1
|
William N, Acker JP. Innovations in red blood cell preservation. Blood Rev 2025; 72:101283. [PMID: 40074611 DOI: 10.1016/j.blre.2025.101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
The global infrastructure supporting nearly 100 million transfusions annually relies on the ability to store red cell concentrates (RCCs) for up to 42 days at hypothermic temperatures or indefinitely at low sub-zero temperatures. While these methods are generally effective, there is both an opportunity and, in specific settings, a need to refine storage techniques that have remained largely unchanged since the 1980s. Recent research has identified ways to address limitations that were not fully understood when these methods were first implemented in blood banks, with much of it focusing on modifying conventional storage strategies, while some studies explore alternative approaches. In this review, we explore the current state of RBC preservation and the future prospects for advancing both short- and long-term storage strategies.
Collapse
Affiliation(s)
- Nishaka William
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Osburn SC, Smith ME, Wahl D, LaRocca TJ. Novel effects of reverse transcriptase inhibitor supplementation in skeletal muscle of old mice. Physiol Genomics 2025; 57:308-320. [PMID: 40062980 DOI: 10.1152/physiolgenomics.00115.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 02/15/2025] [Indexed: 04/01/2025] Open
Abstract
Aging is the primary risk factor for the development of many chronic diseases, including dementias, cardiovascular disease, and diabetes. There is significant interest in identifying novel "geroprotective" agents, including by repurposing existing drugs, but such treatments may affect organ systems differently. One current example is the nucleoside reverse transcriptase inhibitor 3TC, which has been increasingly studied as a potential gerotherapeutic. Recent data suggest that 3TC may reduce inflammation and improve cognitive function in older mice; however, the effects of 3TC on other tissues in aged animals are less well characterized. Here, we use transcriptomics (RNA-seq) and targeted metabolomics to investigate the influence of 3TC supplementation on skeletal muscle in older mice. We show that 3TC 1) does not overtly affect muscle mass or functional/health markers, 2) largely reverses age-related changes in gene expression and metabolite signatures, and 3) is potentially beneficial for mitochondrial function in old animals via increases in antioxidant enzymes and decreases in mitochondrial reactive oxygen species. Collectively, our results suggest that, in addition to its protective effects in other tissues, 3TC supplementation does not have adverse effects in aged muscle and may even protect muscle/mitochondrial health in this context.NEW & NOTEWORTHY Recent studies suggest that the nucleoside reverse transcriptase inhibitor 3TC may improve brain health and cognitive function in old mice, but its effects on other aging tissues have not been comprehensively studied. This is the first study to use a multiomics approach to investigate the effects of 3TC treatment on skeletal muscle of old mice. The results suggest that 3TC reverses age-related transcriptomic and metabolite signatures and is potentially beneficial for mitochondrial function in aged muscle.
Collapse
Affiliation(s)
- Shelby C Osburn
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, United States
| | - Meghan E Smith
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, United States
| | - Devin Wahl
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, United States
| | - Thomas J LaRocca
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, United States
| |
Collapse
|
3
|
D’Alessandro A. Red blood cell metabolism: a window on systems health towards clinical metabolomics. Curr Opin Hematol 2025; 32:111-119. [PMID: 40085132 PMCID: PMC11949704 DOI: 10.1097/moh.0000000000000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
PURPOSE OF REVIEW This review focuses on recent advances in the understanding of red blood cell (RBC) metabolism as a function of hypoxia and oxidant stress. In particular, we will focus on RBC metabolic alterations during storage in the blood bank, a medically relevant model of erythrocyte responses to energy and redox stress. RECENT FINDINGS Recent studies on over 13 000 healthy blood donors, as part of the Recipient Epidemiology and Donor Evaluation Study (REDS) III and IV-P RBC omics, and 525 diversity outbred mice have highlighted the impact on RBC metabolism of biological factors (age, BMI), genetics (sex, polymorphisms) and exposure (dietary, professional or recreational habits, drugs that are not grounds for blood donor deferral). SUMMARY We review RBC metabolism from basic biochemistry to storage biology, briefly discussing the impact of inborn errors of metabolism and genetic factors on RBC metabolism, as a window on systems metabolic health. Expanding on the concept of clinical chemistry towards clinical metabolomics, monitoring metabolism at scale in large populations (e.g., millions of blood donors) may thus provide insights into population health as a complementary tool to genetic screening and standard clinical measurements.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
4
|
Ehrentraut H, Massoth G, Delis A, Thewes B, Hoch J, Majchrzak M, Weber-Schehl M, Mayr A, Abulizi I, Speller J, Meybohm P, Steinisch A, Koessler J, Strauss AC, Wittmann M, Velten M. Implications of packed red bloods cells production and transfer on post transfusion hemoglobin increase. J Clin Anesth 2025; 102:111743. [PMID: 39855000 DOI: 10.1016/j.jclinane.2025.111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/06/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Blood loss resulting in severe anemia is the most common indication for postoperative allogenic red blood cell (RBC) transfusions. In high-income countries, the majority of transfusions is received by elderly patients. Preservatives extend the storage of RBCs, though concerns exist about potential harm from transfusing older RBCs. This study tested the hypothesis that RBC storage duration effects hemoglobin increase in patients older than 70 years who underwent non-cardiac surgery. METHOD Observations on surgical cohorts from two study sites of the LIBERAL-Trial were collected. Transfusion events and hemoglobin between 2018 and 2022 assessments in addition to manufacturing and product specific quality review information were evaluated. RESULTS A total of 1626 transfusion events in 505 patients were analyzed. A linear mixed effects model was used to estimate the effect size of different predictors on hemoglobin increment upon red blood cell transfusion. No statistically significant effect of the RBC unit storage duration was found. Confounding variables resulting in higher hemoglobin increase included lower hemoglobin values prior to transfusion, the length of Hb measurement intervals before and after transfusion, as well as the method of RBC cell separation in line with different manufacturer hemoglobin values. CONCLUSIONS The aspired increase in hemoglobin can be achieved with red blood cell concentrates of any storage duration. In general, elderly patients exhibit a sufficient hemoglobin rise following transfusion. However, if this is associated with improved outcomes cannot be answered.
Collapse
Affiliation(s)
- Heidi Ehrentraut
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Gregor Massoth
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Achilles Delis
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Ben Thewes
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Jochen Hoch
- Institute of Hematology and Transfusion Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Mario Majchrzak
- German Red Cross Blood Transfusion Service West, Feithstr. 184, 58097 Hagen, Germany.
| | - Marijke Weber-Schehl
- Bavarian Red Cross Blood Donation Service, Nikolaus-Fey-Str. 32, 97353 Wiesentheid, Germany.
| | - Andreas Mayr
- Department of Medical Biometry and Statistics, University of Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany.
| | - Izdar Abulizi
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Jan Speller
- Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Patrick Meybohm
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany.
| | - Andreas Steinisch
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany.
| | - Juergen Koessler
- University Hospital Würzburg, Institute of transfusion medicine and hemotherapy, Oberdürrbacher Str. 6, 97080 Würzburg, Germany.
| | - Andreas C Strauss
- Department of Orthopaedic and Trauma Surgery, University Medical Center Bonn, Bonn, Germany
| | - Maria Wittmann
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Markus Velten
- Department of Anesthesiology and Pain Management, Division of Cardiovascular and Thoracic Anesthesiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
Nemkov T, Isiksacan Z, William N, Senturk R, Boudreau LE, Yarmush ML, Acker JP, D'Alessandro A, Usta OB. Supercooled storage of red blood cells slows down the metabolic storage lesion. RESEARCH SQUARE 2025:rs.3.rs-5256734. [PMID: 40060052 PMCID: PMC11888543 DOI: 10.21203/rs.3.rs-5256734/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Red blood cell (RBC) transfusion, a life-saving intervention, is limited by reduced RBC potency over time. Cold storage at +4 °C for up to 42 days can reduce transfusion efficacy due to alterations termed the "storage lesion." Strategies to mitigate the storage lesion include alkaline additive solutions and supercooled storage to extend storage by reducing metabolic stresses. However, RBC metabolism during supercooled storage in standard or alkaline additives remains unstudied. This study, thus, investigated the impact of storage additives (alkaline E-Sol5 and standard SAGM) and temperatures (+4 °C, -4 °C, -8 °C) on RBC metabolism during 21- and 42-days storage using high-throughput metabolomics. RBCs stored with E-Sol5 showed increased glycolysis and higher ratios of reduced to oxidized glutathione compared to SAGM. Supercooled storage at -4 °C showed markedly lower hemolysis than -8°C, preserved adenylate pools, decreased glucose consumption, and reduced lactate accumulation and pentose phosphate pathway activation. The combination of supercooled storage and E-Sol5 helped to preserve ATP and 2,3-DPG reservoirs, while preventing catabolism and free fatty acid accumulation. While supercooled storage with E-Sol5 offers a promising alternative to standard storage, preserving RBC metabolic and functional quality, further research is necessary to validate and improve on these foundational findings.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - Ziya Isiksacan
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Shriners Children's, Boston, MA 02114
| | - Nishaka William
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R8, Canada
| | - Rahime Senturk
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Shriners Children's, Boston, MA 02114
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands, 5612 AZ
| | - Luke E Boudreau
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Shriners Children's, Boston, MA 02114
| | - Martin L Yarmush
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Shriners Children's, Boston, MA 02114
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA, 08854
| | - Jason P Acker
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R8, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB T6G 2R8, Canada
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - O Berk Usta
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Shriners Children's, Boston, MA 02114
| |
Collapse
|
6
|
Mykhailova O, Brandon-Coatham M, Hemmatibardehshahi S, Yazdanbakhsh M, Olafson C, Yi QL, Kanias T, Acker JP. Donor age contributes more to the rheological properties of stored red blood cells than donor sex and biological age distribution. Blood Adv 2025; 9:673-686. [PMID: 39504562 PMCID: PMC11869869 DOI: 10.1182/bloodadvances.2024014475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/07/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024] Open
Abstract
ABSTRACT The quality of stored red cell concentrates (RCCs) has been linked to the biological age distribution of red blood cell (RBC) subpopulations. Teenage male RCCs contain higher proportions of biologically old RBCs, with poorer quality. This study sought to assess the contribution of donor sex and age on the deformability characteristics of RBC subpopulations in stored RCCs. On days 5, 14, 28, and 42 of hypothermic storage, RCCs from healthy teenage male (n = 15), senior male (n = 15), teenage female (n = 15), and senior female (n = 15) donors were biologically age profiled. The deformability of the resulting young RBCs and old RBCs (O-RBCs) was assessed using ektacytometry. Over storage, donor age was the biggest factor influencing the rheology of RBC subpopulations. Teenage male RCCs had the largest reduction in Ohyper (osmolality in the hypertonic region corresponding to 50% of the maximum RBC elongation [EImax]). The strongest correlations between Ohyper and mean corpuscular hemoglobin content (R2 > 0.5) were witnessed with O-RBCs from senior donors, and to a lesser extent with teenage males. Teen O-RBCs, particularly from males, had higher elongation indices, both under isotonic conditions and in the presence of an increasing osmotic gradient. Teen RBCs, regardless of biological age, were discovered to be more rigid (higher shear stress required to reach half the EImax). Donor variation in the age distribution of RBC subpopulations and its downstream effect on deformability serves as further evidence that factors beyond storage could potentially affect RCC quality and transfusion outcomes.
Collapse
Affiliation(s)
- Olga Mykhailova
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB, Canada
| | | | - Sanaz Hemmatibardehshahi
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Mahsa Yazdanbakhsh
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Carly Olafson
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB, Canada
| | - Qi-Long Yi
- Canadian Blood Services, Ottawa, ON, Canada
| | | | - Jason P. Acker
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Reisz JA, Earley EJ, Nemkov T, Key A, Stephenson D, Keele GR, Dzieciatkowska M, Spitalnik SL, Hod EA, Kleinman S, Roubinian NH, Gladwin MT, Hansen KC, Norris PJ, Busch MP, Zimring JC, Churchill GA, Page GP, D'Alessandro A. Arginine metabolism is a biomarker of red blood cell and human aging. Aging Cell 2025; 24:e14388. [PMID: 39478346 PMCID: PMC11822668 DOI: 10.1111/acel.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
Increasing global life expectancy motivates investigations of molecular mechanisms of aging and age-related diseases. This study examines age-associated changes in red blood cells (RBCs), the most numerous host cell in humans. Four cohorts, including healthy individuals and patients with sickle cell disease, were analyzed to define age-dependent changes in RBC metabolism. Over 15,700 specimens from 13,757 humans were examined, a major expansion over previous studies of RBCs in aging. Multi-omics approaches identified chronological age-related alterations in the arginine pathway with increased arginine utilization in RBCs from older individuals. These changes were consistent across healthy and sickle cell disease cohorts and were influenced by genetic variation, sex, and body mass index. Integrating multi-omics data and metabolite quantitative trait loci (mQTL) in humans and 525 diversity outbred mice functionally linked metabolism of arginine during RBC storage to increased vesiculation-a hallmark of RBC aging-and lower post-transfusion hemoglobin increments. Thus, arginine metabolism is a biomarker of RBC and organismal aging, suggesting potential new targets for addressing sequelae of aging.
