1
|
Li Z, Gong C. NLRP3 inflammasome in Alzheimer's disease: molecular mechanisms and emerging therapies. Front Immunol 2025; 16:1583886. [PMID: 40260242 PMCID: PMC12009708 DOI: 10.3389/fimmu.2025.1583886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory impairment, and neuroinflammation, with no definitive cure currently available. The NLRP3 inflammasome, a key mediator of neuroinflammation, has emerged as a critical player in AD pathogenesis, contributing to the accumulation of β-amyloid (Aβ) plaques, tau hyperphosphorylation, and neuronal damage. This review explores the mechanisms by which the NLRP3 inflammasome is activated in AD, including its interactions with Aβ, tau, reactive oxygen species (ROS), and pyroptosis. Additionally, it highlights the role of the ubiquitin system, ion channels, autophagy, and gut microbiota in regulating NLRP3 activation. Therapeutic strategies targeting the NLRP3 inflammasome, such as IL-1β inhibitors, natural compounds, and novel small molecules, are discussed as promising approaches to mitigate neuroinflammation and slow AD progression. This review underscores the potential of NLRP3 inflammasome inhibition as a therapeutic avenue for AD.
Collapse
Affiliation(s)
- Zhitao Li
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunrong Gong
- Department of Rehabilitation Medicine, Linyi People’s Hospital, Linyi, China
| |
Collapse
|
2
|
Wu X, Wu X, Wang Z, Tian X, Zhang C, Cao G, Gu Y, Yan T. Delivery of exogenous miR-19b by Wharton's Jelly Mesenchymal Stem Cells attenuates transplanted kidney ischemia/reperfusion injury by regulating cellular metabolism. Drug Deliv Transl Res 2025; 15:925-938. [PMID: 38918324 DOI: 10.1007/s13346-024-01645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Renal ischemia-reperfusion injury (IRI) frequently occurs following kidney transplantation, and exosomes derived from umbilical cord mesenchymal stem cells (WJ-MSC-Exos) have shown promise in treating IRI in transplanted kidneys. Our study delved into the potential mechanism of WJ-MSC-Exos in ameliorating IRI in transplanted kidneys, revealing that miR-19b is abundantly present in WJ-MSC-Exos. Both in vivo and in vitro experiments demonstrated that the absence of miR-19b abolished the protective effects of WJ-MSC-Exos against renal IRI. Mechanistically, miR-19b suppressed glycogen synthase kinase-3β (GSK3β) expression, thereby stabilizing PDXK protein through direct binding. Treatment with WJ-MSC-Exos led to reduced PDXK levels and enhanced pyridoxine accumulation, ultimately mitigating IRI in transplanted kidneys and I/R-induced HK2 cell apoptosis. These findings elucidate the underlying mechanism of WJ-MSC-Exos in alleviating IRI in transplanted kidneys, unveiling novel therapeutic targets for post-kidney transplantation IRI and providing a solid theoretical foundation for the clinical application of WJ-MSC-Exos in IRI treatment post-transplantation.
Collapse
Affiliation(s)
- Xiaoqiang Wu
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Xuan Wu
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Zhiwei Wang
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Xiangyong Tian
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Chan Zhang
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Guanghui Cao
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Yue Gu
- Department of Nephrology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Tianzhong Yan
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China.
| |
Collapse
|
3
|
Li J, Li X, Liu H. Sesquiterpene lactones and cancer: new insight into antitumor and anti-inflammatory effects of parthenolide-derived Dimethylaminomicheliolide and Micheliolide. Front Pharmacol 2025; 16:1551115. [PMID: 40051564 PMCID: PMC11882563 DOI: 10.3389/fphar.2025.1551115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
The isolation and application of biological macromolecules (BMMs) have become central in applied science today, with these compounds serving as anticancer, antimicrobial, and anti-inflammatory agents. Parthenolide (PTL), a naturally occurring sesquiterpene lactone derived from Tanacetum parthenium (feverfew), is among the most important of these BMMs. PTL has been extensively studied for its anticancer and anti-inflammatory properties, making it a promising candidate for further research and drug development. This review summarizes the anticancer and anti-inflammatory effects of PTL and its derivatives, with a focus on Micheliolide (MCL) and Dimethylaminomicheliolide (DMAMCL). These compounds, derived from PTL, have been developed to overcome PTL's instability in acidic and basic conditions and its low solubility. We also explore their potential in targeted and combination therapies, providing a comprehensive overview of their therapeutic mechanisms and highlighting their significance in future cancer treatment strategies.
