1
|
Yong C, Liang Y, Wang M, Jin W, Fan X, Wang Z, Cao K, Wu T, Li Q, Chang C. Alternative splicing: A key regulator in T cell response and cancer immunotherapy. Pharmacol Res 2025; 215:107713. [PMID: 40147681 DOI: 10.1016/j.phrs.2025.107713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Alternative splicing (AS), a key post-transcriptional regulatory mechanism, is frequently dysregulated in cancer, driving both tumor progression and immune modulation. Aberrant AS influences antigen presentation, T cell activation, immune checkpoint regulation, and cytokine signaling, contributing to immune evasion but also presenting unique therapeutic vulnerabilities. Targeting AS has emerged as a promising strategy in cancer immunotherapy. Splicing-derived neoantigens have been identified as potent inducers of CD8⁺ T cell responses, offering potential for personalized treatment. AS modulators such as PRMT5 inhibitor GSK3326595 enhance immunotherapy efficacy by upregulating MHC class II expression and promoting T cell infiltration, while RBM39 inhibitor indisulam induces tumor-specific neoantigens. Furthermore, combining AS-targeting drugs with immune checkpoint inhibitors (ICIs) has demonstrated synergistic effects, improved response rates and overcoming resistance in preclinical models. Despite these advances, challenges remain in optimizing drug specificity and minimizing toxicity. Future efforts should focus on refining AS-targeting therapies, identifying predictive biomarkers, and integrating these approaches into clinical applications. This review highlights the therapeutic potential of AS modulation in cancer immunotherapy and its implications for advancing precision oncology.
Collapse
Affiliation(s)
- Caiyu Yong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yexin Liang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Minmin Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Weiwei Jin
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xuefei Fan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Zhengwen Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Kui Cao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Tong Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Qian Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Cunjie Chang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
2
|
Cai X, Yu L, Liu X, Yan H, Xie Y, Pu Q, Shang Z, Wu Y, Jiang T, Yang Z. Based on Soluble Immune Checkpoints Constructing a Random Survival Forest Model to Predict the Prognosis of Hepatitis B Virus-Associated Hepatocellular Carcinoma. Onco Targets Ther 2025; 18:559-573. [PMID: 40276780 PMCID: PMC12020021 DOI: 10.2147/ott.s512838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Background Nowadays, immune checkpoint blockade (ICB) therapy has become a milestone in immunotherapy for hepatocellular carcinoma (HCC). However, its clinical effectiveness remains low. Soluble (s) immune checkpoints (ICs), functional components of membrane ICs, are novel physiological immunomodulators. We investigated the prognostic value of sICs in patients of hepatitis B virus-associated hepatocellular carcinoma (HBV-HCC) and provided clinical clues for potential new targets for future immunotherapy. Methods A total of 256 participants were included in this study. We compared the plasma levels of 14 sICs in healthy controls (HC), chronic hepatitis B (CHB), hepatitis B-related liver cirrhosis (HBV-LC), and HBV-HCC groups. COX and random survival forest (RSF) were used to select variables and construct a model to predict overall survival of patients with HBV-HCC. We evaluated the predictive efficacy and analyzed the correlations between sICs, clinical parameters, and membrane ICs. Results The levels of 14 sICs in HBV-HCC were elevated compared to that in HC. The areas under the receiver operating characteristic values of 1-, 2-, and 3-year survival predicted by the RSF model were 0.96, 0.85, and 0.81 in the training set, and 0.91, 0.80, and 0.71 in the validation set. The model could adapt to different event distributions and clinical staging systems. Soluble glucocorticoid-induced tumor necrosis factor receptor (sGITR), soluble programmed cell death-ligand 1 (sPD-L1) and soluble T cell immunoglobulin and mucin domain-containing protein 3 (sTIM-3) were closely associated with the prognosis of patients. Soluble PD-L1 was negatively correlated with HGB and positively correlated with AST and NLR (P < 0.05). Soluble TIM-3 was negatively correlated with ALB and CD8+ T cells and positively correlated with HBV-DNA, AST, LDH and mTIM-3 expression in CD8+ T cells (P<0.05). Conclusion We constructed a predictive model based on sICs to predict different survival times in HBV-HCC patients. The risk stratification effectively identified potentially critical patients. Soluble GITR, sPD-L1 and sTIM-3 were important immunological indicators which could dynamically monitor patients' immune status.
Collapse
Affiliation(s)
- Xue Cai
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
- Beijing Shangdi Hospital, Beijing, 100085, People’s Republic of China
| | - Lihua Yu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Xiaoli Liu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Huiwen Yan
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Yuqing Xie
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Qing Pu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Zimeng Shang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Yuan Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Tingting Jiang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Zhiyun Yang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| |
Collapse
|
3
|
Dragu D, Necula LG, Bleotu C, Diaconu CC, Chivu-Economescu M. Soluble PD-L1: From Immune Evasion to Cancer Therapy. Life (Basel) 2025; 15:626. [PMID: 40283180 PMCID: PMC12028844 DOI: 10.3390/life15040626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Immunotherapy has emerged as a promising approach to cancer treatment, but only a small percentage of cancer patients benefit from it. To enhance therapeutic outcomes, it is essential to understand factors influencing immune response and tumor progression. Soluble PD-L1 (sPD-L1) has been identified as an essential element in immune regulation, with potential implications in cancer biology and treatment. This manuscript explores the sources and mechanisms of sPD-L1 production, its role in immune evasion and tumor progression, and its clinical significance. Elevated sPD-L1 levels have been linked to disease severity, survival, and treatment response in various malignancies, and as a consequence, strategies for combinatorial targeting of sPD-L1 with other immunotherapies are considered. Further studies are needed to understand sPD-L1 dynamics and to clarify the mechanisms of sPD-L1-mediated immunosuppression and its therapeutic implications.
Collapse
Affiliation(s)
- Denisa Dragu
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (D.D.); (C.B.); (C.C.D.); (M.C.-E.)
| | - Laura Georgiana Necula
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (D.D.); (C.B.); (C.C.D.); (M.C.-E.)
- Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Coralia Bleotu
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (D.D.); (C.B.); (C.C.D.); (M.C.-E.)
| | - Carmen C. Diaconu
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (D.D.); (C.B.); (C.C.D.); (M.C.-E.)
| | - Mihaela Chivu-Economescu
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (D.D.); (C.B.); (C.C.D.); (M.C.-E.)
| |
Collapse
|
4
|
Izadi S, Abrantes R, Gumpelmair S, Kunnummel V, Duarte HO, Steinberger P, Reis CA, Castilho A. An engineered PD1-Fc fusion produced in N. benthamiana plants efficiently blocks PD1/PDL1 interaction. PLANT CELL REPORTS 2025; 44:80. [PMID: 40119938 PMCID: PMC11929711 DOI: 10.1007/s00299-025-03475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
KEY MESSAGE Plant-made PD1-Fc fusions engineered for optimized glycosylation and Fc-receptor engagement are highly efficient in blocking PD1/PDL1 interactions and can be cost-effective alternatives to antibody-based immune checkpoint inhibitors. Immune checkpoint inhibitors (ICIs) are antibodies to receptors that have pivotal roles during T-cell activation processes. The programmed cell death 1 (PD1) can be regarded as the primary immune checkpoint and antibodies targeting PD1 or its ligand PDL1 have revolutionized immunotherapy of cancer. However, the majority of patients fail to respond, and treatment resistance as well as immune-related adverse events are commonly associated with this therapy. Alternatives to antibody-based ICIs targeting the PD1 pathway may bear the potential to overcome some of these shortcomings. Here, we have used a plant expression platform based on the tobacco relative Nicotiana benthamiana to generate immunoglobulin fusion proteins harboring the wild type or an affinity-enhanced PD1 ectodomain. We have exploited the versatility of our system to generate variants that differed regarding their glycosylation profile as well as their capability to engage Fc-receptors. Unlike its wild-type counterpart, the affinity-enhanced versions showed strongly augmented capabilities to engage PDL1 in both protein- and cell-based assays. Moreover, in contrast with clinical antibodies, their binding is not affected by the glycosylation status of PDL1. Importantly, we could demonstrate that the plant-made PD1 fusion proteins are highly efficient in blocking inhibitory PD1 signaling in a T cell reporter assay. Taken together, our study highlights the utility of our plant-based protein expression platform to generate biologics with therapeutic potential. Targeting PDL1 with plant derived affinity-enhanced PD1 immunoglobulin fusion proteins may reduce overstimulation associated with antibody-based therapies while retaining favorable features of ICIs such as long serum half-life.