Collapse
Affiliation(s)
- Julie A. Reisz
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | | | - Travis Nemkov
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Omix Technologies IncAuroraColoradoUSA
| | - Alicia Key
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | | | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Steven L. Spitalnik
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew York CityNew YorkUSA
| | - Eldad A. Hod
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew York CityNew YorkUSA
| | - Steven Kleinman
- University of British ColumbiaVictoriaBritish ColumbiaCanada
| | - Nareg H. Roubinian
- Vitalant Research InstituteSan FranciscoCaliforniaUSA
- Kaiser Permanente Northern California Division of ResearchPleasantonCaliforniaUSA
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Mark T. Gladwin
- Department of MedicineUniversity of Maryland School of Medicine, University of MarylandBaltimoreMarylandUSA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Omix Technologies IncAuroraColoradoUSA
| | - Philip J. Norris
- Vitalant Research InstituteSan FranciscoCaliforniaUSA
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Michael P. Busch
- Vitalant Research InstituteSan FranciscoCaliforniaUSA
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - James C. Zimring
- Department of PathologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Omix Technologies IncAuroraColoradoUSA
| |
Collapse
|
8
|
William N, Acker JP, Seghatchian J. Advancement of blood donor factors in RBC and blood component therapy using modern practices and methodologies: How to make multifactorial clinical decisions amid growing complexity. Transfus Apher Sci 2024; 63:104022. [PMID: 39520947 DOI: 10.1016/j.transci.2024.104022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Affiliation(s)
- Nishaka William
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Jerard Seghatchian
- International Consultancy in Modern Personalized Blood Component Therapies, London, UK.
| |
Collapse
|
9
|
Dumont LJ, Kelly K, Nemkov T, Leite C, Gresens CJ, Stanley C, D'Alessandro A, Vassallo RR. Platelet storage failure-Metformin as causative agent. Transfusion 2024; 64:2405-2409. [PMID: 39552144 DOI: 10.1111/trf.18063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Pathogen reduction technology (PRT)-treated apheresis platelets (APs) were returned without platelet swirl and with pH22°C < 6.2. The platelet donor was taking prescription levothyroxine and metformin plus over-the-counter medications and supplements. We hypothesized that either PRT or medication was causative. STUDY DESIGN AND METHODS One AP from a double AP collection from this donor was PRT-treated, the other unit untreated. Units were assessed over 7-day storage with a standard panel of platelet assays and metabolomics using high resolution mass spectrometry. The dose effect of metformin on platelets over storage was evaluated in vitro using APs obtained from non-medicated donors. RESULTS This donor's PRT- and non-PRT treated paired units had pH values <6.2 by the end of day 2. Lactate generation rates in the PRT- and non-PRT units were very high compared to previously reported values and approached that reported for anaerobic storage. Metabolomic analysis revealed impairments in a number of energy metabolic pathways between PRT- and non-PRT platelets; however, this did not support a major causative role of PRT in the significant upregulation of lactic acid production. Metformin caused a dose-dependent upregulation of glycolysis, resulting in pH decline. DISCUSSION We conclude that metformin is the most likely cause for this donor's stored platelet pH failures. Metformin is commonly used to treat type 2 diabetes and is not a donor deferral medication. Further investigation is indicated into the potential impact of metformin on platelet storage characteristics, the potential implications for medication deferral, and the need for additional screening tools in the laboratory.
Collapse
Affiliation(s)
- Larry J Dumont
- Vitalant Research Institute, Denver, Colorado, USA
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ralph R Vassallo
- Vitalant Research Institute, Denver, Colorado, USA
- Vitalant Medical Affairs, Scottsdale, Arizona, USA
| |
Collapse
|
10
|
Isola S, Murdaca G, Brunetto S, Zumbo E, Tonacci A, Gangemi S. The Use of Artificial Intelligence to Analyze the Exposome in the Development of Chronic Diseases: A Review of the Current Literature. INFORMATICS 2024; 11:86. [DOI: 10.3390/informatics11040086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
The “Exposome” is a concept that indicates the set of exposures to which a human is subjected during their lifetime. These factors influence the health state of individuals and can drive the development of Noncommunicable Diseases (NCDs). Artificial Intelligence (AI) allows one to analyze large amounts of data in a short time. As such, several authors have used AI to study the relationship between exposome and chronic diseases. Under such premises, this study reviews the use of AI in analyzing the exposome to understand its role in the development of chronic diseases, focusing on how AI can identify patterns in exposure-related data and support prevention strategies. To achieve this, we carried out a search on multiple databases, including PubMed, ScienceDirect, and SCOPUS, from 1 January 2019 to 31 May 2023, using the MeSH terms (exposome) and (‘Artificial Intelligence’ OR ‘Machine Learning’ OR ‘Deep Learning’) to identify relevant studies on this topic. After completing the identification, screening, and eligibility assessment, a total of 18 studies were included in this literature review. According to the search, most authors used supervised or unsupervised machine learning models to study multiple exposure factors’ role in the risk of developing cardiovascular, metabolic, and chronic respiratory diseases. In some more recent studies, authors also used deep learning. Furthermore, the exposome analysis is useful to study the risk of developing neuropsychiatric disorders or evaluating pregnancy outcomes and child growth. Understanding the role of the exposome is pivotal to overcome the classic concept of a single exposure/disease. The application of AI allows one to analyze multiple environmental risks and their combined effects on health conditions. In the future, AI could be helpful in the prevention of chronic diseases, providing new diagnostic, therapeutic, and follow-up strategies.
Collapse
Affiliation(s)
- Stefania Isola
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | - Silvia Brunetto
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Emanuela Zumbo
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
11
|
Nokoff NJ, Nemkov T, Bothwell S, Cree MG, Fuller KNZ, Keller AC, Kelsey MM, Nadeau KJ, Moreau KL. Differences in cardiorespiratory fitness by gonadotropin-releasing hormone agonist treatment before and after testosterone in transgender adolescents. J Appl Physiol (1985) 2024; 137:1470-1483. [PMID: 39417821 PMCID: PMC11573275 DOI: 10.1152/japplphysiol.00629.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
There are known sex differences in cardiorespiratory fitness (CRF). Little is known about the impact of pubertal blockade with a gonadotropin-releasing hormone agonist (GnRHa) followed by hormone therapy on CRF for transgender adolescents. We aimed to 1) determine the effect of GnRHa monotherapy on CRF and mitochondrial function and associations with metabolomic profiles and 2) evaluate changes after 1 and 12 mo of testosterone therapy among transgender adolescents. Participants assigned female at birth (n = 19, baseline age of 15.0 ± 1.0 yr) from two groups: GnRHa+ (n = 8) and GnRHa- (n = 11) were examined at baseline and 1- and 12-mo post-testosterone therapy in a longitudinal observational study to assess cardiorespiratory fitness, mitochondrial respiration, and metabolic profile. Fasted morning labs included assessment of metabolomics and peripheral blood mononuclear cell mitochondrial respiration and degree of mitochondrial coupling (respiratory control ratio, RCR). A graded cycle ergometer test was performed. Baseline differences were evaluated between groups. Changes were compared with mixed linear regression models evaluating time (baseline, 1 mo, and 12 mo), group (GnRHa treatment yes/no), and their interaction. At baseline GnRHa+ individuals had higher relative V̇o2peak (30.1 ± 4.83 vs. 25.24 ± 4.47 mL/kg/min, P = 0.042) than GnRHa- individuals. In regression models, GnRHa+ individuals had a significant increase in peak watts (P = 0.011) and total exercise time (P = 0.005) after 12 mo of testosterone (P = 0.012) but not GnRHa- individuals. GnRHa+ individuals have significantly higher RCR under carbohydrate (P = 0.0007) and lipid (P = 0.0002) conditions than GnRHa+ individuals. Pretreatment with GnRHa positively influences peak CRF and mitochondrial respiration in adolescent transgender males undergoing testosterone therapy.NEW & NOTEWORTHY This study demonstrates differences in exercise capacity and mitochondrial respiration at baseline based on whether or not individuals had feminizing puberty blocked. Individuals who had puberty blocked had greater improvements in cardiopulmonary exercise testing parameters after 12 mo of testosterone than those who went through feminizing puberty.
Collapse
Affiliation(s)
- Natalie J Nokoff
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Ludeman Family Center for Women's Health, Aurora, Colorado, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Samantha Bothwell
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Melanie G Cree
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Ludeman Family Center for Women's Health, Aurora, Colorado, United States
| | - Kelly N Z Fuller
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Amy C Keller
- Division of Endocrinology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Geriatric Research Education and Clinical Center, Veterans Affairs Eastern Colorado, Aurora, Colorado, United States
| | - Megan M Kelsey
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Ludeman Family Center for Women's Health, Aurora, Colorado, United States
| | - Kristen J Nadeau
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Ludeman Family Center for Women's Health, Aurora, Colorado, United States
| | - Kerrie L Moreau
- Ludeman Family Center for Women's Health, Aurora, Colorado, United States
- Division of Geriatrics, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
12
|
Kuo LW, Crump LS, O’Neill K, Williams MM, Christenson JL, Spoelstra NS, Roy MK, Argabright A, Reisz JA, D’Alessandro A, Boorgula MP, Goodspeed A, Bickerdike M, Bitler BG, Richer JK. Blocking Tryptophan Catabolism Reduces Triple-Negative Breast Cancer Invasive Capacity. CANCER RESEARCH COMMUNICATIONS 2024; 4:2699-2713. [PMID: 39311710 PMCID: PMC11484926 DOI: 10.1158/2767-9764.crc-24-0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/26/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
SIGNIFICANCE TDO2 is more highly expressed than the nonhomologous TRP-catabolizing enzyme IDO1 in TNBC. We find that TDO2 knockdown can lead to a compensatory increase in IDO1. Therefore, we tested a newly developed TDO2/IDO1 dual inhibitor and found that it decreases TRP catabolism, anchorage-independent survival, and invasive capacity.
Collapse
Affiliation(s)
- Li-Wei Kuo
- Cancer Biology Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Lyndsey S. Crump
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Kathleen O’Neill
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Michelle M. Williams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Jessica L. Christenson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Nicole S. Spoelstra
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Micaela Kalani Roy
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Amy Argabright
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Meher P. Boorgula
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Andrew Goodspeed
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | | | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Jennifer K. Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
13
|
Gallagher LT, Erickson C, D’Alessandro A, Schaid T, Thielen O, Hallas W, Mitra S, Stafford P, Moore EE, Silliman CC, Calfee CS, Cohen MJ. Smoking primes the metabolomic response in trauma. J Trauma Acute Care Surg 2024; 97:48-56. [PMID: 38548690 PMCID: PMC11199115 DOI: 10.1097/ta.0000000000004318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
INTRODUCTION Smoking is a public health threat because of its well-described link to increased oxidative stress-related diseases including peripheral vascular disease and coronary artery disease. Tobacco use has been linked to risk of inpatient trauma morbidity including acute respiratory distress syndrome; however, its mechanistic effect on comprehensive metabolic heterogeneity has yet to be examined. METHODS Plasma was obtained on arrival from injured patients at a Level 1 trauma center and analyzed with modern mass spectrometry-based metabolomics. Patients were stratified by nonsmoker, passive smoker, and active smoker by lower, interquartile, and upper quartile ranges of cotinine intensity peaks. Patients were substratified by high injury/high shock (Injury Severity Score, ≥15; base excess, <-6) and compared with healthy controls. p Value of <0.05 following false discovery rate correction of t test was considered significant. RESULTS Forty-eight patients with high injury/high shock (7 nonsmokers [15%], 25 passive smokers [52%], and 16 active smokers [33%]) and 95 healthy patients who served as controls (30 nonsmokers [32%], 43 passive smokers [45%], and 22 active smokers [23%]) were included. Elevated metabolites in our controls who were active smokers include enrichment in chronic inflammatory and oxidative processes. Elevated metabolites in active smokers in high injury/high shock include enrichment in the malate-aspartate shuttle, tyrosine metabolism, carnitine synthesis, and oxidation of very long-chain fatty acids. CONCLUSION Smoking promotes a state of oxidative stress leading to mitochondrial dysfunction, which is additive to the inflammatory milieu of trauma. Smoking is associated with impaired mitochondrial substrate utilization of long-chain fatty acids, aspartate, and tyrosine, all of which accentuate oxidative stress following injury. This altered expression represents an ideal target for therapies to reduce oxidative damage toward the goal of personalized treatment of trauma patients. LEVEL OF EVIDENCE Prognostic and Epidemiological; Level IV.
Collapse
Affiliation(s)
- Lauren T Gallagher
- University of Colorado, Department of Gastrointestinal, Trauma, and Endocrine Surgery
| | - Christopher Erickson
- University of Colorado, Department of Gastrointestinal, Trauma, and Endocrine Surgery
| | - Angelo D’Alessandro
- University of Colorado, Department of Gastrointestinal, Trauma, and Endocrine Surgery
| | - Terry Schaid
- University of Colorado, Department of Gastrointestinal, Trauma, and Endocrine Surgery
| | - Otto Thielen
- University of Colorado, Department of Gastrointestinal, Trauma, and Endocrine Surgery
| | - William Hallas
- University of Colorado, Department of Gastrointestinal, Trauma, and Endocrine Surgery
| | - Sanchayita Mitra
- University of Colorado, Department of Gastrointestinal, Trauma, and Endocrine Surgery
| | - Preston Stafford
- University of Colorado, Department of Gastrointestinal, Trauma, and Endocrine Surgery
| | | | | | - Carolyn S Calfee
- University of California San Francisco, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Departments of Medicine, and Anesthesia
| | - Mitchell J Cohen
- University of Colorado, Department of Gastrointestinal, Trauma, and Endocrine Surgery
| |
Collapse
|
14
|
Hadjesfandiari N, Serrano K, Richardson-Sanchez T, Barakauskas VE, Yi QL, Murphy M, Devine DV. Measurement of lead, mercury, and cadmium in blood donors in Canada. Transfusion 2024; 64:1243-1253. [PMID: 38752406 DOI: 10.1111/trf.17872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 04/03/2024] [Accepted: 05/01/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Fetal and neonatal exposure to lead is associated with irreversible adverse effects on neural development. There is no reliable threshold for lead effect, so limiting exposure is recommended. A significant correlation has been reported between post-transfusion blood lead level (BLL) in infants and lead levels in transfused RBC units. We measured levels of lead, mercury, and cadmium, in Canadian donor blood to investigate if concerning levels for neonatal transfusion exist. STUDY DESIGN AND METHODS Whole blood samples from blood donors (n = 2529) were shipped cold within 7 days of donation. All permanent blood donation clinics across Canada were sampled. Twelve of these permanent clinics and 8 mobile clinics with a greater potential for having higher lead or mercury levels were oversampled. Heavy metals were measured by inductively coupled plasma mass spectrometry. RESULTS Of all donations, 2.2% (lead) and 0.4% (mercury) had levels higher than the recommended thresholds for safe neonatal transfusion. BLLs were higher in males but there was no significant difference in the blood mercury levels of males versus females. Cadmium levels were higher in females. There was a positive correlation between donor age and levels of heavy metals, with lead having the strongest correlation (r = 0.47, p < .0001). Three clinics in close proximity to two lead-producing mines were among the clinics with the highest BLLs. Significantly higher blood mercury levels were observed in coastal clinics. CONCLUSION Our data on donor blood heavy metal levels supports considering blood transfusion as an exposure source to heavy metals and encourages informed selection of blood units for transfusion to vulnerable groups.