Collapse
Affiliation(s)
| | | | - Hongwei Liu
- Department of Thyroid Head and Neck Surgery, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Shen H, Fu J, Liu J, Zou T, Wang K, Zhang X, Wan J. Ginsenoside Rk2 alleviates hepatic ischemia/reperfusion injury by enhancing AKT membrane translocation and activation. MedComm (Beijing) 2025; 6:e70047. [PMID: 39811799 PMCID: PMC11731106 DOI: 10.1002/mco2.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/20/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Hepatic ischemia-reperfusion injury (IRI) poses a significant threat to clinical outcomes and graft survival during hemorrhagic shock, hepatic resection, and liver transplantation. Current pharmacological interventions for hepatic IRI are inadequate. In this study, we identified ginsenoside Rk2 (Rk2), a rare dehydroprotopanaxadiol saponin, as a promising agent against hepatic IRI through high-throughput screening. The pharmacological effects and molecular mechanisms of Rk2 on hepatic IRI were further evaluated and elucidated in vitro and in vivo. Rk2 significantly reduced inflammation and apoptosis caused by oxygen-glucose deprivation and reperfusion in hepatocytes and dose dependently protected against hepatic I/R-induced liver injury in mice. Integrated approaches, including network pharmacology, molecular docking, transcriptome analysis, and isothermal titration calorimetry, along with experimental validation, indicated that Rk2 protects against hepatic IRI by targeting and activating the AKT (RAC serine/threonine protein kinase) signaling pathway. Pharmacological inhibition of AKT pathway or knockdown of AKT1 effectively diminished protective effects of Rk2. Rk2 directly binds to AKT1, facilitating its translocation from the cytoplasm to plasma membrane. This process markedly enhanced AKT interaction with PDPK1, promoting the activation of AKT1 and its downstream signaling. Our findings demonstrate that Rk2 protects against hepatic IRI by activating AKT signaling through direct binding to AKT1 and facilitating its membrane translocation.
Collapse
Affiliation(s)
- Hong Shen
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao SARChina
| | - Jiajun Fu
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesGannan Innovation and Translational Medicine Research InstituteGannan Medical UniversityGanzhouChina
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao SARChina
| | - Toujun Zou
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Kun Wang
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesGannan Innovation and Translational Medicine Research InstituteGannan Medical UniversityGanzhouChina
| | - Xiao‐Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesGannan Innovation and Translational Medicine Research InstituteGannan Medical UniversityGanzhouChina
- Basic Medical SchoolWuhan UniversityWuhanChina
| | - Jian‐Bo Wan
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao SARChina
| |
Collapse
|
5
|
Chen F, Li Y, Zhao L, Lin C, Zhou Y, Ye W, Wan W, Zou H, Xue Y. Anti-inflammatory effects of MerTK by inducing M2 macrophage polarization via PI3K/Akt/GSK-3β pathway in gout. Int Immunopharmacol 2024; 142:112942. [PMID: 39217874 DOI: 10.1016/j.intimp.2024.112942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Mer tyrosine kinase (MerTK) has been found to regulate the secretion of inflammatory factors and exert immunosuppressive effects, but its role in gout remains unclear. In this study, we aimed to clarify the immnue effects of MerTK in gout. MerTK in synovium or serum of gout patients was determined by immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), and real-time quantitative polymerase chain reaction (RT-qPCR). In monosodium urate (MSU)-induced gout mice, the effect of MerTK inhibitor (UNC2250) on inflammation and polarization was also assessed. After inhibition, knockdown or overexpression of MerTK, inflammatory response and polarization level in THP1-derived macrophages were evaluated by RT-qPCR and flow cytometry. Regulation of MerTK inhibitors on mitochondrial function and downstream pathway in THP1-derived macrophages were detected. MerTK in synovium and serum of gout patients were increased. MerTK inhibitor stimulated the inflammation and M1 polarization in MSU-induced gout mice. MerTK inhibition, knock-down, or overexpression affected inflammatory response, polarization and mitochondrial function in vitro in gout model. The PI3K/Akt/GSK-3β pathway was identified to reduce after MerTK inhibition and the relevant results were as expected, validated by knock-down or overexpressing MerTK. In conclusion, MerTK was detected to increase in both gout patients and model. MerTK influenced inflammatory response and polarization markers through PI3K/Akt/GSK-3β pathway. Interfering MerTK/PI3K/Akt/GSK-3β axis may provide a new therapeutic target for gout.
