1
|
Liu L, Wang Y, Wang X, Zhang G, Sha S, Zhou R, Du Y, Wu C, Chen L. Transient receptor potential vanilloid 4 blockage attenuates pyroptosis in hippocampus of mice following pilocarpine‑induced status epilepticus. Acta Neuropathol Commun 2025; 13:73. [PMID: 40205503 PMCID: PMC11983898 DOI: 10.1186/s40478-025-01990-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
Pyroptosis contributes to the neuronal damage that occurs during epilepsy. Calcium-activated neutral protease (calpain) dissociates cysteinyl aspartate specific proteinase-1 (caspase-1, cas-1) from the cytoskeleton, and the activated cas-1 is responsible for the production of N-terminus of gasdermin D (N-GSDMD), the final executor of pyroptosis. Blocking transient receptor potential vanilloid 4 (TRPV4) can reduce neuronal injury in temporal lobe epilepsy (TLE) model mice. This study investigated the role of TRPV4 in pyroptosis during TLE. In the hippocampus of pilocarpine-induced status epilepticus (PISE) mice, the ratio of inactive calpain 1 protein level to its total protein level (inactive/total calpain 1) significantly decreased, while the ratio of inactive calpain 2 protein level to its total protein level remained unchanged. The protein levels of NLRP3, cleaved cas-1 (c-cas-1), interleukin (IL)-1β, and N-GSDMD increased, with more GSDMD-immunofluorescence-positive (GSDMD+) cells and fewer surviving pyramidal neurons observed in the hippocampus of PISE mice. Calpain inhibition with MDL-28170 reversed these changes, except for the elevated NLRP3 levels. Inhibitors targeting NLRP3 (MCC950) and cas-1 (Ac-YVAD-cmk) blocked the increase in c-cas-1, IL-1β, and N-GSDMD levels in the hippocampus of PISE mice. TRPV4 inhibition via HC-067047 increased the inactive/total calpain 1 ratio, decreased NLRP3, c-cas-1, IL-1β, and N-GSDMD protein levels, reduced GSDMD+ cells number, and improved pyramidal neuron survival in the hippocampus of PISE mice. Conversely, TRPV4 activation with GSK1016790A decreased the inactive/total calpain 1 ratio, elevated NLRP3, c-cas-1, IL-1β, and N-GSDMD levels, and increased GSDMD+ cells number in the hippocampus. In the hippocampus of GSK1016790A-injected mice, the inactive/total calpain 1 ratio was increased by MDL-28170, and c-cas-1, IL-1β, and N-GSDMD protein levels were markedly attenuated by MDL-28170, MCC950, and Ac-YVAD-cmk, respectively. In conclusion, TRPV4 inhibition mitigates pyroptosis in PISE mice by downregulating the calpain 1-NLRP3/cas-1-GSDMD pathway, ultimately reducing neuronal damage.
Collapse
Affiliation(s)
- Lihan Liu
- Department of Physiology, Nanjing Medical University, No. 101, Longmian Ave, Nanjing, Jiangsu Province, 211166, P.R. China
| | - Yue Wang
- Department of Physiology, Nanjing Medical University, No. 101, Longmian Ave, Nanjing, Jiangsu Province, 211166, P.R. China
| | - Xiaolin Wang
- Department of Physiology, Nanjing Medical University, No. 101, Longmian Ave, Nanjing, Jiangsu Province, 211166, P.R. China
| | - Guowen Zhang
- Department of Physiology, Nanjing Medical University, No. 101, Longmian Ave, Nanjing, Jiangsu Province, 211166, P.R. China
| | - Sha Sha
- Department of Physiology, Nanjing Medical University, No. 101, Longmian Ave, Nanjing, Jiangsu Province, 211166, P.R. China
| | - Rong Zhou
- Department of Physiology, Nanjing Medical University, No. 101, Longmian Ave, Nanjing, Jiangsu Province, 211166, P.R. China
| | - Yimei Du
- Research Center of Ion Channelopathy, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, P.R. China
| | - Chunfeng Wu
- Department of Neurology, Children's Hospital of Nanjing Medical University, No.8, Jiangdong South Road, Nanjing, Jiangsu Province, 211166, P. R. China.