Collapse
Affiliation(s)
- Narges Hadjesfandiari
- Centre for Innovation, Canadian Blood Services, Vancouver, British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine Serrano
- Centre for Innovation, Canadian Blood Services, Vancouver, British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tomas Richardson-Sanchez
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vilte E Barakauskas
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's and Women's Hospital, Vancouver, British Columbia, Canada
| | - Qi-Long Yi
- Donor & Clinical Services, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Michael Murphy
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dana V Devine
- Centre for Innovation, Canadian Blood Services, Vancouver, British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Nemkov T, Key A, Stephenson D, Earley EJ, Keele GR, Hay A, Amireault P, Casimir M, Dussiot M, Dzieciatkowska M, Reisz JA, Deng X, Stone M, Kleinman S, Spitalnik SL, Hansen KC, Norris PJ, Churchill GA, Busch MP, Roubinian N, Page GP, Zimring JC, Arduini A, D’Alessandro A. Genetic regulation of carnitine metabolism controls lipid damage repair and aging RBC hemolysis in vivo and in vitro. Blood 2024; 143:2517-2533. [PMID: 38513237 PMCID: PMC11208298 DOI: 10.1182/blood.2024023983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
ABSTRACT Recent large-scale multiomics studies suggest that genetic factors influence the chemical individuality of donated blood. To examine this concept, we performed metabolomics analyses of 643 blood units from volunteers who donated units of packed red blood cells (RBCs) on 2 separate occasions. These analyses identified carnitine metabolism as the most reproducible pathway across multiple donations from the same donor. We also measured l-carnitine and acyl-carnitines in 13 091 packed RBC units from donors in the Recipient Epidemiology and Donor Evaluation study. Genome-wide association studies against 879 000 polymorphisms identified critical genetic factors contributing to interdonor heterogeneity in end-of-storage carnitine levels, including common nonsynonymous polymorphisms in genes encoding carnitine transporters (SLC22A16, SLC22A5, and SLC16A9); carnitine synthesis (FLVCR1 and MTDH) and metabolism (CPT1A, CPT2, CRAT, and ACSS2), and carnitine-dependent repair of lipids oxidized by ALOX5. Significant associations between genetic polymorphisms on SLC22 transporters and carnitine pools in stored RBCs were validated in 525 Diversity Outbred mice. Donors carrying 2 alleles of the rs12210538 SLC22A16 single-nucleotide polymorphism exhibited the lowest l-carnitine levels, significant elevations of in vitro hemolysis, and the highest degree of vesiculation, accompanied by increases in lipid peroxidation markers. Separation of RBCs by age, via in vivo biotinylation in mice, and Percoll density gradients of human RBCs, showed age-dependent depletions of l-carnitine and acyl-carnitine pools, accompanied by progressive failure of the reacylation process after chemically induced membrane lipid damage. Supplementation of stored murine RBCs with l-carnitine boosted posttransfusion recovery, suggesting this could represent a viable strategy to improve RBC storage quality.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
- Omix Technologies Inc, Aurora, CO
| | - Alicia Key
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Eric J. Earley
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC
| | - Gregory R. Keele
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC
- The Jackson Laboratory, Bar Harbor, ME
| | - Ariel Hay
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Pascal Amireault
- Université Paris Cité et Université des Antilles, INSERM, Biologie Intégrée du Globule Rouge, Paris, France
- Université Paris Cité, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Paris, France
| | - Madeleine Casimir
- Université Paris Cité et Université des Antilles, INSERM, Biologie Intégrée du Globule Rouge, Paris, France
- Université Paris Cité, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Paris, France
| | - Michaël Dussiot
- Université Paris Cité et Université des Antilles, INSERM, Biologie Intégrée du Globule Rouge, Paris, France
- Université Paris Cité, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Paris, France
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Steve Kleinman
- The University of British Columbia, Victoria, BC, Canada
| | | | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Philip J. Norris
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | | | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Nareg Roubinian
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
- Kaiser Permanente Northern California Division of Research, Oakland, CA
| | - Grier P. Page
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC
| | - James C. Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Arduino Arduini
- Department of Research and Development, CoreQuest Sagl, Lugano, Switzerland
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
- Omix Technologies Inc, Aurora, CO
| |
Collapse
|
16
|
Thomas TA, Francis RO, Zimring JC, Kao JP, Nemkov T, Spitalnik SL. The Role of Ergothioneine in Red Blood Cell Biology: A Review and Perspective. Antioxidants (Basel) 2024; 13:717. [PMID: 38929156 PMCID: PMC11200860 DOI: 10.3390/antiox13060717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress can damage tissues and cells, and their resilience or susceptibility depends on the robustness of their antioxidant mechanisms. The latter include small molecules, proteins, and enzymes, which are linked together in metabolic pathways. Red blood cells are particularly susceptible to oxidative stress due to their large number of hemoglobin molecules, which can undergo auto-oxidation. This yields reactive oxygen species that participate in Fenton chemistry, ultimately damaging their membranes and cytosolic constituents. Fortunately, red blood cells contain robust antioxidant systems to enable them to circulate and perform their physiological functions, particularly delivering oxygen and removing carbon dioxide. Nonetheless, if red blood cells have insufficient antioxidant reserves (e.g., due to genetics, diet, disease, or toxin exposure), this can induce hemolysis in vivo or enhance susceptibility to a "storage lesion" in vitro, when blood donations are refrigerator-stored for transfusion purposes. Ergothioneine, a small molecule not synthesized by mammals, is obtained only through the diet. It is absorbed from the gut and enters cells using a highly specific transporter (i.e., SLC22A4). Certain cells and tissues, particularly red blood cells, contain high ergothioneine levels. Although no deficiency-related disease has been identified, evidence suggests ergothioneine may be a beneficial "nutraceutical." Given the requirements of red blood cells to resist oxidative stress and their high ergothioneine content, this review discusses ergothioneine's potential importance in protecting these cells and identifies knowledge gaps regarding its relevance in enhancing red blood cell circulatory, storage, and transfusion quality.
Collapse
Affiliation(s)
- Tiffany A. Thomas
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (T.A.T.)
| | - Richard O. Francis
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (T.A.T.)
| | - James C. Zimring
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Joseph P. Kao
- Center for Biomedical Engineering, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Denver, CO 80203, USA
| | - Steven L. Spitalnik
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (T.A.T.)
| |
Collapse
|
17
|
D'Alessandro A, Keele GR, Hay A, Nemkov T, Earley EJ, Stephenson D, Vincent M, Deng X, Stone M, Dzieciatkowska M, Hansen KC, Kleinman S, Spitalnik SL, Roubinian NH, Norris PJ, Busch MP, Page GP, Stockwell BR, Churchill GA, Zimring JC. Ferroptosis regulates hemolysis in stored murine and human red blood cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598512. [PMID: 38915523 PMCID: PMC11195277 DOI: 10.1101/2024.06.11.598512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Red blood cell (RBC) metabolism regulates hemolysis during aging in vivo and in the blood bank. Here, we leveraged a diversity outbred mouse population to map the genetic drivers of fresh/stored RBC metabolism and extravascular hemolysis upon storage and transfusion in 350 mice. We identify the ferrireductase Steap3 as a critical regulator of a ferroptosis-like process of lipid peroxidation. Steap3 polymorphisms were associated with RBC iron content, in vitro hemolysis, and in vivo extravascular hemolysis both in mice and 13,091 blood donors from the Recipient Epidemiology and Donor evaluation Study. Using metabolite Quantitative Trait Loci analyses, we identified a network of gene products (FADS1/2, EPHX2 and LPCAT3) - enriched in donors of African descent - associated with oxylipin metabolism in stored human RBCs and related to Steap3 or its transcriptional regulator, the tumor protein TP53. Genetic variants were associated with lower in vivo hemolysis in thousands of single-unit transfusion recipients. Highlights Steap3 regulates lipid peroxidation and extravascular hemolysis in 350 diversity outbred miceSteap3 SNPs are linked to RBC iron, hemolysis, vesiculation in 13,091 blood donorsmQTL analyses of oxylipins identified ferroptosis-related gene products FADS1/2, EPHX2, LPCAT3Ferroptosis markers are linked to hemoglobin increments in transfusion recipients. Graphical abstract
Collapse
|
18
|
Anastasiadi AT, Arvaniti VZ, Hudson KE, Kriebardis AG, Stathopoulos C, D’Alessandro A, Spitalnik SL, Tzounakas VL. Exploring unconventional attributes of red blood cells and their potential applications in biomedicine. Protein Cell 2024; 15:315-330. [PMID: 38270470 PMCID: PMC11074998 DOI: 10.1093/procel/pwae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Affiliation(s)
- Alkmini T Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Vasiliki-Zoi Arvaniti
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece
| | | | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 13001 Aurora, CO, USA
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Vassilis L Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
19
|
Miglio A, Rocconi F, Cremoni V, D'Alessandro A, Reisz JA, Maslanka M, Lacroix IS, Di Francesco D, Antognoni MT, Di Tommaso M. Effect of leukoreduction on the omics phenotypes of canine packed red blood cells during refrigerated storage. J Vet Intern Med 2024; 38:1498-1511. [PMID: 38553798 PMCID: PMC11099828 DOI: 10.1111/jvim.17031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/16/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Red blood cell (RBC) storage promotes biochemical and morphological alterations, collectively referred to as storage lesions (SLs). Studies in humans have identified leukoreduction (LR) as a critical processing step that mitigates SLs. To date no study has evaluated the impact of LR on metabolic SLs in canine blood units using omics technologies. OBJECTIVE Compare the lipid and metabolic profiles of canine packed RBC (pRBC) units as a function of LR in fresh and stored refrigerated (up to 42 days) units. ANIMALS Packed RBC units were obtained from 8 donor dogs enrolled at 2 different Italian veterinary blood banks. STUDY DESIGN AND METHODS Observational study. A volume of 450 mL of whole blood was collected using Citrate-Phosphate-Dextrose-Saline-Adenine-Glucose-Mannitol (CPD-SAGM) transfusion bags with a LR filter to produce 2 pRBC units for each donor, without (nLR-pRBC) and with (LR-pRBC) LR. Units were stored in the blood bank at 4 ± 2°C. Sterile weekly samples were obtained from each unit for omics analyses. RESULTS A significant effect of LR on fresh and stored RBC metabolic phenotypes was observed. The nLR-pRBC were characterized by higher concentrations of free short and medium-chain fatty acids, carboxylic acids (pyruvate, lactate), and amino acids (arginine, cystine). The LR-pRBC had higher concentrations of glycolytic metabolites, high energy phosphate compounds (adenosine triphosphate [ATP]), and antioxidant metabolites (pentose phosphate, total glutathione). CONCLUSION AND CLINICAL IMPORTANCE Leukoreduction decreases the metabolic SLs of canine pRBC by preserving energy metabolism and preventing oxidative lesions.
Collapse
Affiliation(s)
- Arianna Miglio
- Department of Veterinary MedicineUniversity of Perugia, Via San Costanzo 4Perugia 06126Italy
| | - Francesca Rocconi
- Department of Veterinary MedicineVeterinary University Hospital, University of Teramo, Località Piano D'AccioTeramo 64100Italy
| | - Valentina Cremoni
- Department of Veterinary MedicineUniversity of Perugia, Via San Costanzo 4Perugia 06126Italy
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Denver – Anschutz Medical CampusAuroraColoradoUSA
| | - Julie A. Reisz
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Denver – Anschutz Medical CampusAuroraColoradoUSA
| | - Mark Maslanka
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Denver – Anschutz Medical CampusAuroraColoradoUSA
| | - Ian S. Lacroix
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Denver – Anschutz Medical CampusAuroraColoradoUSA
| | - Daniela Di Francesco
- Department of Veterinary MedicineUniversity of Perugia, Via San Costanzo 4Perugia 06126Italy
| | - Maria T. Antognoni
- Department of Veterinary MedicineUniversity of Perugia, Via San Costanzo 4Perugia 06126Italy
| | - Morena Di Tommaso
- Department of Veterinary MedicineVeterinary University Hospital, University of Teramo, Località Piano D'AccioTeramo 64100Italy
| |
Collapse
|
20
|
Miglio A, Rocconi F, Cremonini V, D'Alessandro A, Reisz JA, Maslanka M, Lacroix IS, Tiscar G, Di Tommaso M, Antognoni MT. Effect of leukoreduction on the metabolism of equine packed red blood cells during refrigerated storage. J Vet Intern Med 2024; 38:1185-1195. [PMID: 38406982 PMCID: PMC10937500 DOI: 10.1111/jvim.17015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Understanding of the biochemical and morphological lesions associated with storage of equine blood is limited. OBJECTIVE To demonstrate the temporal sequences of lipid and metabolic profiles of equine fresh and stored (up to 42 days) and leukoreduced packed red blood cells (LR-pRBC) and non-leukoreduced packed RBC (nLR-pRBC). ANIMALS Packed RBC units were obtained from 6 healthy blood donor horses enrolled in 2 blood banks. METHODS Observational study. Whole blood was collected from each donor using transfusion bags with a LR filter. Leukoreduction pRBC and nLR-pRBC units were obtained and stored at 4°C for up 42 days. Sterile weekly sampling was performed from each unit for analyses. RESULTS Red blood cells and supernatants progressively accumulated lactate products while high-energy phosphate compounds (adenosine triphosphate and 2,3-Diphosphoglycerate) declined. Hypoxanthine, xanthine, and free fatty acids accumulated in stored RBC and supernatants. These lesions were exacerbated in non-LR-pRBC. CONCLUSION AND CLINICAL IMPORTANCE Leukoreduction has a beneficial effect on RBC energy and redox metabolism of equine pRBC and the onset and severity of the metabolic storage lesions RBC.