Collapse
Affiliation(s)
- Fangfang Chen
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China; Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Yixuan Li
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Li Zhao
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China; Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Cong Lin
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China; Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Yingzi Zhou
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China; Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Wenjing Ye
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China; Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Weiguo Wan
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China; Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China; Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.
| | - Yu Xue
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China; Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Li J, Zhang Y, Tang R, Liu H, Li X, Lei W, Chen J, Jin Z, Tang J, Wang Z, Yang Y, Wu X. Glycogen synthase kinase-3β: A multifaceted player in ischemia-reperfusion injury and its therapeutic prospects. J Cell Physiol 2024; 239:e31335. [PMID: 38962880 DOI: 10.1002/jcp.31335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/05/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024]
Abstract
Ischemia-reperfusion injury (IRI) results in irreversible metabolic dysfunction and structural damage to tissues or organs, posing a formidable challenge in the field of organ implantation, cardiothoracic surgery, and general surgery. Glycogen synthase kinase-3β (GSK-3β) a multifunctional serine/threonine kinase, is involved in a variety of biological processes, including cell proliferation, apoptosis, and immune response. Phosphorylation of its tyrosine 216 and serine 9 sites positively and negatively regulates the activation and inactivation of the enzyme. Significantly, inhibition or inactivation of GSK-3β provides protection against IRI, making it a viable target for drug development. Though numerous GSK-3β inhibitors have been identified to date, the development of therapeutic treatments remains a considerable distance away. In light of this, this review summarizes the complicated network of GSK-3β roles in IRI. First, we provide an overview of GSK-3β's basic background. Subsequently, we briefly review the pathological mechanisms of GSK-3β in accelerating IRI, and highlight the latest progress of GSK-3β in multiorgan IRI, encompassing heart, brain, kidney, liver, and intestine. Finally, we discuss the current development of GSK-3β inhibitors in various organ IRI, offering a thorough and insightful reference for GSK-3β as a potential target for future IRI therapy.
Collapse
Affiliation(s)
- Jiayan Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yan Zhang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ran Tang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Hui Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xiayun Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Junmin Chen
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xiaopeng Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| |
Collapse
|
7
|
Li J, Jin C, Li Y, Liu H. Mid1 aggravates hepatic ischemia-reperfusion injury by inducing immune cell infiltration. FASEB J 2024; 38:e23823. [PMID: 39008003 DOI: 10.1096/fj.202400843r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) represents a major risk factor in liver transplantation and resection surgeries. Kupffer cells (KCs) produce proinflammatory cytokines and lead to hepatic neutrophil infiltration in the liver, which is one of the leading causes of HIRI. Mid1 is involved in immune infiltration, but the role of Mid1 remains poorly understood. Herin, our study aimed to investigate the effect of Mid1 on HIRI progression. Male C57BL/6 mice aged 6 weeks were used for the HIRI model established. The function of Mid1 on liver injury and hepatic inflammation was evaluated. In vitro, KCs were used to investigate the function and mechanism of Mid1 in modulating KC inflammation upon lipopolysaccharide (LPS) stimulation. We found that Mid1 expression was up-regulated upon HIRI. Mid1 inhibition alleviated liver damage, as evidenced by neutrophil infiltration, intrahepatic inflammation, and hepatocyte apoptosis. In vitro experiments further revealed that Mid1 knockdown reduced the secretion of proinflammatory cytokines and chemokines in KCs. Moreover, silenced-Mid1 suppressed proinflammatory responses by the inhibition of NF-κB, JNK, and p38 signaling pathways. Taken together, Mid1 contributes to HIRI via regulating the proinflammatory response of KCs and inducing neutrophil infiltration. Targeting Mid1 may be a promising strategy to protect against HIRI.