Collapse
Affiliation(s)
- Shiva Izadi
- Department of Biotechnology and Food Science Institute of Plant Biotechnology and Cell Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Rafaela Abrantes
- i3S Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Simon Gumpelmair
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Vinny Kunnummel
- Department of Biotechnology and Food Science Institute of Plant Biotechnology and Cell Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Henrique O Duarte
- i3S Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Celso A Reis
- i3S Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Faculty of Medicine (FMUP), University of Porto, Porto, Portugal
| | - Alexandra Castilho
- Department of Biotechnology and Food Science Institute of Plant Biotechnology and Cell Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
5
|
Li W, Sun J, Feng S, La Rosa A, Zhang P, Wu EY, Loeser R, Li C. Secreted PD-L1 alleviates inflammatory arthritis in mice through local and systemic AAV gene therapy. Front Immunol 2025; 16:1527858. [PMID: 39963137 PMCID: PMC11830590 DOI: 10.3389/fimmu.2025.1527858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Rheumatoid arthritis (RA) primarily affects the joints but can also affect multiple organs and profoundly impacts patients' ability to carry out daily activities, mental health, and life expectancy. Current treatments for RA are limited in terms of duration, efficacy, and adverse effects. PD-L1 is a checkpoint protein that plays important roles in immune regulation and has been implicated in the initiation and progression of multiple autoimmune diseases. Method In a previous study, we demonstrated that intra-articular injection with adeno-associated virus (AAV) vectors encoding wild type PD-L1 improved local inflammation in the joint in the collagen-induced arthritis (CIA) mouse model of RA. To further improve efficacy, we explored AAV-mediated delivery of the soluble PD-L1 (sPD-L1) to CIA mice. Result After intra-articular injection of AAV6 vectors expressing the optimal isoform of sPD-L1 (shPD-L1), more potency was observed when compared to wild type PD-L1, with a lower dose of AAV6/shPD-L1 needed for arthritis improvement. To study the therapeutic effect of systemic expression of sPD-L1, we administered AAV8/shPD-L1 gene therapy in CIA mice via retro-orbital injection and found significant improvements in joint inflammation and paw swelling, exhibiting similar phenotypes to that in naïve mice. The levels of total immunoglobulin and anti-collagen specific antibodies were lower in AAV8/shPD-L1 treated CIA mice than those in controls. The levels of pro-inflammatory cytokines in blood were also significantly decreased in shPD-L1 treated mice. Additionally, T cell apoptosis rates in the spleen showed a 2-fold increase in treated mice. Finally, we investigated the therapeutic effect of AAV/shPD-L1 via intramuscular injection. After injection of AAV6/shPD-L1, decreased paw swelling, reduced joint inflammation, and lower levels of pro-inflammatory cytokines in blood were achieved. The therapeutic effect of shPD-L1 was dose dependent via intramuscular treatment with AAV vectors. Conclusion In conclusion, the findings in this study suggest that intra-articular injection of AAV vectors encoding sPD-L1 results in greater therapeutic benefit on arthritis, and systemic AAV/sPD-L1 is able to block the development of inflammatory arthritis with inhibition of the systemic immune response, underlining the potential of gene therapy with systemic delivery of shPD-L1 via AAV vectors in RA.
Collapse
Affiliation(s)
- Wenjun Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Oral and Craniofacial Biomedicine, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Junjiang Sun
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Susi Feng
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ariana La Rosa
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Panli Zhang
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Eveline Y. Wu
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Richard Loeser
- Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Chengwen Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
6
|
Ćeriman Krstić V, Jovanović D, Samardžić N, Gajić M, Kotur Stevuljević J, Klisic A, Soldatović I, Radončić D, Roksandić Milenković M, Šeha B, Čolić N, Lukić K, Savić M. The Potential Role of sPD-L1 as a Predictive Biomarker in EGFR-Positive Non-Small-Cell Lung Cancer. Curr Issues Mol Biol 2025; 47:45. [PMID: 39852160 PMCID: PMC11763505 DOI: 10.3390/cimb47010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/29/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES A significant breakthrough in non-small-cell lung cancer (NSCLC) treatment has occurred with the introduction of targeted therapies and immunotherapy. However, not all patients treated with these therapies would respond to treatment, and patients who respond to treatment would acquire resistance at some time point. This is why we need new biomarkers that can predict response to therapy. The aim of this study was to investigate whether soluble programmed cell death-ligand 1 (sPD-L1) could be a predictive biomarker in patients with epidermal growth factor receptor (EGFR)-positive NSCLC. MATERIALS AND METHODS Blood samples from 35 patients with EGFR-mutated (EGFRmut) adenocarcinoma who achieved disease control with EGFR tyrosine kinase inhibitor (EGFR TKI) therapy were collected for sPD-L1 analysis. We analyzed sPD-L1 concentrations in 30 healthy middle-aged subjects, as a control population, to determine the reference range. Adenocarcinoma patients were divided into two groups, i.e., a group with low sPD-L1 (≤182.5 ng/L) and a group with high sPD-L1 (>182.5 ng/L). RESULTS We found that progression-free survival (PFS) was 18 months, 95% CI (11.1-24.9), for patients with low sPD-L1 and 25 months, 95% CI (8.3-41.7), for patients with high sPD-L1. There was no statistically significant difference in PFS between the groups (p = 0.100). Overall survival (OS) was 34.4 months, 95% CI (26.6-42.2), for patients with low sPD-L1 and 84.1 months, 95% CI (50.6-117.6), for patients with high sPD-L1; there was also no statistically significant difference between the groups (p = 0.114). CONCLUSION In our study, we found that patients with high sPD-L1 had numerically better PFS and OS, but this has no statistical significance. Further studies with a larger number of patients are needed to evaluate the role of sPD-L1 as a predictive biomarker in patients with EGFRmut NSCLC.
Collapse
Affiliation(s)
- Vesna Ćeriman Krstić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Č.); (M.S.)
- Clinic for Pulmonology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (N.S.); (M.G.); (D.R.)
| | | | - Natalija Samardžić
- Clinic for Pulmonology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (N.S.); (M.G.); (D.R.)
| | - Milija Gajić
- Clinic for Pulmonology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (N.S.); (M.G.); (D.R.)
| | - Jelena Kotur Stevuljević
- Department for Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Aleksandra Klisic
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro;
- Center for Laboratory Diagnostics, Primary Health Care Center, 81000 Podgorica, Montenegro
| | - Ivan Soldatović
- Institute of Medical Statistics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Damir Radončić
- Clinic for Pulmonology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (N.S.); (M.G.); (D.R.)
| | | | - Biljana Šeha
- Clinic for Neurosurgery, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Nikola Čolić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Č.); (M.S.)
