1
|
Fang H, Yu E, Liu C, Eapen C, Cheng C, Hu T. Metabolic landscape and rewiring in normal hematopoiesis, leukemia and aging. Semin Cancer Biol 2025; 111:1-15. [PMID: 39933639 DOI: 10.1016/j.semcancer.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/06/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
Recent advancements in metabolism research have demonstrated its critical roles in a lot of critical biological processes, including stemness maintenance, cell differentiation, proliferation, and function. Hematopoiesis is the fundamental cell differentiation process with the production of millions of red blood cells per second in carrying oxygen and white blood cells in fighting infection and cancers. The differentiation processes of hematopoietic stem and progenitor cells (HSPCs) are accompanied by significant metabolic reprogramming. In hematological malignancy, metabolic reprogramming is also essential to the malignant hematopoiesis processes. The metabolic rewiring is driven by distinct molecular mechanisms that meet the specific demands of different target cells. Leukemic cells, for instance, adopt unique metabolic profiles to support their heightened energy needs for survival and proliferation. Moreover, aging HSPCs exhibit altered energy consumption compared to their younger counterparts, often triggering protective mechanisms at the cellular level. In this review, we provide a comprehensive analysis of the metabolic processes involved in hematopoiesis and the metabolic rewiring that occurs under adverse conditions. In addition, we highlight current research directions and discuss the potential of targeting metabolic pathways for the management of hematological malignancies and aging.
Collapse
Affiliation(s)
- Hui Fang
- Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA 30912, United States; Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Enze Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa 999078, Macao
| | - Chang Liu
- Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA 30912, United States; Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Christy Eapen
- Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA 30912, United States
| | - Chunming Cheng
- Stephenson Cancer Center at Oklahoma University, Oklahoma City, OK 73104, United States.
| | - Tianxiang Hu
- Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA 30912, United States.
| |
Collapse
|
2
|
Zheng L, Han S, Enriquez J, Martinez OM, Krams SM. Graft-derived extracellular vesicles transport miRNAs to modulate macrophage polarization after heart transplantation. Am J Transplant 2025; 25:682-694. [PMID: 39586401 PMCID: PMC11972891 DOI: 10.1016/j.ajt.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/22/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Heart transplantation, a crucial intervention for saving lives of those with end-stage cardiac failure, often faces complications from acute allograft rejection. This study focuses on the intricate dynamics of immune cell interactions and specific communication pathways between organs, which are not yet well understood. Our study investigates this interplay using a murine heterotopic transplant model, using single-cell RNA sequencing to examine CD45+ immune cells from both the heart grafts and spleens. We conduct a comprehensive analysis focused on functional enrichment, cell trajectory, and interorgan communication in heart transplants, highlighting dynamic interactions between monocyte/macrophage subtypes that is mediated by extracellular vesicles (EVs). We use unsupervised clustering and elucidate the complex cellular interactions that influence allograft outcomes. Notably, we discovered that microRNA-363 and microRNA-709, carried by EVs from CD63+ graft macrophages, can induce M1 polarization within the recipient's spleen via the Fcho2/Notch1 signaling pathway. These insights illuminate the nuanced immune responses during acute cardiac rejection and suggest that targeting EVs from graft-resident macrophages may offer a new strategy to mitigate transplant rejection.
Collapse
Affiliation(s)
- Lei Zheng
- Transplant Immunology Lab, Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA; Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai, China
| | - Shuling Han
- Transplant Immunology Lab, Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jeanna Enriquez
- Transplant Immunology Lab, Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Olivia M Martinez
- Transplant Immunology Lab, Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Sheri M Krams
- Transplant Immunology Lab, Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
3
|
Ehlers G, Tödtmann AM, Holsten L, Willers M, Heckmann J, Schöning J, Richter M, Heinemann AS, Pirr S, Heinz A, Dopfer C, Händler K, Becker M, Büchel J, Wöckel A, von Kaisenberg C, Hansen G, Hiller K, Schultze JL, Härtel C, Kastenmüller W, Vaeth M, Ulas T, Viemann D. Oxidative phosphorylation is a key feature of neonatal monocyte immunometabolism promoting myeloid differentiation after birth. Nat Commun 2025; 16:2239. [PMID: 40050264 PMCID: PMC11885822 DOI: 10.1038/s41467-025-57357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/20/2025] [Indexed: 03/09/2025] Open
Abstract
Neonates primarily rely on innate immune defense, yet their inflammatory responses are usually restricted compared to adults. This is controversially interpreted as a sign of immaturity or essential programming, increasing or decreasing the risk of sepsis, respectively. Here, combined transcriptomic, metabolic, and immunological studies in monocytes of healthy individuals reveal an inverse ontogenetic shift in metabolic pathway activities with increasing age. Neonatal monocytes are characterized by enhanced oxidative phosphorylation supporting ongoing myeloid differentiation. This phenotype is gradually replaced during early childhood by increasing glycolytic activity fueling the inflammatory responsiveness. Microbial stimulation shifts neonatal monocytes to an adult-like metabolism, whereas ketogenic diet in adults mimicking neonatal ketosis cannot revive a neonate-like metabolism. Our findings disclose hallmarks of innate immunometabolism during healthy postnatal immune adaptation and suggest that premature activation of glycolysis in neonates might increase their risk of sepsis by impairing myeloid differentiation and promoting hyperinflammation.