Collapse
Affiliation(s)
- Ji Li
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Changlian Jin
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yue Li
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huanqiu Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Kühl F, Brand K, Lichtinghagen R, Huber R. GSK3-Driven Modulation of Inflammation and Tissue Integrity in the Animal Model. Int J Mol Sci 2024; 25:8263. [PMID: 39125833 PMCID: PMC11312333 DOI: 10.3390/ijms25158263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Nowadays, GSK3 is accepted as an enzyme strongly involved in the regulation of inflammation by balancing the pro- and anti-inflammatory responses of cells and organisms, thus influencing the initiation, progression, and resolution of inflammatory processes at multiple levels. Disturbances within its broad functional scope, either intrinsically or extrinsically induced, harbor the risk of profound disruptions to the regular course of the immune response, including the formation of severe inflammation-related diseases. Therefore, this review aims at summarizing and contextualizing the current knowledge derived from animal models to further shape our understanding of GSK3α and β and their roles in the inflammatory process and the occurrence of tissue/organ damage. Following a short recapitulation of structure, function, and regulation of GSK3, we will focus on the lessons learned from GSK3α/β knock-out and knock-in/overexpression models, both conventional and conditional, as well as a variety of (predominantly rodent) disease models reflecting defined pathologic conditions with a significant proportion of inflammation and inflammation-related tissue injury. In summary, the literature suggests that GSK3 acts as a crucial switch driving pro-inflammatory and destructive processes and thus contributes significantly to the pathogenesis of inflammation-associated diseases.
Collapse
Affiliation(s)
| | | | | | - René Huber
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (F.K.); (K.B.); (R.L.)
| |
Collapse
|
9
|
Wen X, Hou J, Qi T, Cheng X, Liao G, Fang S, Xiao S, Qiu L, Wei W. Anoikis resistance regulates immune infiltration and drug sensitivity in clear-cell renal cell carcinoma: insights from multi omics, single cell analysis and in vitro experiment. Front Immunol 2024; 15:1427475. [PMID: 38953023 PMCID: PMC11215044 DOI: 10.3389/fimmu.2024.1427475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Background Anoikis is a form of programmed cell death essential for preventing cancer metastasis. In some solid cancer, anoikis resistance can facilitate tumor progression. However, this phenomenon is underexplored in clear-cell renal cell carcinoma (ccRCC). Methods Using SVM machine learning, we identified core anoikis-related genes (ARGs) from ccRCC patient transcriptomic data. A LASSO Cox regression model stratified patients into risk groups, informing a prognostic model. GSVA and ssGSEA assessed immune infiltration, and single-cell analysis examined ARG expression across immune cells. Quantitative PCR and immunohistochemistry validated ARG expression differences between immune therapy responders and non-responders in ccRCC. Results ARGs such as CCND1, CDKN3, PLK1, and BID were key in predicting ccRCC outcomes, linking higher risk with increased Treg infiltration and reduced M1 macrophage presence, indicating an immunosuppressive environment facilitated by anoikis resistance. Single-cell insights showed ARG enrichment in Tregs and dendritic cells, affecting immune checkpoints. Immunohistochemical analysis reveals that ARGs protein expression is markedly elevated in ccRCC tissues responsive to immunotherapy. Conclusion This study establishes a novel anoikis resistance gene signature that predicts survival and immunotherapy response in ccRCC, suggesting that manipulating the immune environment through these ARGs could improve therapeutic strategies and prognostication in ccRCC.