| | - Lei Chen
- Department of Physiology, Nanjing Medical University, No. 101, Longmian Ave, Nanjing, Jiangsu Province, 211166, P.R. China.
| |
Collapse
|
2
|
Yang Y, Zou GM, Wei XS, Zhang Z, Zhuo L, Xu QQ, Li WG. Identification and validation of biomarkers in membranous nephropathy and pan-cancer analysis. Front Immunol 2024; 15:1302909. [PMID: 38846934 PMCID: PMC11153720 DOI: 10.3389/fimmu.2024.1302909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Background Membranous nephropathy (MN) is an autoimmune disease and represents the most prevalent type of renal pathology in adult patients afflicted with nephrotic syndrome. Despite substantial evidence suggesting a possible link between MN and cancer, the precise underlying mechanisms remain elusive. Methods In this study, we acquired and integrated two MN datasets (comprising a single-cell dataset and a bulk RNA-seq dataset) from the Gene Expression Omnibus database for differential expression gene (DEG) analysis, hub genes were obtained by LASSO and random forest algorithms, the diagnostic ability of hub genes was assessed using ROC curves, and the degree of immune cell infiltration was evaluated using the ssGSEA function. Concurrently, we gathered pan-cancer-related genes from the TCGA and GTEx databases, to analyze the expression, mutation status, drug sensitivity and prognosis of hub genes in pan-cancer. Results We conducted intersections between the set of 318 senescence-related genes and the 366 DEGs, resulting in the identification of 13 senescence-related DEGs. Afterwards, we meticulously analyzed these genes using the LASSO and random forest algorithms, which ultimately led to the discovery of six hub genes through intersection (PIK3R1, CCND1, TERF2IP, SLC25A4, CAPN2, and TXN). ROC curves suggest that these hub genes have good recognition of MN. After performing correlation analysis, examining immune infiltration, and conducting a comprehensive pan-cancer investigation, we validated these six hub genes through immunohistochemical analysis using human renal biopsy tissues. The pan-cancer analysis notably accentuates the robust association between these hub genes and the prognoses of individuals afflicted by diverse cancer types, further underscoring the importance of mutations within these hub genes across various cancers. Conclusion This evidence indicates that these genes could potentially play a pivotal role as a critical link connecting MN and cancer. As a result, they may hold promise as valuable targets for intervention in cases of both MN and cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wen-ge Li
- *Correspondence: Qian-qian Xu, ; Wen-ge Li,
| |
Collapse
|
3
|
Tian X, Pedigo CE, Li K, Ma X, Bunda P, Pell J, Lek A, Gu J, Zhang Y, Medina Rangel PX, Li W, Schwartze E, Nagata S, Lerner G, Perincheri S, Priyadarshini A, Zhao H, Lek M, Menon MC, Fu R, Ishibe S. Profilin1 is required for prevention of mitotic catastrophe in murine and human glomerular diseases. J Clin Invest 2023; 133:e171237. [PMID: 37847555 PMCID: PMC10721156 DOI: 10.1172/jci171237] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
The progression of proteinuric kidney diseases is associated with podocyte loss, but the mechanisms underlying this process remain unclear. Podocytes reenter the cell cycle to repair double-stranded DNA breaks. However, unsuccessful repair can result in podocytes crossing the G1/S checkpoint and undergoing abortive cytokinesis. In this study, we identified Pfn1 as indispensable in maintaining glomerular integrity - its tissue-specific loss in mouse podocytes resulted in severe proteinuria and kidney failure. Our results suggest that this phenotype is due to podocyte mitotic catastrophe (MC), characterized histologically and ultrastructurally by abundant multinucleated cells, irregular nuclei, and mitotic spindles. Podocyte cell cycle reentry was identified using FUCCI2aR mice, and we observed altered expression of cell-cycle associated proteins, such as p21, p53, cyclin B1, and cyclin D1. Podocyte-specific translating ribosome affinity purification and RNA-Seq revealed the downregulation of ribosomal RNA-processing 8 (Rrp8). Overexpression of Rrp8 in Pfn1-KO podocytes partially rescued the phenotype in vitro. Clinical and ultrastructural tomographic analysis of patients with diverse proteinuric kidney diseases further validated the presence of MC podocytes and reduction in podocyte PFN1 expression within kidney tissues. These results suggest that profilin1 is essential in regulating the podocyte cell cycle and its disruption leads to MC and subsequent podocyte loss.