- Center for Radiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Katarina Lukić
- Center for Radiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Milan Savić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Č.); (M.S.)
- Clinic for Thoracic Surgery, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| |
Collapse
|
7
|
Diorio C, Teachey DT, Grupp SA. Allogeneic chimeric antigen receptor cell therapies for cancer: progress made and remaining roadblocks. Nat Rev Clin Oncol 2025; 22:10-27. [PMID: 39548270 DOI: 10.1038/s41571-024-00959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Chimeric antigen receptor (CAR) T cells are revolutionizing cancer therapy, particularly for haematological malignancies, conferring durable and sometimes curative responses in patients with advanced-stage disease. The CAR T cell products currently approved for clinical use are all autologous and are often effective; however, in patients who are lymphopenic and/or heavily pretreated with chemotherapy, autologous T cells can be difficult to harvest in sufficient numbers or have functional impairments that might ultimately render them less efficacious. Moreover, autologous products take several weeks to produce, and each product can be used in only one patient. By contrast, allogeneic CAR T cells can be produced for many patients using T cells from a single healthy donor, can be optimized for safety and efficacy, can be instantly available for 'off-the-shelf' use and, therefore, might also be more cost-effective. Despite these potential advantages, the development of allogeneic CAR T cells has lagged behind that of autologous products, owing to the additional challenges such as avoiding graft-versus-host disease and host-mediated graft rejection. Over the past few years, the development of advanced genome-editing techniques has facilitated the generation of novel allogeneic CAR T cell products. Furthermore, CAR cell products derived from other cell types such as induced pluripotent stem cells and natural killer cells are being investigated for clinical use. In this Review, we discuss the potential of allogeneic CAR cell products to expand life-saving immunotherapy to a much broader population of patients in the coming years, the progress made to date and strategies to overcome remaining hurdles.
Collapse
Affiliation(s)
- Caroline Diorio
- Division of Oncology and Center for Childhood Cancer Research, Department of Paediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Susan S. and Stephen P. Kelly Center for Cancer Immunotherapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David T Teachey
- Division of Oncology and Center for Childhood Cancer Research, Department of Paediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Susan S. and Stephen P. Kelly Center for Cancer Immunotherapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephan A Grupp
- Division of Oncology and Center for Childhood Cancer Research, Department of Paediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Susan S. and Stephen P. Kelly Center for Cancer Immunotherapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Lee D, Cho M, Kim E, Seo Y, Cha JH. PD-L1: From cancer immunotherapy to therapeutic implications in multiple disorders. Mol Ther 2024; 32:4235-4255. [PMID: 39342430 PMCID: PMC11638837 DOI: 10.1016/j.ymthe.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
The PD-L1/PD-1 signaling pathway is the gold standard for cancer immunotherapy. Therapeutic antibodies targeting PD-1, such as nivolumab (Opdivo) and pembrolizumab (Keytruda), and PD-L1, including atezolizumab (Tecentriq), durvalumab (Imfinzi), and avelumab (Bavencio) have received Food and Drug Administration approval and are currently being used to treat various cancers. Traditionally, PD-L1 is known as an immune checkpoint protein that binds to the PD-1 receptor on its surface to inhibit the activity of T cells, which are the primary effector cells in antitumor immunity. However, it also plays a role in cancer progression, which goes beyond traditional understanding. Here, we highlight the multifaceted mechanisms of action of PD-L1 in cancer cell proliferation, transcriptional regulation, and systemic immune suppression. Moreover, we consider the potential role of PD-L1 in the development and pathogenesis of diseases other than cancer, explore PD-L1-focused therapeutic approaches for these diseases, and assess their clinical relevance. Through this review, we hope to provide deeper insights into the PD-L1/PD-1 signaling pathway and present a broad perspective on potential therapeutic approaches for cancer and other diseases.
Collapse
Affiliation(s)
- Daeun Lee
- Department of Biomedical Science, College of Medicine, Program in Biomedical Sciences and Engineering Graduate School, Inha University, Incheon 22212, Republic of Korea
| | - Minjeong Cho
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Eunseo Kim
- Department of Biomedical Science, College of Medicine, Program in Biomedical Sciences and Engineering Graduate School, Inha University, Incheon 22212, Republic of Korea
| | - Youngbin Seo
- Department of Biomedical Science, College of Medicine, Program in Biomedical Sciences and Engineering Graduate School, Inha University, Incheon 22212, Republic of Korea
| | - Jong-Ho Cha
- Department of Biomedical Science, College of Medicine, Program in Biomedical Sciences and Engineering Graduate School, Inha University, Incheon 22212, Republic of Korea; Biohybrid Systems Research Center, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
9
|
Morrell ED, Holton SE, Wiedeman A, Kosamo S, Mitchem MA, Dmyterko V, Franklin Z, Garay A, Stanaway IB, Liu T, Sathe NA, Mabrey FL, Stapleton RD, Malhotra U, Speake C, Hamerman JA, Pipavath S, Evans L, Bhatraju PK, Long SA, Wurfel MM, Mikacenic C. PD-L1 and PD-1 Are Associated with Clinical Outcomes and Alveolar Immune Cell Activation in Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol 2024; 71:534-545. [PMID: 38950166 PMCID: PMC11568477 DOI: 10.1165/rcmb.2024-0201oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024] Open
Abstract
The relationship between the PD-L1 (Programmed Death-Ligand 1)/PD-1 pathway, lung inflammation, and clinical outcomes in acute respiratory distress syndrome (ARDS) is poorly understood. We sought to determine whether PD-L1/PD-1 in the lung or blood is associated with ARDS and associated severity. We measured soluble PD-L1 (sPD-L1) in plasma and lower respiratory tract samples (ARDS1 [n = 59] and ARDS2 [n = 78]) or plasma samples alone (ARDS3 [n = 149]) collected from subjects with ARDS and tested for associations with mortality using multiple regression. We used mass cytometry to measure PD-L1/PD-1 expression and intracellular cytokine staining in cells isolated from BAL fluid (n = 18) and blood (n = 16) from critically ill subjects with or without ARDS enrolled from a fourth cohort. Higher plasma concentrations of sPD-L1 were associated with mortality in ARDS1, ARDS2, and ARDS3. In contrast, higher concentrations of sPD-L1 in the lung were either not associated with mortality (ARDS2) or were associated with survival (ARDS1). Alveolar PD-1POS T cells had more intracellular cytokine staining than PD-1NEG T cells. Subjects without ARDS had a higher ratio of PD-L1POS alveolar macrophages to PD-1POS T cells than subjects with ARDS. We conclude that sPD-L1 may have divergent cellular sources and/or functions in the alveolar versus blood compartments, given distinct associations with mortality. Alveolar leukocyte subsets defined by PD-L1 or PD-1 cell-surface expression have distinct cytokine secretion profiles, and the relative proportions of these subsets are associated with ARDS.