Collapse
MESH Headings
- Humans
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/drug therapy
- Anoikis/drug effects
- Kidney Neoplasms/immunology
- Kidney Neoplasms/genetics
- Kidney Neoplasms/pathology
- Single-Cell Analysis
- Prognosis
- Gene Expression Regulation, Neoplastic
- Drug Resistance, Neoplasm/genetics
- Tumor Microenvironment/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Transcriptome
- Cell Line, Tumor
- Biomarkers, Tumor/genetics
- T-Lymphocytes, Regulatory/immunology
- Gene Expression Profiling
- Male
- Multiomics
Collapse
Affiliation(s)
- Xiangyang Wen
- The Department of Surgery, Shenzhen Longgang Second People’s Hospital, Shenzhen, China
| | - Jian Hou
- Department of Urology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China
| | - Tiantian Qi
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaobao Cheng
- Department of Urology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China
| | - Guoqiang Liao
- The Department of Surgery, Shenzhen Longgang Second People’s Hospital, Shenzhen, China
| | - Shaohong Fang
- The Department of Surgery, Shenzhen Longgang Second People’s Hospital, Shenzhen, China
| | - Song Xiao
- The Department of Surgery, Shenzhen Longgang Second People’s Hospital, Shenzhen, China
| | - Longlong Qiu
- The Department of Surgery, Shenzhen Longgang Second People’s Hospital, Shenzhen, China
| | - Wanqing Wei
- Department of Urology, Lianshui People’s Hospital of Kangda College Affiliated to Nanjing Medical University, Huaian, China
| |
Collapse
|
10
|
Zhang H, You G, Yang Q, Jin G, Lv G, Fan L, Chen Y, Li H, Yi S, Li H, Guo N, Liu W, Yang Y. CX3CR1 deficiency promotes resolution of hepatic ischemia-reperfusion injury by regulating homeostatic function of liver infiltrating macrophages. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167130. [PMID: 38537684 DOI: 10.1016/j.bbadis.2024.167130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/01/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Hepatic ischemia-reperfusion injury(HIRI) remains to be an unsolved risk factor that contributes to organ failure after liver surgery. Our clinical retrospective study showed that lower donor liver CX3-C chemokine receptor-1(CX3CR1) mRNA expression level were correlated with upregulated pro-resolved macrophage receptor MERTK, as well as promoted restoration efficiency of allograft injury in liver transplant. To further characterize roles of CX3CR1 in regulating resolution of HIRI, we employed murine liver partial warm ischemia-reperfusion model by Wt & Cx3cr1-/- mice and the reperfusion time was prolonged from 6 h to 4-7 days. Kupffer cells(KCs) were depleted by clodronate liposome(CL) in advance to focus on infiltrating macrophages, and repopulation kinetics were determined by FACS, IF and RNA-Seq. CX3CR1 antagonist AZD8797 was injected i.p. to interrogate potential pharmacological therapeutic strategies. In vitro primary bone marrow macrophages(BMMs) culture by LXR agonist DMHCA, as well as molecular and functional studies, were undertaken to dissect roles of CX3CR1 in modulating macrophages cytobiological development and resolutive functions. We observed that deficiency or pharmacological inhibition of CX3CR1 facilitated HIRI resolution via promoted macrophages migration in CCR1/CCR5 manner, as well as enhanced MerTK-mediated efferocytosis. Our study demonstrated the critical roles of CX3CR1 in progression of HIRI and identified it as a potential therapeutic target in clinical liver transplantation.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guohua You
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Department of Surgical and Transplant Intensive Care Unit, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qing Yang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guanghui Jin
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guo Lv
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Linda Fan
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yifan Chen
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huidi Li
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuhong Yi
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hua Li
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Na Guo
- Department of Anesthesiology, the Third Affifiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Wei Liu
