1
|
Mitchelson KAJ, O'Connell F, Wynne K, Matallanas D, O'Sullivan J, Roche HM. Saturated fat exacerbates mitochondrial dysfunction through remodelling of ATP production and inflammation in Barrett's oesophagus compared to monounsaturated fat, particularly in contrast to oesophageal adenocarcinoma. Neoplasia 2025; 66:101173. [PMID: 40381373 DOI: 10.1016/j.neo.2025.101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/29/2025] [Indexed: 05/20/2025]
Abstract
Obesity-related oesophageal adenocarcinoma (OAC), arising from Barrett's oesophagus (BO), incidence rates are rising coincident with high-fat diets. However, adipose tissue phenotype drives metabolic characteristics. Prior feeding studies demonstrated that obesogenic diets enriched in saturated fatty acids (SFA) induce a more adverse metabolic and pro-inflammatory adipose phenotype, compared to monounsaturated fatty acids (MUFA) enriched high-fat diets, despite equal obesity. We hypothesise that different fatty acids may alter the progression of BO to OAC, wherein SFA may be more pathogenic compared to MUFA. Proteomic analysis shows that SFA, not MUFA, increases fatty acid metabolism, oncogenic signalling, and mitochondrial respiratory chain to a greater extent in BO but not in OAC cells. Cellular metabolic analysis validated proteomic findings to show mitochondrial dysfunction in BO but showed an increase in glycolysis in OAC following SFA treatment compared to MUFA. Additionally, it showed a decrease in mitochondrial ATP production following treatment of SFA in BO and OAC cells. Reduction of SFA intake may be beneficial as a supplementary treatment approach to manage and/or prevent OAC progression.
Collapse
Affiliation(s)
- Kathleen A J Mitchelson
- Nutrigenomics Research Group, UCD Institute of Food and Health, and School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland; UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Fiona O'Connell
- Department of Surgery, Trinity St. James's Cancer Institute and Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin, Ireland
| | - Kieran Wynne
- UCD Conway Institute, University College Dublin, Dublin, Ireland; Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity St. James's Cancer Institute and Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin, Ireland
| | - Helen M Roche
- Nutrigenomics Research Group, UCD Institute of Food and Health, and School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland; UCD Conway Institute, University College Dublin, Dublin, Ireland; Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, United Kingdom.
| |
Collapse
|
2
|
Omofuma OO, Rusiecki JA, Petrick JL, Falk RT, Wheeler W, Pfeiffer RM, Camargo MC, Cook MB. Circulating Inflammation Biomarkers and the Risk of Esophageal Adenocarcinoma: A Nested Case-Control Study in the Department of Defense Serum Repository. Cancer Epidemiol Biomarkers Prev 2025; 34:649-657. [PMID: 40079721 PMCID: PMC12048206 DOI: 10.1158/1055-9965.epi-24-1544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/24/2025] [Accepted: 03/10/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND We previously identified associations of esophageal adenocarcinoma risk with four inflammation-related candidate biomarkers: TNF receptor 2 (TNFR2), IL17A, VEGFR3, and resistin. METHODS We aimed to replicate these candidates and discover novel associations with additional proteins. We conducted a nested case-control study of men with prediagnostic biospecimens stored at the US Department of Defense Serum Repository, including 203 incident esophageal adenocarcinoma cases. Controls were matched to cases in a ∼2:1 ratio by date of birth, race, service branch, and blood draw date. Multiplex immunoassays (Olink/Proseek panels) measured 254 proteins detected in ≥10% of all samples. Multivariable-adjusted conditional logistic regression models calculated associations between biomarker quantiles and esophageal adenocarcinoma. P values (<0.05) were used to indicate the statistical significance of candidates, and FDR was applied to the additional proteins. ORs from the current analysis and those from previous studies were combined for the candidate markers using fixed-effects meta-analysis. RESULTS Among the four candidates, the highest category of TNFR2 was associated with significantly increased esophageal adenocarcinoma risk (ORQ4 vs. Q1 = 1.87; 95% confidence interval: 1.02-3.42). In the meta-analysis, associations with esophageal adenocarcinoma were positive for TNFR2 (meta-analyzed ORhighest-vs.-lowest = 2.04; 1.12-2.95) and inverse for IL17A (meta-analyzed ORhighest-vs.-lowest = 0.53; 0.26-0.80). Of the additional 250 proteins, 45 were associated with esophageal adenocarcinoma risk and 6 (monocyte chemotactic protein 3, IL6, TNFR1, hepatocyte growth factor, TFF3, and FURIN) remained significant after FDR correction. CONCLUSIONS We confirmed associations of TNFR2 and IL17A with esophageal adenocarcinoma risk. Additionally, our study expands the range of proteins associated with esophageal adenocarcinoma development. IMPACT This is the largest assessment to discover novel associations of inflammation-related proteins with esophageal adenocarcinoma to date.
Collapse
Affiliation(s)
- Omonefe O. Omofuma
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Jennifer A. Rusiecki
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jessica L. Petrick
- Slone Epidemiology Center at Boston University, Boston, MA, United States
| | - Roni T. Falk
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - William Wheeler
- Information Management Services Inc., Rockville, MD, United States
| | - Ruth M. Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - M. Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Michael B. Cook
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
3
|
Zhang T, Tang X. Untangling immune cell contributions in the progression from GERD to Barrett's esophagus and esophageal cancer: Insights from genetic causal analysis. Int Immunopharmacol 2025; 150:114271. [PMID: 39965389 DOI: 10.1016/j.intimp.2025.114271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Esophageal adenocarcinoma (EAC) is a rapidly increasing malignancy with significant morbidity and mortality. The progression from gastroesophageal reflux disease (GERD) to Barrett's esophagus (BE) and ultimately to EAC is thought to be influenced by chronic inflammation and immune cell dynamics. Despite the observed correlations in observational studies, the causal relationships between immune cell phenotypes and this disease continuum remain unclear. METHODS This study utilized a two-sample Mendelian Randomization (MR) approach to investigate the causal roles of 731 distinct immune cell phenotypes in the GERD-BE-EAC continuum. The analysis leveraged genome-wide association study (GWAS) data for immune phenotypes from a Sardinian cohort and data for GERD, BE, and EAC from the FinnGen and Open GWAS databases. A comprehensive set of MR methods, including inverse variance weighted (IVW), MR-Egger, and weighted median estimators, was employed to assess causality. Sensitivity analyses were conducted to evaluate heterogeneity and pleiotropy, ensuring the robustness of the findings. RESULTS The study revealed complex and multifaceted roles of immune cells across the GERD-BE-EAC continuum. In GERD, 34 immune phenotypes were found to be causally associated with either increased or decreased risk. Protective effects were observed in phenotypes such as Unswitched Memory B cells, while others like CD45RA- CD4+ T cells were linked to an elevated risk. In the context of BE, 28 immune phenotypes demonstrated significant causal associations, with the majority being protective, including Unswitched Memory B cells and CD62L on Granulocytes. Conversely, certain phenotypes, such as CD24 on Transitional B cells, were identified as risk factors for BE. For EAC, 34 immune phenotypes were implicated, with various B cell subsets, particularly those expressing BAFF-R and CD24, associated with an increased risk, while Switched Memory B cells and specific myeloid cell phenotypes showed protective effects. CONCLUSIONS This study provides novel insights into the complex role of immune cells in the pathogenesis of EAC, revealing a dynamic interplay where certain immune phenotypes may be protective in early stages but become risk-enhancing in later stages of disease progression. These findings highlight the potential of immune cell phenotypes to serve as biomarkers for early detection and targeted therapeutic interventions across the GERD-BE-EAC continuum. Further research is warranted to validate these findings in diverse populations and to explore the underlying mechanisms driving these immune-mediated effects.
Collapse
Affiliation(s)
- Tai Zhang
- Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University Health Science Center, Beijing 100091, China; Peking University Health Science Center, Beijing 100191, China
| | - Xudong Tang
- Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University Health Science Center, Beijing 100091, China; Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
4
|
Liu P, Sun Z. Chemokines and their receptors in the esophageal carcinoma tumor microenvironment: key factors for metastasis and progression. Front Oncol 2025; 15:1523751. [PMID: 40134607 PMCID: PMC11933060 DOI: 10.3389/fonc.2025.1523751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Esophageal carcinoma (ESCA) is a highly malignant tumor with the highest incidence in Eastern Asia. Although treatment modalities for ESCA have advanced in recent years, the overall prognosis remains poor, as most patients are diagnosed at an advanced stage of the disease. There is an urgent need to promote early screening for ESCA to increase survival rates and improve patient outcomes. The development of ESCA is closely linked to the complex tumor microenvironment (TME), where chemokines and their receptors play pivotal roles. Chemokines are a class of small-molecule, secreted proteins and constitute the largest family of cytokines. They not only directly regulate tumor growth and proliferation but also influence cell migration and localization through specific receptor interactions. Consequently, chemokines and their receptors affect tumor invasion and metastatic spread. Furthermore, chemokines regulate immune cells, including macrophages and regulatory T cells, within the TME. The recruitment of these immune cells further leads to immunosuppression, creating favorable conditions for tumor growth and metastasis. This review examines the impact of ESCA-associated chemokines and their receptors on ESCA, emphasizing their critical involvement in the ESCA TME.
