabolic reprogramming. Currently, some studies have analyzed the mechanism of metabolic reprogramming induced by hyperoxia. The focus has been on mitochondrial oxidative stress, mitochondrial dynamics, and multi-organ interactions, such as the lung-gut, lung-brain, and brain-gut axes. In this article, we provide an overview of the major metabolic pathway changes reported in hyperoxia-associated neonatal diseases and explore the potential mechanisms of metabolic reprogramming. Metabolic reprogramming induced by hyperoxia can cause multi-organ metabolic disorders in newborns, including abnormal glucose, lipid, and amino acid metabolism. Moreover, abnormal metabolites may predict the occurrence of disease, suggesting their potential as therapeutic targets. Although the mechanism of metabolic reprogramming caused by hyperoxia requires further elucidation, mitochondria and the gut-lung-brain axis may play a key role in metabolic reprogramming.
Collapse
Affiliation(s)
- Tong Sun
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Danni Li
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jianhua Fu
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
11
|
Dylag AM, Misra RS, Bandyopadhyay G, Poole C, Huyck HL, Jehrio MG, Haak J, Deutsch GH, Dvorak C, Olson HM, Paurus V, Katzman PJ, Woo J, Purkerson JM, Adkins JN, Mariani TJ, Clair GC, Pryhuber GS. New insights into the natural history of bronchopulmonary dysplasia from proteomics and multiplexed immunohistochemistry. Am J Physiol Lung Cell Mol Physiol 2023; 325:L419-L433. [PMID: 37489262 PMCID: PMC10642360 DOI: 10.1152/ajplung.00130.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a disease of prematurity related to the arrest of normal lung development. The objective of this study was to better understand how proteome modulation and cell-type shifts are noted in BPD pathology. Pediatric human donors aged 1-3 yr were classified based on history of prematurity and histopathology consistent with "healed" BPD (hBPD, n = 3) and "established" BPD (eBPD, n = 3) compared with respective full-term born (n = 6) age-matched term controls. Proteins were quantified by tandem mass spectroscopy with selected Western blot validations. Multiplexed immunofluorescence (MxIF) microscopy was performed on lung sections to enumerate cell types. Protein abundances and MxIF cell frequencies were compared among groups using ANOVA. Cell type and ontology enrichment were performed using an in-house tool and/or EnrichR. Proteomics detected 5,746 unique proteins, 186 upregulated and 534 downregulated, in eBPD versus control with fewer proteins differentially abundant in hBPD as compared with age-matched term controls. Cell-type enrichment suggested a loss of alveolar type I, alveolar type II, endothelial/capillary, and lymphatics, and an increase in smooth muscle and fibroblasts consistent with MxIF. Histochemistry and Western analysis also supported predictions of upregulated ferroptosis in eBPD versus control. Finally, several extracellular matrix components mapping to angiogenesis signaling pathways were altered in eBPD. Despite clear parsing by protein abundance, comparative MxIF analysis confirms phenotypic variability in BPD. This work provides the first demonstration of tandem mass spectrometry and multiplexed molecular analysis of human lung tissue for critical elucidation of BPD trajectory-defining factors into early childhood.NEW & NOTEWORTHY We provide new insights into the natural history of bronchopulmonary dysplasia in donor human lungs after the neonatal intensive care unit hospitalization. This study provides new insights into how the proteome and histopathology of BPD changes in early childhood, uncovering novel pathways for future study.