Collapse
Affiliation(s)
- Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christopher E. Pedigo
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ke Li
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaotao Ma
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Patricia Bunda
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - John Pell
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Jianlei Gu
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Yan Zhang
- Bioinformation Department, Suzhou SITRI Institute of Immunology Co. Ltd., Suzhou, Jiangsu, China
| | - Paulina X. Medina Rangel
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Wei Li
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eike Schwartze
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Soichiro Nagata
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Gabriel Lerner
- Departments of Surgical Pathology and Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sudhir Perincheri
- Departments of Surgical Pathology and Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anupama Priyadarshini
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | | | - Madhav C. Menon
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Rongguo Fu
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shuta Ishibe
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Yuan YH, Mao ND, Duan JL, Zhang H, Garrido C, Lirussi F, Gao Y, Xie T, Ye XY. Recent progress in discovery of novel AAK1 inhibitors: from pain therapy to potential anti-viral agents. J Enzyme Inhib Med Chem 2023; 38:2279906. [PMID: 37955299 PMCID: PMC10653628 DOI: 10.1080/14756366.2023.2279906] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Adaptor associated kinase 1 (AAK1), a member of the Ark1/Prk1 family of Ser/Thr kinases, is a specific key kinase regulating Thr156 phosphorylation at the μ2 subunit of the adapter complex-2 (AP-2) protein. Due to their important biological functions, AAK1 systems have been validated in clinics for neuropathic pain therapy, and are being explored as potential therapeutic targets for diseases caused by various viruses such as Hepatitis C (HCV), Dengue, Ebola, and COVID-19 viruses and for amyotrophic lateral sclerosis (ALS). Centreing on the advances of drug discovery programs in this field up to 2023, AAK1 inhibitors are discussed from the aspects of the structure-based rational molecular design, pharmacology, toxicology and synthetic routes for the compounds of interest in this review. The aim is to provide the medicinal chemistry community with up-to-date information and to accelerate the drug discovery programs in the field of AAK1 small molecule inhibitors.
Collapse
Affiliation(s)
- Ying-Hui Yuan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Nian-Dong Mao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ji-Long Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Hang Zhang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, China
| | - Carmen Garrido
- INSERM UMR 1231, Labex LipSTIC, University of Bourgogne, Dijon, France
- Cancer Center George François Leclerc, Dijon, France
- University of Bourgogne Franche-Comté, Besançon, France
| | - Frédéric Lirussi
- INSERM UMR 1231, Labex LipSTIC, University of Bourgogne, Dijon, France
- University of Franche-Comté & University Hospital of Besançon, Besancon, France
| | - Yuan Gao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Salemkour Y, Yildiz D, Dionet L, ‘t Hart DC, Verheijden KA, Saito R, Mahtal N, Delbet JD, Letavernier E, Rabant M, Karras A, van der Vlag J, Nijenhuis T, Tharaux PL, Lenoir O. Podocyte Injury in Diabetic Kidney Disease in Mouse Models Involves TRPC6-mediated Calpain Activation Impairing Autophagy. J Am Soc Nephrol 2023; 34:1823-1842. [PMID: 37678257 PMCID: PMC10631601 DOI: 10.1681/asn.0000000000000212] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023] Open
Abstract
SIGNIFICANCE STATEMENT Autophagy protects podocytes from injury in diabetic kidney disease (DKD). Restoring glomerular autophagy is a promising approach to limit DKD. This study demonstrates a novel regulatory mechanism of autophagy that blocks this critical protection of the glomerular filtration barrier. We demonstrated that TRPC6 induced in podocytes in mouse models of diabetes mediates calpain activation, thereby impairing podocyte autophagy, causing injury and accelerating DKD. Furthermore, this study provides proof of principle for druggable targets for DKD because restoration of podocyte autophagy by calpain inhibitors effectively limits glomerular destruction. BACKGROUND Diabetic kidney disease is associated with impaired podocyte autophagy and subsequent podocyte injury. The regulation of podocyte autophagy is unique because it minimally uses the mTOR and AMPK pathways. Thus, the molecular mechanisms underlying the impaired autophagy in podocytes in