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
11
|
Yamamoto Y, Yamaguchi T, Egashira K, Saiki S, Kimura M, Chikazawa T, Yamamoto Y, Kurita K. Dipotassium glycyrrhizate and hinokitiol enhance macrophage efferocytosis by regulating recognition, uptake, and metabolism of apoptotic cells in vitro. J Periodontal Res 2024; 59:542-551. [PMID: 38146226 DOI: 10.1111/jre.13228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND AND OBJECTIVE Efferocytosis is a process whereby macrophages remove apoptotic cells, such as neutrophils, that have accumulated in tissues, which is required for resolution of inflammation. Efferocytosis is impaired in individuals with increasing age and in those with various systemic diseases. Recently, efferocytosis has been reported to be related to the pathogenesis and progression of periodontitis, and enhancement of efferocytosis, especially in the subjects with impaired efferocytosis, was suggested to lead to periodontitis prevention and care. Various anti-inflammatory ingredients are used in oral care products, but their effect on efferocytosis is unclear. Here, we aimed to identify ingredients contained in oral care products that are effective for efferocytosis regulation. METHODS The ability of dead cells to induce inflammation in human gingival fibroblast (HGF) cells were evaluated by measuring IL-6 secretion. Six ingredients in oral care products used as anti-inflammatory agents were evaluated for their effect on efferocytosis using flow cytometry. The expression of various efferocytosis-related molecules, such as MERTK and LRP1 involved in recognition, and LXRα and ABCA1 that function in metabolism, were measured in RAW264.7 cells with or without ingredient treatment. Rac1 activity, which is related to the uptake of dead cells, was measured using the G-LISA kit. RESULTS Dead cells elicited IL-6 secretion in HGF cells. Among the six ingredients, GK2 and hinokitiol enhanced efferocytosis activity. GK2 and hinokitiol significantly increased the expression of MERTK and LRP1, and also enhanced LXRα and ABCA1 expression after efferocytosis. Furthermore, they increased Rac1 activity in the presence of dead cells. CONCLUSION Among the six ingredients tested, GK2 and hinokitiol promoted efferocytosis by regulating apoptotic cell recognition, uptake, and metabolism-related molecules. Efferocytosis upregulation may be one of the mechanisms of GK2 and hinokitiol in the treatment of inflammatory diseases, such as periodontitis.
Collapse
Affiliation(s)
- Yu Yamamoto
- R&D Headquarters, LION Corporation, Tokyo, Japan
| | | | | | - Shuhei Saiki
- R&D Headquarters, LION Corporation, Tokyo, Japan
| | | | | | | | - Kei Kurita
- R&D Headquarters, LION Corporation, Tokyo, Japan
| |
Collapse
|
12
|
Xu X, Sun K, Chang H, Shen C, Li X, Ni Y, Zhu Y, Wang H, Xiong R, Padde JR, Xu Z, Chen L, Chen L, Hou M, Pu L, Ji M. Novel anti-inflammatory peptide alleviates liver ischemia-reperfusion injury. J Biomed Res 2024; 39:61-75. [PMID: 38807419 PMCID: PMC11873596 DOI: 10.7555/jbr.38.20240020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) remains an unavoidable challenge in liver surgery, with macrophages playing a critical role in its pathogenesis. However, the mechanisms by which macrophages regulate the pathogenesis of IRI are not well understood. Through a target-guided screening approach, we identified a small 3 kDa peptide (SjDX5-271) from various schistosome egg-derived peptides that induced M2 macrophage polarization. SjDX5-271 treatment protected mice against liver IRI by promoting M2 macrophage polarization, and this protective effect was abrogated when the macrophages were depleted. Transcriptomic sequencing showed that the TLR signaling pathway was significantly inhibited in macrophages from the SjDX5-271 treatment group. We further identified that SjDX5-271 promoted M2 macrophage polarization by inhibiting the TLR4/MyD88/NF-κB signaling pathway and alleviated hepatic inflammation in liver IRI. Collectively, SjDX5-271 exhibited some promising therapeutic effects in IRI and represented a novel therapeutic approach, potentially applicable to other immune-related diseases. The current study demonstrates the potential of new biologics from the parasite, enhances our understanding of host-parasite interplay, and provides a blueprint for future therapies for immune-related diseases.