Collapse
Affiliation(s)
- Arianna Miglio
- Department of Veterinary MedicineUniversity of PerugiaPerugiaItaly
| | - Francesca Rocconi
- Department of Veterinary MedicineVeterinary University Hospital, University of TeramoTeramoItaly
| | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Denver—Anschutz Medical CampusAuroraColoradoUSA
| | - Julie A. Reisz
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Denver—Anschutz Medical CampusAuroraColoradoUSA
| | - Mark Maslanka
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Denver—Anschutz Medical CampusAuroraColoradoUSA
| | - Ian S. Lacroix
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Denver—Anschutz Medical CampusAuroraColoradoUSA
| | - Giorgio Tiscar
- Department of Veterinary MedicineVeterinary University Hospital, University of TeramoTeramoItaly
| | - Morena Di Tommaso
- Department of Veterinary MedicineVeterinary University Hospital, University of TeramoTeramoItaly
| | | |
Collapse
|
21
|
Kim YK, Kim YR, Wells KL, Sarbaugh D, Guney M, Tsai CF, Zee T, Karsenty G, Nakayasu ES, Sussel L. PTPN2 Regulates Metabolic Flux to Affect β-Cell Susceptibility to Inflammatory Stress. Diabetes 2024; 73:434-447. [PMID: 38015772 PMCID: PMC10882156 DOI: 10.2337/db23-0355] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023]
Abstract
Protein tyrosine phosphatase N2 (PTPN2) is a type 1 diabetes (T1D) candidate gene identified from human genome-wide association studies. PTPN2 is highly expressed in human and murine islets and becomes elevated upon inflammation and models of T1D, suggesting that PTPN2 may be important for β-cell survival in the context of T1D. To test whether PTPN2 contributed to β-cell dysfunction in an inflammatory environment, we generated a β-cell-specific deletion of Ptpn2 in mice (PTPN2-β knockout [βKO]). Whereas unstressed animals exhibited normal metabolic profiles, low- and high-dose streptozotocin-treated PTPN2-βKO mice displayed hyperglycemia and accelerated death, respectively. Furthermore, cytokine-treated Ptpn2-KO islets resulted in impaired glucose-stimulated insulin secretion, mitochondrial defects, and reduced glucose-induced metabolic flux, suggesting β-cells lacking Ptpn2 are more susceptible to inflammatory stress associated with T1D due to maladaptive metabolic fitness. Consistent with the phenotype, proteomic analysis identified an important metabolic enzyme, ATP-citrate lyase, as a novel PTPN2 substrate. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Yong Kyung Kim
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Youngjung Rachel Kim
- Department of Genetics and Development, Columbia University Irving Medical Campus, New York, NY
| | - Kristen L. Wells
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Dylan Sarbaugh
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Michelle Guney
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Tiffany Zee
- Department of Genetics and Development, Columbia University Irving Medical Campus, New York, NY
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University Irving Medical Campus, New York, NY
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
- Department of Genetics and Development, Columbia University Irving Medical Campus, New York, NY
| |
Collapse
|
22
|
Nemkov T, Stephenson D, Erickson C, Dzieciatkowska M, Key A, Moore A, Earley EJ, Page GP, Lacroix IS, Stone M, Deng X, Raife T, Kleinman S, Zimring JC, Roubinian N, Hansen KC, Busch MP, Norris PJ, D’Alessandro A. Regulation of kynurenine metabolism by blood donor genetics and biology impacts red cell hemolysis in vitro and in vivo. Blood 2024; 143:456-472. [PMID: 37976448 PMCID: PMC10862365 DOI: 10.1182/blood.2023022052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023] Open
Abstract
ABSTRACT In the field of transfusion medicine, the clinical relevance of the metabolic markers of the red blood cell (RBC) storage lesion is incompletely understood. Here, we performed metabolomics of RBC units from 643 donors enrolled in the Recipient Epidemiology and Donor Evaluation Study, REDS RBC Omics. These units were tested on storage days 10, 23, and 42 for a total of 1929 samples and also characterized for end-of-storage hemolytic propensity after oxidative and osmotic insults. Our results indicate that the metabolic markers of the storage lesion poorly correlated with hemolytic propensity. In contrast, kynurenine was not affected by storage duration and was identified as the top predictor of osmotic fragility. RBC kynurenine levels were affected by donor age and body mass index and were reproducible within the same donor across multiple donations from 2 to 12 months apart. To delve into the genetic underpinnings of kynurenine levels in stored RBCs, we thus tested kynurenine levels in stored RBCs on day 42 from 13 091 donors from the REDS RBC Omics study, a population that was also genotyped for 879 000 single nucleotide polymorphisms. Through a metabolite quantitative trait loci analysis, we identified polymorphisms in SLC7A5, ATXN2, and a series of rate-limiting enzymes (eg, kynurenine monooxygenase, indoleamine 2,3-dioxygenase, and tryptophan dioxygenase) in the kynurenine pathway as critical factors affecting RBC kynurenine levels. By interrogating a donor-recipient linkage vein-to-vein database, we then report that SLC7A5 polymorphisms are also associated with changes in hemoglobin and bilirubin levels, suggestive of in vivo hemolysis in 4470 individuals who were critically ill and receiving single-unit transfusions.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO
- Omix Technologies Inc, Aurora, CO
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO
| | - Christopher Erickson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO
| | - Alicia Key
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO
| | - Amy Moore
- Research Triangle Institute International, Atlanta, GA
| | | | - Grier P. Page
- Research Triangle Institute International, Atlanta, GA
| | - Ian S. Lacroix
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Thomas Raife
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Steven Kleinman
- Department of Pathology, University of British Columbia, Victoria, BC, Canada
| | - James C. Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Nareg Roubinian
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
- Kaiser Permanente Northern California Division of Research, Oakland, CA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Philip J. Norris
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO
- Omix Technologies Inc, Aurora, CO
| |
Collapse
|
23
|
D'Alessandro A, Nouraie SM, Zhang Y, Cendali F, Gamboni F, Reisz JA, Zhang X, Bartsch KW, Galbraith MD, Espinosa JM, Gordeuk VR, Gladwin MT. Metabolic signatures of cardiorenal dysfunction in plasma from sickle cell patients as a function of therapeutic transfusion and hydroxyurea treatment. Haematologica 2023; 108:3418-3432. [PMID: 37439373 PMCID: PMC10690926 DOI: 10.3324/haematol.2023.283288] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
Metabolomics studies in sickle cell disease (SCD) have been so far limited to tens of samples, owing to technical and experimental limitations. To overcome these limitations, we performed plasma metabolomics analyses on 596 samples from patients with SCD enrolled in the WALK-PHaSST study (clinicaltrials gov. Identifier: NCT00492531). Clinical covariates informed the biological interpretation of metabolomics data, including genotypes (hemoglobin [Hb] SS, hemoglobin SC), history of recent transfusion (HbA%), response to hydroxyurea treatment (fetal Hb%). We investigated metabolic correlates to the degree of intravascular hemolysis, cardiorenal function, as determined by tricuspid regurgitation velocity (TRV), estimated glomerular filtration rate (eGFR), and overall hazard ratio (unadjusted or adjusted by age). Recent transfusion events or hydroxyurea treatment were associated with elevation in plasma-free fatty acids and decreases in acyl-carnitines, urate, kynurenine, indoles, carboxylic acids, and glycine- or taurine-conjugated bile acids. High levels of these metabolites, along with low levels of plasma S1P and L-arginine were identified as top markers of hemolysis, cardiorenal function (TRV, eGFR), and overall hazard ratio. We thus uploaded all omics and clinical data on a novel online portal that we used to identify a potential mechanism of dysregulated red cell S1P synthesis and export as a contributor to the more severe clinical manifestations in patients with the SS genotype compared to SC. In conclusion, plasma metabolic signatures - including low S1P, arginine and elevated kynurenine, acyl-carnitines and bile acids - are associated with clinical manifestation and therapeutic efficacy in SCD patients, suggesting new avenues for metabolic interventions in this patient population.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine - Division of Hematology, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO.
| | - S Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pennsylvania
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pennsylvania
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO
| | - Xu Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Kyle W Bartsch
- Linda Crnic Institute for Down Syndrome, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus
| | - Matthew D Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus; School of Medicine Information Services, University of Colorado Anschutz Medical Campus
| | - Victor R Gordeuk
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Mark T Gladwin
- University of Maryland School of Medicine, University of Maryland, Baltimore, MD.
| |
Collapse
|
24
|
Salem A, Patel RM. Blood Donor Sex and Outcomes in Transfused Infants. Clin Perinatol 2023; 50:805-820. [PMID: 37866849 PMCID: PMC10688602 DOI: 10.1016/j.clp.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Red blood cell transfusion is common in neonatal intensive care. Multiple trials have evaluated different thresholds for when to administer red blood cell transfusion. In contrast, there has been less focus on studies of the characteristics of red blood cells transfused into neonates. In this review, the authors summarize the emerging literature on the potential impact of the sex of blood donors on outcomes in transfused neonates using a systematic search strategy. The authors review the uncertainty generated from studies with conflicting findings and discuss considerations regarding the impact of blood donor sex and other characteristics on neonatal outcomes.
Collapse
Affiliation(s)
- Anand Salem
- Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, 2015 Uppergate Drive Northeast, Atlanta, GA 30322, USA
| | - Ravi Mangal Patel
- Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, 2015 Uppergate Drive Northeast, Atlanta, GA 30322, USA.
| |
Collapse
|
25
|
Key A, Haiman Z, Palsson BO, D’Alessandro A. Modeling Red Blood Cell Metabolism in the Omics Era. Metabolites 2023; 13:1145. [PMID: 37999241 PMCID: PMC10673375 DOI: 10.3390/metabo13111145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Red blood cells (RBCs) are abundant (more than 80% of the total cells in the human body), yet relatively simple, as they lack nuclei and organelles, including mitochondria. Since the earliest days of biochemistry, the accessibility of blood and RBCs made them an ideal matrix for the characterization of metabolism. Because of this, investigations into RBC metabolism are of extreme relevance for research and diagnostic purposes in scientific and clinical endeavors. The relative simplicity of RBCs has made them an eligible model for the development of reconstruction maps of eukaryotic cell metabolism since the early days of systems biology. Computational models hold the potential to deepen knowledge of RBC metabolism, but also and foremost to predict in silico RBC metabolic behaviors in response to environmental stimuli. Here, we review now classic concepts on RBC metabolism, prior work in systems biology of unicellular organisms, and how this work paved the way for the development of reconstruction models of RBC metabolism. Translationally, we discuss how the fields of metabolomics and systems biology have generated evidence to advance our understanding of the RBC storage lesion, a process of decline in storage quality that impacts over a hundred million blood units transfused every year.
Collapse
Affiliation(s)
- Alicia Key
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Zachary Haiman
- Department of Bioengineering, University of California, San Diego, CA 92093, USA (B.O.P.)
- Bioinformatics and Systems Biology Program, University of California, San Diego, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, CA 92161, USA
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, CA 92093, USA (B.O.P.)