Collapse
Affiliation(s)
- Eric D. Morrell
- Division of Pulmonary, Critical Care, and Sleep Medicine
- Hospital and Specialty Service, VA Puget Sound Health Care System, Seattle, Washington
| | | | | | - Susanna Kosamo
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | | | | | - Ashley Garay
- Division of Pulmonary, Critical Care, and Sleep Medicine
| | - Ian B. Stanaway
- Division of Pulmonary, Critical Care, and Sleep Medicine
- Kidney Research Institute, Division of Nephrology, Department of Medicine
- Hospital and Specialty Service, VA Puget Sound Health Care System, Seattle, Washington
| | - Ted Liu
- Division of Pulmonary, Critical Care, and Sleep Medicine
| | - Neha A. Sathe
- Division of Pulmonary, Critical Care, and Sleep Medicine
| | | | | | - Uma Malhotra
- Division of Allergy and Infectious Diseases, and
- Section of Infectious Diseases, Virginia Mason Franciscan Health, Seattle, Washington
| | - Cate Speake
- Benaroya Research Institute, Seattle, Washington
| | | | - Sudhakar Pipavath
- Department of Radiology, University of Washington, Seattle, Washington
| | - Laura Evans
- Division of Pulmonary, Critical Care, and Sleep Medicine
| | | | | | - Mark M. Wurfel
- Division of Pulmonary, Critical Care, and Sleep Medicine
| | | |
Collapse
|
10
|
Li K, Cardenas-Lizana P, Lyu J, Kellner AV, Li M, Cong P, Watson VE, Yuan Z, Ahn E, Doudy L, Li Z, Salaita K, Ahmed R, Zhu C. Mechanical force regulates ligand binding and function of PD-1. Nat Commun 2024; 15:8339. [PMID: 39333505 PMCID: PMC11437077 DOI: 10.1038/s41467-024-52565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Despite the success of PD-1 blockade in cancer therapy, how PD-1 initiates signaling remains unclear. Soluble PD-L1 is found in patient sera and can bind PD-1 but fails to suppress T cell function. Here, we show that PD-1 function is reduced when mechanical support on ligand is removed. Mechanistically, cells exert forces to PD-1 and prolong bond lifetime at forces <7 pN (catch bond) while accelerate dissociation at forces >8pN (slip bond). Molecular dynamics of PD-1-PD-L2 complex suggests force may cause relative rotation and translation between the two molecules yielding distinct atomic contacts not observed in the crystal structure. Compared to wild-type, PD-1 mutants targeting the force-induced distinct interactions maintain the same binding affinity but suppressed/eliminated catch bond, lowered rupture force, and reduced inhibitory function. Our results uncover a mechanism for cells to probe the mechanical support of PD-1-PD-Ligand bonds using endogenous forces to regulate PD-1 signaling.
Collapse
Affiliation(s)
- Kaitao Li
- Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
- Shennon Biotechnologies, San Francisco, CA, USA
| | - Paul Cardenas-Lizana
- Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
- Department of Bioengineering and Chemical Engineering, University of Engineering and Technology-UTEC, Lima, Peru
| | - Jintian Lyu
- Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
- L.E.K. consulting, Boston, MA, USA
| | - Anna V Kellner
- Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
- Elephas, Madison, WI, USA
| | - Menglan Li
- Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | - Peiwen Cong
- Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | - Valencia E Watson
- Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | - Zhou Yuan
- Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Eunseon Ahn
- Emory Vaccine Center, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Merck, South San Francisco, CA, USA
| | - Larissa Doudy
- Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | - Zhenhai Li
- Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Mechanics and Engineering Science, Shanghai University, Shanghai, China
| | - Khalid Salaita
- Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA.
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
11
|
Chen L, Chao Y, Li W, Wu Z, Wang Q. Soluble immune checkpoint molecules in cancer risk, outcomes prediction, and therapeutic applications. Biomark Res 2024; 12:95. [PMID: 39218939 PMCID: PMC11368031 DOI: 10.1186/s40364-024-00647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024] Open
Abstract
Immunotherapy has emerged as a pivotal modality in cancer treatment, with immune checkpoint inhibitors effectively combating malignancies by impeding crucial pathways within the immune system and stimulating patients' immune responses. Soluble forms of immune checkpoints exhibit a remarkable diversity and can be readily tracked in circulation, holding immense potential as biomarkers for cancer treatment. An increasing number of studies focused on soluble immune checkpoints in cancer have emerged thanks to technological advancements. In this systematic review, we comprehensively summarized the recent studies on soluble immune checkpoints in human cancer risk prediction, outcome prediction, therapeutic applications, and potential molecular mechanisms, which demonstrated the promising future of soluble immune checkpoints in clinical applications. The clinical relevance of soluble immune checkpoints has been recognized in multiple cancers, yet the therapeutic applications and mechanisms remain obscure. Interpreting the impacts and mechanisms of soluble immune checkpoints could shed a light on the novel strategies of cancer screening, treatments, and outcome prediction.
Collapse
Affiliation(s)
- Lin Chen
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Zhejiang, PR China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuqing Chao
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Zhejiang, PR China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenjing Li
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Zhejiang, PR China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhixia Wu
- Department of Service and Purchase, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Qinchuan Wang
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Zhejiang, PR China.
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Zhuang W, Wang M, Jiang L, Su Z, Lin S. The peripheral CD4 + T cells predict efficacy in non-small cell lung cancer (NSCLC) patients with the anti-PD-1 treatment. Transl Cancer Res 2024; 13:4052-4061. [PMID: 39262495 PMCID: PMC11385798 DOI: 10.21037/tcr-24-405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/10/2024] [Indexed: 09/13/2024]
Abstract
Background Programmed cell death protein 1 (PD-1) inhibitor therapy has become a routine treatment for advanced non-small cell lung cancer (NSCLC). However, only some NSCLC patients would benefit from anti-PD-1 therapy. We urgently need to identify biomarkers associated with clinical response to change treatment strategies promptly for patients who fail to benefit from anti-PD-1 treatment. This study was aimed to explore whether circulating CD4+ T cells and CD8+ T cells could be biomarkers for predicting anti-PD-1 efficacy. Methods In this study, 118 NSCLC patients who received anti-PD-1 therapy were enrolled. The percentages of circulating CD4+ T cells and CD8+ T cells before and after anti-PD-1 treatment were determined by flow cytometry. The programmed cell death ligand 1 (PD-L1) expression of tumor tissues was detected by immunocytochemistry. The anti-PD-1 treatment efficacy was assessed by immune response evaluation criteria in solid tumors (iRECIST). Results The percentage of CD4+ T cells and CD4+/CD8+ ratio in the peripheral blood (PB) was significantly elevated after anti-PD-1 treatment. In contrast, the percentage of CD8+ T cells in the PB was significantly decreased after anti-PD-1 treatment. Furthermore, we found that the percentages of CD4+ T cells and CD4+/CD8+ ratios considerably increased, and the percentages of CD8+ T cells significantly reduced in the effective group. On the contrary, the patients in the ineffective group showed no significant differences in the biomarkers. Multivariate logistic revealed that the percentage of CD4+ T cells at baseline was an independent predictor of anti-PD-1 treatment. The area under the curve (AUC) of the CD4+ T cells percentage was 0.7834 with a cut-off value of 28.53% (sensitivity =82.5%, specificity =66.23%). Conclusions The percentage of CD4+ T cells at baseline could predict anti-PD-1 efficacy in NSCLC patients.