Collapse
Affiliation(s)
- Xuejun Xu
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Kaineng Sun
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hao Chang
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chunxiang Shen
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiangdong Li
- Hepatobiliary Center, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, China
| | - Yangyue Ni
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yuxiao Zhu
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Huiquan Wang
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ruiyan Xiong
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jon Rob Padde
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhipeng Xu
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lin Chen
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lu Chen
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Min Hou
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Liyong Pu
- Hepatobiliary Center, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, China
| | - Minjun Ji
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
13
|
Shi H, Moore MP, Wang X, Tabas I. Efferocytosis in liver disease. JHEP Rep 2024; 6:100960. [PMID: 38234410 PMCID: PMC10792655 DOI: 10.1016/j.jhepr.2023.100960] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 01/19/2024] Open
Abstract
The process of dead cell clearance by phagocytic cells, called efferocytosis, prevents inflammatory cell necrosis and promotes resolution and repair. Defective efferocytosis contributes to the progression of numerous diseases in which cell death is prominent, including liver disease. Many gaps remain in our understanding of how hepatic macrophages carry out efferocytosis and how this process goes awry in various types of liver diseases. Thus far, studies have suggested that, upon liver injury, liver-resident Kupffer cells and infiltrating monocyte-derived macrophages clear dead cells, limit inflammation, and, through macrophage reprogramming, repair liver damage. However, in unusual settings, efferocytosis can promote liver disease. In this review, we will focus on efferocytosis in various types of acute and chronic liver diseases, including metabolic dysfunction-associated steatohepatitis. Understanding the mechanisms and consequences of efferocytosis by hepatic macrophages has the potential to shed new light on liver disease pathophysiology and to guide new treatment strategies to prevent disease progression.
Collapse
Affiliation(s)
- Hongxue Shi
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mary P. Moore
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiaobo Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
14
|
Shi T, Li M, Yu Y. Machine learning-enhanced insights into sphingolipid-based prognostication: revealing the immunological landscape and predictive proficiency for immunomotherapy and chemotherapy responses in pancreatic carcinoma. Front Mol Biosci 2023; 10:1284623. [PMID: 38028544 PMCID: PMC10643633 DOI: 10.3389/fmolb.2023.1284623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Background: With a poor prognosis for affected individuals, pancreatic adenocarcinoma (PAAD) is known as a complicated and diverse illness. Immunocytes have become essential elements in the development of PAAD. Notably, sphingolipid metabolism has a dual function in the development of tumors and the invasion of the immune system. Despite these implications, research on the predictive ability of sphingolipid variables for PAAD prognosis is strikingly lacking, and it is yet unclear how they can affect PAAD immunotherapy and targeted pharmacotherapy. Methods: The investigation process included SPG detection while also being pertinent to the prognosis for PAAD. Both the analytical capability of CIBERSORT and the prognostic capability of the pRRophetic R package were used to evaluate the immunological environments of the various HCC subtypes. In addition, CCK-8 experiments on PAAD cell lines were carried out to confirm the accuracy of drug sensitivity estimates. The results of these trials, which also evaluated cell survival and migratory patterns, confirmed the usefulness of sphingolipid-associated genes (SPGs). Results: As a result of this thorough investigation, 32 SPGs were identified, each of which had a measurable influence on the dynamics of overall survival. This collection of genes served as the conceptual framework for the development of a prognostic model, which was carefully assembled from 10 chosen genes. It should be noted that this grouping of patients into cohorts with high and low risk was a sign of different immune profiles and therapy responses. The increased abundance of SPGs was identified as a possible sign of inadequate responses to immune-based treatment approaches. The careful CCK-8 testing carried out on PAAD cell lines was of the highest importance for providing clear confirmation of drug sensitivity estimates. Conclusion: The significance of Sphingolipid metabolism in the complex web of PAAD development is brought home by this study. The novel risk model, built on the complexity of sphingolipid-associated genes, advances our understanding of PAAD and offers doctors a powerful tool for developing personalised treatment plans that are specifically suited to the unique characteristics of each patient.