- Bioinformatics and Systems Biology Program, University of California, San Diego, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, CA 92161, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA;
| |
Collapse
|
26
|
D'Alessandro A, Hod EA. Red Blood Cell Storage: From Genome to Exposome Towards Personalized Transfusion Medicine. Transfus Med Rev 2023; 37:150750. [PMID: 37574398 PMCID: PMC10834861 DOI: 10.1016/j.tmrv.2023.150750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 08/15/2023]
Abstract
Over the last decade, the introduction of omics technologies-especially high-throughput genomics and metabolomics-has contributed significantly to our understanding of the role of donor genetics and nongenetic determinants of red blood cell storage biology. Here we briefly review the main advances in these areas, to the extent these contributed to the appreciation of the impact of donor sex, age, ethnicity, but also processing strategies and donor environmental, dietary or other exposures - the so-called exposome-to the onset and severity of the storage lesion. We review recent advances on the role of genetically encoded polymorphisms on red cell storage biology, and relate these findings with parameters of storage quality and post-transfusion efficacy, such as hemolysis, post-transfusion intra- and extravascular hemolysis and hemoglobin increments. Finally, we suggest that the combination of these novel technologies have the potential to drive further developments towards personalized (or precision) transfusion medicine approaches.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Eldad A Hod
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
27
|
Chen C, Xie T, Zhang Y, Wang Y, Yu F, Lin L, Zhang W, Brown BC, Zhang X, Kellems RE, D'Alessandro A, Xia Y. Erythrocyte ENT1-AMPD3 Axis is an Essential Purinergic Hypoxia Sensor and Energy Regulator Combating CKD in a Mouse Model. J Am Soc Nephrol 2023; 34:1647-1671. [PMID: 37725437 PMCID: PMC10561773 DOI: 10.1681/asn.0000000000000195] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/05/2023] [Indexed: 09/21/2023] Open
Abstract
SIGNIFICANCE STATEMENT Hypoxia drives kidney damage and progression of CKD. Although erythrocytes respond rapidly to hypoxia, their role and the specific molecules sensing and responding to hypoxia in CKD remain unclear. In this study, we demonstrated in a mouse model that erythrocyte ENT1-AMPD3 is a master energy regulator of the intracellular purinergic hypoxic compensatory response that promotes rapid energy supply from extracellular adenosine, eAMPK-dependent metabolic reprogramming, and O 2 delivery, which combat renal hypoxia and progression of CKD. ENT1-AMPD3-AMPK-BPGM comprise a group of circulating erythroid-specific biomarkers, providing early diagnostic and novel therapeutic targets for CKD. BACKGROUND Hypoxia drives kidney damage and progression of CKD. Although erythrocytes respond rapidly to hypoxia, their role and the specific molecules sensing and responding to hypoxia in CKD remain unclear. METHODS Mice with an erythrocyte-specific deficiency in equilibrative nucleoside transporter 1 ( eEnt1-/- ) and a global deficiency in AMP deaminase 3 ( Ampd3-/- ) were generated to define their function in two independent CKD models, including angiotensin II (Ang II) infusion and unilateral ureteral obstruction (UUO). Unbiased metabolomics, isotopic adenosine flux, and various biochemical and cell culture analyses coupled with genetic studies were performed. Translational studies in patients with CKD and cultured human erythrocytes examined the role of ENT1 and AMPD3 in erythrocyte function and metabolism. RESULTS eEnt1-/- mice display severe renal hypoxia, kidney damage, and fibrosis in both CKD models. The loss of eENT1-mediated adenosine uptake reduces intracellular AMP and thus abolishes the activation of AMPK α and bisphosphoglycerate mutase (BPGM). This results in reduced 2,3-bisphosphoglycerate and glutathione, leading to overwhelming oxidative stress in eEnt1-/- mice. Excess reactive oxygen species (ROS) activates AMPD3, resulting in metabolic reprogramming and reduced O 2 delivery, leading to severe renal hypoxia in eEnt1-/- mice. By contrast, genetic ablation of AMPD3 preserves the erythrocyte adenine nucleotide pool, inducing AMPK-BPGM activation, O 2 delivery, and antioxidative stress capacity, which protect against Ang II-induced renal hypoxia, damage, and CKD progression. Translational studies recapitulated the findings in mice. CONCLUSION eENT1-AMPD3, two highly enriched erythrocyte purinergic components that sense hypoxia, promote eAMPK-BPGM-dependent metabolic reprogramming, O 2 delivery, energy supply, and antioxidative stress capacity, which mitigates renal hypoxia and CKD progression.
Collapse
Affiliation(s)
- Changhan Chen
- National Medical Metabolomics International Collaborative Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - TingTing Xie
- National Medical Metabolomics International Collaborative Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of General Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yujin Zhang
- National Medical Metabolomics International Collaborative Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiyan Wang
- National Medical Metabolomics International Collaborative Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Yu
- National Medical Metabolomics International Collaborative Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lizhen Lin
- National Medical Metabolomics International Collaborative Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiru Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of General Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Benjamin C. Brown
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rodney E. Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School at Houston, Houston, Texas
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado
| | - Yang Xia
- National Medical Metabolomics International Collaborative Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
28
|
Palha MS, Legenzov EA, Lamb DR, Zimring JC, Buehler PW, Kao JPY. Superoxide measurement as a novel probe of red blood cell storage quality. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2023; 21:422-427. [PMID: 36580028 PMCID: PMC10497384 DOI: 10.2450/2022.0246-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/30/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Mitasha S. Palha
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Eric A. Legenzov
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Derek R. Lamb
- University of Maryland, School of Medicine, Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, Baltimore, MD, United States of America
| | - James C. Zimring
- University of Virginia School of Medicine, Department of Pathology and Carter Immunology Center, Charlottesville, VA, United States of America
| | - Paul W. Buehler
- University of Maryland, School of Medicine, Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, Baltimore, MD, United States of America
- University of Maryland, School of Medicine, Department of Pathology, Baltimore, MD, United States of America
| | - Joseph P. Y. Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
29
|
Dziewulska KH, Reisz JA, Hay AM, D'Alessandro A, Zimring JC. Hemolysis and Metabolic Lesion of G6PD Deficient RBCs in Response to Dapsone Hydroxylamine in a Humanized Mouse Model. J Pharmacol Exp Ther 2023; 386:323-330. [PMID: 37348965 DOI: 10.1124/jpet.123.001634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023] Open
Abstract
Glucose 6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in humans (∼5% of all individuals). G6PD deficiency (G6PDd) is caused by an unstable enzyme and manifests most strongly in red blood cells (RBCs) that cannot synthesize new protein. G6PDd RBCs have decreased ability to mitigate oxidative stress due to lower levels of NADPH, as a result of a defective pentose phosphate pathway. Accordingly, oxidative drugs can result in hemolysis and potentially life-threatening anemia in G6PDd patients. Dapsone is a highly useful drug for treating a variety of pathologies but oral dapsone is contraindicated in patients with G6PDd due to oxidative stress-induced anemia. Dapsone must be metabolized to become hemolytic. Dapsone hydroxylamine (DDS-NOH) has been implicated as the major hemolytic dapsone metabolite, but this has never been tested on G6PDd RBCs with in vivo circulation as a metric. Moreover, the metabolic lesion caused by DDS-NOH is unknown. We report that RBCs from a novel humanized mouse expressing the human Mediterranean G6PD-deficient variant have increased sensitivity to DDS-NOH. In addition, we show that DDS-NOH damaged RBCs can either undergo sequestration (with subsequent return to circulation) or permanent removal in a dose-dependent manner, with G6PD-sufficient RBCs mostly being sequestered, and G6PDd RBCs mostly being permanently removed. Finally, we characterize the metabolic lesion caused by DDS-NOH in G6PDd RBCs and report a blockage in terminal glycolysis resulting in a cellular accumulation of pyruvate. These findings confirm DDS-NOH as a hemolytic metabolite and elucidate metabolic effects of DDS-NOH on G6PDd RBCs. SIGNIFICANCE STATEMENT: These findings confirm that dapsone hydroxylamine, an active metabolite of dapsone, causes in vivo clearance of murine red blood cells expressing a human variant of deficient glucose 6-phosphate dehydrogenase (G6PD), an enzymopathy that affects half a billion individuals (G6PD deficiency). Both cellular mechanisms of clearance (sequestration versus destruction) and specific metabolic disturbances caused by dapsone hydroxylamine are elucidated, providing novel mechanistic understanding.
Collapse
Affiliation(s)
- Karolina H Dziewulska
- University of Virginia School of Medicine, Department of Pathology, Charlottesville, Virginia (K.H.D., A.M.H., J.C.Z.) and
- University of Colorado Anschutz Medical Campus, Department of Biochemistry and Molecular Genetics, Aurora, Colorado (J.A.R., A.D.)
| | - Julie A Reisz
- University of Virginia School of Medicine, Department of Pathology, Charlottesville, Virginia (K.H.D., A.M.H., J.C.Z.) and
- University of Colorado Anschutz Medical Campus, Department of Biochemistry and Molecular Genetics, Aurora, Colorado (J.A.R., A.D.)
| | - Ariel M Hay
- University of Virginia School of Medicine, Department of Pathology, Charlottesville, Virginia (K.H.D., A.M.H., J.C.Z.) and
- University of Colorado Anschutz Medical Campus, Department of Biochemistry and Molecular Genetics, Aurora, Colorado (J.A.R., A.D.)
| | - Angelo D'Alessandro
- University of Virginia School of Medicine, Department of Pathology, Charlottesville, Virginia (K.H.D., A.M.H., J.C.Z.) and
- University of Colorado Anschutz Medical Campus, Department of Biochemistry and Molecular Genetics, Aurora, Colorado (J.A.R., A.D.)
| | - James C Zimring
- University of Virginia School of Medicine, Department of Pathology, Charlottesville, Virginia (K.H.D., A.M.H., J.C.Z.) and
- University of Colorado Anschutz Medical Campus, Department of Biochemistry and Molecular Genetics, Aurora, Colorado (J.A.R., A.D.)
| |
Collapse
|
30
|
Isiksacan Z, D’Alessandro A, Wolf SM, McKenna DH, Tessier SN, Kucukal E, Gokaltun AA, William N, Sandlin RD, Bischof J, Mohandas N, Busch MP, Elbuken C, Gurkan UA, Toner M, Acker JP, Yarmush ML, Usta OB. Assessment of stored red blood cells through lab-on-a-chip technologies for precision transfusion medicine. Proc Natl Acad Sci U S A 2023; 120:e2115616120. [PMID: 37494421 PMCID: PMC10410732 DOI: 10.1073/pnas.2115616120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
Transfusion of red blood cells (RBCs) is one of the most valuable and widespread treatments in modern medicine. Lifesaving RBC transfusions are facilitated by the cold storage of RBC units in blood banks worldwide. Currently, RBC storage and subsequent transfusion practices are performed using simplistic workflows. More specifically, most blood banks follow the "first-in-first-out" principle to avoid wastage, whereas most healthcare providers prefer the "last-in-first-out" approach simply favoring chronologically younger RBCs. Neither approach addresses recent advances through -omics showing that stored RBC quality is highly variable depending on donor-, time-, and processing-specific factors. Thus, it is time to rethink our workflows in transfusion medicine taking advantage of novel technologies to perform RBC quality assessment. We imagine a future where lab-on-a-chip technologies utilize novel predictive markers of RBC quality identified by -omics and machine learning to usher in a new era of safer and precise transfusion medicine.
Collapse
Affiliation(s)
- Ziya Isiksacan
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO80045
| | - Susan M. Wolf
- Law School, Medical School, Consortium on Law and Values in Health, Environment & the Life Sciences, University of Minnesota, Minneapolis, MN55455
| | - David H. McKenna
- Division of Transfusion Medicine, Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN55455
| | - Shannon N. Tessier
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
| | | | - A. Aslihan Gokaltun
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
- Department of Chemical Engineering, Hacettepe University, Ankara06532, Turkey
| | - Nishaka William
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, ABT6G 2R8, Canada
| | - Rebecca D. Sandlin
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | - John Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN55455
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| | | | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA94105
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA94105
| | - Caglar Elbuken
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara06800, Turkey
- Faculty of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Oulu, 90014Oulu, Finland
- Valtion Teknillinen Tutkimuskeskus Technical Research Centre of Finland Ltd., 90570Oulu, Finland
| | - Umut A. Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH44106
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH44106
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH44106
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
| | - Jason P. Acker
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, ABT6G 2R8, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, ABT6G 2R8, Canada
| | - Martin L. Yarmush
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ08854
| | - O. Berk Usta
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
| |
Collapse
|
31
|
D’Alessandro A, Anastasiadi AT, Tzounakas VL, Nemkov T, Reisz JA, Kriebardis AG, Zimring JC, Spitalnik SL, Busch MP. Red Blood Cell Metabolism In Vivo and In Vitro. Metabolites 2023; 13:793. [PMID: 37512500 PMCID: PMC10386156 DOI: 10.3390/metabo13070793] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Red blood cells (RBC) are the most abundant cell in the human body, with a central role in oxygen transport and its delivery to tissues. However, omics technologies recently revealed the unanticipated complexity of the RBC proteome and metabolome, paving the way for a reinterpretation of the mechanisms by which RBC metabolism regulates systems biology beyond oxygen transport. The new data and analytical tools also informed the dissection of the changes that RBCs undergo during refrigerated storage under blood bank conditions, a logistic necessity that makes >100 million units available for life-saving transfusions every year worldwide. In this narrative review, we summarize the last decade of advances in the field of RBC metabolism in vivo and in the blood bank in vitro, a narrative largely influenced by the authors' own journeys in this field. We hope that this review will stimulate further research in this interesting and medically important area or, at least, serve as a testament to our fascination with this simple, yet complex, cell.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Alkmini T. Anastasiadi
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (A.T.A.); (A.G.K.)