Collapse
Affiliation(s)
| | - Zhiqiang Sun
- Department of Radiation Oncology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
5
|
Chen T, Ly H, Stairs DB, Jackson CR, Chen G. Histological features indicate the risk of progression of patients with Barrett's esophagus. Pathol Res Pract 2025; 266:155812. [PMID: 39793338 DOI: 10.1016/j.prp.2025.155812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/15/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Our understanding of predictors of progression in Barrett's esophagus (BE) remains incomplete. To address this gap, we evaluated histological features and biomarkers that could predict dysplastic/neoplastic progression in patients with BE. We conducted a retrospective study to identify eligible BE patients and classified the cases into two groups: cases with BE progression (n = 10; progressing to high-grade dysplasia or carcinoma within five years of initial diagnosis) and cases without BE progression (n = 52; without progression to high-grade dysplasia or carcinoma within five years). Morphological features were evaluated on tissue slides for the initial diagnosis of Barrett's esophagus. Biomarkers including TP53, p16, HER2, β-Catenin, c-MYC, Ki67 and SATB2,were assessed by immunohistochemistry. The results of this study revealed that histologic features, including glandular irregularity and Paneth cell metaplasia (PCM), exhibited significant predictive potential for the progression of Barrett's esophagus to high-grade dysplasia or carcinoma within five years. Additionally, the immunohistochemical biomarkers assessed in our study were not associated with progression in Barrett's esophagus. These findings indicate the potential role of morphological features in assessing the risk of progression for patients with BE at the initial diagnosis. By integrating these insights into clinical practice, we may be able to optimize surveillance strategies for patients with this condition, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Tiane Chen
- Department of Pathology and Laboratory Medicine, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Hong Ly
- Department of Pathology and Laboratory Medicine, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Douglas B Stairs
- Department of Pathology and Laboratory Medicine, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Christopher R Jackson
- Department of Pathology and Laboratory Medicine, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Guoli Chen
- Department of Pathology and Laboratory Medicine, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|
6
|
Tobi M, Khoury N, Al-Subee O, Sethi S, Talwar H, Kam M, Hatfield J, Levi E, Hallman J, Moyer MP, Kresty L, Lawson MJ, McVicker B. Predicting Regression of Barrett's Esophagus-Can All the King's Men Put It Together Again? Biomolecules 2024; 14:1182. [PMID: 39334948 PMCID: PMC11430295 DOI: 10.3390/biom14091182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
The primary pre-neoplastic lesion of the lower esophagus in the vicinity of the gastroesophageal junction (GEJ) is any Barrett's esophageal lesions (BE), and esophageal neoplasia has increased in the US population with predispositions (Caucasian males, truncal obesity, age, and GERD). The responses to BE are endoscopic and screening cytologic programs with endoscopic ablation of various forms. The former have not been proven to be cost-effective and there are mixed results for eradication. A fresh approach is sorely needed. We prospectively followed 2229 mostly male veterans at high risk for colorectal cancer in a 27-year longitudinal long-term study, collecting data on colorectal neoplasia development and other preneoplastic lesions, including BE and spontaneous regression (SR). Another cross-sectional BE study at a similar time period investigated antigenic changes at the GEJ in both BE glandular and squamous mucosa immunohistochemistry and the role of inflammation. Ten of the prospective cohort (21.7%) experienced SR out of a total of forty-six BE patients. Significant differences between SR and stable BE were younger age (p < 0.007); lower platelet levels (p < 0.02); rectal p87 elevation in SR (p < 0.049); a reduced innate immune system (InImS) FEREFF ratio (ferritin: p87 colonic washings) (p < 0.04). Ancillary testing showed a broad range of neoplasia biomarkers. InImS markers may be susceptible to intervention using commonplace and safe medical interventions and encourage SR.
Collapse
Affiliation(s)
- Martin Tobi
- Departments of Medicine, Research and Development, John D. Dingell VAMC, 3636 John R. St., Detroit, MI 48201, USA
| | - Nabiha Khoury
- Departments of Medicine, Research and Development, John D. Dingell VAMC, 3636 John R. St., Detroit, MI 48201, USA
- Department of Medicine, Wayne State University, 42 W. Warren Ave., Detroit, MI 48201, USA
| | - Omar Al-Subee
- Departments of Medicine, Research and Development, John D. Dingell VAMC, 3636 John R. St., Detroit, MI 48201, USA
| | - Seema Sethi
- Departments of Medicine, Research and Development, John D. Dingell VAMC, 3636 John R. St., Detroit, MI 48201, USA
| | - Harvinder Talwar
- Department of Medicine, Wayne State University, 42 W. Warren Ave., Detroit, MI 48201, USA
| | - Michael Kam
- Departments of Medicine, Research and Development, John D. Dingell VAMC, 3636 John R. St., Detroit, MI 48201, USA
| | - James Hatfield
- Departments of Medicine, Research and Development, John D. Dingell VAMC, 3636 John R. St., Detroit, MI 48201, USA
| | - Edi Levi
- Departments of Medicine, Research and Development, John D. Dingell VAMC, 3636 John R. St., Detroit, MI 48201, USA
| | - Jason Hallman
- Departments of Medicine, Research and Development, John D. Dingell VAMC, 3636 John R. St., Detroit, MI 48201, USA
| | - Mary Pat Moyer
- INCELL Corporation LLC, 12734 Cimarron Path, San Antonio, TX 78249, USA
| | - Laura Kresty
- Department of Thoracic Surgery, University of Michigan, 500 S. State Street, Ann Arbor, MI 48109, USA
| | - Michael J. Lawson
- Department of Internal Medicine, University of California at Sacramento, Davis, CA 95616, USA
| | - Benita McVicker
- VA Medical Center, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68005, USA
| |
Collapse
|
7
|
Deboever N, Jones CM, Yamashita K, Ajani JA, Hofstetter WL. Advances in diagnosis and management of cancer of the esophagus. BMJ 2024; 385:e074962. [PMID: 38830686 DOI: 10.1136/bmj-2023-074962] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Esophageal cancer is the seventh most common malignancy worldwide, with over 470 000 new cases diagnosed each year. Two distinct histological subtypes predominate, and should be considered biologically separate disease entities.1 These subtypes are esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC). Outcomes remain poor regardless of subtype, with most patients presenting with late stage disease.2 Novel strategies to improve early detection of the respective precursor lesions, squamous dysplasia, and Barrett's esophagus offer the potential to improve outcomes. The introduction of a limited number of biologic agents, as well as immune checkpoint inhibitors, is resulting in improvements in the systemic treatment of locally advanced and metastatic esophageal cancer. These developments, coupled with improvements in minimally invasive surgical and endoscopic treatment approaches, as well as adaptive and precision radiotherapy technologies, offer the potential to improve outcomes still further. This review summarizes the latest advances in the diagnosis and management of esophageal cancer, and the developments in understanding of the biology of this disease.