diabetic kidney disease remain largely elusive. METHODS This study investigated how the calcium channel TRPC6 and the cysteine protease calpains deleteriously affect podocyte autophagy in diabetic kidney disease in mice. We demonstrated that TRPC6 knockdown in podocytes increased the autophagic flux because of decreased cysteine protease calpain activity. Diabetic kidney disease was induced in vivo using streptozotocin with unilateral nephrectomy and the BTBR ob/ob mouse models. RESULTS Diabetes increased TRPC6 expression in podocytes in vivo with decreased podocyte autophagic flux. Transgenic overexpression of the endogenous calpain inhibitor calpastatin, as well as pharmacologic inhibition of calpain activity, normalized podocyte autophagic flux, reduced nephrin loss, and prevented the development of albuminuria in diabetic mice. In kidney biopsies from patients with diabetes, we further confirmed that TRPC6 overexpression in podocytes correlates with decreased calpastatin expression, autophagy blockade, and podocyte injury. CONCLUSIONS Overall, we discovered a new mechanism that connects TRPC6 and calpain activity to impaired podocyte autophagy, increased podocyte injury, and development of proteinuria in the context of diabetic kidney disease. Therefore, targeting TRPC6 and/or calpain to restore podocyte autophagy might be a promising therapeutic strategy for diabetic kidney disease.
Collapse
Affiliation(s)
| | - Dilemin Yildiz
- Department of Nephrology, Research Institute of Medical Innovations, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Léa Dionet
- Université Paris Cité, Inserm, PARCC, Paris, France
| | - Daan C. ‘t Hart
- Department of Nephrology, Research Institute of Medical Innovations, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Kim A.T. Verheijden
- Department of Nephrology, Research Institute of Medical Innovations, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ryuta Saito
- Discovery Technology Laboratories, Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | | | - Jean-Daniel Delbet
- Université Paris Cité, Inserm, PARCC, Paris, France
- Pediatric Nephrology Department, Armand Trousseau Hospital, DMU Origyne, APHP, Paris and French Reference Center for Rare Diseases MARHEA, Paris, France
| | - Emmanuel Letavernier
- Sorbonne Université, Hôpital Tenon, Paris, France
- INSERM UMR S 1155, Hôpital Tenon, Paris, France
- Explorations Fonctionnelles Multidisciplinaires, AP-HP, Hôpital Tenon, Paris, France
| | - Marion Rabant
- Pathology Department, Necker-Enfants Malades Hospital - Paris, Paris, France
| | - Alexandre Karras
- Université Paris Cité, Inserm, PARCC, Paris, France
- Nephrology Unit, Georges Pompidou European Hospital - Paris, Paris, France
| | - Johan van der Vlag
- Department of Nephrology, Research Institute of Medical Innovations, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Research Institute of Medical Innovations, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
6
|
Li Y, Li K, Zhao W, Wang H, Xue X, Chen X, Li W, Xu P, Wang K, Liu P, Tian X, Fu R. VPA improves ferroptosis in tubular epithelial cells after cisplatin-induced acute kidney injury. Front Pharmacol 2023; 14:1147772. [PMID: 37153759 PMCID: PMC10155836 DOI: 10.3389/fphar.2023.1147772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/31/2023] [Indexed: 05/10/2023] Open
Abstract
Background: As a novel non-apoptotic cell death, ferroptosis has been reported to play a crucial role in acute kidney injury (AKI), especially cisplatin-induced AKI. Valproic acid (VPA), an inhibitor of histone deacetylase (HDAC) 1 and 2, is used as an antiepileptic drug. Consistent with our data, a few studies have demonstrated that VPA protects against kidney injury in several models, but the detailed mechanism remains unclear. Results: In this study, we found that VPA prevents against cisplatin-induced renal injury via regulating glutathione peroxidase 4 (GPX4) and inhibiting ferroptosis. Our results mainly indicated that ferroptosis presented in tubular epithelial cells of AKI humans and cisplatin-induced AKI mice. VPA or ferrostatin-1 (ferroptosis inhibitor, Fer-1) reduced cisplatin-induced AKI functionally and pathologically, which was characterized by reduced serum creatinine, blood urea nitrogen, and tissue damage in mice. Meanwhile, VPA or Fer-1 treatment in both in vivo and in vitro models, decreased cell death, lipid peroxidation, and expression of acyl-CoA synthetase long-chain family member 4 (ACSL4), reversing downregulation of GPX4. In addition, our study in vitro indicated that GPX4 inhibition by siRNA significantly weakened the protective effect of VPA after cisplatin treatment. Conclusion: Ferroptosis plays an essential role in cisplatin-induced AKI and inhibiting ferroptosis through VPA to protect against renal injury is a viable treatment in cisplatin-induced AKI.