Collapse
Affiliation(s)
- Andrew M Dylag
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Ravi S Misra
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Gautam Bandyopadhyay
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Cory Poole
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Heidie L Huyck
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Matthew G Jehrio
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Jeannie Haak
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Gail H Deutsch
- Department of Laboratory Medicine and Pathology, University of Washington, University of Washington, Seattle, Washington, United States
| | - Carly Dvorak
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Heather M Olson
- Pacific Northwest National Laboratories, Richland, Washington, United States
| | - Vanessa Paurus
- Pacific Northwest National Laboratories, Richland, Washington, United States
| | - Philip J Katzman
- Department of Pathology, University of Rochester Medical Center, Rochester, New York, United States
| | - Jongmin Woo
- Pacific Northwest National Laboratories, Richland, Washington, United States
| | - Jeffrey M Purkerson
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Joshua N Adkins
- Pacific Northwest National Laboratories, Richland, Washington, United States
| | - Thomas J Mariani
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Geremy C Clair
- Pacific Northwest National Laboratories, Richland, Washington, United States
| | - Gloria S Pryhuber
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|
12
|
Borger M, von Haefen C, Bührer C, Endesfelder S. Cardioprotective Effects of Dexmedetomidine in an Oxidative-Stress In Vitro Model of Neonatal Rat Cardiomyocytes. Antioxidants (Basel) 2023; 12:1206. [PMID: 37371938 DOI: 10.3390/antiox12061206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Preterm birth is a risk factor for cardiometabolic disease. The preterm heart before terminal differentiation is in a phase that is crucial for the number and structure of cardiomyocytes in further development, with adverse effects of hypoxic and hyperoxic events. Pharmacological intervention could attenuate the negative effects of oxygen. Dexmedetomidine (DEX) is an α2-adrenoceptor agonist and has been mentioned in connection with cardio-protective benefits. In this study, H9c2 myocytes and primary fetal rat cardiomyocytes (NRCM) were cultured for 24 h under hypoxic condition (5% O2), corresponding to fetal physioxia (pO2 32-45 mmHg), ambient oxygen (21% O2, pO2 ~150 mmHg), or hyperoxic conditions (80% O2, pO2 ~300 mmHg). Subsequently, the effects of DEX preconditioning (0.1 µM, 1 µM, 10 µM) were analyzed. Modulated oxygen tension reduced both proliferating cardiomyocytes and transcripts (CycD2). High-oxygen tension induced hypertrophy in H9c2 cells. Cell-death-associated transcripts for caspase-dependent apoptosis (Casp3/8) increased, whereas caspase-independent transcripts (AIF) increased in H9c2 cells and decreased in NRCMs. Autophagy-related mediators (Atg5/12) were induced in H9c2 under both oxygen conditions, whereas they were downregulated in NRCMs. DEX preconditioning protected H9c2 and NRCMs from oxidative stress through inhibition of transcription of the oxidative stress marker GCLC, and inhibited the transcription of both the redox-sensitive transcription factors Nrf2 under hyperoxia and Hif1α under hypoxia. In addition, DEX normalized the gene expression of Hippo-pathway mediators (YAP1, Tead1, Lats2, Cul7) that exhibited abnormalities due to differential oxygen tensions compared with normoxia, suggesting that DEX modulates the activation of the Hippo pathway. This, in the context of the protective impact of redox-sensitive factors, may provide a possible rationale for the cardio-protective effects of DEX in oxygen-modulated requirements on survival-promoting transcripts of immortalized and fetal cardiomyocytes.