Collapse
Affiliation(s)
- Nathaniel Deboever
- Department of Thoracic and Cardiovascular Surgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher M Jones
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kohei Yamashita
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Wayne L Hofstetter
- Department of Thoracic and Cardiovascular Surgery, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
8
|
McEwen DP, Ray P, Nancarrow DJ, Wang Z, Kasturirangan S, Abdullah S, Balan A, Hoskeri R, Thomas D, Lawrence TS, Beer DG, Lagisetty KH, Ray D. ISG15/GRAIL1/CD3 axis influences survival of patients with esophageal adenocarcinoma. JCI Insight 2024; 9:e179315. [PMID: 38781019 PMCID: PMC11383178 DOI: 10.1172/jci.insight.179315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024] Open
Abstract
Immunosuppression is a common feature of esophageal adenocarcinoma (EAC) and has been linked to poor overall survival (OS). We hypothesized that upstream factors might negatively influence CD3 levels and T cell activity, thus promoting immunosuppression and worse survival. We used clinical data and patient samples of those who progressed from Barrett's to dysplasia to EAC, investigated gene (RNA-Seq) and protein (tissue microarray) expression, and performed cell biology studies to delineate a pathway impacting CD3 protein stability that might influence EAC outcome. We showed that the loss of both CD3-ε expression and CD3+ T cell number correlated with worse OS in EAC. The gene related to anergy in lymphocytes isoform 1 (GRAIL1), which is the prominent isoform in EACs, degraded (ε, γ, δ) CD3s and inactivated T cells. In contrast, isoform 2 (GRAIL2), which is reduced in EACs, stabilized CD3s. Further, GRAIL1-mediated CD3 degradation was facilitated by interferon-stimulated gene 15 (ISG15), a ubiquitin-like protein. Consequently, the overexpression of a ligase-dead GRAIL1, ISG15 knockdown, or the overexpression of a conjugation-defective ISG15-leucine-arginine-glycine-glycine mutant could increase CD3 levels. Together, we identified an ISG15/GRAIL1/mutant p53 amplification loop negatively influencing CD3 levels and T cell activity, thus promoting immunosuppression in EAC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dafydd Thomas
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - David G Beer
- Department of Surgery, Section of Thoracic Surgery
| | | | | |
Collapse
|
9
|
Weh KM, Howard CL, Zhang Y, Tripp BA, Clarke JL, Howell AB, Rubenstein JH, Abrams JA, Westerhoff M, Kresty LA. Prebiotic proanthocyanidins inhibit bile reflux-induced esophageal adenocarcinoma through reshaping the gut microbiome and esophageal metabolome. JCI Insight 2024; 9:e168112. [PMID: 38329812 PMCID: PMC11063939 DOI: 10.1172/jci.insight.168112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/02/2024] [Indexed: 02/10/2024] Open
Abstract
The gut and local esophageal microbiome progressively shift from healthy commensal bacteria to inflammation-linked pathogenic bacteria in patients with gastroesophageal reflux disease, Barrett's esophagus, and esophageal adenocarcinoma (EAC). However, mechanisms by which microbial communities and metabolites contribute to reflux-driven EAC remain incompletely understood and challenging to target. Herein, we utilized a rat reflux-induced EAC model to investigate targeting the gut microbiome-esophageal metabolome axis with cranberry proanthocyanidins (C-PAC) to inhibit EAC progression. Sprague-Dawley rats, with or without reflux induction, received water or C-PAC ad libitum (700 μg/rat/day) for 25 or 40 weeks. C-PAC exerted prebiotic activity abrogating reflux-induced dysbiosis and mitigating bile acid metabolism and transport, culminating in significant inhibition of EAC through TLR/NF-κB/TP53 signaling cascades. At the species level, C-PAC mitigated reflux-induced pathogenic bacteria (Streptococcus parasanguinis, Escherichia coli, and Proteus mirabilis). C-PAC specifically reversed reflux-induced bacterial, inflammatory, and immune-implicated proteins and genes, including Ccl4, Cd14, Crp, Cxcl1, Il6, Il1b, Lbp, Lcn2, Myd88, Nfkb1, Tlr2, and Tlr4, aligning with changes in human EAC progression, as confirmed through public databases. C-PAC is a safe, promising dietary constituent that may be utilized alone or potentially as an adjuvant to current therapies to prevent EAC progression through ameliorating reflux-induced dysbiosis, inflammation, and cellular damage.
Collapse
Affiliation(s)
- Katherine M. Weh
- Department of Surgery, Section of Thoracic Surgery, and
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Connor L. Howard
- Department of Surgery, Section of Thoracic Surgery, and
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Yun Zhang
- Department of Surgery, Section of Thoracic Surgery, and
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Jennifer L. Clarke
- Department of Statistics, Department of Food Science Technology, Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Amy B. Howell
- Marucci Center for Blueberry and Cranberry Research, Rutgers University, Chatsworth, New Jersey, USA
| | - Joel H. Rubenstein
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- LTC Charles S. Kettles Veterans Affairs Medical Center, Ann Arbor, Michigan, USA
| | - Julian A. Abrams
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Maria Westerhoff
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Laura A. Kresty
- Department of Surgery, Section of Thoracic Surgery, and
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Belle CJ, Lonie JM, Brosda S, Barbour AP. Tumour microenvironment influences response to treatment in oesophageal adenocarcinoma. Front Immunol 2023; 14:1330635. [PMID: 38155973 PMCID: PMC10753779 DOI: 10.3389/fimmu.2023.1330635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023] Open
Abstract
The poor treatment response of oesophageal adenocarcinoma (OAC) leads to low survival rates. Its increasing incidence makes finding more effective treatment a priority. Recent treatment improvements can be attributed to the inclusion of the tumour microenvironment (TME) and immune infiltrates in treatment decisions. OAC TME is largely immunosuppressed and reflects treatment resistance as patients with inflamed TME have better outcomes. Priming the tumour with the appropriate neoadjuvant chemoradiotherapy treatment could lead to higher immune infiltrations and higher expression of immune checkpoints, such as PD-1/PDL-1, CTLA4 or emerging new targets: LAG-3, TIM-3, TIGIT or ICOS. Multiple trials support the addition of immune checkpoint inhibitors to the current standard of care. However, results vary, supporting the need for better response biomarkers based on TME composition. This review explores what is known about OAC TME, the clinical significance of the various cell populations infiltrating it and the emerging therapeutical combination with a focus on immune checkpoints inhibitors.
Collapse
Affiliation(s)
- Clemence J. Belle
- Surgical Oncology Group, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - James M. Lonie
- Surgical Oncology Group, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Sandra Brosda
- Surgical Oncology Group, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew P. Barbour
- Surgical Oncology Group, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
- Department of Surgery, Princess Alexandra Hospital, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Zhang Y, Weh KM, Tripp BA, Clarke JL, Howard CL, Sunilkumar S, Howell AB, Kresty LA. Cranberry Proanthocyanidins Mitigate Reflux-Induced Transporter Dysregulation in an Esophageal Adenocarcinoma Model. Pharmaceuticals (Basel) 2023; 16:1697. [PMID: 38139823 PMCID: PMC10747310 DOI: 10.3390/ph16121697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
We recently reported that cranberry proanthocyanidins (C-PACs) inhibit esophageal adenocarcinoma (EAC) by 83% through reversing reflux-induced bacterial, inflammatory and immune-implicated proteins and genes as well as reducing esophageal bile acids, which drive EAC progression. This study investigated whether C-PACs' mitigation of bile reflux-induced transporter dysregulation mechanistically contributes to EAC prevention. RNA was isolated from water-, C-PAC- and reflux-exposed rat esophagi with and without C-PAC treatment. Differential gene expression was determined by means of RNA sequencing and RT-PCR, followed by protein assessments. The literature, coupled with the publicly available Gene Expression Omnibus dataset GSE26886, was used to assess transporter expression levels in normal and EAC patient biopsies for translational relevance. Significant changes in ATP-binding cassette (ABC) transporters implicated in therapeutic resistance in humans (i.e., Abcb1, Abcb4, Abcc1, Abcc3, Abcc4, Abcc6 and Abcc10) and the transport of drugs, xenobiotics, lipids, and bile were altered in the reflux model with C-PACs' mitigating changes. Additionally, C-PACs restored reflux-induced changes in solute carrier (SLC), aquaporin, proton and cation transporters (i.e., Slc2a1, Slc7a11, Slc9a1, Slco2a1 and Atp6v0c). This research supports the suggestion that transporters merit investigation not only for their roles in metabolism and therapeutic resistance, but as targets for cancer prevention and targeting preventive agents in combination with chemotherapeutics.