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Anastsios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (A.T.A.); (A.G.K.)
| | - James C. Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA 22903, USA;
| | | | | |
Collapse
|
32
|
D'Alessandro A. Red Blood Cell Omics and Machine Learning in Transfusion Medicine: Singularity Is Near. Transfus Med Hemother 2023; 50:174-183. [PMID: 37434999 PMCID: PMC10331163 DOI: 10.1159/000529744] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/14/2023] [Indexed: 07/30/2023] Open
Abstract
Background Blood transfusion is a life-saving intervention for millions of recipients worldwide. Over the last 15 years, the advent of high-throughput, affordable omics technologies - including genomics, proteomics, lipidomics, and metabolomics - has allowed transfusion medicine to revisit the biology of blood donors, stored blood products, and transfusion recipients. Summary Omics approaches have shed light on the genetic and non-genetic factors (environmental or other exposures) impacting the quality of stored blood products and efficacy of transfusion events, based on the current Food and Drug Administration guidelines (e.g., hemolysis and post-transfusion recovery for stored red blood cells). As a treasure trove of data accumulates, the implementation of machine learning approaches promises to revolutionize the field of transfusion medicine, not only by advancing basic science. Indeed, computational strategies have already been used to perform high-content screenings of red blood cell morphology in microfluidic devices, generate in silico models of erythrocyte membrane to predict deformability and bending rigidity, or design systems biology maps of the red blood cell metabolome to drive the development of novel storage additives. Key Message In the near future, high-throughput testing of donor genomes via precision transfusion medicine arrays and metabolomics of all donated products will be able to inform the development and implementation of machine learning strategies that match, from vein to vein, donors, optimal processing strategies (additives, shelf life), and recipients, realizing the promise of personalized transfusion medicine.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
33
|
Wahl D, Smith ME, McEntee CM, Cavalier AN, Osburn SC, Burke SD, Grant RA, Nerguizian D, Lark DS, Link CD, LaRocca TJ. The reverse transcriptase inhibitor 3TC protects against age-related cognitive dysfunction. Aging Cell 2023; 22:e13798. [PMID: 36949552 PMCID: PMC10186603 DOI: 10.1111/acel.13798] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 03/24/2023] Open
Abstract
Aging is the primary risk factor for most neurodegenerative diseases, including Alzheimer's disease. Major hallmarks of brain aging include neuroinflammation/immune activation and reduced neuronal health/function. These processes contribute to cognitive dysfunction (a key risk factor for Alzheimer's disease), but their upstream causes are incompletely understood. Age-related increases in transposable element (TE) transcripts might contribute to reduced cognitive function with brain aging, as the reverse transcriptase inhibitor 3TC reduces inflammation in peripheral tissues and TE transcripts have been linked with tau pathology in Alzheimer's disease. However, the effects of 3TC on cognitive function with aging have not been investigated. Here, in support of a role for TE transcripts in brain aging/cognitive decline, we show that 3TC: (a) improves cognitive function and reduces neuroinflammation in old wild-type mice; (b) preserves neuronal health with aging in mice and Caenorhabditis elegans; and (c) enhances cognitive function in a mouse model of tauopathy. We also provide insight on potential underlying mechanisms, as well as evidence of translational relevance for these observations by showing that TE transcripts accumulate with brain aging in humans, and that these age-related increases intersect with those observed in Alzheimer's disease. Collectively, our results suggest that TE transcript accumulation during aging may contribute to cognitive decline and neurodegeneration, and that targeting these events with reverse transcriptase inhibitors like 3TC could be a viable therapeutic strategy.
Collapse
Affiliation(s)
- Devin Wahl
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - Meghan E. Smith
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - Cali M. McEntee
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - Alyssa N. Cavalier
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - Shelby C. Osburn
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - Samuel D. Burke
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - Randy A. Grant
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - David Nerguizian
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Daniel S. Lark
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
| | - Christopher D. Link
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Thomas J. LaRocca
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
34
|
Hay A, Nemkov T, Gamboni F, Dzieciatkowska M, Key A, Galbraith M, Bartsch K, Sun K, Xia Y, Stone M, Busch MP, Norris PJ, Zimring JC, D’Alessandro A. Sphingosine 1-phosphate has a negative effect on RBC storage quality. Blood Adv 2023; 7:1379-1393. [PMID: 36469038 PMCID: PMC10139937 DOI: 10.1182/bloodadvances.2022008936] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/26/2022] [Accepted: 11/12/2022] [Indexed: 12/12/2022] Open
Abstract
Blood storage promotes the rapid depletion of red blood cell (RBC) high-energy adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (DPG), which are critical regulators of erythrocyte physiology and function, as well as oxygen kinetics and posttransfusion survival. Sphingosine-1-phosphate (S1P) promotes fluxes through glycolysis. We hypothesized that S1P supplementation to stored RBC units would improve energy metabolism and posttransfusion recovery. We quantified S1P in 1929 samples (n = 643, storage days 10, 23, and 42) from the REDS RBC Omics study. We then supplemented human and murine RBCs from good storer (C57BL6/J) and poor storer strains (FVB) with S1P (1, 5, and 10 μM) before measurements of metabolism and posttransfusion recovery. Similar experiments were repeated for mice with genetic ablation of the S1P biosynthetic pathway (sphingosine kinase 1 [Sphk1] knockout [KO]). Sample analyses included metabolomics at steady state, tracing experiments with 1,2,3-13C3-glucose, proteomics, and analysis of end-of-storage posttransfusion recovery, under normoxic and hypoxic storage conditions. Storage promoted decreases in S1P levels, which were the highest in units donated by female or older donors. Supplementation of S1P to human and murine RBCs boosted the steady-state levels of glycolytic metabolites and glycolytic fluxes, ie the generation of ATP and DPG, at the expense of the pentose phosphate pathway. Lower posttransfusion recovery was observed upon S1P supplementation. All these phenomena were reversed in Sphk1 KO mice or with hypoxic storage. S1P is a positive regulator of energy metabolism and a negative regulator of antioxidant metabolism in stored RBCs, resulting in lower posttransfusion recoveries in murine models.
Collapse
Affiliation(s)
- Ariel Hay
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO
| | - Alicia Key
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO
| | - Matthew Galbraith
- Linda Crnic Institute for Down Syndrome, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Kyle Bartsch
- Linda Crnic Institute for Down Syndrome, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | | | - Yang Xia
- University of Changsha, Changsha, China
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Philip J. Norris
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - James C. Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
35
|
Garraud O, Politis C, Henschler R, Pj Vlaar A, Haddad A, Ertuğrul Örüç N, Laspina S, DE Angelis V, Richardson C, Vuk T. Ethics in transfusion medicine: Are the intricate layers of ethics all universal? A global view. Transfus Clin Biol 2023:S1246-7820(23)00040-X. [PMID: 36965847 DOI: 10.1016/j.tracli.2023.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
Ethical principles have been considered, and in several respects regulated, along the entire blood procurement chain from donor motivation to transfusion to the patient. Consent of donors and voluntary non-remunerated donation are fields which have been addressed by codes of ethics and legislation. Caring for donor health is an area of further development of ethical standards. In part, blood products have also become a market, where commercial principles may synergize, but also creating issues in equality and maintaining human dignity that challenge societal solutions. At the bedside, the main global challenge remains to procure enough blood products for each patient in medical need. Allocation of rare blood, ethical evaluation of transfusion triggers, attitudes towards refusing blood transfusion and provision of blood products to remote settings are areas which should receive consideration.
Collapse
Affiliation(s)
- Olivier Garraud
- Sainbiose-INSERM_U1059, faculty of medicine, university of Saint-Etienne, Saint-Etienne, France.
| | | | - Reinhard Henschler
- Institute of Transfusion Medicine, University Hospital Leipzig, University of Leipzig, Johannisallee 32, D 04318 Leipzig, Germany
| | - Alexander Pj Vlaar
- Department of Intensive Care, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Meibergdreef 9, PO Box 22660, 1105 AZ Amsterdam, the Netherlands; Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Meibergdreef 9, PO Box 22660, 1105 AZ Amsterdam, the Netherlands
| | - Antoine Haddad
- Sacré Cœur Hospital, Beirut, Lebanon; Lebanese University and Lebanese American University, Beirut, Lebanon
| | - Nigar Ertuğrul Örüç
- Health Sciences University Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Stefan Laspina
- Mater Dei Hospital Blood Bank, Pathology Department, Mater Dei Hospital, Malta
| | | | - Clive Richardson
- Panteion University of Social and Political Sciences, Athens, Greece
| | - Tomislav Vuk
- Croatian Institute of Transfusion Medicine, Zagreb, Croatia
| | | |
Collapse
|
36
|
Cendali F, D'Alessandro A, Nemkov T. Dried blood spot characterization of sex-based metabolic responses to acute running exercise. ANALYTICAL SCIENCE ADVANCES 2023; 4:37-48. [PMID: 38715582 PMCID: PMC10989637 DOI: 10.1002/ansa.202200039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 11/17/2024]
Abstract
Metabolomics and lipidomics techniques are capable of comprehensively measuring hundreds to thousands of small molecules in single analytical runs and have been used to characterize responses to exercise traditionally using venipuncture-produced liquid samples. Advanced microsampling devices offer an alternative by circumventing the requirement to maintain frozen samples. This approach combines a microneedle puncture for blood draw with microfluidic sample collection onto a dried carrier and has thus far been employed for targeted measurements of a few analytes. To demonstrate the utility of advanced dried microsampling to characterize metabolomic and lipidomic changes during exercise, we obtained samples before and after a 2-mile run from twelve (8 male, 4 female) healthy volunteers with various ranges in activity levels. Results highlighted significant changes in whole blood levels of several metabolites associated with energy (glycolysis and Tricarboxylic Acid cycle) and redox (Pentose Phosphate Pathway) metabolism. Lipid changes during this same period were individualized and less uniform. Sex-based differences in response to running highlighted reliance on carbohydrate or fat substrate utilization in males or females, respectively. The results presented herein illustrate the ability of this approach to monitor circulating metabolome and lipidome profiles from field sampled blood in response to exercise.
Collapse
Affiliation(s)
- Francesca Cendali
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Travis Nemkov
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| |
Collapse
|
37
|
Möller M, Orrico F, Villar S, López AC, Silva N, Donzé M, Thomson L, Denicola A. Oxidants and Antioxidants in the Redox Biochemistry of Human Red Blood Cells. ACS OMEGA 2023; 8:147-168. [PMID: 36643550 PMCID: PMC9835686 DOI: 10.1021/acsomega.2c06768] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/09/2022] [Indexed: 06/01/2023]
Abstract
Red blood cells (RBCs) are exposed to both external and internal sources of oxidants that challenge their integrity and compromise their physiological function and supply of oxygen to tissues. Autoxidation of oxyhemoglobin is the main source of endogenous RBC oxidant production, yielding superoxide radical and then hydrogen peroxide. In addition, potent oxidants from other blood cells and the surrounding endothelium can reach the RBCs. Abundant and efficient enzymatic systems and low molecular weight antioxidants prevent most of the damage to the RBCs and also position the RBCs as a sink of vascular oxidants that allow the body to maintain a healthy circulatory system. Among the antioxidant enzymes, the thiol-dependent peroxidase peroxiredoxin 2, highly abundant in RBCs, is essential to keep the redox balance. A great part of the RBC antioxidant activity is supported by an active glucose metabolism that provides reducing power in the form of NADPH via the pentose phosphate pathway. There are several RBC defects and situations that generate oxidative stress conditions where the defense mechanisms are overwhelmed, and these include glucose-6-phosphate dehydrogenase deficiencies (favism), hemoglobinopathies like sickle cell disease and thalassemia, as well as packed RBCs for transfusion that suffer from storage lesions. These oxidative stress-associated pathologies of the RBCs underline the relevance of redox balance in these anucleated cells that lack a mechanism of DNA-inducible antioxidant response and rely on a complex and robust network of antioxidant systems.
Collapse
Affiliation(s)
- Matias
N. Möller
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Florencia Orrico
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
| | - Sebastián
F. Villar
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Ana C. López
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
| | - Nicolás Silva
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
- Departamento
de Medicina Transfusional, Hospital de Clínicas, Facultad de
Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Marcel Donzé
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Leonor Thomson
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
| | - Ana Denicola
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
38
|
Hypoxic storage of murine red blood cells improves energy metabolism and post-transfusion recoveries. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2023; 21:50-61. [PMID: 36346885 PMCID: PMC9918384 DOI: 10.2450/2022.0172-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND The Red blood cell (RBC) storage lesion results in decreased circulation and function of transfused RBCs. Elevated oxidant stress and impaired energy metabolism are a hallmark of the storage lesion in both human and murine RBCs. Although human studies don't suffer concerns that findings may not translate, they do suffer from genetic and environmental variability amongst subjects. Murine models can control for genetics, environment, and much interventional experimentation can be carried out in mice that is neither technically feasible nor ethical in humans. However, murine models are only useful to the extent that they have similar biology to humans. Hypoxic storage has been shown to mitigate the storage lesion in human RBCs, but has not been investigated in mice. MATERIALS AND METHODS RBCs from a C57BL6/J mouse strain were stored under normoxic (untreated) or hypoxic conditions (SO2 ~ 26%) for 1h, 7 and 12 days. Samples were tested for metabolomics at steady state, tracing experiments with 1,2,3-13C3-glucose, proteomics and end of storage post transfusion recovery. RESULTS Hypoxic storage improved post-transfusion recovery and energy metabolism, including increased steady state and 13C3-labeled metabolites from glycolysis, high energy purines (adenosine triphosphate) and 2,3-diphospholgycerate. Hypoxic storage promoted glutaminolysis, increased glutathione pools, and was accompanied by elevation in the levels of free fatty acids and acyl-carnitines. DISCUSSION This study isolates hypoxia, as a single independent variable, and shows similar effects as seen in human studies. These findings also demonstrate the translatability of murine models for hypoxic RBC storage and provide a pre-clinical platform for ongoing study.
Collapse
|
39
|
Schaid TR, Cohen MJ, D'Alessandro A, Silliman CC, Moore EE, Sauaia A, Dzieciatkowska M, Hallas W, Thielen O, DeBot M, Cralley A, LaCroix I, Erickson C, Mitra S, Banerjee A, Jones K, Hansen KC. TRAUMA INDUCES INTRAVASCULAR HEMOLYSIS, EXACERBATED BY RED BLOOD CELL TRANSFUSION AND ASSOCIATED WITH DISRUPTED ARGININE-NITRIC OXIDE METABOLISM. Shock 2023; 59:12-19. [PMID: 36378232 PMCID: PMC9892361 DOI: 10.1097/shk.0000000000002036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ABSTRACT Background: Severe injury can provoke systemic processes that lead to organ dysfunction, and hemolysis of both native and transfused red blood cells (RBCs) may contribute. Hemolysis can release erythrocyte proteins, such as hemoglobin and arginase-1, the latter with the potential to disrupt arginine metabolism and limit physiologic NO production. We aimed to quantify hemolysis and arginine metabolism in trauma patients and measure association with injury severity, transfusions, and outcomes. Methods: Blood was collected from injured patients at a level I trauma center enrolled in the COMBAT (Control of Major Bleeding After Trauma) trial. Proteomics and metabolomics were performed on plasma fractions through liquid chromatography coupled with mass spectrometry. Abundances of erythrocyte proteins comprising a hemolytic profile as well as haptoglobin, l -arginine, ornithine, and l -citrulline (NO surrogate marker) were analyzed at different timepoints and correlated with transfusions and adverse outcomes. Results: More critically injured patients, nonsurvivors, and those with longer ventilator requirement had higher levels of hemolysis markers with reduced l -arginine and l -citrulline. In logistic regression, elevated hemolysis markers, reduced l -arginine, and reduced l -citrulline were significantly associated with these adverse outcomes. An increased number of blood transfusions were significantly associated with elevated hemolysis markers and reduced l -arginine and l -citrulline independently of New Injury Severity Score and arterial base excess. Conclusions: Severe injury induces intravascular hemolysis, which may mediate postinjury organ dysfunction. In addition to native RBCs, transfused RBCs can lyse and may exacerbate trauma-induced hemolysis. Arginase-1 released from RBCs may contribute to the depletion of l -arginine and the subsequent reduction in the NO necessary to maintain organ perfusion.