Collapse
Affiliation(s)
- Greta Ehlers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Annika Marie Tödtmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Lisa Holsten
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn, Bonn, Germany
| | - Maike Willers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Julia Heckmann
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Jennifer Schöning
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Maximilian Richter
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Anna Sophie Heinemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Sabine Pirr
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Alexander Heinz
- Department for Bioinformatics and Biochemistry, BRICS, Technical University Braunschweig, Braunschweig, Germany
| | - Christian Dopfer
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Kristian Händler
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Matthias Becker
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Modular High Performance Computing and Artificial Intelligence, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Johanna Büchel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | | | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Karsten Hiller
- Department for Bioinformatics and Biochemistry, BRICS, Technical University Braunschweig, Braunschweig, Germany
| | - Joachim L Schultze
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn, Bonn, Germany
| | - Christoph Härtel
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Martin Vaeth
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Thomas Ulas
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn, Bonn, Germany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
- Center for Infection Research, University Würzburg, Würzburg, Germany.
| |
Collapse
|
4
|
Shimura H, Yamamoto S, Shiiba I, Oikawa M, Uchinomiya S, Ojida A, Yanagi S, Kadowaki H, Nishitoh H, Fukuda T, Nagashima S, Yamaguchi T. Etomoxir suppresses the expression of PPARγ2 and inhibits the thermogenic gene induction of brown adipocytes through pathways other than β-oxidation inhibition. J Biochem 2025; 177:203-212. [PMID: 39727324 DOI: 10.1093/jb/mvae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Brown adipocytes are characterized by a high abundance of mitochondria, allowing them to consume fatty acids for heat production. Increasing the number of brown adipocytes is considered a promising strategy for combating obesity. However, the molecular mechanisms underlying their differentiation remain poorly understood. In this study, we demonstrate that etomoxir, an inhibitor of Carnitine Palmitoyltransferase 1 (CPT1), inhibits their differentiation through mechanisms independent of β-oxidation inhibition. In the presence of etomoxir during brown adipocyte differentiation, reduced expression of the thermogenic gene UCP1 and decreased lipid droplets formation were observed. Furthermore, a transient reduction in the expression of PPARγ2, a critical factor in adipocyte differentiation, was also observed in the presence of etomoxir. These findings suggest the presence of a regulatory mechanism that specifically enhances PPARγ2 expression during brown adipocyte differentiation, thereby modulating thermogenic gene expression.