Collapse
Affiliation(s)
- Yun Zhang
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; (Y.Z.); (K.M.W.); (C.L.H.); (S.S.)
| | - Katherine M. Weh
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; (Y.Z.); (K.M.W.); (C.L.H.); (S.S.)
| | - Bridget A. Tripp
- Bioinformatics Core Research Facility, Center for Biotechnology, University of Nebraska—Lincoln, N300 Beadle Center, Lincoln, NE 68588, USA;
| | - Jennifer L. Clarke
- Department of Statistics and Department of Food Science Technology, Quantitative Life Sciences Initiative, University of Nebraska—Lincoln, 253 Food Innovation Center, Lincoln, NE 68583, USA;
| | - Connor L. Howard
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; (Y.Z.); (K.M.W.); (C.L.H.); (S.S.)
| | - Shruthi Sunilkumar
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; (Y.Z.); (K.M.W.); (C.L.H.); (S.S.)
| | - Amy B. Howell
- Marucci Center for Blueberry and Cranberry Research, Rutgers University, 125A Lake Oswego Road, Chatsworth, NJ 08019, USA;
| | - Laura A. Kresty
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; (Y.Z.); (K.M.W.); (C.L.H.); (S.S.)
| |
Collapse
|
12
|
Li S, Hoefnagel SJM, Krishnadath KK. Molecular Biology and Clinical Management of Esophageal Adenocarcinoma. Cancers (Basel) 2023; 15:5410. [PMID: 38001670 PMCID: PMC10670638 DOI: 10.3390/cancers15225410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) is a highly lethal malignancy. Due to its rising incidence, EAC has become a severe health challenge in Western countries. Current treatment strategies are mainly chosen based on disease stage and clinical features, whereas the biological background is hardly considered. In this study, we performed a comprehensive review of existing studies and discussed how etiology, genetics and epigenetic characteristics, together with the tumor microenvironment, contribute to the malignant behavior and dismal prognosis of EAC. During the development of EAC, several intestinal-type proteins and signaling cascades are induced. The anti-inflammatory and immunosuppressive microenvironment is associated with poor survival. The accumulation of somatic mutations at the early phase and chromosomal structural rearrangements at relatively later time points contribute to the dynamic and heterogeneous genetic landscape of EAC. EAC is also characterized by frequent DNA methylation and dysregulation of microRNAs. We summarize the findings of dysregulations of specific cytokines, chemokines and immune cells in the tumor microenvironment and conclude that DNA methylation and microRNAs vary with each different phase of BE, LGD, HGD, early EAC and invasive EAC. Furthermore, we discuss the suitability of the currently employed therapies in the clinic and possible new therapies in the future. The development of targeted and immune therapies has been hampered by the heterogeneous genetic characteristics of EAC. In view of this, the up-to-date knowledge revealed by this work is absolutely important for future EAC studies and the discovery of new therapeutics.
Collapse
Affiliation(s)
- Shulin Li
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | | - Kausilia Krishnawatie Krishnadath
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, 2650 Edegem, Belgium
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, 2000 Antwerpen, Belgium
| |
Collapse
|
13
|
Bowen MB, Helmink BA, Wargo JA, Yates MS. TIME for Bugs: The Immune Microenvironment and Microbes in Precancer. Cancer Prev Res (Phila) 2023; 16:497-505. [PMID: 37428011 PMCID: PMC10542944 DOI: 10.1158/1940-6207.capr-23-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/14/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
Major advances in our understanding of the tumor immune microenvironment (TIME) in established cancer have been made, including the influence of host-intrinsic (host genomics) and -extrinsic factors (such as diet and the microbiome) on treatment response. Nonetheless, the immune and microbiome milieu across the spectrum of precancerous tissue and early neoplasia is a growing area of interest. There are emerging data describing the contribution of the immune microenvironment and microbiota on benign and premalignant tissues, with opportunities to target these factors in cancer prevention and interception. Throughout this review, we provide rationale for not only the critical need to further elucidate the premalignant immune microenvironment, but also for the utility of pharmacologic and lifestyle interventions to alter the immune microenvironment of early lesions to reverse carcinogenesis. Novel research methodologies, such as implementing spatial transcriptomics and proteomics, in combination with innovative sampling methods will advance precision targeting of the premalignant immune microenvironment. Additional studies defining the continuum of immune and microbiome evolution, which emerges in parallel with tumor development, will provide novel opportunities for cancer interception at the earliest steps in carcinogenesis.
Collapse
Affiliation(s)
- Mikayla Borthwick Bowen
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Beth A Helmink
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Melinda S Yates
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| |
Collapse
|
14
|
Weh KM, Howard CL, Zhang Y, Tripp BA, Clarke JL, Howell AB, Rubenstein JH, Abrams JA, Westerhoff M, Kresty LA. Prebiotic proanthocyanidins inhibit bile reflux-induced esophageal adenocarcinoma through reshaping the gut microbiome and esophageal metabolome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554315. [PMID: 37662411 PMCID: PMC10473615 DOI: 10.1101/2023.08.22.554315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The gut and local esophageal microbiome progressively shift from healthy commensal bacteria to inflammatory-linked pathogenic bacteria in patients with gastroesophageal reflux disease, Barrett's esophagus and esophageal adenocarcinoma (EAC). However, mechanisms by which microbial communities and metabolites contribute to reflux-driven EAC remain incompletely understood and challenging to target. Herein, we utilized a rat reflux-induced EAC model to investigate targeting the gut microbiome-esophageal metabolome axis with cranberry proanthocyanidins (C-PAC) to inhibit EAC progression. Sprague Dawley rats, with or without reflux-induction received water or C-PAC ad libitum (700 µg/rat/day) for 25 or 40 weeks. C-PAC exerted prebiotic activity abrogating reflux-induced dysbiosis, and mitigating bile acid metabolism and transport, culminating in significant inhibition of EAC through TLR/NF-κB/P53 signaling cascades. At the species level, C-PAC mitigated reflux-induced pathogenic bacteria (Clostridium perfringens, Escherichia coli, and Proteus mirabilis). C-PAC specifically reversed reflux-induced bacterial, inflammatory and immune-implicated proteins and genes including Ccl4, Cd14, Crp, Cxcl1, Il6, Il1β, Lbp, Lcn2, Myd88, Nfkb1, Tlr2 and Tlr4 aligning with changes in human EAC progression, as confirmed through public databases. C-PAC is a safe promising dietary constituent that may be utilized alone or potentially as an adjuvant to current therapies to prevent EAC progression through ameliorating reflux-induced dysbiosis, inflammation and cellular damage.
Collapse
|
15
|
Jacobse J, Aziz Z, Sun L, Chaparro J, Pilat JM, Kwag A, Buendia M, Wimbiscus M, Nasu M, Saito T, Mine S, Orita H, Revetta F, Short SP, Kay Washington M, Hiremath G, Gibson MK, Coburn LA, Koyama T, Goettel JA, Williams CS, Choksi YA. Eosinophils Exert Antitumorigenic Effects in the Development of Esophageal Squamous Cell Carcinoma. Cell Mol Gastroenterol Hepatol 2023; 16:961-983. [PMID: 37574015 PMCID: PMC10630122 DOI: 10.1016/j.jcmgh.2023.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND AND AIMS Eosinophils are present in several solid tumors and have context-dependent function. Our aim is to define the contribution of eosinophils in esophageal squamous cell carcinoma (ESCC), as their role in ESCC is unknown. METHODS Eosinophils were enumerated in tissues from 2 ESCC cohorts. Mice were treated with 4-NQO for 8 weeks to induce precancer or 16 weeks to induce carcinoma. The eosinophil number was modified by a monoclonal antibody to interleukin-5 (IL5mAb), recombinant IL-5 (rIL-5), or genetically with eosinophil-deficient (ΔdblGATA) mice or mice deficient in eosinophil chemoattractant eotaxin-1 (Ccl11-/-). Esophageal tissue and eosinophil-specific RNA sequencing was performed to understand eosinophil function. Three-dimensional coculturing of eosinophils with precancer or cancer cells was done to ascertain direct effects of eosinophils. RESULTS Activated eosinophils are present in higher numbers in early-stage vs late-stage ESCC. Mice treated with 4-NQO exhibit more esophageal eosinophils in precancer vs cancer. Correspondingly, epithelial cell Ccl11 expression is higher in mice with precancer. Eosinophil depletion using 3 mouse models (Ccl11-/- mice, ΔdblGATA mice, IL5mAb treatment) all display exacerbated 4-NQO tumorigenesis. Conversely, treatment with rIL-5 increases esophageal eosinophilia and protects against precancer and carcinoma. Tissue and eosinophil RNA sequencing revealed eosinophils drive oxidative stress in precancer. In vitro coculturing of eosinophils with precancer or cancer cells resulted in increased apoptosis in the presence of a degranulating agent, which is reversed with NAC, a reactive oxygen species scavenger. ΔdblGATA mice exhibited increased CD4 T cell infiltration, IL-17, and enrichment of IL-17 protumorigenic pathways. CONCLUSION Eosinophils likely protect against ESCC through reactive oxygen species release during degranulation and suppression of IL-17.