Collapse
Affiliation(s)
- Terry R Schaid
- Department of Surgery/Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Mitchell J Cohen
- Department of Surgery/Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | | | | | | | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - William Hallas
- Department of Surgery/Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Otto Thielen
- Department of Surgery/Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Margot DeBot
- Department of Surgery/Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Alexis Cralley
- Department of Surgery/Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Ian LaCroix
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Christopher Erickson
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Sanchayita Mitra
- Department of Surgery/Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Anirban Banerjee
- Department of Surgery/Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Kenneth Jones
- Department of Surgery/Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
40
|
Hod EA, Brittenham GM, Bitan ZC, Feit Y, Gaelen JI, La Carpia F, Sandoval LA, Zhou AT, Soffing M, Mintz A, Schwartz J, Eng C, Scotto M, Caccappolo E, Habeck C, Stern Y, McMahon DJ, Kessler DA, Shaz BH, Francis RO, Spitalnik SL. A randomized trial of blood donor iron repletion on red cell quality for transfusion and donor cognition and well-being. Blood 2022; 140:2730-2739. [PMID: 36069596 PMCID: PMC9837440 DOI: 10.1182/blood.2022017288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 01/21/2023] Open
Abstract
Although altruistic regular blood donors are vital for the blood supply, many become iron deficient from donation-induced iron loss. The effects of blood donation-induced iron deficiency on red cell transfusion quality or donor cognition are unknown. In this double-blind, randomized trial, adult iron-deficient blood donors (n = 79; ferritin < 15 μg/L and zinc protoporphyrin >60 μMol/mol heme) who met donation qualifications were enrolled. A first standard blood donation was followed by the gold-standard measure for red cell storage quality: a 51-chromium posttransfusion red cell recovery study. Donors were then randomized to intravenous iron repletion (1 g low-molecular-weight iron dextran) or placebo. A second donation ∼5 months later was followed by another recovery study. Primary outcome was the within-subject change in posttransfusion recovery. The primary outcome measure of an ancillary study reported here was the National Institutes of Health Toolbox-derived uncorrected standard Cognition Fluid Composite Score. Overall, 983 donors were screened; 110 were iron-deficient, and of these, 39 were randomized to iron repletion and 40 to placebo. Red cell storage quality was unchanged by iron repletion: mean change in posttransfusion recovery was 1.6% (95% confidence interval -0.5 to 3.8) and -0.4% (-2.0 to 1.2) with and without iron, respectively. Iron repletion did not affect any cognition or well-being measures. These data provide evidence that current criteria for blood donation preserve red cell transfusion quality for the recipient and protect adult donors from measurable effects of blood donation-induced iron deficiency on cognition. This trial was registered at www.clinicaltrials.gov as NCT02889133 and NCT02990559.
Collapse
Affiliation(s)
- Eldad A. Hod
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY
| | - Gary M. Brittenham
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY
| | - Zachary C. Bitan
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY
| | - Yona Feit
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY
| | - Jordan I. Gaelen
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY
| | - Francesca La Carpia
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY
| | - Luke A. Sandoval
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY
| | - Alice T. Zhou
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY
| | - Mark Soffing
- Department of Nuclear Medicine, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY
| | - Akiva Mintz
- Department of Nuclear Medicine, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY
| | - Joseph Schwartz
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY
| | - Connie Eng
- Department of Pharmacy, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY
| | - Marta Scotto
- Department of Pharmacy, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY
| | - Elise Caccappolo
- Department of Neurology, Division of Cognitive Neuroscience, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY
| | - Christian Habeck
- Department of Neurology, Division of Cognitive Neuroscience, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY
| | - Yaakov Stern
- Department of Neurology, Division of Cognitive Neuroscience, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY
| | - Donald J. McMahon
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY
| | | | | | - Richard O. Francis
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY
| | - Steven L. Spitalnik
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY
| |
Collapse
|
41
|
LaCroix IS, Cohen M, Moore EE, Dzieciatkowska M, Nemkov T, Schaid TR, Debot M, Jones K, Silliman CC, Hansen KC, D’Alessandro A. Omics Markers of Red Blood Cell Transfusion in Trauma. Int J Mol Sci 2022; 23:13815. [PMID: 36430297 PMCID: PMC9696854 DOI: 10.3390/ijms232213815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Red blood cell (RBC) transfusion is a life-saving intervention for millions of trauma patients every year worldwide. While hemoglobin thresholds are clinically driving the need for RBC transfusion, limited information is available with respect to transfusion efficacy at the molecular level in clinically relevant cohorts. Here, we combined plasma metabolomic and proteomic measurements in longitudinal samples (n = 118; up to 13 time points; total samples: 690) from trauma patients enrolled in the control of major bleeding after trauma (COMBAT) study. Samples were collected in the emergency department and at continuous intervals up to 168 h (seven days) post-hospitalization. Statistical analyses were performed to determine omics correlate to transfusions of one, two, three, five, or more packed RBC units. While confounded by the concomitant transfusion of other blood components and other iatrogenic interventions (e.g., surgery), here we report that transfusion of one or more packed RBCs—mostly occurring within the first 4 h from hospitalization in this cohort—results in the increase in circulating levels of additive solution components (e.g., mannitol, phosphate) and decreases in the levels of circulating markers of hypoxia, such as lactate, carboxylic acids (e.g., succinate), sphingosine 1-phosphate, polyamines (especially spermidine), and hypoxanthine metabolites with potential roles in thromboinflammatory modulation after trauma. These correlations were the strongest in patients with the highest new injury severity scores (NISS > 25) and lowest base excess (BE < −10), and the effect observed was proportional to the number of units transfused. We thus show that transfusion of packed RBCs transiently increases the circulating levels of plasticizers—likely leaching from the blood units during refrigerated storage in the blood bank. Changes in the levels of arginine metabolites (especially citrulline to ornithine ratios) are indicative of an effect of transfusion on nitric oxide metabolism, which could potentially contribute to endothelial regulation. RBC transfusion was associated with changes in the circulating levels of coagulation factors, fibrinogen chains, and RBC-proteins. Changes in lysophospholipids and acyl-carnitines were observed upon transfusion, suggestive of an effect on the circulating lipidome—though cell-extrinsic/intrinsic effects and/or the contribution of other blood components cannot be disentangled. By showing a significant decrease in circulating markers of hypoxia, this study provides the first multi-omics characterization of RBC transfusion efficacy in a clinically relevant cohort of trauma patients.
Collapse
Affiliation(s)
- Ian S. LaCroix
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mitchell Cohen
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ernest E. Moore
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
- Ernest E Moore Shock Trauma Center at Denver Health, Denver, CO 80204, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Terry R. Schaid
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Margaret Debot
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth Jones
- Department of Cell Biology, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Christopher C. Silliman
- Vitalant Research Institute, Denver, CO 80230, USA
- Department of Pediatrics, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
42
|
Darragh LB, Knitz MM, Hu J, Clambey ET, Backus J, Dumit A, Samedi V, Bubak A, Greene C, Waxweiler T, Mehrotra S, Bhatia S, Gadwa J, Bickett T, Piper M, Fakhoury K, Liu A, Petit J, Bowles D, Thaker A, Atiyeh K, Goddard J, Hoyer R, Van Bokhoven A, Jordan K, Jimeno A, D'Alessandro A, Raben D, McDermott JD, Karam SD. A phase I/Ib trial and biological correlate analysis of neoadjuvant SBRT with single-dose durvalumab in HPV-unrelated locally advanced HNSCC. NATURE CANCER 2022; 3:1300-1317. [PMID: 36434392 PMCID: PMC9701140 DOI: 10.1038/s43018-022-00450-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022]
Abstract
Five-year survival for human papilloma virus-unrelated head and neck squamous cell carcinomas remain below 50%. We assessed the safety of administering combination hypofractionated stereotactic body radiation therapy with single-dose durvalumab (anti-PD-L1) neoadjuvantly (n = 21) ( NCT03635164 ). The primary endpoint of the study was safety, which was met. Secondary endpoints included radiographic, pathologic and objective response; locoregional control; progression-free survival; and overall survival. Among evaluable patients at an early median follow-up of 16 months (448 d or 64 weeks), overall survival was 80.1% with 95% confidence interval (95% CI) (62.0%, 100.0%), locoregional control and progression-free survival were 75.8% with 95% CI (57.5%, 99.8%), and major pathological response or complete response was 75% with 95% exact CI (51.6%, 100.0%). For patients treated with 24 Gy, 89% with 95% CI (57.1%, 100.0%) had MPR or CR. Using high-dimensional multi-omics and spatial data as well as biological correlatives, we show that responders had: (1) an increase in effector T cells; (2) a decrease in immunosuppressive cells; and (3) an increase in antigen presentation post-treatment.
Collapse
Affiliation(s)
- Laurel B Darragh
- Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Michael M Knitz
- Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Junxiao Hu
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | - Eric T Clambey
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer Backus
- Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Dumit
- Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Von Samedi
- Department of Pathology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Bubak
- Department of Neurology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Casey Greene
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Timothy Waxweiler
- Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Sanjana Mehrotra
- Department of Pathology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Shilpa Bhatia
- Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob Gadwa
- Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas Bickett
- Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Miles Piper
- Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Kareem Fakhoury
- Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Arthur Liu
- Department of Radiation Oncology, University of Colorado, Poudre Valley Hospital, Fort Collins, CO, USA
| | - Joshua Petit
- Department of Radiation Oncology, University of Colorado, Poudre Valley Hospital, Fort Collins, CO, USA
| | - Daniel Bowles
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ashesh Thaker
- Department of Radiology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Kimberly Atiyeh
- Department of Otolaryngology Head and Neck Surgery, University of Colorado, Memorial South Hospital, Colorado Springs, CO, USA
| | - Julie Goddard
- Department of Otolaryngology Head and Neck Surgery, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Robert Hoyer
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Adrie Van Bokhoven
- Department of Pathology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Kimberly Jordan
- Department of Immunology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Antonio Jimeno
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - David Raben
- Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica D McDermott
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sana D Karam
- Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA.
- Department of Immunology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
43
|
Vallelian F, Buehler PW, Schaer DJ. Hemolysis, free hemoglobin toxicity, and scavenger protein therapeutics. Blood 2022; 140:1837-1844. [PMID: 35660854 PMCID: PMC10653008 DOI: 10.1182/blood.2022015596] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/27/2022] [Indexed: 11/20/2022] Open
Abstract
During hemolysis, erythrophagocytes dispose damaged red blood cells. This prevents the extracellular release of hemoglobin, detoxifies heme, and recycles iron in a linked metabolic pathway. Complementary to this process, haptoglobin and hemopexin scavenge and shuttle the red blood cell toxins hemoglobin and heme to cellular clearance. Pathological hemolysis outpaces macrophage capacity and scavenger synthesis across a diversity of diseases. This imbalance leads to hemoglobin-driven disease progression. To meet a void in treatment options, scavenger protein-based therapeutics are in clinical development.
Collapse
Affiliation(s)
- Florence Vallelian
- Division of Internal Medicine, University Hospital, University of Zurich, Zurich, Switzerland
| | - Paul W. Buehler
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD
- Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD
| | - Dominik J. Schaer
- Division of Internal Medicine, University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
44
|
Moriconi C, Dzieciatkowska M, Roy M, D'Alessandro A, Roingeard P, Lee JY, Gibb DR, Tredicine M, McGill MA, Qiu A, La Carpia F, Francis RO, Hod EA, Thomas T, Picard M, Akpan IJ, Luckey CJ, Zimring JC, Spitalnik SL, Hudson KE. Retention of functional mitochondria in mature red blood cells from patients with sickle cell disease. Br J Haematol 2022; 198:574-586. [PMID: 35670632 PMCID: PMC9329257 DOI: 10.1111/bjh.18287] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 01/07/2023]
Abstract
Sickle cell disease (SCD) is an inherited blood disorder characterized by sickled red blood cells (RBCs), which are more sensitive to haemolysis and can contribute to disease pathophysiology. Although treatment of SCD can include RBC transfusion, patients with SCD have high rates of alloimmunization. We hypothesized that RBCs from patients with SCD have functionally active mitochondria and can elicit a type 1 interferon response. We evaluated blood samples from more than 100 patients with SCD and found elevated frequencies of mitochondria in reticulocytes and mature RBCs, as compared to healthy blood donors. The presence of mitochondria in mature RBCs was confirmed by flow cytometry, electron microscopy, and proteomic analysis. The mitochondria in mature RBCs were metabolically competent, as determined by enzymatic activities and elevated levels of mitochondria-derived metabolites. Metabolically-active mitochondria in RBCs may increase oxidative stress, which could facilitate and/or exacerbate SCD complications. Coculture of mitochondria-positive RBCs with neutrophils induced production of type 1 interferons, which are known to increase RBC alloimmunization rates. These data demonstrate that mitochondria retained in mature RBCs are functional and can elicit immune responses, suggesting that inappropriate retention of mitochondria in RBCs may play an underappreciated role in SCD complications and be an RBC alloimmunization risk factor.