Collapse
Affiliation(s)
| | | | - Yabin Yu
- Department of Hepatobiliary Surgery, The Affiliated Huaian No 1 People’s Hospital of Nanjing Medical University, Huaian, China
| |
Collapse
|
15
|
Shaker ME, Gomaa HAM, Abdelgawad MA, El-Mesery M, Shaaban AA, Hazem SH. Emerging roles of tyrosine kinases in hepatic inflammatory diseases and therapeutic opportunities. Int Immunopharmacol 2023; 120:110373. [PMID: 37257270 DOI: 10.1016/j.intimp.2023.110373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/06/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Inflammation has been convicted of causing and worsening many liver diseases like acute liver failure, fibrosis, cirrhosis, fatty liver and liver cancer. Pattern recognition receptors (PRRs) like TLRs 4 and 9 localized on resident or recruited immune cells are well known cellular detectors of pathogen and damage-associated molecular patterns (PAMPs/DAMPs). Stimulation of these receptors generates the sterile and non-sterile inflammatory responses in the liver. When these responses are repeated, there will be a sustained liver injury that may progress to fibrosis and its outcomes. Crosstalk between inflammatory/fibrogenic-dependent streams and certain tyrosine kinases (TKs) has recently evolved in the context of hepatic diseases. Because of TKs increasing importance, their role should be elucidated to highlight effective approaches to manage the diverse liver disorders. This review will give a brief overview of types and functions of some TKs like BTK, JAKs, Syk, PI3K, Src and c-Abl, as well as receptors for TAM, PDGF, EGF, VEGF and HGF. It will then move to discuss the roles of these TKs in the regulation of the proinflammatory, fibrogenic and tumorigenic responses in the liver. Lastly, the therapeutic opportunities for targeting TKs in hepatic inflammatory disorders will be addressed. Overall, this review sheds light on the diverse TKs that have substantial roles in hepatic disorders and potential therapeutics modulating their activity.
Collapse
Affiliation(s)
- Mohamed E Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia.
| | - Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Ahmed A Shaaban
- Department of Pharmacology & Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sara H Hazem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
16
|
Ito Y, Hosono K, Amano H. Responses of hepatic sinusoidal cells to liver ischemia–reperfusion injury. Front Cell Dev Biol 2023; 11:1171317. [PMID: 37082623 PMCID: PMC10112669 DOI: 10.3389/fcell.2023.1171317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
The liver displays a remarkable regenerative capacity in response to acute liver injury. In addition to the proliferation of hepatocytes during liver regeneration, non-parenchymal cells, including liver macrophages, liver sinusoidal endothelial cells (LSECs), and hepatic stellate cells (HSCs) play critical roles in liver repair and regeneration. Liver ischemia–reperfusion injury (IRI) is a major cause of increased liver damage during liver resection, transplantation, and trauma. Impaired liver repair increases postoperative morbidity and mortality of patients who underwent liver surgery. Successful liver repair and regeneration after liver IRI requires coordinated interplay and synergic actions between hepatic resident cells and recruited cell components. However, the underlying mechanisms of liver repair after liver IRI are not well understood. Recent technological advances have revealed the heterogeneity of each liver cell component in the steady state and diseased livers. In this review, we describe the progress in the biology of liver non-parenchymal cells obtained from novel technological advances. We address the functional role of each cell component in response to liver IRI and the interactions between diverse immune repertoires and non-hematopoietic cell populations during the course of liver repair after liver IRI. We also discuss how these findings can help in the design of novel therapeutic approaches. Growing insights into the cellular interactions during liver IRI would enhance the pathology of liver IRI understanding comprehensively and further develop the strategies for improvement of liver repair.
Collapse
|