Collapse
Affiliation(s)
- Yan Li
- Department of Nephrology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ke Li
- Department of Nephrology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Weihao Zhao
- Department of Nephrology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Haodong Wang
- Department of Nephrology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaodong Xue
- School of Computer Science, National University of Singapore, Singapore, Singapore
| | - Xianghui Chen
- Department of Nephrology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Wantao Li
- Department of Nephrology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Peihao Xu
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kexin Wang
- Department of Nephrology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Pengfei Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- *Correspondence: Rongguo Fu, ; Xuefei Tian,
| | - Rongguo Fu
- Department of Nephrology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Rongguo Fu, ; Xuefei Tian,
| |
Collapse
|
7
|
Gurevich M, Iocolano K, Martin IN, Singh G, Khan S, Bui DT, Dagum AB, Komatsu DE. Efficacy of leupeptin in treating ischemia in a rat hind limb model. Physiol Rep 2022; 10:e15411. [PMID: 35924300 PMCID: PMC9350425 DOI: 10.14814/phy2.15411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022] Open
Abstract
Prolonged tourniquet use can lead to tissue ischemia and can cause progressive muscle and nerve injuries. Such injuries are accompanied by calpain activation and subsequent Wallerian-like degeneration. Several known inhibitors, including leupeptin, are known to impede the activity of calpain and associated tissue damage. We hypothesize that employment of leupeptin in a rat model of prolonged hind limb ischemia can mitigate muscle and nerve injuries. Sprague-Dawley rats (n = 10) weighing between 300-400 g were employed in this study. Their left hind limbs were subjected to blood flow occlusion for a period of 2-h using a neonatal blood pressure cuff. Five rats were given twice weekly intramuscular leupeptin injections, while the other five received saline. After 2 weeks, the animals were euthanized, their sciatic nerves and gastrocnemius muscles were harvested, fixed, stained, and analyzed using NIH Image J software. The administration of leupeptin resulted in larger gastrocnemius muscle fiber cross-sectional areas for the right (non-tourniquet applied) hindlimb as compared to that treated with the saline (p = 0.0110). However, no statistically significant differences were found between these two groups for the injured left hindlimb (p = 0.1440). With regards to the sciatic nerve cross-sectional areas and sciatic functional index, no differences were detected between the leupeptin and control treated groups for both the healthy and injured hindlimbs. This research provides new insights on how to employ leupeptin to inhibit the degenerative effects of calpain and preserve tissues following ischemia resulting from orthopedic or plastic surgery procedures.
Collapse
Affiliation(s)
| | | | - Irene Nozal Martin
- Division of Plastic and Reconstructive Surgery, Department of SurgeryStony Brook University HospitalStony BrookNew YorkUSA
| | - Gurtej Singh
- Division of Plastic and Reconstructive Surgery, Department of SurgeryStony Brook University HospitalStony BrookNew YorkUSA
| | - Sami U. Khan
- Division of Plastic and Reconstructive Surgery, Department of SurgeryStony Brook University HospitalStony BrookNew YorkUSA
| | - Duc T. Bui
- Division of Plastic and Reconstructive Surgery, Department of SurgeryStony Brook University HospitalStony BrookNew YorkUSA
| | - Alexander B. Dagum
- Division of Plastic and Reconstructive Surgery, Department of SurgeryStony Brook University HospitalStony BrookNew YorkUSA
| | - David E. Komatsu
- Department of Orthopaedics and RehabilitationStony Brook University HospitalNew YorkUSA
| |
Collapse
|
8
|
Tao Y, Chaudhari S, Shotorbani PY, Ding Y, Chen Z, Kasetti R, Zode G, Ma R. Enhanced Orai1-mediated store-operated Ca 2+ channel/calpain signaling contributes to high glucose-induced podocyte injury. J Biol Chem 2022; 298:101990. [PMID: 35490782 PMCID: PMC9136128 DOI: 10.1016/j.jbc.2022.101990] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/09/2023] Open
Abstract