Collapse
Affiliation(s)
- Moritz Borger
- Department of Neonatology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Clarissa von Haefen
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Stefanie Endesfelder
- Department of Neonatology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
13
|
Balatskyi VV, Dobrzyn P. Role of Stearoyl-CoA Desaturase 1 in Cardiovascular Physiology. Int J Mol Sci 2023; 24:ijms24065531. [PMID: 36982607 PMCID: PMC10059744 DOI: 10.3390/ijms24065531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023] Open
Abstract
Stearoyl-CoA desaturase is a rate-limiting enzyme in the synthesis of monounsaturated fatty acids. Monounsaturated fatty acids limit the toxicity of exogenous saturated fats. Studies have shown that stearoyl-CoA desaturase 1 is involved in the remodeling of cardiac metabolism. The loss of stearoyl-CoA desaturase 1 reduces fatty acid oxidation and increases glucose oxidation in the heart. Such a change is protective under conditions of a high-fat diet, which reduces reactive oxygen species-generating β-oxidation. In contrast, stearoyl-CoA desaturase 1 deficiency predisposes individuals to atherosclerosis under conditions of hyperlipidemia but protects against apnea-induced atherosclerosis. Stearoyl-CoA desaturase 1 deficiency also impairs angiogenesis after myocardial infarction. Clinical data show a positive correlation between blood stearoyl-CoA Δ-9 desaturation rates and cardiovascular disease and mortality. Moreover, stearoyl-CoA desaturase inhibition is considered an attractive intervention in some obesity-associated pathologies, and the importance of stearoyl-CoA desaturase in the cardiovascular system might be a limitation for developing such therapy. This review discusses the role of stearoyl-CoA desaturase 1 in the regulation of cardiovascular homeostasis and the development of heart disease and presents markers of systemic stearoyl-CoA desaturase activity and their predictive potential in the diagnosis of cardiovascular disorders.
Collapse
|
14
|
Targeting mitochondrial impairment for the treatment of cardiovascular diseases: From hypertension to ischemia-reperfusion injury, searching for new pharmacological targets. Biochem Pharmacol 2023; 208:115405. [PMID: 36603686 DOI: 10.1016/j.bcp.2022.115405] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Mitochondria and mitochondrial proteins represent a group of promising pharmacological target candidates in the search of new molecular targets and drugs to counteract the onset of hypertension and more in general cardiovascular diseases (CVDs). Indeed, several mitochondrial pathways result impaired in CVDs, showing ATP depletion and ROS production as common traits of cardiac tissue degeneration. Thus, targeting mitochondrial dysfunction in cardiomyocytes can represent a successful strategy to prevent heart failure. In this context, the identification of new pharmacological targets among mitochondrial proteins paves the way for the design of new selective drugs. Thanks to the advances in omics approaches, to a greater availability of mitochondrial crystallized protein structures and to the development of new computational approaches for protein 3D-modelling and drug design, it is now possible to investigate in detail impaired mitochondrial pathways in CVDs. Furthermore, it is possible to design new powerful drugs able to hit the selected pharmacological targets in a highly selective way to rescue mitochondrial dysfunction and prevent cardiac tissue degeneration. The role of mitochondrial dysfunction in the onset of CVDs appears increasingly evident, as reflected by the impairment of proteins involved in lipid peroxidation, mitochondrial dynamics, respiratory chain complexes, and membrane polarization maintenance in CVD patients. Conversely, little is known about proteins responsible for the cross-talk between mitochondria and cytoplasm in cardiomyocytes. Mitochondrial transporters of the SLC25A family, in particular, are responsible for the translocation of nucleotides (e.g., ATP), amino acids (e.g., aspartate, glutamate, ornithine), organic acids (e.g. malate and 2-oxoglutarate), and other cofactors (e.g., inorganic phosphate, NAD+, FAD, carnitine, CoA derivatives) between the mitochondrial and cytosolic compartments. Thus, mitochondrial transporters play a key role in the mitochondria-cytosol cross-talk by leading metabolic pathways such as the malate/aspartate shuttle, the carnitine shuttle, the ATP export from mitochondria, and the regulation of permeability transition pore opening. Since all these pathways are crucial for maintaining healthy cardiomyocytes, mitochondrial carriers emerge as an interesting class of new possible pharmacological targets for CVD treatments.