Collapse
Affiliation(s)
- Justin Jacobse
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands; Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Research and Development, Veterans Affairs Tennessee Valley Health System, Nashville, Tennessee
| | - Zaryab Aziz
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lili Sun
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jasmine Chaparro
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jennifer M Pilat
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Aaron Kwag
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matthew Buendia
- Division of Gastroenterology, Department of Pediatrics, Hepatology, and Nutrition, Nashville, Tennessee
| | - Mae Wimbiscus
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Motomi Nasu
- Department of Esophageal and Gastroenterological Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan; International Collaborative Research Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinji Mine
- Department of Esophageal and Gastroenterological Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hajime Orita
- Department of Esophageal and Gastroenterological Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan; International Collaborative Research Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Frank Revetta
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sarah P Short
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - M Kay Washington
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Girish Hiremath
- Division of Gastroenterology, Department of Pediatrics, Hepatology, and Nutrition, Nashville, Tennessee
| | - Michael K Gibson
- Department of Internal Medicine, Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Hematology/Oncology, Department of Internal Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lori A Coburn
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Research and Development, Veterans Affairs Tennessee Valley Health System, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tatsuki Koyama
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeremy A Goettel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Institute for Infection Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christopher S Williams
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Research and Development, Veterans Affairs Tennessee Valley Health System, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology and Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville Tennessee
| | - Yash A Choksi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Research and Development, Veterans Affairs Tennessee Valley Health System, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
16
|
Strasser MK, Gibbs DL, Gascard P, Bons J, Hickey JW, Schürch CM, Tan Y, Black S, Chu P, Ozkan A, Basisty N, Sangwan V, Rose J, Shah S, Camilleri-Broet S, Fiset PO, Bertos N, Berube J, Djambazian H, Li R, Oikonomopoulos S, Fels-Elliott DR, Vernovsky S, Shimshoni E, Collyar D, Russell A, Ragoussis I, Stachler M, Goldenring JR, McDonald S, Ingber DE, Schilling B, Nolan GP, Tlsty TD, Huang S, Ferri LE. Concerted epithelial and stromal changes during progression of Barrett's Esophagus to invasive adenocarcinoma exposed by multi-scale, multi-omics analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544265. [PMID: 37333362 PMCID: PMC10274886 DOI: 10.1101/2023.06.08.544265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Esophageal adenocarcinoma arises from Barrett's esophagus, a precancerous metaplastic replacement of squamous by columnar epithelium in response to chronic inflammation. Multi-omics profiling, integrating single-cell transcriptomics, extracellular matrix proteomics, tissue-mechanics and spatial proteomics of 64 samples from 12 patients' paths of progression from squamous epithelium through metaplasia, dysplasia to adenocarcinoma, revealed shared and patient-specific progression characteristics. The classic metaplastic replacement of epithelial cells was paralleled by metaplastic changes in stromal cells, ECM and tissue stiffness. Strikingly, this change in tissue state at metaplasia was already accompanied by appearance of fibroblasts with characteristics of carcinoma-associated fibroblasts and of an NK cell-associated immunosuppressive microenvironment. Thus, Barrett's esophagus progresses as a coordinated multi-component system, supporting treatment paradigms that go beyond targeting cancerous cells to incorporating stromal reprogramming.
Collapse
|
17
|
Lu J, Yang J, Ma C, Wang X, Luo J, Ma X, Fu X, Zheng S. Model construction and risk analysis of the lncRNA genes associated with the prognosis of esophageal adenocarcinoma with immune infiltration. J Gastrointest Oncol 2023; 14:22-28. [PMID: 36915426 PMCID: PMC10007919 DOI: 10.21037/jgo-22-1279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/02/2023] [Indexed: 03/03/2023] Open
Abstract
Background Our study analyzed the immune infiltration of esophageal adenocarcinoma (EAC) tumor cells and identified long non-coding ribonucleic acid (lncRNA) genes to construct a prognostic model of EAC to evaluate the survival prognosis of patients and explore potential therapeutic targets. Methods The data of 89 patients with EAC, including 11 normal tissue samples and 78 EAC of tumor tissue samples, were downloaded from The Cancer Genome Atlas public database. Perl script and R software were used to run the code, conduct the statistical analysis, calculate the risk coefficients of the patients, and conduct the Cox regression analysis, immune-related lncRNA survival analysis, risk analysis, principal component analysis (PCA), and receiver operating characteristic (ROC) curve analysis. Results We screened and identified 19 prognostic biomarkers, including LINC01612, AC008443.2, and LINC02582, allocated the patients into high- and low-risk groups, and found significant differences in the prognosis between the high- and low-risk groups using the Kaplan-Meier survival analysis (P<0.001). A ROC curve was used to evaluate the feasibility of the prognostic model for EAC, and we found that the model had high predictability (area under the curve =0.964). A PCA analysis was performed of the complex transcriptome sequencing data and other cubes to transform the data into a 3-dimensional space constructed by feature vectors. Conclusions Our study effectively screened and identified the lncRNA genes related to the immune infiltration of EAC and successfully constructed a prognostic model. In total, 19 potential diagnostic and therapeutic target genes, including LINC01612, AC008443.2, and LINC02582, were identified that have certain significance in guiding the clinical treatment of EAC patients.
Collapse
Affiliation(s)
- Jun Lu
- Intensive Care Unit, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Juan Yang
- Department of Gastroenterology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Chi Ma
- Graduate School of Clinical Medicine, Dali University, Dali, China
| | - Xinxin Wang
- Graduate School of Clinical Medicine, Dali University, Dali, China
| | - Jiangyan Luo
- Graduate School of Clinical Medicine, Dali University, Dali, China
| | - Xiaoying Ma
- Graduate School of Clinical Medicine, Dali University, Dali, China
| | - Xinnian Fu
- Graduate School of Clinical Medicine, Dali University, Dali, China
| | - Sheng Zheng
- Department of Gastroenterology, The Third People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
18
|
Abstract
BACKGROUND Esophageal cancer (EC) originates in the setting of chronic inflammation. Although previous studies have sought to understand the role of inflammatory signaling in EC, the effect of these immunologic changes on patient outcomes remains understudied. This study's objective was to identify relationships between cytokine levels and prognosis in a mixed cohort of esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC) patients. STUDY DESIGN A total of 37 serum cytokines were profiled at the time of resection using multiplex ELISA in 47 patients (42 esophageal adenocarcinoma, 5 esophageal squamous cell carcinoma). Cytokine levels were median-binarized and assessed using Cox regression models. Findings were validated at the RNA level using The Cancer Genome Atlas EC cohort (81 esophageal adenocarcinoma, 81 esophageal squamous cell carcinoma). RESULTS Univariable analysis revealed high serum interleukin 4 (IL4) and granulocyte-macrophage colony-stimulating factor (GMCSF) were negatively associated with overall survival (p = 0.046, p = 0.040). Multivariable analysis determined both high serum IL4 or high serum GMCSF were negatively associated with survival independent of important clinical factors (hazard ratio [HR] 7.55, p < 0.001; HR 5.24, p = 0.001). These findings were validated at the RNA level in The Cancer Genome Atlas EC cohort, where multivariable analysis identified high IL4 expression, high CSF2 expression (encodes GMCSF), and advanced pathologic stage as independent negative predictors of survival when controlled for clinical factors (HR 2.35, p = 0.012; HR 1.97, p = 0.040). CONCLUSIONS These results show that high IL4/GMCSF levels are negatively associated with survival in EC. These relationships are independent of pathologic stage and are identified across modalities, histologic subtypes, and the presence/absence of neoadjuvant therapy.
Collapse
|
19
|
Xie Y, Li J, Tao Q, Zeng C, Chen Y. Identification of a Diagnosis and Therapeutic Inflammatory Response-Related Gene Signature Associated with Esophageal Adenocarcinoma. Crit Rev Eukaryot Gene Expr 2023; 33:65-80. [PMID: 37602454 DOI: 10.1615/critreveukaryotgeneexpr.2023048608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The purpose of this study is to identify the key regulatory genes related to the inflammatory response of esophageal adenocarcinoma (EAC) and to find new diagnosis and therapeutic options. We downloaded the dataset GSE72874 from the Gene Expression Omnibus database for this study. Weighted gene co-expression network analysis (WGCNA) and differentially expressed genes (DEGs) analysis were used to find common inflammatory response-related genes (IRRGs) in EAC. The relationship between normal and tumor immune infiltration was analyzed using an online database of CIBERSORTx. Finally, 920 DEGs were identified, of which 5 genes were key IRRGs associated with EAC, including three down-regulated genes GNA15, MXD1, and NOD2, and two down-regulated genes PLAUR and TIMP1. Further research found that GNA15, MXD1, and NOD2 were down-regulated, PLAUR and TIMP1 were up-regulated in Barrett's esophagus (BE). In addition, we found that the expression of GNA15 and MXD1 in normal esophageal squamous epithelial cells decreased after ethanol treatment, while the expression of PLAUR and TIMP1 increased after ethanol treatment. Compared with normal esophageal tissue, immune cells infiltrated such as plasma cells, macrophages M0, macrophages M1, macrophages M2, dendritic cells activated, and mast cells activated were significantly increased in EAC, while immune cells infiltrated such as T cells CD4 memory resting, T cells follicular helper, NK cells resting, and dendritic cells resting were significantly reduced. The receiver operating characteristic curve indicated that GNA15, MXD1, NOD2, PLAUR and TIMP1 expression had a performed well in diagnosing EAC from healthy control. GNA15, MXD1, NOD2, PLAUR and TIMP1 were identified and validated as novel potential biomarkers for early diagnosis and may be new molecular targets for treatment of EAC.