Collapse
Affiliation(s)
- Hiroki Shimura
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Sota Yamamoto
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Isshin Shiiba
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| | - Mami Oikawa
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shohei Uchinomiya
- Medical Chemistry and Chemical Biology, Department of Medicinal Sciences, Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Akio Ojida
- Medical Chemistry and Chemical Biology, Department of Medicinal Sciences, Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| | - Hisae Kadowaki
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Miyazaki, Miyazaki 889-1692, Japan
| | - Hideki Nishitoh
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Miyazaki, Miyazaki 889-1692, Japan
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Miyazaki 889-1692, Japan
| | - Toshifumi Fukuda
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shun Nagashima
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Tomoyuki Yamaguchi
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
5
|
Kadyrov FF, Koenig AL, Amrute JM, Dun H, Li W, Weinheimer CJ, Nigro JM, Kovacs A, Bredemeyer AL, Yang S, Das S, Penna VR, Parvathaneni A, Lai L, Hartmann N, Kopecky BJ, Kreisel D, Lavine KJ. Hypoxia sensing in resident cardiac macrophages regulates monocyte fate specification following ischemic heart injury. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1337-1355. [PMID: 39433910 DOI: 10.1038/s44161-024-00553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 09/20/2024] [Indexed: 10/23/2024]
Abstract
Myocardial infarction initiates cardiac remodeling and is central to heart failure pathogenesis. Following myocardial ischemia-reperfusion injury, monocytes enter the heart and differentiate into diverse subpopulations of macrophages. Here we show that deletion of Hif1α, a hypoxia response transcription factor, in resident cardiac macrophages led to increased remodeling and overrepresentation of macrophages expressing arginase 1 (Arg1). Arg1+ macrophages displayed an inflammatory gene signature and may represent an intermediate state of monocyte differentiation. Lineage tracing of Arg1+ macrophages revealed a monocyte differentiation trajectory consisting of multiple transcriptionally distinct states. We further showed that deletion of Hif1α in resident cardiac macrophages resulted in arrested progression through this trajectory and accumulation of an inflammatory intermediate state marked by persistent Arg1 expression. Depletion of the Arg1+ trajectory accelerated cardiac remodeling following ischemic injury. Our findings unveil distinct trajectories of monocyte differentiation and identify hypoxia sensing as an important determinant of monocyte differentiation following myocardial infarction.
Collapse
Affiliation(s)
- Farid F Kadyrov
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrew L Koenig
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Junedh M Amrute
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hao Dun
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Wenjun Li
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Carla J Weinheimer
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jessica M Nigro
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Attila Kovacs
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrea L Bredemeyer
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Steven Yang
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Shibali Das
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Vinay R Penna
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Alekhya Parvathaneni
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Lulu Lai
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Niklas Hartmann
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Benjamin J Kopecky
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kory J Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
6
|
Kruglov V, Jang IH, Camell CD. Inflammaging and fatty acid oxidation in monocytes and macrophages. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00038. [PMID: 38249577 PMCID: PMC10798594 DOI: 10.1097/in9.0000000000000038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Fatty acid oxidation (FAO), primarily known as β-oxidation, plays a crucial role in breaking down fatty acids within mitochondria and peroxisomes to produce cellular energy and preventing metabolic dysfunction. Myeloid cells, including macrophages, microglia, and monocytes, rely on FAO to perform essential cellular functions and uphold tissue homeostasis. As individuals age, these cells show signs of inflammaging, a condition that includes a chronic onset of low-grade inflammation and a decline in metabolic function. These lead to changes in fatty acid metabolism and a decline in FAO pathways. Recent studies have shed light on metabolic shifts occurring in macrophages and monocytes during aging, correlating with an altered tissue environment and the onset of inflammaging. This review aims to provide insights into the connection of inflammatory pathways and altered FAO in macrophages and monocytes from older organisms. We describe a model in which there is an extended activation of receptor for advanced glycation end products, nuclear factor-κB (NF-κB) and the nod-like receptor family pyrin domain containing 3 inflammasome within macrophages and monocytes. This leads to an increased level of glycolysis, and also promotes pro-inflammatory cytokine production and signaling. As a result, FAO-related enzymes such as 5' AMP-activated protein kinase and peroxisome proliferator-activated receptor-α are reduced, adding to the escalation of inflammation, accumulation of lipids, and heightened cellular stress. We examine the existing body of literature focused on changes in FAO signaling within macrophages and monocytes and their contribution to the process of inflammaging.