Collapse
|
15
|
Hamledari H, Asghari P, Jayousi F, Aguirre A, Maaref Y, Barszczewski T, Ser T, Moore E, Wasserman W, Klein Geltink R, Teves S, Tibbits GF. Using human induced pluripotent stem cell-derived cardiomyocytes to understand the mechanisms driving cardiomyocyte maturation. Front Cardiovasc Med 2022; 9:967659. [PMID: 36061558 PMCID: PMC9429949 DOI: 10.3389/fcvm.2022.967659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases are the leading cause of mortality and reduced quality of life globally. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provide a personalized platform to study inherited heart diseases, drug-induced cardiac toxicity, and cardiac regenerative therapy. However, the immaturity of CMs obtained by current strategies is a major hurdle in utilizing hiPSC-CMs at their fullest potential. Here, the major findings and limitations of current maturation methodologies to enhance the utility of hiPSC-CMs in the battle against a major source of morbidity and mortality are reviewed. The most recent knowledge of the potential signaling pathways involved in the transition of fetal to adult CMs are assimilated. In particular, we take a deeper look on role of nutrient sensing signaling pathways and the potential role of cap-independent translation mediated by the modulation of mTOR pathway in the regulation of cardiac gap junctions and other yet to be identified aspects of CM maturation. Moreover, a relatively unexplored perspective on how our knowledge on the effects of preterm birth on cardiovascular development can be actually utilized to enhance the current understanding of CM maturation is examined. Furthermore, the interaction between the evolving neonatal human heart and brown adipose tissue as the major source of neonatal thermogenesis and its endocrine function on CM development is another discussed topic which is worthy of future investigation. Finally, the current knowledge regarding transcriptional mediators of CM maturation is still limited. The recent studies have produced the groundwork to better understand CM maturation in terms of providing some of the key factors involved in maturation and development of metrics for assessment of maturation which proves essential for future studies on in vitro PSC-CMs maturation.
Collapse
Affiliation(s)
- Homa Hamledari
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Parisa Asghari
- Department of Cellular and Physiological Sciences, University of British Colombia, Vancouver, BC, Canada
| | - Farah Jayousi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Alejandro Aguirre
- Department of Medical Genetics, University of British Colombia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Yasaman Maaref
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Tiffany Barszczewski
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Terri Ser
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Colombia, Vancouver, BC, Canada
| | - Edwin Moore
- Department of Cellular and Physiological Sciences, University of British Colombia, Vancouver, BC, Canada
| | - Wyeth Wasserman
- Department of Medical Genetics, University of British Colombia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Ramon Klein Geltink
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Colombia, Vancouver, BC, Canada
| | - Sheila Teves
- Department of Biochemistry and Molecular Biology, University of British Colombia, Vancouver, BC, Canada
| | - Glen F. Tibbits
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Kraus AC, De Miguel C. Hyperoxia and Acute Kidney Injury: A Tale of Oxygen and the Kidney. Semin Nephrol 2022; 42:151282. [PMID: 36404211 PMCID: PMC9825666 DOI: 10.1016/j.semnephrol.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although oxygen supplementation is beneficial to support life in the clinic, excessive oxygen therapy also has been linked to damage to organs such as the lung or the eye. However, there is a lack of understanding of whether high oxygen therapy directly affects the kidney, leading to acute kidney injury, and what molecular mechanisms may be involved in this process. In this review, we revise our current understanding of the mechanisms by which hyperoxia leads to organ damage and highlight possible areas of investigation for the scientific community interested in novel mechanisms of kidney disease. Overall, we found a significant need for both animal and clinical studies evaluating the role of hyperoxia in inducing kidney damage. Thus, we urge the research community to further investigate oxygen therapy and its impact on kidney health with the goal of optimizing oxygen therapy guidelines and improving patient care.