Collapse
Affiliation(s)
- Yang Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Tao
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chunyan Zeng
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China; Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang China
| | - Youxiang Chen
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
20
|
Zhang Y, Weh KM, Howard CL, Riethoven JJ, Clarke JL, Lagisetty KH, Lin J, Reddy RM, Chang AC, Beer DG, Kresty LA. Characterizing isoform switching events in esophageal adenocarcinoma. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:749-768. [PMID: 36090744 PMCID: PMC9437810 DOI: 10.1016/j.omtn.2022.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/14/2022] [Indexed: 12/14/2022]
Abstract
Isoform switching events with predicted functional consequences are common in many cancers, but characterization of switching events in esophageal adenocarcinoma (EAC) is lacking. Next-generation sequencing was used to detect levels of RNA transcripts and identify specific isoforms in treatment-naïve esophageal tissues ranging from premalignant Barrett’s esophagus (BE), BE with low- or high-grade dysplasia (BE.LGD, BE.HGD), and EAC. Samples were stratified by histopathology and TP53 mutation status, identifying significant isoform switching events with predicted functional consequences. Comparing BE.LGD with BE.HGD, a histopathology linked to cancer progression, isoform switching events were identified in 75 genes including KRAS, RNF128, and WRAP53. Stratification based on TP53 status increased the number of significant isoform switches to 135, suggesting switching events affect cellular functions based on TP53 mutation and tissue histopathology. Analysis of isoforms agnostic, exclusive, and shared with mutant TP53 revealed unique signatures including demethylation, lipid and retinoic acid metabolism, and glucuronidation, respectively. Nearly half of isoform switching events were identified without significant gene-level expression changes. Importantly, two TP53-interacting isoforms, RNF128 and WRAP53, were significantly linked to patient survival. Thus, analysis of isoform switching events may provide new insight for the identification of prognostic markers and inform new potential therapeutic targets for EAC.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katherine M. Weh
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Connor L. Howard
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jean-Jack Riethoven
- Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jennifer L. Clarke
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Kiran H. Lagisetty
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jules Lin
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rishindra M. Reddy
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrew C. Chang
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - David G. Beer
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laura A. Kresty
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Corresponding author Laura A. Kresty, PhD, Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
Sundaram S, Kim EN, Jones GM, Sivagnanam S, Tripathi M, Miremadi A, Di Pietro M, Coussens LM, Fitzgerald RC, Chang YH, Zhuang L. Deciphering the Immune Complexity in Esophageal Adenocarcinoma and Pre-Cancerous Lesions With Sequential Multiplex Immunohistochemistry and Sparse Subspace Clustering Approach. Front Immunol 2022; 13:874255. [PMID: 35663986 PMCID: PMC9161782 DOI: 10.3389/fimmu.2022.874255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) develops from a chronic inflammatory environment across four stages: intestinal metaplasia, known as Barrett's esophagus, low- and high-grade dysplasia, and adenocarcinoma. Although the genomic characteristics of this progression have been well defined via large-scale DNA sequencing, the dynamics of various immune cell subsets and their spatial interactions in their tumor microenvironment remain unclear. Here, we applied a sequential multiplex immunohistochemistry (mIHC) platform with computational image analysis pipelines that allow for the detection of 10 biomarkers in one formalin-fixed paraffin-embedded (FFPE) tissue section. Using this platform and quantitative image analytics, we studied changes in the immune landscape during disease progression based on 40 normal and diseased areas from endoscopic mucosal resection specimens of chemotherapy treatment- naïve patients, including normal esophagus, metaplasia, low- and high-grade dysplasia, and adenocarcinoma. The results revealed a steady increase of FOXP3+ T regulatory cells and a CD163+ myelomonocytic cell subset. In parallel to the manual gating strategy applied for cell phenotyping, we also adopted a sparse subspace clustering (SSC) algorithm allowing the automated cell phenotyping of mIHC-based single-cell data. The algorithm successfully identified comparable cell types, along with significantly enriched FOXP3 T regulatory cells and CD163+ myelomonocytic cells as found in manual gating. In addition, SCC identified a new CSF1R+CD1C+ myeloid lineage, which not only was previously unknown in this disease but also increases with advancing disease stages. This study revealed immune dynamics in EAC progression and highlighted the potential application of a new multiplex imaging platform, combined with computational image analysis on routine clinical FFPE sections, to investigate complex immune populations in tumor ecosystems.
Collapse
Affiliation(s)
- Srinand Sundaram
- Medical Research Council (MRC) Cancer Unit, Hutchison-Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Eun Na Kim
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States
| | - Georgina M. Jones
- Medical Research Council (MRC) Cancer Unit, Hutchison-Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Shamilene Sivagnanam
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, United States
| | - Monika Tripathi
- Medical Research Council (MRC) Cancer Unit, Hutchison-Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Ahmad Miremadi
- Medical Research Council (MRC) Cancer Unit, Hutchison-Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Massimiliano Di Pietro
- Medical Research Council (MRC) Cancer Unit, Hutchison-Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Lisa M. Coussens
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Rebecca C. Fitzgerald
- Medical Research Council (MRC) Cancer Unit, Hutchison-Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Lizhe Zhuang
- Medical Research Council (MRC) Cancer Unit, Hutchison-Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
22
|
Cancer evolution: special focus on the immune aspect of cancer. Semin Cancer Biol 2022; 86:420-435. [PMID: 35589072 DOI: 10.1016/j.semcancer.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/18/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022]
Abstract
Cancer is an evolutionary disease. Intra-tumor heterogeneity (ITH), which describes the diversity within individual tumors, sets the foundation for evolution. The fitness of tumor cells is determined by their microenvironment, which exerts intense selection pressure that generally favors cells with survival and proliferation advantages. It has been revealed that host immunity dramatically influences the evolutionary trajectory of cancer. As technologies advance, a refined map of the immune system's involvement in cancer evolution has gradually come to our knowledge. Here we specifically view cancer through the lens of evolutionary immunological biology. We will cover the neoplastic evolution under immunosurveillance, including how the host immunity shapes the tumor evolutionary trajectory and how progressive tumors modulate the host immunity to survive. A comprehensive understanding of the interplay between cancer evolution and cancer immunity provides clues to combating cancer strategically.
Collapse
|
23
|
Pakkanen E, Kalfert D, Ahtiainen M, Ludvíková M, Kuopio T, Kholová I. PD-L1 and PD-1 expression in thyroid follicular epithelial dysplasia: Hashimoto thyroiditis related atypia and potential papillary carcinoma precursor. APMIS 2022; 130:276-283. [PMID: 35238073 PMCID: PMC9311209 DOI: 10.1111/apm.13218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022]
Abstract
Programmed cell death ligand (PD‐L1)/PD‐1 expression has been studied in a variety of cancers and blockage of PD‐L1/PD‐1 pathway is a cornerstone of immunotherapy. We studied PD‐L1/PD‐1 immunohistochemical expression in 47 thyroid gland specimens in groups of (1) Hashimoto thyroiditis (HT) only; (2) HT and follicular epithelial dysplasia (FED); and (3) HT, FED, and papillary thyroid carcinoma (PTC). PD‐1 positivity was found in immune cells, namely in lymphocytes, macrophages, and plasma cells with mean values for lymphocytes and macrophages 9% in HT group, 4% in FED group, and 4% in PTC group. PD‐L1 positivity was identified in both immune cells and in the normal epithelial cells. In the HT group, mean PD‐L1 staining on immune cells was 6%, in FED group 5%, and in PTC group 7%. The mean PD‐L1 staining on the epithelial cells in the inflammatory parenchyma was 11.7% in HT, 13.4% in FED, and 8.3% in PTC group. The mean PD‐L1 staining of FED foci was 47.2% in FED group and 33.6% in PTC group. The mean tumor proportion score (TPS) was 10.4%, and the mean combined positive score (CPS) was 15.5. At the moment, PTC is not a target of immunotherapy. However, understanding the complex issue of concurrent inflammation and autoimmunity can importantly influence the cancer treatment in future.