Podocyte injury induced by hyperglycemia is the main cause of kidney dysfunction in diabetic nephropathy. However, the underlying mechanism is unclear. Store-operated Ca2+ entry (SOCE) regulates a diversity of cellular processes in a variety of cell types. Calpain, a Ca2+-dependent cysteine protease, was recently shown to be involved in podocyte injury. In the present study, we sought to determine whether increased SOCE contributed to high glucose (HG)-induced podocyte injury through activation of the calpain pathway. In cultured human podocytes, whole-cell patch clamp indicated the presence of functional store-operated Ca2+ channels, which are composed of Orai1 proteins and mediate SOCE. Western blots showed that HG treatment increased the protein abundance of Orai1 in a dose-dependent manner. Consistently, calcium imaging experiments revealed that SOCE was significantly enhanced in podocytes following HG treatment. Furthermore, HG treatment caused overt podocyte F-actin disorganization as well as a significant decrease in nephrin protein abundance, both of which are indications of podocyte injury. These podocyte injury responses were significantly blunted by both pharmacological inhibition of Orai1 using the small molecule inhibitor BTP2 or by genetic deletion of Orai1 using CRISPR-Cas9 lentivirus. Moreover, activation of SOCE by thapsigargin, an inhibitor of Ca2+ pump on the endoplasmic/sarcoplasmic reticulum membrane, significantly increased the activity of calpain, which was inhibited by BTP2. Finally, the calpain-1/calpain-2 inhibitor calpeptin significantly blunted the nephrin protein reduction induced by HG treatment. Taken together, our results suggest that enhanced signaling via an Orai1/SOCE/Calpain axis contributes to HG-induced podocyte injury.
Collapse
Affiliation(s)
- Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | | | - Yanfeng Ding
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Zhenglan Chen
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Ramesh Kasetti
- The North Texas Eye Research Institute and Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Gulab Zode
- The North Texas Eye Research Institute and Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA.
| |
Collapse
|
9
|
Belhadj S, Hermann NS, Zhu Y, Christensen G, Strasser T, Paquet-Durand F. Visualizing Cell Death in Live Retina: Using Calpain Activity Detection as a Biomarker for Retinal Degeneration. Int J Mol Sci 2022; 23:ijms23073892. [PMID: 35409251 PMCID: PMC8999672 DOI: 10.3390/ijms23073892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
Calpains are a family of calcium-activated proteases involved in numerous disorders. Notably, previous studies have shown that calpain activity was substantially increased in various models for inherited retinal degeneration (RD). In the present study, we tested the capacity of the calpain-specific substrate t-BOC-Leu-Met-CMAC to detect calpain activity in living retina, in organotypic retinal explant cultures derived from wild-type mice, as well as from rd1 and RhoP23H/+ RD-mutant mice. Test conditions were refined until the calpain substrate readily detected large numbers of cells in the photoreceptor layer of RD retina but not in wild-type retina. At the same time, the calpain substrate was not obviously toxic to photoreceptor cells. Comparison of calpain activity with immunostaining for activated calpain-2 furthermore suggested that individual calpain isoforms may be active in distinct temporal stages of photoreceptor cell death. Notably, calpain-2 activity may be a relatively short-lived event, occurring only towards the end of the cell-death process. Finally, our results support the development of calpain activity detection as a novel in vivo biomarker for RD suitable for combination with non-invasive imaging techniques.
Collapse
Affiliation(s)
- Soumaya Belhadj
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany; (S.B.); (Y.Z.); (G.C.)
- Graduate Training Center of Neuroscience, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany;
| | - Nina Sofia Hermann
- Graduate Training Center of Neuroscience, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany;
| | - Yu Zhu
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany; (S.B.); (Y.Z.); (G.C.)
- Graduate Training Center of Neuroscience, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany;
| | - Gustav Christensen
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany; (S.B.); (Y.Z.); (G.C.)
- Graduate Training Center of Neuroscience, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany;
| | - Torsten Strasser
- Applied Vision Research Group, Institute for Ophthalmic Research, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany;
- University Eye Hospital Tübingen, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany
| | - François Paquet-Durand
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany; (S.B.); (Y.Z.); (G.C.)