Collapse
Affiliation(s)
- Victor Kruglov
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - In Hwa Jang
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Christina D. Camell
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
Jang Y, Park TS, Park BC, Lee YM, Heo TH, Jun HS. Aberrant glucose metabolism underlies impaired macrophage differentiation in glycogen storage disease type Ib. FASEB J 2023; 37:e23216. [PMID: 37779422 DOI: 10.1096/fj.202300592rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/20/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Glycogen storage disease type Ib (GSD-Ib) is an autosomal recessive disorder caused by a deficiency in the glucose-6-phosphate (G6P) transporter (G6PT) that is responsible for transporting G6P into the endoplasmic reticulum. GSD-Ib is characterized by disturbances in glucose homeostasis, neutropenia, and neutrophil dysfunction. Although some studies have explored neutrophils abnormalities in GSD-Ib, investigations regarding monocytes/macrophages remain limited so far. In this study, we examined the impact of G6PT deficiency on monocyte-to-macrophage differentiation using bone marrow-derived monocytes from G6pt-/- mice as well as G6PT-deficient human THP-1 monocytes. Our findings revealed that G6PT-deficient monocytes exhibited immature differentiation into macrophages. Notably, the impaired differentiation observed in G6PT-deficient monocytes seemed to be associated with abnormal glucose metabolism, characterized by enhanced glucose consumption through glycolysis, even under quiescent conditions with oxidative phosphorylation. Furthermore, we observed a reduced secretion of inflammatory cytokines in G6PT-deficient THP-1 monocytes during the inflammatory response, despite their elevated glucose consumption. In conclusion, this study sheds light on the significance of G6PT in monocyte-to-macrophage differentiation and underscores its importance in maintaining glucose homeostasis and supporting immune response in GSD-Ib. These findings may contribute to a better understanding of the pathogenesis of GSD-Ib and potentially pave the way for the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Yuyeon Jang
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Tae Sub Park
- Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Byung-Chul Park
- Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Young Mok Lee
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Tae-Hwe Heo
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Republic of Korea
| | - Hyun Sik Jun
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| |
Collapse
|
8
|
Matsuba S, Ura H, Saito F, Ogasawara C, Shimodaira S, Niida Y, Onai N. An optimized cocktail of small molecule inhibitors promotes the maturation of dendritic cells in GM-CSF mouse bone marrow culture. Front Immunol 2023; 14:1264609. [PMID: 37901221 PMCID: PMC10611476 DOI: 10.3389/fimmu.2023.1264609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells, playing an essential role in the pathogen and tumor recognition, and anti-tumor immunity, and linking both the innate and adaptive immunity. The monocyte-derived DCs generated by ex vivo culture, have been used for cancer immunotherapy to eliminate tumor; however, the clinical efficacies are not sufficient, and further improvement is essential. In this study, we established a method to generate DCs using small molecule compounds for cancer immunotherapy. We observed an increase in the percentage of CD11c+I-A/I-Ehigh cells, representing DCs, by adding four small molecular inhibitors: Y27632, PD0325901, PD173074, and PD98059 (abbreviated as YPPP), in mouse bone marrow (BM) culture with granulocyte-macrophage colony stimulating factor (GM-CSF). BM-derived DCs cultured with YPPP (YPPP-DCs) showed high responsiveness to lipopolysaccharide stimulation, resulting in increased interleukin (IL) -12 production and enhanced proliferation activity when co-cultured with naïve T cells compared with the vehicle control. RNA-seq analysis revealed an upregulation of peroxisome proliferator - activated receptor (PPAR) γ associated genes increased in YPPP-DCs. In tumor models treated with anti-programmed death (PD) -1 therapies, mice injected intratumorally with YPPP-DCs as a DCs vaccine exhibited reduced tumor growth and increased survival. These findings suggested that our method would be useful for the induction of DCs that efficiently activate effector T cells for cancer immunotherapy.
Collapse
Affiliation(s)
- Shintaro Matsuba
- Department of Immunology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Hiroki Ura
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Uchinada, Ishikawa, Japan
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Fumiji Saito
- Department of Immunology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Chie Ogasawara
- Department of Immunology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Shigetaka Shimodaira
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Ishikawa, Japan
| | - Yo Niida
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Uchinada, Ishikawa, Japan
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Nobuyuki Onai
- Department of Immunology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| |
Collapse
|
9
|
Heieis GA, Patente TA, Almeida L, Vrieling F, Tak T, Perona-Wright G, Maizels RM, Stienstra R, Everts B. Metabolic heterogeneity of tissue-resident macrophages in homeostasis and during helminth infection. Nat Commun 2023; 14:5627. [PMID: 37699869 PMCID: PMC10497597 DOI: 10.1038/s41467-023-41353-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/01/2023] [Indexed: 09/14/2023] Open
Abstract
Tissue-resident macrophage populations constitute a mosaic of phenotypes, yet how their metabolic states link to the range of phenotypes and functions in vivo is still poorly defined. Here, using high-dimensional spectral flow cytometry, we observe distinct metabolic profiles between different organs and functionally link acetyl CoA carboxylase activity to efferocytotic capacity. Additionally, differences in metabolism are evident within populations from a specific site, corresponding to relative stages of macrophage maturity. Immune perturbation with intestinal helminth infection increases alternative activation and metabolic rewiring of monocyte-derived macrophage populations, while resident TIM4+ intestinal macrophages remain immunologically and metabolically hyporesponsive. Similar metabolic signatures in alternatively-activated macrophages are seen from different tissues using additional helminth models, but to different magnitudes, indicating further tissue-specific contributions to metabolic states. Thus, our high-dimensional, flow-based metabolic analyses indicates complex metabolic heterogeneity and dynamics of tissue-resident macrophage populations at homeostasis and during helminth infection.