Collapse
Affiliation(s)
- Chiara Moriconi
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Micaela Roy
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Philippe Roingeard
- INSERM U1259 and Electron Microscopy Facility, Université de Tours and CHRU de Tours, Tours, France
| | - June Young Lee
- Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - David R Gibb
- Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Maria Tredicine
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marlon A McGill
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York City, New York, USA
| | - Annie Qiu
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Francesca La Carpia
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Richard O Francis
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Eldad A Hod
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Tiffany Thomas
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York City, New York, USA
| | - Imo J Akpan
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York City, New York, USA
| | - Chance John Luckey
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - James C Zimring
- University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Carter Immunology Center, University of Virginia, Charlottesville, Virginia, USA
| | - Steven L Spitalnik
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Krystalyn E Hudson
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| |
Collapse
|
45
|
Metabolic reprogramming under hypoxic storage preserves faster oxygen unloading from stored red blood cells. Blood Adv 2022; 6:5415-5428. [PMID: 35736672 DOI: 10.1182/bloodadvances.2022007774] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/11/2022] [Indexed: 11/20/2022] Open
Abstract
Stored red blood cells (RBCs) incur biochemical and morphological changes, collectively termed the storage lesion. Functionally, the storage lesion manifests as slower oxygen unloading from RBCs, which may compromise the efficacy of transfusions where the clinical imperative is to rapidly boost oxygen delivery to tissues. Recent analysis of large real-world data linked longer storage with increased recipient mortality. Biochemical rejuvenation with a formulation of adenosine, inosine, and pyruvate can restore gas-handling properties, but its implementation is impractical for most clinical scenarios. We tested whether storage under hypoxia, previously shown to slow biochemical degradation, also preserves gas-handling properties of RBCs. A microfluidic chamber, designed to rapidly switch between oxygenated and anoxic superfusates, was used for single-cell oxygen saturation imaging on samples stored for up to 49 days. Aliquots were also analyzed flow-cytometrically for side-scatter (a proposed proxy of O2 unloading kinetics), metabolomics, lipidomics and redox proteomics. For benchmarking, units were biochemically rejuvenated at four weeks of standard storage. Hypoxic storage hastened O2 unloading in units stored to 35 days, an effect that correlated with side-scatter but was not linked to post-translational modifications of hemoglobin. Although hypoxic storage and rejuvenation produced distinct biochemical changes, a subset of metabolites including pyruvate, sedoheptulose 1-phosphate, and 2/3 phospho-D-glycerate, was a common signature that correlated with changes in O2 unloading. Correlations between gas-handling and lipidomic changes were modest. Thus, hypoxic storage of RBCs preserves key metabolic pathways and O2 exchange properties, thereby improving the functional quality of blood products and potentially influencing transfusion outcomes.
Collapse
|
46
|
Catala A, Stone M, Busch MP, D’Alessandro A. Reprogramming of red blood cell metabolism in Zika virus-infected donors. Transfusion 2022; 62:1045-1064. [PMID: 35285520 PMCID: PMC9086146 DOI: 10.1111/trf.16851] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Diseases caused by arthropod-borne viruses remain a burden to global health; in particular, Zika virus (ZIKV) has been reported in 87 countries and territories. In healthy blood donors, ZIKV RNA can be detected in red blood cells (RBCs) months after infection, clearance of detectable nucleic acid in plasma, and seroconversion. However, little information is available on the impact of ZIKV infection to metabolism. STUDY DESIGN AND METHODS We applied mass spectrometry-based metabolomics and lipidomics approaches to investigate the impact of ZIKV infection on RBCs over the course of infection. ZIKV-infected blood donors (n = 25) were identified through molecular and serologic methods, which included nucleic acid amplification testing and real-time polymerase chain reaction (PCR) for detection of ZIKV RNA and enzyme-linked immunosorbent assay (ELISA) for detection of flavivirus-specific IgM and IgG. RESULTS In ZIKV RNA-positive donors, we observed lower glucose and lactate levels, and higher levels of ribose phosphate, suggestive of the activation of the pentose phosphate pathway. The top pathways altered in RBCs from ZIKV-IgM-positive donors include amino acid metabolism and biosynthesis, fatty acid metabolism and biosynthesis, linoleic acid and arachidonate metabolism and glutathione metabolism. RBCs from ZIKV-infected donors had increased levels of early glycolytic metabolites, and higher levels of metabolites of the pentose phosphate pathway. Alterations in acyl-carnitine and fatty acid metabolism are consistent with impaired membrane lipid homeostasis in RBCs from ZIKV IgM positive donors. CONCLUSION RBC from healthy blood donors who had been infected by ZIKV are characterized by long-lasting metabolic alterations even months after infection has resolved.
Collapse
Affiliation(s)
- Alexis Catala
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
47
|
Storage of red blood cells in alkaline PAGGGM improves metabolism but has no effect on posttransfusion recovery. Blood Adv 2022; 6:3899-3910. [PMID: 35477178 PMCID: PMC9278290 DOI: 10.1182/bloodadvances.2022006987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/08/2022] [Indexed: 11/20/2022] Open
Abstract
Storage of red blood cells in the alkaline storage solution PAGGGM improves metabolism but has no effect on posttransfusion recovery. Transfused red blood cells can recover from the metabolic storage lesion within a day after transfusion.
Additive solutions are used to limit changes that red blood cells (RBCs) undergo during storage. Several studies have shown better preservation of glucose and redox metabolism using the alkaline additive solution PAGGGM (phosphate-adenine-glucose-guanosine-gluconate-mannitol). In this randomized open-label intervention trial in 20 healthy volunteers, the effect of storage, PAGGGM vs SAGM (saline-adenine-glucose-mannitol), on posttransfusion recovery (PTR) and metabolic restoration after transfusion was assessed. Subjects received an autologous biotinylated RBC concentrate stored for 35 days in SAGM or PAGGGM. As a reference for the PTR, a 2-day stored autologous biotinylated RBC concentrate stored in SAGM was simultaneously transfused. RBC phenotype and PTR were assessed after transfusion. Biotinylated RBCs were isolated from the circulation for metabolomics analysis up to 24 hours after transfusion. The PTR was significantly higher in the 2-day stored RBCs than in 35-day stored RBCs 2 and 7 days after transfusion: 96% (90 to 99) vs 72% (66 to 89) and 96% (90 to 99) vs 72% (66 to 89), respectively. PTR of SAGM- and PAGGGM-stored RBCs did not differ significantly. Glucose and redox metabolism were better preserved in PAGGGM-stored RBCs. The differences measured in the blood bag remained present only until 1 day after transfusion. No differences in RBC phenotype were found besides an increased complement C3 deposition on 35-day RBCs stored in PAGGGM. Our data indicate that despite better metabolic preservation, PAGGGM is not a suitable alternative for SAGM because storage in PAGGGM did not result in an increased PTR. Finally, RBCs recovered from circulation after transfusion showed reversal of the metabolic storage lesion in vivo within a day. This study is registered in the Dutch trial register (NTR6492).
Collapse
|
48
|
Nemkov T, Yoshida T, Nikulina M, D’Alessandro A. High-Throughput Metabolomics Platform for the Rapid Data-Driven Development of Novel Additive Solutions for Blood Storage. Front Physiol 2022; 13:833242. [PMID: 35360223 PMCID: PMC8964052 DOI: 10.3389/fphys.2022.833242] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Red blood cell transfusion is a life-saving intervention, and storage is a logistic necessity to make ~110 million units available for transfusion every year worldwide. However, storage in the blood bank is associated with a progressive metabolic decline, which correlates with the accumulation of morphological lesions, increased intra- and extra-vascular hemolysis upon transfusion, and altered oxygen binding/off-loading kinetics. Prior to storage, red blood cells are suspended in nutrient formulations known as additive solutions to prolong cellular viability. Despite a thorough expansion of knowledge regarding red blood cell biology over the past few decades, only a single new additive solution has been approved by the Food and Drug Administration this century, owing in part to the limited capacity for development of novel formulations. As a proof of principle, we leveraged a novel high-throughput metabolomics technology as a platform for rapid data-driven development and screening of novel additive solutions for blood storage under both normoxic and hypoxic conditions. To this end, we obtained leukocyte-filtered red blood cells (RBCs) and stored them under normoxic or hypoxic conditions in 96 well plates (containing polyvinylchloride plasticized with diethylhexylphthalate to concentrations comparable to full size storage units) in the presence of an additive solution supplemented with six different compounds. To inform this data-driven strategy, we relied on previously identified metabolic markers of the RBC storage lesion that associates with measures of hemolysis and post-transfusion recovery, which are the FDA gold standards to predict stored blood quality, as well as and metabolic predictors of oxygen binding/off-loading parameters. Direct quantitation of these predictors of RBC storage quality were used here-along with detailed pathway analysis of central energy and redox metabolism-as a decision-making tool to screen novel additive formulations in a multiplexed fashion. Candidate supplements are shown here that boost-specific pathways. These metabolic effects are only in part dependent on the SO2 storage conditions. Through this platform, we anticipate testing thousands of novel additives and combinations thereof in the upcoming months.
Collapse
Affiliation(s)
- Travis Nemkov
- Omix Technologies Inc., Denver, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, United States
| | | | | | - Angelo D’Alessandro
- Omix Technologies Inc., Denver, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
49
|
Stephenson D, Nemkov T, Qadri SM, Sheffield WP, D’Alessandro A. Inductively-Coupled Plasma Mass Spectrometry-Novel Insights From an Old Technology Into Stressed Red Blood Cell Physiology. Front Physiol 2022; 13:828087. [PMID: 35197866 PMCID: PMC8859330 DOI: 10.3389/fphys.2022.828087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/17/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Ion and metal homeostasis are critical to red blood cell physiology and Inductively Coupled Plasma (ICP) is a decades old approach to pursue elemental analysis. Recent evolution of ICP has resulted in its coupling to mass spectrometry (MS) instead of atomic absorption/emission. METHODS Here we performed Inductively-coupled plasma mass spectrometry (ICP-MS) measurements of intra- and extra-cellular Na, K, Ca, Mg, Fe, and Cu in red blood cells undergoing ionic, heat, or starvation stress. Results were correlated with Ca measurements from other common platforms (e.g., fluorescence-based approaches) and extensive measurements of red blood cell metabolism. RESULTS All stresses induced significant intra- and extracellular alterations of all measured elements. In particular, ionomycin treatment or hypertonic stress significantly impacted intracellular sodium and extracellular potassium and magnesium levels. Iron efflux was observed as a function of temperatures, with ionic and heat stress at 40°C causing the maximum decrease in intracellular iron pools and increases in the supernatants. Strong positive correlation was observed between calcium measurements via ICP-MS and fluorescence-based approaches. Correlation analyses with metabolomics data showed a strong positive association between extracellular calcium and intracellular sodium or magnesium levels and intracellular glycolysis. Extracellular potassium or iron were positively correlated with free fatty acids (especially mono-, poly-, and highly-unsaturated or odd-chain fatty acid products of lipid peroxidation). Intracellular iron was instead positively correlated with saturated fatty acids (palmitate, stearate) and negatively with methionine metabolism (methionine, S-adenosylmethionine), phosphatidylserine exposure and glycolysis. CONCLUSION In the era of omics approaches, ICP-MS affords a comprehensive characterization of intracellular elements that provide direct insights on red blood cell physiology and represent meaningful covariates for data generated via other omics platforms such as metabolomics.
Collapse
Affiliation(s)
- Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO, United States
| | - Syed M. Qadri
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON, Canada
| | - William P. Sheffield
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
50
|
Roy MK, La Carpia F, Cendali F, Fernando S, Moriconi C, Wojczyk BS, Wang L, Nemkov T, Hod EA, D’Alessandro A. Irradiation Causes Alterations of Polyamine, Purine, and Sulfur Metabolism in Red Blood Cells and Multiple Organs. J Proteome Res 2022; 21:519-534. [PMID: 35043621 PMCID: PMC8855667 DOI: 10.1021/acs.jproteome.1c00912] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Investigating the metabolic effects of radiation is critical to understand the impact of radiotherapy, space travel, and exposure to environmental radiation. In patients undergoing hemopoietic stem cell transplantation, iron overload is a common risk factor for poor outcomes. However, no studies have interrogated the multiorgan effects of these treatments concurrently. Herein, we use a model that recapitulates transfusional iron overload, a condition often observed in chronically transfused patients. We applied an omics approach to investigate the impact of both the iron load and irradiation on the host metabolome. The results revealed dose-dependent effects of irradiation in the red blood cells, plasma, spleen, and liver energy and redox metabolism. Increases in polyamines and purine salvage metabolites were observed in organs with high oxygen consumption including the heart, kidneys, and brain. Irradiation also impacted the metabolism of the duodenum, colon, and stool, suggesting a potential effect on the microbiome. Iron infusion affected the response to radiation in the organs and blood, especially in erythrocyte polyamines and spleen antioxidant metabolism, and affected glucose, methionine, and glutathione systems and tryptophan metabolism in the liver, stool, and the brain. Together, the results suggest that radiation impacts metabolism on a multiorgan level with a significant interaction of the host iron status.
Collapse
Affiliation(s)
- Micaela Kalani Roy
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA 80045
| | | | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA 80045
| | | | - Chiara Moriconi
- Columbia University Irving Medical Center, New York, NY, USA 10032
| | | | - Lin Wang
- Columbia University Irving Medical Center, New York, NY, USA 10032
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA 80045
| | - Eldad A Hod
- Columbia University Irving Medical Center, New York, NY, USA 10032
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA 80045,Corresponding authors: Angelo D’Alessandro, PhD, Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th Ave., Aurora, CO 80045, Phone # 303-724-0096,
| |
Collapse
|