Collapse
Affiliation(s)
- Weixia Zhuang
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Moufeng Wang
- Department of Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Li Jiang
- Clinical Laboratory, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zudong Su
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shenglu Lin
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
13
|
Monette A, Warren S, Barrett JC, Garnett-Benson C, Schalper KA, Taube JM, Topp B, Snyder A. Biomarker development for PD-(L)1 axis inhibition: a consensus view from the SITC Biomarkers Committee. J Immunother Cancer 2024; 12:e009427. [PMID: 39032943 PMCID: PMC11261685 DOI: 10.1136/jitc-2024-009427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
Therapies targeting the programmed cell death protein-1/programmed death-ligand 1 (PD-L1) (abbreviated as PD-(L)1) axis are a significant advancement in the treatment of many tumor types. However, many patients receiving these agents fail to respond or have an initial response followed by cancer progression. For these patients, while subsequent immunotherapies that either target a different axis of immune biology or non-immune combination therapies are reasonable treatment options, the lack of predictive biomarkers to follow-on agents is impeding progress in the field. This review summarizes the current knowledge of mechanisms driving resistance to PD-(L)1 therapies, the state of biomarker development along this axis, and inherent challenges in future biomarker development for these immunotherapies. Innovation in the development and application of novel biomarkers and patient selection strategies for PD-(L)1 agents is required to accelerate the delivery of effective treatments to the patients most likely to respond.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute for Medical Research, Montreal, Québec, Canada
| | | | | | | | | | - Janis M Taube
- The Mark Foundation Center for Advanced Genomics and Imaging at Johns Hopkins University, Baltimore, Maryland, USA
| | | | | |
Collapse
|
14
|
Arthur A, Nejmi S, Franchini DM, Espinos E, Millevoi S. PD-L1 at the crossroad between RNA metabolism and immunosuppression. Trends Mol Med 2024; 30:620-632. [PMID: 38824002 DOI: 10.1016/j.molmed.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 06/03/2024]
Abstract
Programmed death ligand-1 (PD-L1) is a key component of tumor immunosuppression. The uneven therapeutic results of PD-L1 therapy have stimulated intensive studies to better understand the mechanisms underlying altered PD-L1 expression in cancer cells, and to determine whether, beyond its immune function, PD-L1 might have intracellular functions promoting tumor progression and resistance to treatments. In this Opinion, we focus on paradigmatic examples highlighting the central role of PD-L1 in post-transcriptional regulation, with PD-L1 being both a target and an effector of molecular mechanisms featured prominently in RNA research, such as RNA methylation, phase separation and RNA G-quadruplex structures, in order to highlight vulnerabilities on which future anti-PD-L1 therapies could be built.
Collapse
Affiliation(s)
- Axel Arthur
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Sanae Nejmi
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Don-Marc Franchini
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France; Laboratoire d'Excellence "TOUCAN-2", Toulouse, France; Institut Carnot Lymphome CALYM, Toulouse, France; Centre Hospitalier Universitaire (CHU), 31059 Toulouse, France
| | - Estelle Espinos
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Stefania Millevoi
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France.
| |
Collapse
|
15
|
Miyakoshi J, Yoshida T, Kashima J, Shirasawa M, Torasawa M, Matsumoto Y, Masuda K, Shinno Y, Okuma Y, Goto Y, Horinouchi H, Shiraishi K, Kohno T, Yamamoto N, Yatabe Y, Suzuki T, Ohe Y. Clinical significance of inter-assay discrepancy in PD-L1 evaluation for the efficacy of pembrolizumab in advanced NSCLC with high PD-L1 expression. Lung Cancer 2024; 191:107788. [PMID: 38593478 DOI: 10.1016/j.lungcan.2024.107788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION Programmed cell death ligand-1 (PD-L1) expression is a predictive biomarker for the efficacy of anti-programmed cell death receptor-1/PD-L1 antibodies in advanced non-small cell lung cancer (NSCLC). Although several assays have been approved for evaluating PD-L1 expression status, inter-assay discordance has been observed between some assays. The clinical significance of these discrepancies is still unclear. METHODS We retrospectively reviewed treatment-naïve NSCLC patients whose PD-L1 expression was evaluated using both 22C3 and SP142 assays. Among those, efficacy analysis was performed for patients with PD-L1 tumor proportion score (TPS) ≥ 50 % (22C3), who had received first-line pembrolizumab monotherapy. Additionally, transcriptome analysis was conducted in the available tumors with TPS ≥ 50 % to investigate the distinct immune profiles that accompany inter-assay discordance. RESULTS In total, 611 patients were eligible. Among 198 patients with TPS ≥ 50 %, 91 (46 %) had tumor cell score ≤ 1 (SP142, i.e., inter-assay discrepancy). In the 52 patients who received first-line pembrolizumab monotherapy, treatment efficacy was significantly lower in patients with the discrepancy than that in those without (objective response rate: 18 % vs. 83 %, p < 0.001; median progression-free survival [months]: 3.2 vs. 8.3, p < 0.001). Transcriptome analysis revealed significantly more CD274 splice variants with aberrant 3'-terminal sequences in tumors with the inter-assay discrepancy than in those without. CONCLUSION The inter-assay discrepancy in the PD-L1 status of tumor cells between the 22C3 and SP142 assays, reflecting an imbalance in the CD274 splice variants, could be a biomarker for primary resistance against pembrolizumab monotherapy in high PD-L1-expressing NSCLCs.
Collapse
Affiliation(s)
- Jun Miyakoshi
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Respiratory Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-0856, Japan; Division of Genome Biology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Jumpei Kashima
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Masayuki Shirasawa
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Division of Genome Biology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Masahiro Torasawa
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Division of Genome Biology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yuji Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Ken Masuda
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yuki Shinno
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yusuke Okuma
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yasushi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Noboru Yamamoto
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Takuji Suzuki
- Department of Respiratory Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-0856, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
16
|
Li Y, Sharma A, Schmidt-Wolf IGH. Evolving insights into the improvement of adoptive T-cell immunotherapy through PD-1/PD-L1 blockade in the clinical spectrum of lung cancer. Mol Cancer 2024; 23:80. [PMID: 38659003 PMCID: PMC11040940 DOI: 10.1186/s12943-023-01926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/20/2023] [Indexed: 04/26/2024] Open
Abstract
Undeniably, cancer immunotherapies have expanded the spectrum of cancer treatment, however, some patients do not respond to immunotherapies. This scenario is no different for lung cancer, whose two main types, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), still pose a serious clinical challenge. Adoptive T-cell therapies (ATC), which primarily include cytokine-induced killer (CIK) cell therapy, chimeric antigen receptor T-cell (CAR T-cell) therapy and γδ-T-cell therapy, strengthen the patient's immune system in combating cancer. Combining ATC with immune checkpoint inhibitors (ICI) further enhances the effectiveness of this approach to eradicate cancer. With a particular emphasis on CIK cell therapy, which recently completed 30 years, we highlight the role of the PD-1/PD-L1 axis in NSCLC and SCLC. Besides, we provide insights into the potential synergies of PD-1/PD-L1 inhibitors with adoptive T-cell immunotherapy in reshaping the treatment paradigm for lung cancer.
Collapse
Affiliation(s)
- Yutao Li
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Venusberg Campus 1, D-53127,, Bonn, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Venusberg Campus 1, D-53127,, Bonn, Germany
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Venusberg Campus 1, D-53127,, Bonn, Germany.
| |
Collapse
|
17
|
Wang R, He S, Long J, Wang Y, Jiang X, Chen M, Wang J. Emerging therapeutic frontiers in cancer: insights into posttranslational modifications of PD-1/PD-L1 and regulatory pathways. Exp Hematol Oncol 2024; 13:46. [PMID: 38654302 DOI: 10.1186/s40164-024-00515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
The interaction between programmed cell death ligand 1 (PD-L1), which is expressed on the surface of tumor cells, and programmed cell death 1 (PD-1), which is expressed on T cells, impedes the effective activation of tumor antigen-specific T cells, resulting in the evasion of tumor cells from immune-mediated killing. Blocking the PD-1/PD-L1 signaling pathway has been shown to be effective in preventing tumor immune evasion. PD-1/PD-L1 blocking antibodies have garnered significant attention in recent years within the field of tumor treatments, given the aforementioned mechanism. Furthermore, clinical research has substantiated the efficacy and safety of this immunotherapy across various tumors, offering renewed optimism for patients. However, challenges persist in anti-PD-1/PD-L1 therapies, marked by limited indications and the emergence of drug resistance. Consequently, identifying additional regulatory pathways and molecules associated with PD-1/PD-L1 and implementing judicious combined treatments are imperative for addressing the intricacies of tumor immune mechanisms. This review briefly outlines the structure of the PD-1/PD-L1 molecule, emphasizing the posttranslational modification regulatory mechanisms and related targets. Additionally, a comprehensive overview on the clinical research landscape concerning PD-1/PD-L1 post-translational modifications combined with PD-1/PD-L1 blocking antibodies to enhance outcomes for a broader spectrum of patients is presented based on foundational research.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pathology, Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Shiwei He
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China.