Collapse
Affiliation(s)
- Emma Pakkanen
- Pathology, Fimlab Laboratories, Tampere, Finland.,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - David Kalfert
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, Prague 5, Czech Republic
| | - Maarit Ahtiainen
- Department of Education and Research, Hospital Nova of Central Finland, Jyväskylä, Finland
| | - Marie Ludvíková
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic
| | - Teijo Kuopio
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.,Department of Pathology, Central Finland Health Care District, Jyväskylä, Finland
| | - Ivana Kholová
- Pathology, Fimlab Laboratories, Tampere, Finland.,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
24
|
Impact of the Tumor Microenvironment for Esophageal Tumor Development—An Opportunity for Prevention? Cancers (Basel) 2022; 14:cancers14092246. [PMID: 35565378 PMCID: PMC9100503 DOI: 10.3390/cancers14092246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Researchers increasingly appreciate the tumor microenvironment (TME) for its role in the development and therapy resistance of cancers like esophageal adenocarcinoma. A better understanding of the TME fueling carcinogenesis is necessary for tailored prevention and therapies. Here, we highlight recent insights into tumor initiation, interactions with the immune system and possible novel preventative measures. Abstract Despite therapeutical advancements, and in contrast to other malignancies, esophageal adenocarcinoma (EAC) prognosis remains dismal while the incidence has markedly increased worldwide over the past decades. EAC is a malignancy of the distal esophageal squamous epithelium at the squamocolumnar junction with gastric cells expanding into the esophagus. Most EAC patients have a history of Barret’s esophagus (BE), a metaplastic adaption to chronic reflux, initially causing an inflammatory microenvironment. Thus, the immune system is highly involved early on in disease development and progression. Normally, anti-tumor immunity could prevent carcinogenesis but in rare cases BE still progresses over a dysplastic intermediate state to EAC. The inflammatory milieu during the initial esophagitis phase changes to a tolerogenic immune environment in BE, and back to pro-inflammatory conditions in dysplasia and finally to an immune-suppressive tumor microenvironment in EAC. Consequently, there is a huge interest in understanding the underpinnings that lead to the inflammation driven stepwise progression of the disease. Since knowledge about the constellations of the various involved cells and signaling molecules is currently fragmentary, a comprehensive description of these changes is needed, allowing better preventative measures, diagnosis, and novel therapeutic targets.
Collapse
|
25
|
Cranberry Polyphenols in Esophageal Cancer Inhibition: New Insights. Nutrients 2022; 14:nu14050969. [PMID: 35267943 PMCID: PMC8912450 DOI: 10.3390/nu14050969] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/31/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is a cancer characterized by rapidly rising incidence and poor survival, resulting in the need for new prevention and treatment options. We utilized two cranberry polyphenol extracts, one proanthocyanidin enriched (C-PAC) and a combination of anthocyanins, flavonoids, and glycosides (AFG) to assess inhibitory mechanisms utilizing premalignant Barrett’s esophagus (BE) and EAC derived cell lines. We employed reverse phase protein arrays (RPPA) and Western blots to examine cancer-associated pathways and specific signaling cascades modulated by C-PAC or AFG. Viability results show that C-PAC is more potent than AFG at inducing cell death in BE and EAC cell lines. Based on the RPPA results, C-PAC significantly modulated 37 and 69 proteins in JH-EsoAd1 (JHAD1) and OE19 EAC cells, respectively. AFG treatment significantly altered 49 proteins in both JHAD1 and OE19 cells. Bioinformatic analysis of RPPA results revealed many previously unidentified pathways as modulated by cranberry polyphenols including NOTCH signaling, immune response, and epithelial to mesenchymal transition. Collectively, these results provide new insight regarding mechanisms by which cranberry polyphenols exert cancer inhibitory effects targeting EAC, with implications for potential use of cranberry constituents as cancer preventive agents.
Collapse
|
26
|
The Immune Underpinnings of Barrett's-Associated Adenocarcinogenesis: a Retrial of Nefarious Immunologic Co-Conspirators. Cell Mol Gastroenterol Hepatol 2022; 13:1297-1315. [PMID: 35123116 PMCID: PMC8933845 DOI: 10.1016/j.jcmgh.2022.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/10/2022]
Abstract
There is no doubt that chronic gastroesophageal reflux disease increases the risk of esophageal adenocarcinoma (EAC) by several fold (odds ratio, 6.4; 95% CI, 4.6-9.1), and some relationships between reflux disease-mediated inflammation and oncogenic processes have been explored; however, the precise interconnections between the immune response and genomic instabilities underlying these pathologic processes only now are emerging. Furthermore, the precise cell of origin of the precancerous stages associated with EAC development, Barrett's esophagus, be it cardia resident or embryonic remnant, may shape our interpretation of the likely immune drivers. This review integrates the current collective knowledge of the immunology underlying EAC development and outlines a framework connecting proinflammatory pathways, such as those mediated by interleukin 1β, tumor necrosis factor α, leukemia inhibitory factor, interleukin 6, signal transduction and activator of transcription 3, nuclear factor-κB, cyclooxygenase-2, and transforming growth factor β, with oncogenic pathways in the gastroesophageal reflux disease-Barrett's esophagus-EAC cancer sequence. Further defining these immune and molecular railroads may show a map of the routes taken by gastroesophageal cells on their journey toward EAC tumor phylogeny. The selective pressures applied by this immune-induced journey likely impact the phenotype and genotype of the resulting oncogenic destination and further exploration of lesser-defined immune drivers may be useful in future individualized therapies or enhanced selective application of recent immune-driven therapeutics.
Collapse
|
27
|
Nowak S, Rosin M, Stuerzlinger W, Bartram L. Visual Analytics: A Method to Explore Natural Histories of Oral Epithelial Dysplasia. FRONTIERS IN ORAL HEALTH 2022; 2:703874. [PMID: 35048041 PMCID: PMC8757761 DOI: 10.3389/froh.2021.703874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/02/2021] [Indexed: 11/17/2022] Open
Abstract
Risk assessment and follow-up of oral potentially malignant disorders in patients with mild or moderate oral epithelial dysplasia is an ongoing challenge for improved oral cancer prevention. Part of the challenge is a lack of understanding of how observable features of such dysplasia, gathered as data by clinicians during follow-up, relate to underlying biological processes driving progression. Current research is at an exploratory phase where the precise questions to ask are not known. While traditional statistical and the newer machine learning and artificial intelligence methods are effective in well-defined problem spaces with large datasets, these are not the circumstances we face currently. We argue that the field is in need of exploratory methods that can better integrate clinical and scientific knowledge into analysis to iteratively generate viable hypotheses. In this perspective, we propose that visual analytics presents a set of methods well-suited to these needs. We illustrate how visual analytics excels at generating viable research hypotheses by describing our experiences using visual analytics to explore temporal shifts in the clinical presentation of epithelial dysplasia. Visual analytics complements existing methods and fulfills a critical and at-present neglected need in the formative stages of inquiry we are facing.
Collapse
Affiliation(s)
- Stan Nowak
- School of Interactive Arts and Technology, Simon Fraser University, Burnaby, BC, Canada
| | - Miriam Rosin
- BC Oral Cancer Prevention Program, Cancer Control Research, BC Cancer, Vancouver, BC, Canada.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Wolfgang Stuerzlinger
- School of Interactive Arts and Technology, Simon Fraser University, Burnaby, BC, Canada
| | - Lyn Bartram
- School of Interactive Arts and Technology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
28
|
Maslyonkina KS, Konyukova AK, Alexeeva DY, Sinelnikov MY, Mikhaleva LM. Barrett's esophagus: The pathomorphological and molecular genetic keystones of neoplastic progression. Cancer Med 2022; 11:447-478. [PMID: 34870375 PMCID: PMC8729054 DOI: 10.1002/cam4.4447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Barrett's esophagus is a widespread chronically progressing disease of heterogeneous nature. A life threatening complication of this condition is neoplastic transformation, which is often overlooked due to lack of standardized approaches in diagnosis, preventative measures and treatment. In this essay, we aim to stratify existing data to show specific associations between neoplastic transformation and the underlying processes which predate cancerous transition. We discuss pathomorphological, genetic, epigenetic, molecular and immunohistochemical methods related to neoplasia detection on the basis of Barrett's esophagus. Our review sheds light on pathways of such neoplastic progression in the distal esophagus, providing valuable insight into progression assessment, preventative targets and treatment modalities. Our results suggest that molecular, genetic and epigenetic alterations in the esophagus arise earlier than cancerous transformation, meaning the discussed targets can help form preventative strategies in at-risk patient groups.