Collapse
Affiliation(s)
- Abigayle C Kraus
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Carmen De Miguel
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
17
|
Ravizzoni Dartora D, Flahault A, Pontes CNR, He Y, Deprez A, Cloutier A, Cagnone G, Gaub P, Altit G, Bigras JL, Joyal JS, Mai Luu T, Burelle Y, Nuyt AM. Cardiac Left Ventricle Mitochondrial Dysfunction After Neonatal Exposure to Hyperoxia: Relevance for Cardiomyopathy After Preterm Birth. Hypertension 2021; 79:575-587. [PMID: 34961326 PMCID: PMC8823906 DOI: 10.1161/hypertensionaha.121.17979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Supplemental Digital Content is available in the text. Individuals born preterm present left ventricle changes and increased risk of cardiac diseases and heart failure. The pathophysiology of heart disease after preterm birth is incompletely understood. Mitochondria dysfunction is a hallmark of cardiomyopathy resulting in heart failure. We hypothesized that neonatal hyperoxia in rats, a recognized model simulating preterm birth conditions and resulting in oxygen-induced cardiomyopathy, induce left ventricle mitochondrial changes in juvenile rats. We also hypothesized that humanin, a mitochondrial-derived peptide, would be reduced in young adults born preterm.
Collapse
Affiliation(s)
- Daniela Ravizzoni Dartora
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.)
| | - Adrien Flahault
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.)
| | - Carolina N R Pontes
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.).,Department of Physiology and Pharmacology, Universidade Federal de Goias, Brazil (C.N.R.P.)
| | - Ying He
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.)
| | - Alyson Deprez
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.)
| | - Anik Cloutier
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.)
| | - Gaël Cagnone
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.).,Department of Physiology and Pharmacology, Faculty of Medicine, University of Montreal, Quebec, Canada. (G.C., P.G., J.-S.J.)
| | - Perrine Gaub
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.).,Department of Physiology and Pharmacology, Faculty of Medicine, University of Montreal, Quebec, Canada. (G.C., P.G., J.-S.J.)
| | - Gabriel Altit
- Division of Neonatology, Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada (G.A.)
| | - Jean-Luc Bigras
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.)
| | - Jean-Sébastien Joyal
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.).,Department of Physiology and Pharmacology, Faculty of Medicine, University of Montreal, Quebec, Canada. (G.C., P.G., J.-S.J.)
| | - Thuy Mai Luu
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.)
| | - Yan Burelle
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada (Y.B.)
| | - Anne Monique Nuyt
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.)
| |
Collapse
|
18
|
Landscape of the oncogenic role of fatty acid synthase in human tumors. Aging (Albany NY) 2021; 13:25106-25137. [PMID: 34879004 PMCID: PMC8714155 DOI: 10.18632/aging.203730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022]
Abstract
Background: Identifying a unique and common regulatory pathway that drives tumorigenesis in cancers is crucial to foster the development of effective treatments. However, a systematic analysis of fatty acid synthase across pan-cancers has not been carried out. Methods: We investigated the oncogenic roles of fatty acid synthase in 33 cancers based on the cancer genome atlas and gene expression omnibus. Results: Fatty acid synthase is profoundly expressed in most cancers and is an important factor in predicting the outcome of cancer patients. Further, the level of S207 phosphorylation was found to be improved in several neoplasms (e.g., colon cancer). Fatty acid synthase expression is related to tumor-infiltrating immune cells in tumors (e.g., CD8+ T-cell infiltration level in cervical squamous cell carcinoma). Moreover, hormone receptor binding- and fatty acid metabolic process-associated pathways are involved in the functional mechanisms of fatty acid synthase. Conclusions: This study provides a complete understanding of the oncogenic role of fatty acid synthase in human tumors.