- Correspondence:
| |
Collapse
|
10
|
Tian X, Bunda P, Ishibe S. Podocyte Endocytosis in Regulating the Glomerular Filtration Barrier. Front Med (Lausanne) 2022; 9:801837. [PMID: 35223901 PMCID: PMC8866310 DOI: 10.3389/fmed.2022.801837] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/06/2022] [Indexed: 12/26/2022] Open
Abstract
Endocytosis is a mechanism that internalizes and recycles plasma membrane components and transmembrane receptors via vesicle formation, which is mediated by clathrin-dependent and clathrin-independent signaling pathways. Podocytes are specialized, terminally differentiated epithelial cells in the kidney, located on the outermost layer of the glomerulus. These cells play an important role in maintaining the integrity of the glomerular filtration barrier in conjunction with the adjacent basement membrane and endothelial cell layers within the glomerulus. An intact podocyte endocytic machinery appears to be necessary for maintaining podocyte function. De novo pathologic human genetic mutations and loss-of-function studies of critical podocyte endocytosis genes in genetically engineered mouse models suggest that this pathway contributes to the pathophysiology of development and progression of proteinuria in chronic kidney disease. Here, we review the mechanism of cellular endocytosis and its regulation in podocyte injury in the context of glomerular diseases. A thorough understanding of podocyte endocytosis may shed novel insights into its biological function in maintaining a functioning filter and offer potential targeted therapeutic strategies for proteinuric glomerular diseases.
Collapse
Affiliation(s)
| | | | - Shuta Ishibe
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
11
|
Wu Y, Yang H, Cheng M, Shi J, Zhang W, Liu S, Zhang M. Calpain Inhibitor Calpeptin Alleviates Ischemia/Reperfusion-Induced Acute Kidney Injury via Suppressing AIM2 Inflammasome and Upregulating Klotho Protein. Front Med (Lausanne) 2022; 9:811980. [PMID: 35155498 PMCID: PMC8831790 DOI: 10.3389/fmed.2022.811980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022] Open
Abstract
Renal ischemia/reperfusion injury is a major contributor of acute kidney injury (AKI), leading to renal cell necrosis, apoptosis, and inflammation. Calpains, a family of Ca2+-dependent cysteine proteases, play a pivotal role in the pathogenesis of renal diseases. Several studies have reported calpain inhibitors showing remarkable reno-protective effects against proteinuria and α-klotho deficiency-induced renal aging symptoms, particularly against glomerulus injury. However, little is known about the role of the calpain inhibitor calpeptin in acute kidney injury. The present study aims to investigate the potential mechanism of downregulation of Calpain 1 and 2 activity by calpeptin in the ischemia/reperfusion (IR)-induced AKI model. Firstly, we observed that the contents of Calpain 1 and 2 were significantly increased in the renal biopsy of clinical AKI patients, especially in the diseased tubules space. To investigate the impacts of calpain activity inhibition, we further pretreated with calpeptin in both the IR mouse model and in the HK-2 cells hypoxia model. We found that the calpain inhibitor calpeptin improved renal functional deterioration, attenuated pathological structure damage, and decreased tubular cell apoptosis in the IR injury-induced AKI mice model. Mechanistically, calpeptin significantly suppressed the AIM2 (absent in melanoma 2) and NLRP3 (NOD-like receptor protein 3) inflammasome signaling pathways and increased Klotho protein levels. Furthermore, immunofluorescence assays demonstrated that the application of calpeptin effectively inhibited Calpain 1 activation and gasdermin D (GSDMD) cleavage in the renal tubules of IR mice. Taken together, our both in vivo and in vitro experiments suggest that calpeptin conveyed reno-protection in AKI might be mediated by the inhibition of AIM2 inflammasome activation and upregulation of Klotho protein. As such, we provide new evidence that Calpain 1 and 2 activation may be closely associated with the pathogenesis of clinical AKI. The calpain-mediated AIM2 inflammasome signaling pathway and distinct interaction between calpain and Klotho may provide a potential novel preventative and therapeutic target for acute kidney injury.