| | - Yian Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mingfen Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Jie Wang
- Department of Pathology, Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
18
|
Kgokolo MCM, Malinga NZ, Steel HC, Meyer PWA, Smit T, Anderson R, Rapoport BL. Transforming growth factor-β1 and soluble co-inhibitory immune checkpoints as putative drivers of immune suppression in patients with basal cell carcinoma. Transl Oncol 2024; 42:101867. [PMID: 38308919 PMCID: PMC10847768 DOI: 10.1016/j.tranon.2023.101867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 02/05/2024] Open
Abstract
The current study compared the levels and possible associations between systemic soluble immune checkpoints (sICPs, n = 17) and a group of humoral modulators of immune suppressor cells (n = 7) in a cohort of patients with basal cell carcinoma (BCC, n = 40) and a group of healthy control subjects (n = 20). The seven humoral modulators of immunosuppressor cells were represented by the enzymes, arginase 1 and fibroblast activation protein (FAP), the chemokine, RANTES (CCL5) and the cytokines, interleukin-10 and transforming growth factor-β1 (TGF-β1), as well as the M2-type macrophage markers, soluble CD163 (sCD163) and sCD206. The plasma levels of six co-inhibitory sICPs, sCTLA-4, sLAG-3, sPD-1, sPD-L1, sTIM-3 and sPD-L2 were significantly elevated in the cohort of BCC patients (p<0.001-p<0.00001), while that of sBTLA was significantly decreased (p<0.006). Of the co-stimulatory sICPs, sCD27 and sGITR were significantly increased (p<0.0002 and p<0.0538) in the cohort of BCC patients, while the others were essentially comparable with those of the control participants; of the dual active sICPs, sHVEM was significantly elevated (p<0.00001) and TLR2 comparable with the control group. A correlation heat map revealed selective, strong associations of TGF-β1 with seven co-stimulatory (z = 0.618468-0.768131) and four co-inhibitory (z = 0.674040-0.808365) sICPs, as well as with sTLR2 (z = 0.696431). Notwithstanding the association of BCC with selective elevations in the levels of a large group of co-inhibitory sICPs, our novel findings also imply the probable involvement of TGF-β1 in driving immunosuppression in this malignancy, possibly via activation of regulatory T cells. Notably, these abnormalities were present in patients with either newly diagnosed or recurrent disease.
Collapse
Affiliation(s)
- Mahlatse C M Kgokolo
- Department of Dermatology, School of Medicine, Faculty of Health Sciences, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa.
| | - Nonkululeko Z Malinga
- Department of Dermatology, School of Medicine, Faculty of Health Sciences, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Helen C Steel
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Pieter W A Meyer
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa
| | - Teresa Smit
- The Medical Oncology Centre of Rosebank, Saxonwold, Johannesburg, South Africa
| | - Ronald Anderson
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Bernardo L Rapoport
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; The Medical Oncology Centre of Rosebank, Saxonwold, Johannesburg, South Africa.
| |
Collapse
|
19
|
Hayashi H, Chamoto K, Hatae R, Kurosaki T, Togashi Y, Fukuoka K, Goto M, Chiba Y, Tomida S, Ota T, Haratani K, Takahama T, Tanizaki J, Yoshida T, Iwasa T, Tanaka K, Takeda M, Hirano T, Yoshida H, Ozasa H, Sakamori Y, Sakai K, Higuchi K, Uga H, Suminaka C, Hirai T, Nishio K, Nakagawa K, Honjo T. Soluble immune checkpoint factors reflect exhaustion of antitumor immunity and response to PD-1 blockade. J Clin Invest 2024; 134:e168318. [PMID: 38557498 PMCID: PMC10977985 DOI: 10.1172/jci168318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/30/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUNDPrecise stratification of patients with non-small cell lung cancer (NSCLC) is needed for appropriate application of PD-1/PD-L1 blockade therapy.METHODSWe measured soluble forms of the immune-checkpoint molecules PD-L1, PD-1, and CTLA-4 in plasma of patients with advanced NSCLC before PD-1/PD-L1 blockade. A prospective biomarker-finding trial (cohort A) included 50 previously treated patients who received nivolumab. A retrospective observational study was performed for patients treated with any PD-1/PD-L1 blockade therapy (cohorts B and C), cytotoxic chemotherapy (cohort D), or targeted therapy (cohort E). Plasma samples from all patients were assayed for soluble immune-checkpoint molecules with a highly sensitive chemiluminescence-based assay.RESULTSNonresponsiveness to PD-1/PD-L1 blockade therapy was associated with higher concentrations of these soluble immune factors among patients with immune-reactive (hot) tumors. Such an association was not apparent for patients treated with cytotoxic chemotherapy or targeted therapy. Integrative analysis of tumor size, PD-L1 expression in tumor tissue (tPD-L1), and gene expression in tumor tissue and peripheral CD8+ T cells revealed that high concentrations of the 3 soluble immune factors were associated with hyper or terminal exhaustion of antitumor immunity. The combination of soluble PD-L1 (sPD-L1) and sCTLA-4 efficiently discriminated responsiveness to PD-1/PD-L1 blockade among patients with immune-reactive tumors.CONCLUSIONCombinations of soluble immune factors might be able to identify patients unlikely to respond to PD-1/PD-L1 blockade as a result of terminal exhaustion of antitumor immunity. Our data suggest that such a combination better predicts, along with tPD-L1, for the response of patients with NSCLC.TRIAL REGISTRATIONUMIN000019674.FUNDINGThis study was funded by Ono Pharmaceutical Co. Ltd. and Sysmex Corporation.
Collapse
Affiliation(s)
- Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kenji Chamoto
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Immuno-Oncology PDT, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryusuke Hatae
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Kurosaki
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Yosuke Togashi
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuya Fukuoka
- Clinical Research Center, Kindai University Hospital, Osaka-Sayama, Japan
| | | | - Yasutaka Chiba
- Clinical Research Center, Kindai University Hospital, Osaka-Sayama, Japan
| | - Shuta Tomida
- Department of Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Takayo Ota
- Department of Medical Oncology, Izumi City General Hospital, Izumi, Japan
| | - Koji Haratani
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Takayuki Takahama
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Junko Tanizaki
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Takeshi Yoshida
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Tsutomu Iwasa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kaoru Tanaka
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masayuki Takeda
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- Department of Cancer Genomics and Medical Oncology, Nara Medical University School of Medicine, Nara, Japan
| | - Tomoko Hirano
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hironori Yoshida
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Ozasa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuichi Sakamori
- Department of Clinical Oncology, Kyoto University Hospital, Kyoto, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | | | | | | | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Chovet F, Passot AS, Mangon Q, Rouzaire P, Dougé A. [The circulating PD-L1: An emerging predictive biomarker for immune checkpoint inhibitors response]. Bull Cancer 2024; 111:416-427. [PMID: 38438284 DOI: 10.1016/j.bulcan.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 03/06/2024]
Abstract
Immune checkpoint inhibitors (ICI) have recently become the standard of care for many metastatic solid tumors, with considerable improvements in patient prognosis. However, a non-negligible proportion of patients does not respond to this type of treatment, making it essential to identify predictive factors of this response in order to better adapt the therapy. Among the biomarkers that have been most extensively studied in recent years, tumor PD-L1 levels come out on top, with controversial results for predicting response to ICI. The determination of circulating PD-L1 (or soluble PD-L1) in peripheral blood seems to be an interesting emerging biomarker. Indeed, several studies have investigated its prognostic value, and/or its potential predictive value of response to immunotherapy, and it would appear that there is a correlation between the level of soluble PD-L1 and the level of tumor aggressiveness and therefore prognosis. Furthermore, the results suggest that higher PD-L1 levels are associated with a poorer response to immunotherapy, although this remains to be confirmed in large-scale studies.