Collapse
|
19
|
Abouleisa RRE, McNally L, Salama ABM, Hammad SK, Ou Q, Wells C, Lorkiewicz PK, Bolli R, Mohamed TMA, Hill BG. Cell cycle induction in human cardiomyocytes is dependent on biosynthetic pathway activation. Redox Biol 2021; 46:102094. [PMID: 34418597 PMCID: PMC8379496 DOI: 10.1016/j.redox.2021.102094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 01/03/2023] Open
Abstract
AIMS The coordinated gene and metabolic programs that facilitate cardiomyocyte entry and progression in the cell cycle are poorly understood. The purpose of this study was to identify the metabolic changes that influence myocyte proliferation. METHODS AND RESULTS In adult mouse cardiomyocytes and human induced pluripotent stem cell cardiomyocytes (hiPS-CMs), cell cycle initiation by ectopic expression of Cyclin B1, Cyclin D1, CDK1, and CDK4 (termed 4F) downregulated oxidative phosphorylation genes and upregulated genes that regulate ancillary biosynthetic pathways of glucose metabolism. Results from metabolic analyses and stable isotope tracing experiments indicate that 4F-mediated cell cycle induction in hiPS-CMs decreases glucose oxidation and oxidative phosphorylation and augments NAD+, glycogen, hexosamine, phospholipid, and serine biosynthetic pathway activity. Interventions that diminish NAD+ synthesis, serine synthesis, or protein O-GlcNAcylation decreased 4F-mediated cell cycle entry. In a gain of function approach, we overexpressed phosphoenolpyruvate carboxykinase 2 (PCK2), which can drive carbon from the Krebs cycle to the glycolytic intermediate pool, and found that PCK2 augments 4F-mediated cell cycle entry. CONCLUSIONS These findings suggest that a metabolic shift from catabolic to anabolic activity is a critical step for cardiomyocyte cell cycle entry and is required to facilitate proliferation.
Collapse
Affiliation(s)
- Riham R E Abouleisa
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Lindsey McNally
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Abou Bakr M Salama
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA; Department of Cardiovascular Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt; Department of Cardiac Surgery, Verona University, Verona, Italy
| | - Sally K Hammad
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA; Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Egypt
| | - Qinghui Ou
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Collin Wells
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Pawel K Lorkiewicz
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA; Department of Chemistry, University of Louisville, KY, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Tamer M A Mohamed
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville, KY, USA; Institute of Cardiovascular Sciences, University of Manchester, UK; Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Egypt.
| | - Bradford G Hill
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
20
|
Stearoyl-CoA Desaturase (SCD) Induces Cardiac Dysfunction with Cardiac Lipid Overload and Angiotensin II AT1 Receptor Protein Up-Regulation. Int J Mol Sci 2021; 22:ijms22189883. [PMID: 34576047 PMCID: PMC8472087 DOI: 10.3390/ijms22189883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Heart failure is a major cause of death worldwide with insufficient treatment options. In the search for pathomechanisms, we found up-regulation of an enzyme, stearoyl-CoA desaturase 1 (Scd1), in different experimental models of heart failure induced by advanced atherosclerosis, chronic pressure overload, and/or volume overload. Because the pathophysiological role of Scd1/SCD in heart failure is not clear, we investigated the impact of cardiac SCD upregulation through the generation of C57BL/6-Tg(MHCSCD)Sjaa mice with myocardium-specific expression of SCD. Echocardiographic examination showed that 4.9-fold-increased SCD levels triggered cardiac hypertrophy and symptoms of heart failure at an age of eight months. Tg-SCD mice had a significantly reduced left ventricular cardiac ejection fraction of 25.7 ± 2.9% compared to 54.3 ± 4.5% of non-transgenic B6 control mice. Whole-genome gene expression profiling identified up-regulated heart-failure-related genes such as resistin, adiponectin, and fatty acid synthase, and type 1 and 3 collagens. Tg-SCD mice were characterized by cardiac lipid accumulation with 1.6- and 1.7-fold-increased cardiac contents of saturated lipids, palmitate, and stearate, respectively. In contrast, unsaturated lipids were not changed. Together with saturated lipids, apoptosis-enhancing p53 protein contents were elevated. Imaging by autoradiography revealed that the heart-failure-promoting and membrane-spanning angiotensin II AT1 receptor protein of Tg-SCD hearts was significantly up-regulated. In transfected HEK cells, the expression of SCD increased the number of cell-surface angiotensin II AT1 receptor binding sites. In addition, increased AT1 receptor protein levels were detected by fluorescence spectroscopy of fluorescent protein-labeled AT1 receptor-Cerulean. Taken together, we found that SCD promotes cardiac dysfunction with overload of cardiotoxic saturated lipids and up-regulation of the heart-failure-promoting AT1 receptor protein.