Collapse
Affiliation(s)
- Graham A Heieis
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Thiago A Patente
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Luís Almeida
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Frank Vrieling
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708WE, Wageningen, The Netherlands
| | - Tamar Tak
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Georgia Perona-Wright
- School of Infection and Immunity, University of Glasgow, 120 University Place, G12 8TA, Glasgow, UK
| | - Rick M Maizels
- School of Infection and Immunity, University of Glasgow, 120 University Place, G12 8TA, Glasgow, UK
| | - Rinke Stienstra
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708WE, Wageningen, The Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
10
|
Abboud R, Kim S, Staser K, Jayasinghe RG, Lim S, Amatya P, Frye CC, Kopecky B, Ritchey J, Gao F, Lavine K, Kreisel D, DiPersio JF, Choi J. Baricitinib with cyclosporine eliminates acute graft rejection in fully mismatched skin and heart transplant models. Front Immunol 2023; 14:1264496. [PMID: 37744381 PMCID: PMC10511772 DOI: 10.3389/fimmu.2023.1264496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Solid organ transplant represents a potentially lifesaving procedure for patients suffering from end-stage heart, lung, liver, and kidney failure. However, rejection remains a significant source of morbidity and immunosuppressive medications have significant toxicities. Janus kinase (JAK) inhibitors are effective immunosuppressants in autoimmune diseases and graft versus host disease after allogeneic hematopoietic cell transplantation. Here we examine the role of JAK inhibition in preclinical fully major histocompatibility mismatched skin and heart allograft models. Baricitinib combined with cyclosporine A (CsA) preserved fully major histocompatibility mismatched skin grafts for the entirety of a 111-day experimental period. In baricitinib plus CsA treated mice, circulating CD4+T-bet+ T cells, CD8+T-bet+ T cells, and CD4+FOXP3+ regulatory T cells were reduced. Single cell RNA sequencing revealed a unique expression profile in immune cells in the skin of baricitinib plus CsA treated mice, including decreased inflammatory neutrophils and increased CCR2- macrophages. In a fully major histocompatibility mismatched mismatched heart allograft model, baricitinib plus CsA prevented graft rejection for the entire 28-day treatment period compared with 9 days in controls. Our findings establish that the combination of baricitinib and CsA prevents rejection in allogeneic skin and heart graft models and supports the study of JAK inhibitors in human solid organ transplantation.
Collapse
Affiliation(s)
- Ramzi Abboud
- Division of Oncology, Section of Leukemia and Stem Cell Transplantation, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Sena Kim
- Division of Oncology, Section of Leukemia and Stem Cell Transplantation, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Karl Staser
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Reyka G. Jayasinghe
- Division of Oncology, Section of Leukemia and Stem Cell Transplantation, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Sora Lim
- Division of Oncology, Section of Leukemia and Stem Cell Transplantation, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Parmeshwar Amatya
- Division of Oncology, Section of Leukemia and Stem Cell Transplantation, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - C. Corbin Frye
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Benjamin Kopecky
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Julie Ritchey
- Division of Oncology, Section of Leukemia and Stem Cell Transplantation, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Feng Gao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Kory Lavine
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - John F. DiPersio
- Division of Oncology, Section of Leukemia and Stem Cell Transplantation, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Jaebok Choi
- Division of Oncology, Section of Leukemia and Stem Cell Transplantation, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
11
|
Shi ZY, Yang C, Lu LY, Lin CX, Liang S, Li G, Zhou HM, Zheng JM. Inhibition of hexokinase 2 with 3-BrPA promotes MDSCs differentiation and immunosuppressive function. Cell Immunol 2023; 385:104688. [PMID: 36774675 DOI: 10.1016/j.cellimm.2023.104688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/08/2022] [Accepted: 02/03/2023] [Indexed: 02/08/2023]
Abstract
The adoptive transfer of ex vivo generated myeloid-derived suppressor cells (MDSCs) may be a promising therapeutic strategy for preventing allograft rejection after solid organ transplantation. Currently, the precise role of immune-metabolic pathways in the differentiation and function of MDSCs is not fully understood. Hexokinase 2 (HK2) is an isoform of hexokinase and is a key enzyme involved in the increased aerobic glycolysis of different immune cells during their activation and function. Here, we demonstrate that the addition of HK2 inhibitor 3-Bromopyruvic acid (3-BrPA) into traditional MDSCs induction system in vitro significantly promoted MDSCs production and enhanced their immunosuppressive function. Treatment with 3-BrPA increased the expression of MDSC-related immunosuppressive molecules, such as iNOS, Arg1, and CXCR2. Moreover, the adoptive transfer of 3-BrPA-treated MDSCs significantly prolonged the survival time of mouse heart allografts. This study provides a novel strategy to solve the problems of harvesting enough autologous cells for MDSC production from sick patients, and producing functionally enhanced MDSCs for preventing graft rejection and inducing tolerance.