Collapse
Affiliation(s)
- Fanny Chovet
- Service d'oncologie médicale, CHU Gabriel-Montpied, 63000 Clermont-Ferrand, France
| | - Anne-Sophie Passot
- Service d'oncologie médicale, CHU Gabriel-Montpied, 63000 Clermont-Ferrand, France
| | - Quentin Mangon
- Service d'oncologie médicale, CHU Gabriel-Montpied, 63000 Clermont-Ferrand, France
| | - Paul Rouzaire
- Service d'histocompatibilité et d'immunogénétique, CHU Gabriel-Montpied, 63000 Clermont-Ferrand, France
| | - Aurore Dougé
- Service d'oncologie médicale, CHU Gabriel-Montpied, 63000 Clermont-Ferrand, France.
| |
Collapse
|
21
|
Burke KP, Chaudhri A, Freeman GJ, Sharpe AH. The B7:CD28 family and friends: Unraveling coinhibitory interactions. Immunity 2024; 57:223-244. [PMID: 38354702 PMCID: PMC10889489 DOI: 10.1016/j.immuni.2024.01.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Immune responses must be tightly regulated to ensure both optimal protective immunity and tolerance. Costimulatory pathways within the B7:CD28 family provide essential signals for optimal T cell activation and clonal expansion. They provide crucial inhibitory signals that maintain immune homeostasis, control resolution of inflammation, regulate host defense, and promote tolerance to prevent autoimmunity. Tumors and chronic pathogens can exploit these pathways to evade eradication by the immune system. Advances in understanding B7:CD28 pathways have ushered in a new era of immunotherapy with effective drugs to treat cancer, autoimmune diseases, infectious diseases, and transplant rejection. Here, we discuss current understanding of the mechanisms underlying the coinhibitory functions of CTLA-4, PD-1, PD-L1:B7-1 and PD-L2:RGMb interactions and less studied B7 family members, including HHLA2, VISTA, BTNL2, and BTN3A1, as well as their overlapping and unique roles in regulating immune responses, and the therapeutic potential of these insights.
Collapse
Affiliation(s)
- Kelly P Burke
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Arlene H Sharpe
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Liu D, Wen C, Chen L, Ye M, Liu H, Sun X, Liang L, Zhang J, Chang S, Liu J. The emerging roles of PD-L1 subcellular localization in tumor immune evasion. Biochem Pharmacol 2024; 220:115984. [PMID: 38135128 DOI: 10.1016/j.bcp.2023.115984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Targeting immune checkpoint PD-1 or its ligand PD-L1 blockade has achieved a great therapeutic effect in a variety of cancer types. However, the overall response rate and duration are still limited for intrinsic and acquired resistance. There is an urgent need to understand the underlying mechanism. Studies showed that PD-L1 regulation is related to the response to PD-1 monoclonal antibodies (PD-1 mAB). Interestingly, emerging studies found that the different distribution of PD-L1 has distinct functions in tumor through the specific signaling pathways. Thus, controlling the distribution of PD-L1 provides an attractive therapeutic strategy for enhancing PD-1 mAB efficiency and rewiring the resistance. Here, we review the recent studies about the role and regulation of PD-L1 distribution from synthesis to surface delivery, internalization, recycling, or lysosome degradation and translocated into the nucleus or secreted into the extracellular space. We place this knowledge in the context of observations in the clinic and discuss the potential therapeutic strategies to enhance the efficacy of anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan 410011, China
| | - Chengcai Wen
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan 410011, China
| | - Lu Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Hong Liu
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xing Sun
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan 410011, China
| | - Long Liang
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan 410011, China.
| | - Ji Zhang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan 421002, China.
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
23
|
Larsen TV, Maansson CT, Daugaard TF, Andresen BS, Sorensen BS, Nielsen AL. Trans-Regulation of Alternative PD-L1 mRNA Processing by CDK12 in Non-Small-Cell Lung Cancer Cells. Cells 2023; 12:2844. [PMID: 38132164 PMCID: PMC10741404 DOI: 10.3390/cells12242844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Immunotherapy using checkpoint inhibitors targeting the interaction between PD-1 on T cells and PD-L1 on cancer cells has shown significant results in non-small-cell lung cancer (NSCLC). Not all patients respond to the therapy, and PD-L1 expression heterogeneity is proposed to be one determinant for this. The alternative processing of PD-L1 RNA, which depends on an alternative poly-A site in intron 4, generates a shorter mRNA variant (PD-L1v4) encoding soluble PD-L1 (sPD-L1), relative to the canonical PD-L1v1 mRNA encoding membrane-associated PD-L1 (mPD-L1). This study aimed to identify factors influencing the ratio between these two PD-L1 mRNAs in NSCLC cells. First, we verified the existence of the alternative PD-L1 RNA processing in NSCLC cells, and from in silico analyses, we identified a candidate list of regulatory factors. Examining selected candidates showed that CRISPR/Cas9-generated loss-of-function mutations in CDK12 increased the PD-L1v4/PD-L1v1 mRNA ratio and, accordingly, the sPD-L1/mPD-L1 balance. The CDK12/13 inhibitor THZ531 could also increase the PD-L1v4/PD-L1v1 mRNA ratio and impact the PD-L1 transcriptional response to IFN-γ stimulation. The fact that CDK12 regulates PD-L1 transcript variant formation in NSCLC cells is consistent with CDK12's role in promoting transcriptional elongation over intron-located poly-A sites. This study lays the groundwork for clinical investigations to delineate the implications of the CDK12-mediated balancing of sPD-L1 relative to mPD-L1 for immunotherapeutic responses in NSCLC.
Collapse
Affiliation(s)
- Trine V. Larsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.V.L.); (C.T.M.); (T.F.D.)
| | - Christoffer T. Maansson
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.V.L.); (C.T.M.); (T.F.D.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Tina F. Daugaard
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.V.L.); (C.T.M.); (T.F.D.)
| | - Brage S. Andresen
- Department of Biology and Molecular Biology, Southern University of Denmark, 5230 Odense, Denmark;
| | - Boe S. Sorensen
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Anders L. Nielsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.V.L.); (C.T.M.); (T.F.D.)