Collapse
|
21
|
Yue L, Lu X, Dennery PA, Yao H. Metabolic dysregulation in bronchopulmonary dysplasia: Implications for identification of biomarkers and therapeutic approaches. Redox Biol 2021; 48:102104. [PMID: 34417157 PMCID: PMC8710987 DOI: 10.1016/j.redox.2021.102104] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/03/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in premature infants. Accumulating evidence shows that dysregulated metabolism of glucose, lipids and amino acids are observed in premature infants. Animal and cell studies demonstrate that abnormal metabolism of these substrates results in apoptosis, inflammation, reduced migration, abnormal proliferation or senescence in response to hyperoxic exposure, and that rectifying metabolic dysfunction attenuates neonatal hyperoxia-induced alveolar simplification and vascular dysgenesis in the lung. BPD is often associated with several comorbidities, including pulmonary hypertension and neurodevelopmental abnormalities, which significantly increase the morbidity and mortality of this disease. Here, we discuss recent progress on dysregulated metabolism of glucose, lipids and amino acids in premature infants with BPD and in related in vivo and in vitro models. These findings suggest that metabolic dysregulation may serve as a biomarker of BPD and plays important roles in the pathogenesis of this disease. We also highlight that targeting metabolic pathways could be employed in the prevention and treatment of BPD.
Collapse
Affiliation(s)
- Li Yue
- Department of Orthopedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Xuexin Lu
- Department of Pediatrics, Ascension St. John Hospital, Detroit, MI, USA
| | - Phyllis A Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA; Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
22
|
Grimm SL, Dong X, Zhang Y, Carisey AF, Arnold AP, Moorthy B, Coarfa C, Lingappan K. Effect of sex chromosomes versus hormones in neonatal lung injury. JCI Insight 2021; 6:e146863. [PMID: 34061778 PMCID: PMC8410054 DOI: 10.1172/jci.insight.146863] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
The main mechanisms underlying sexually dimorphic outcomes in neonatal lung injury are unknown. We tested the hypothesis that hormone- or sex chromosome–mediated mechanisms interact with hyperoxia exposure to impact injury and repair in the neonatal lung. To distinguish sex differences caused by gonadal hormones versus sex chromosome complement (XX versus XY), we used the Four Core Genotypes (FCG) mice and exposed them to hyperoxia (95% FiO2, P1–P4: saccular stage) or room air. This model generates XX and XY mice that each have either testes (with Sry, XXM, or XYM) or ovaries (without Sry, XXF, or XYF). Lung alveolarization and vascular development were more severely impacted in XYM and XYF compared with XXF and XXM mice. Cell cycle–related pathways were enriched in the gonadal or chromosomal females, while muscle-related pathways were enriched in the gonadal males, and immune-response–related pathways were enriched in chromosomal males. Female gene signatures showed a negative correlation with human patients who developed bronchopulmonary dysplasia (BPD) or needed oxygen therapy at 28 days. These results demonstrate that chromosomal sex — and not gonadal sex — impacted the response to neonatal hyperoxia exposure. The female sex chromosomal complement was protective and could mediate sex-specific differences in the neonatal lung injury.
Collapse
Affiliation(s)
- Sandra L Grimm
- Molecular and Cellular Biology Department.,Center for Precision Environmental Health, and
| | - Xiaoyu Dong
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Yuhao Zhang
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Alexandre F Carisey
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Arthur P Arnold
- Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Bhagavatula Moorthy
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Cristian Coarfa
- Molecular and Cellular Biology Department.,Center for Precision Environmental Health, and.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Krithika Lingappan
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|