Collapse
|
12
|
Zhang Y, Li K, Li Y, Zhao W, Wang L, Chen Z, Ma X, Yao T, Wang J, Dong W, Li X, Tian X, Fu R. Profibrotic mechanisms of DPP8 and DPP9 highly expressed in the proximal renal tubule epithelial cells. Pharmacol Res 2021; 169:105630. [PMID: 33932609 DOI: 10.1016/j.phrs.2021.105630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND DPP8 and DPP9 have been demonstrated to play important roles in multiple diseases. Evidence for increased gene expression of DPP8 and DPP9 in tubulointerstitium was found to be associated with the decline of kidney function in chronic kidney disease (CKD) patients, which was observed in the Nephroseq human database. To examine the role of DPP8 and DPP9 in the tubulointerstitial injury, we determined the efficacy of DPP8 and DPP9 on epithelial-to-mesenchymal transition (EMT) and tubulointerstitial fibrosis (TIF) as well as the underlying mechanisms. METHODS We conducted the immunofluorescence of DPP8 and DPP9 in kidney biopsy specimens of CKD patients, established unilateral ureteral obstruction (UUO) animal model, treated with TC-E5007 (a specific inhibitor of both DPP8 and DPP9) or Saxagliptin (positive control) or saline, and HK-2 cells model. RESULTS We observed the significantly increased expression of DPP8 and DPP9 in the renal proximal tubule epithelial cells of CKD patients compared to the healthy control subjects. DPP8/DPP9 inhibitor TC-E5007 could significantly attenuate the EMT and extracellular matrix (ECM) synthesis in UUO mice, all these effects were mediated via interfering with the TGF-β1/Smad signaling. TC-E5007 treatment also presented reduced renal inflammation and improved renal function in the UUO mice compared to the placebo-treated UUO group. Furthermore, the siRNA for DPP8 and DPP9, and TC-E5007 treatment decreased EMT- and ECM-related proteins in TGF-β1-treated HK-2 cells respectively, which could be reversed significantly by transduction with lentivirus-DPP8 and lentivirus-DPP9. CONCLUSION These data obtained provide evidence that the DPP8 and DPP9 could be potential therapeutic targets against TIF.
Collapse
Affiliation(s)
- Yuzhan Zhang
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Ke Li
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Yan Li
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Weihao Zhao
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Li Wang
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Zhao Chen
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Xiaotao Ma
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Tian Yao
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Jinhua Wang
- Department of Clinical Laboratory, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Wei Dong
- Department of Clinical Laboratory, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Xiancheng Li
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, Shaanxi 710003, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Rongguo Fu
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China.
| |
Collapse
|
13
|
Cytoskeleton Rearrangements Modulate TRPC6 Channel Activity in Podocytes. Int J Mol Sci 2021; 22:ijms22094396. [PMID: 33922367 PMCID: PMC8122765 DOI: 10.3390/ijms22094396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
The actin cytoskeleton of podocytes plays a central role in the functioning of the filtration barrier in the kidney. Calcium entry into podocytes via TRPC6 (Transient Receptor Potential Canonical 6) channels leads to actin cytoskeleton rearrangement, thereby affecting the filtration barrier. We hypothesized that there is feedback from the cytoskeleton that modulates the activity of TRPC6 channels. Experiments using scanning ion-conductance microscopy demonstrated a change in migration properties in podocyte cell cultures treated with cytochalasin D, a pharmacological agent that disrupts the actin cytoskeleton. Cell-attached patch-clamp experiments revealed that cytochalasin D increases the activity of TRPC6 channels in CHO (Chinese Hamster Ovary) cells overexpressing the channel and in podocytes from freshly isolated glomeruli. Furthermore, it was previously reported that mutation in ACTN4, which encodes α-actinin-4, causes focal segmental glomerulosclerosis and solidifies the actin network in podocytes. Therefore, we tested whether α-actinin-4 regulates the activity of TRPC6 channels. We found that co-expression of mutant α-actinin-4 K255E with TRPC6 in CHO cells decreases TRPC6 channel activity. Therefore, our data demonstrate a direct interaction between the structure of the actin cytoskeleton and TRPC6 activity.
Collapse
|
14
|
Gak loss promotes calpain-induced injury. Nat Rev Nephrol 2021; 17:152. [PMID: 33277627 DOI: 10.1038/s41581-020-00385-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|