Collapse
|
29
|
Cutliffe AL, McKenna SL, Chandrashekar DS, Ng A, Devonshire G, Fitzgerald RC, O’Donovan TR, Mackrill JJ. Alterations in the Ca2+ toolkit in oesophageal adenocarcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:543-575. [PMID: 36046118 PMCID: PMC9400700 DOI: 10.37349/etat.2021.00063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
Aim: To investigate alterations in transcription of genes, encoding Ca2+ toolkit proteins, in oesophageal adenocarcinoma (OAC) and to assess associations between gene expression, tumor grade, nodal-metastatic stage, and patient survival. Methods: The expression of 275 transcripts, encoding components of the Ca2+ toolkit, was analyzed in two OAC datasets: the Cancer Genome Atlas [via the University of Alabama Cancer (UALCAN) portal] and the oesophageal-cancer, clinical, and molecular stratification [Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS)] dataset. Effects of differential expression of these genes on patient survival were determined using Kaplan-Meier log-rank tests. OAC grade- and metastatic-stage status was investigated for a subset of genes. Adjustment for the multiplicity of testing was made throughout. Results: Of the 275 Ca2+-toolkit genes analyzed, 75 displayed consistent changes in expression between OAC and normal tissue in both datasets. The channel-encoding genes, N-methyl-D-aspartate receptor 2D (GRIN2D), transient receptor potential (TRP) ion channel classical or canonical 4 (TRPC4), and TRP ion channel melastatin 2 (TRPM2) demonstrated the greatest increase in expression in OAC in both datasets. Nine genes were consistently upregulated in both datasets and were also associated with improved survival outcomes. The 6 top-ranking genes for the weighted significance of altered expression and survival outcomes were selected for further analysis: voltage-gated Ca2+ channel subunit α 1D (CACNA1D), voltage-gated Ca2+ channel auxiliary subunit α2 δ4 (CACNA2D4), junctophilin 1 (JPH1), acid-sensing ion channel 4 (ACCN4), TRPM5, and secretory pathway Ca2+ ATPase 2 (ATP2C2). CACNA1D, JPH1, and ATP2C2 were also upregulated in advanced OAC tumor grades and nodal-metastatic stages in both datasets. Conclusions: This study has unveiled alterations of the Ca2+ toolkit in OAC, compared to normal tissue. Such Ca2+ signalling findings are consistent with those from studies on other cancers. Genes that were consistently upregulated in both datasets might represent useful markers for patient diagnosis. Genes that were consistently upregulated, and which were associated with improved survival, might be useful markers for patient outcome. These survival-associated genes may also represent targets for the development of novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Alana L. Cutliffe
- Department of Physiology, University College Cork, BioSciences Institute, T12 YT20 Cork, Ireland
| | - Sharon L. McKenna
- Cancer Research, UCC, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - Darshan S. Chandrashekar
- Department of Pathology, Molecular & Cellular, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Alvin Ng
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Ginny Devonshire
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Rebecca C. Fitzgerald
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Tracey R. O’Donovan
- Cancer Research, UCC, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - John J. Mackrill
- Department of Physiology, University College Cork, BioSciences Institute, T12 YT20 Cork, Ireland
| |
Collapse
|
30
|
Killcoyne S, Fitzgerald RC. Evolution and progression of Barrett's oesophagus to oesophageal cancer. Nat Rev Cancer 2021; 21:731-741. [PMID: 34545238 DOI: 10.1038/s41568-021-00400-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
Cancer cells are shaped through an evolutionary process of DNA mutation, cell selection and population expansion. Early steps in this process are driven by a set of mutated driver genes and structural alterations to the genome through copy number gains or losses. Oesophageal adenocarcinoma (EAC) and the pre-invasive tissue, Barrett's oesophagus (BE), provide an ideal example in which to observe and study this evolution. BE displays early genomic instability, specifically in copy number changes that may later be observed in EAC. Furthermore, these early changes result in patterns of progression (that is, 'born bad', gradual or catastrophic) that may help to describe the evolution of EAC. As only a small proportion of patients with BE will go on to develop cancer, a better understanding of these patterns and the resulting genomic changes should improve early detection in EAC and may provide clues for the evolution of cancer more broadly.
Collapse
Affiliation(s)
- Sarah Killcoyne
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Rebecca C Fitzgerald
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
31
|
Hoppe S, Jonas C, Wenzel MC, Velazquez Camacho O, Arolt C, Zhao Y, Büttner R, Quaas A, Plum PS, Hillmer AM. Genomic and Transcriptomic Characteristics of Esophageal Adenocarcinoma. Cancers (Basel) 2021; 13:4300. [PMID: 34503107 PMCID: PMC8428370 DOI: 10.3390/cancers13174300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/28/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is a deadly disease with limited options for targeted therapy. With the help of next-generation sequencing studies over the last decade, we gained an understanding of the genomic architecture of EAC. The tumor suppressor gene TP53 is mutated in 70 to 80% of tumors followed by genomic alterations in CDKN2A, KRAS, ERBB2, ARID1A, SMAD4 and a long tail of less frequently mutated genes. EAC is characterized by a high burden of point mutations and genomic rearrangements, resulting in amplifications and deletions of genomic regions. The genomic complexity is likely hampering the efficacy of targeted therapies. Barrett's esophagus (BE), a metaplastic response of the esophagus to gastro-esophageal reflux disease, is the main risk factor for the development of EAC. Almost all EACs are derived from BE. The sequence from BE to EAC provides an opportunity to study the genomic evolution towards EAC. While the overlap of point mutations between BE and EAC within the same patient is, at times, surprisingly low, there is a correlation between the complexity of the genomic copy number profile and the development of EAC. Transcriptomic analyses separated EAC into a basal and a classical subtype, with the basal subtype showing a higher level of resistance to chemotherapy. In this review, we provide an overview of the current knowledge of the genomic and transcriptomic characteristics of EAC and their relevance for the development of the disease and patient care.
Collapse
Affiliation(s)
- Sascha Hoppe
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (S.H.); (C.J.); (M.C.W.); (O.V.C.); (C.A.); (R.B.); (A.Q.); (P.S.P.)
| | - Christoph Jonas
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (S.H.); (C.J.); (M.C.W.); (O.V.C.); (C.A.); (R.B.); (A.Q.); (P.S.P.)
| | - Marten Christian Wenzel
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (S.H.); (C.J.); (M.C.W.); (O.V.C.); (C.A.); (R.B.); (A.Q.); (P.S.P.)
| | - Oscar Velazquez Camacho
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (S.H.); (C.J.); (M.C.W.); (O.V.C.); (C.A.); (R.B.); (A.Q.); (P.S.P.)
| | - Christoph Arolt
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (S.H.); (C.J.); (M.C.W.); (O.V.C.); (C.A.); (R.B.); (A.Q.); (P.S.P.)
| | - Yue Zhao
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Reinhard Büttner
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (S.H.); (C.J.); (M.C.W.); (O.V.C.); (C.A.); (R.B.); (A.Q.); (P.S.P.)
| | - Alexander Quaas
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (S.H.); (C.J.); (M.C.W.); (O.V.C.); (C.A.); (R.B.); (A.Q.); (P.S.P.)
| | - Patrick Sven Plum
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (S.H.); (C.J.); (M.C.W.); (O.V.C.); (C.A.); (R.B.); (A.Q.); (P.S.P.)
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Axel Maximilian Hillmer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (S.H.); (C.J.); (M.C.W.); (O.V.C.); (C.A.); (R.B.); (A.Q.); (P.S.P.)
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
32
|
Cui K, Hu S, Mei X, Cheng M. Innate Immune Cells in the Esophageal Tumor Microenvironment. Front Immunol 2021; 12:654731. [PMID: 33995371 PMCID: PMC8113860 DOI: 10.3389/fimmu.2021.654731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/13/2021] [Indexed: 01/10/2023] Open
Abstract
Esophageal cancer (EC) is one of the most common mucosa-associated tumors, and is characterized by aggressiveness, poor prognosis, and unfavorable patient survival rates. As an organ directly exposed to the risk of foodborne infection, the esophageal mucosa harbors distinct populations of innate immune cells, which play vital roles in both maintenance of esophageal homeostasis and immune defense and surveillance during mucosal anti-infection and anti-tumor responses. In this review, we highlight recent progress in research into innate immune cells in the microenvironment of EC, including lymphatic lineages, such as natural killer and γδT cells, and myeloid lineages, including macrophages, dendritic cells, neutrophils, myeloid-derived suppressor cells, mast cells and eosinophils. Further, putative innate immune cellular and molecular mechanisms involved in tumor occurrence and progression are discussed, to highlight potential directions for the development of new biomarkers and effective intervention targets, which can hopefully be applied in long-term multilevel clinical EC treatment. Fully understanding the innate immunological mechanisms involved in esophageal mucosa carcinogenesis is of great significance for clinical immunotherapy and prognosis prediction for patients with EC.
Collapse
Affiliation(s)
- Kele Cui
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China
- Cancer Immunotherapy Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shouxin Hu
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China
- Cancer Immunotherapy Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinyu Mei
- Department of Thoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Min Cheng
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China
- Cancer Immunotherapy Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|