Collapse
Affiliation(s)
- Zhan-Yue Shi
- Department of Cardiothoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chao Yang
- Department of Organ Transplantation, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Liu-Yi Lu
- Department of Cardiothoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Can-Xiang Lin
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shi Liang
- Department of Cardiothoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Gen Li
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Min Zhou
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jun-Meng Zheng
- Department of Cardiothoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
12
|
Hwang N, Huh Y, Bu S, Seo KJ, Kwon SH, Kim JW, Yoon BK, Ahn HS, Fang S. Single-cell sequencing of PBMC characterizes the altered transcriptomic landscape of classical monocytes in BNT162b2-induced myocarditis. Front Immunol 2022; 13:979188. [PMID: 36225942 PMCID: PMC9549039 DOI: 10.3389/fimmu.2022.979188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been the most dangerous threat to public health worldwide for the last few years, which led to the development of the novel mRNA vaccine (BNT162b2). However, BNT162b2 vaccination is known to be associated with myocarditis. Here, as an attempt to determine the pathogenesis of the disease and to develop biomarkers to determine whether subjects likely proceed to myocarditis after vaccination, we conducted a time series analysis of peripheral blood mononuclear cells of a patient with BNT162b2-induced myocarditis. Single-cell RNA sequence analysis identified monocytes as the cell clusters with the most dynamic changes. To identify distinct gene expression signatures, we compared monocytes of BNT162b2-induced myocarditis with monocytes under various conditions, including SARS-CoV-2 infection, BNT162b2 vaccination, and Kawasaki disease, a disease similar to myocarditis. Representative changes in the transcriptomic profile of classical monocytes include the upregulation of genes related to fatty acid metabolism and downregulation of transcription factor AP-1 activity. This study provides, for the first time, the importance of classical monocytes in the pathogenesis of myocarditis following BNT162b2 vaccination and presents the possibility that vaccination affects monocytes, further inducing their differentiation and infiltration into the heart.
Collapse
Affiliation(s)
- Nahee Hwang
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Yune Huh
- Department of Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Seonghyeon Bu
- Divison of Cardiology, Department of Internal medicine, The Catholic University of Korea, Uijeongbu St. Mary’s Hospital, Seoul, South Korea
- Catholic Research Institute for Intractable Cardiovascular Disease (CRID), College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kyung Jin Seo
- Department of Hospital Pathology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Se Hwan Kwon
- Department of Radiology, Kyung Hee University Medical Center, Seoul, South Korea
| | - Jae-woo Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Bo Kyung Yoon
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Bo Kyung Yoon, ; Hyo-Suk Ahn, ; Sungsoon Fang,
| | - Hyo-Suk Ahn
- Divison of Cardiology, Department of Internal medicine, The Catholic University of Korea, Uijeongbu St. Mary’s Hospital, Seoul, South Korea
- Catholic Research Institute for Intractable Cardiovascular Disease (CRID), College of Medicine, The Catholic University of Korea, Seoul, South Korea
- *Correspondence: Bo Kyung Yoon, ; Hyo-Suk Ahn, ; Sungsoon Fang,
| | - Sungsoon Fang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Bo Kyung Yoon, ; Hyo-Suk Ahn, ; Sungsoon Fang,
| |
Collapse
|