| |
Collapse
|
24
|
Tanizaki J, Kuroda H, Yokoyama T, Takahama M, Shoda H, Nakamura A, Kitamura Y, Mamesaya N, Kadota Y, Sawa K, Okishio K, Okada M, Suminaka C, Noda K, Sakai K, Chiba Y, Nishio K, Chamoto K, Honjo T, Yamamoto N, Nakagawa K, Hayashi H. Lack of Association of Plasma Levels of Soluble Programmed Cell Death Protein 1, Programmed Death-Ligand 1, and CTLA-4 With Survival for Stage II to IIIA NSCLC After Complete Resection and Adjuvant Chemotherapy. JTO Clin Res Rep 2023; 4:100590. [PMID: 38029041 PMCID: PMC10679776 DOI: 10.1016/j.jtocrr.2023.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Perioperative treatment in NSCLC has gained marked attention with the introduction of immune checkpoint inhibitors. Such a paradigm shift has given us additional opportunities to evaluate potential biomarkers in patients with these curable disease stages. Methods This study (WJOG12319LTR) was designed as a biomarker study to evaluate whether soluble immune markers were prognostic or predictive on relapse-free survival in patients with stage II to IIIA NSCLC who underwent complete resection and adjuvant chemotherapy with cisplatin plus S-1, which is an oral fluoropyrimidine formulation that consists of tegafur, gimeracil, and oteracil, or S-1 alone in the previous WJOG4107 study. Archived plasma samples were assayed for soluble (s) forms of programmed cell death protein 1 (sPD-1), programmed death-ligand 1(sPD-L1), and CTLA-4 (sCTLA-4) with the highly sensitive HISCL system. Using time-dependent receiver operating characteristic curve analysis, the area under the curves were derived and optimal cutoff values were determined. Using the cutoff values, whether the marker was prognostic or predictive was assessed by survival analysis. Results A total of 150 patients were included in the study. The time-dependent receiver operating characteristics analysis revealed that the area under the curves for sPD-1, sPD-L1, and sCTLA-4 were 0.54, 0.51, and 0.58, respectively. The survival analysis did not reject that hazard ratios were 1 in terms of the soluble immune marker and the treatment-marker interaction for all three markers. Conclusions There was no proof that circulating concentrations of sPD-1, sPD-L1, and sCTLA-4 were prognostic or predictive factors of the outcome for adjuvant chemotherapy after complete resection in patients with NSCLC.
Collapse
Affiliation(s)
- Junko Tanizaki
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hiroaki Kuroda
- Department of Thoracic Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Toshihide Yokoyama
- Department of Respiratory Medicine, Kurashiki Central Hospital, Kurashiki, Japan
| | - Makoto Takahama
- Department of General Thoracic Surgery, Osaka City General Hospital, Osaka, Japan
| | - Hiroyasu Shoda
- Department of Respiratory Medicine, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Atsushi Nakamura
- Department of Pulmonary Medicine, Sendai Kousei Hospital, Sendai, Japan
| | | | - Nobuaki Mamesaya
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yoshihisa Kadota
- Department of General Thoracic Surgery, Osaka Habikino Medical Center, Osaka, Japan
| | - Kenji Sawa
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kyoichi Okishio
- Department of Thoracic Oncology, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Osaka, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Hiroshima University, Hiroshima, Japan
| | | | - Kenta Noda
- Central Research Laboratories, Sysmex Corporation, Hyogo, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yasutaka Chiba
- Clinical Research Center, Kindai University Hospital, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kenji Chamoto
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Immuno-Oncology PDT, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
25
|
Dioken DN, Ozgul I, Yilmazbilek I, Yakicier MC, Karaca E, Erson-Bensan AE. An alternatively spliced PD-L1 isoform PD-L1∆3, and PD-L2 expression in breast cancers: implications for eligibility scoring and immunotherapy response. Cancer Immunol Immunother 2023; 72:4065-4075. [PMID: 37768345 PMCID: PMC10991109 DOI: 10.1007/s00262-023-03543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Targeting PD-1/PD-L1 has shown substantial therapeutic response and unprecedented long-term durable responses in the clinic. However, several challenges persist, encompassing the prediction of treatment effectiveness and patient responses, the emergence of treatment resistance, and the necessity for additional biomarkers. Consequently, we comprehensively explored the often-overlooked isoforms of crucial immunotherapy players, leveraging transcriptomic analysis, structural modeling, and immunohistochemistry (IHC) data. Our investigation has led to the identification of an alternatively spliced isoform of PD-L1 that lacks exon 3 (PD-L1∆3) and the IgV domain required to interact with PD-1. PD-L1∆3 is expressed more than the canonical isoform in a subset of breast cancers and other TCGA tumors. Using the deep learning-based protein modeling tool AlphaFold2, we show the lack of a possible interaction between PD-L1∆3 and PD-1. In addition, we present data on the expression of an additional ligand for PD-1, PD-L2. PD-L2 expression is widespread and positively correlates with PD-L1 levels in breast and other tumors. We report enriched epithelial-mesenchymal transition (EMT) signature in high PD-L2 transcript expressing (PD-L2 > PD-L1) tumors in all breast cancer subtypes, highlighting potential crosstalk between EMT and immune evasion. Notably, the estrogen gene signature is downregulated in ER + breast tumors with high PD-L2. The data on PD-L2 IHC positivity but PD-L1 negativity in breast tumors, together with our results on PD-L1∆3, highlight the need to utilize PD-L2 and PD-L1 isoform-specific antibodies for staining patient tissue sections to offer a more precise prediction of the outcomes of PD-1/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Didem Naz Dioken
- Department of Biological Sciences, Middle East Technical University (METU), Dumlupinar Blv No:1 Universiteler Mah, Cankaya, 06800, Ankara, Türkiye
| | - Ibrahim Ozgul
- Department of Biological Sciences, Middle East Technical University (METU), Dumlupinar Blv No:1 Universiteler Mah, Cankaya, 06800, Ankara, Türkiye
| | - Irem Yilmazbilek
- Department of Biological Sciences, Middle East Technical University (METU), Dumlupinar Blv No:1 Universiteler Mah, Cankaya, 06800, Ankara, Türkiye
| | - Mustafa Cengiz Yakicier
- AQUARIUS/NPG Genetic Diseases Evaluation Center, Kucukbakkalkoy Mah. Kayisdagi Cad. 137/6 Atasehir, Istanbul, Türkiye
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, 35340, Balcova, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340, Balcova, Izmir, Türkiye
| | - Ayse Elif Erson-Bensan
- Department of Biological Sciences, Middle East Technical University (METU), Dumlupinar Blv No:1 Universiteler Mah, Cankaya, 06800, Ankara, Türkiye.
| |
Collapse
|
26
|
Sato Y, Yamashita H, Kobayashi Y, Nagaoka K, Hisayoshi T, Kawahara T, Kuroda A, Saito N, Iwata R, Okumura Y, Yagi K, Aiko S, Nomura S, Kakimi K, Seto Y. Alterations in Intratumoral Immune Response before and during Early-On Nivolumab Treatment for Unresectable Advanced or Recurrent Gastric Cancer. Int J Mol Sci 2023; 24:16602. [PMID: 38068925 PMCID: PMC10706573 DOI: 10.3390/ijms242316602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
We investigated the tumor immune response in gastric cancer patients receiving third-line nivolumab monotherapy to identify immune-related biomarkers for better patient selection. Nineteen patients (10 males, median age 67 years) who received nivolumab as a third- or later-line therapy were enrolled. We analyzed the tumor immune response in durable clinical benefit (DCB) and non-DCB patients. Pre-treatment and early-on-treatment tumor transcriptomes were examined, and gene expression profiles, immunograms, and T cell receptor (TCR) repertoire were analyzed. DCB was observed in 15.8% of patients, with comparable secondary endpoints (ORR; objective response rate, OS; overall survival, PFS; progression-free survival) to previous trials. The immunograms of individual subjects displayed no significant changes before or early in the treatment, except for the regulatory T cell (Treg) score. Moreover, there were no consistent alterations observed among cases experiencing DCB. The intratumoral immune response was suppressed by previous treatments in most third- or later-line nivolumab recipients. TCR repertoire analysis revealed newly emerged clonotypes in early-on-treatment tumors, but clonal replacement did not impact efficacy. High T cell/Treg ratios and a low UV-radiation-response gene signature were linked to DCB and treatment response. This study emphasizes the tumor immune response's importance in nivolumab efficacy for gastric cancer. High T cell/Treg ratios and specific gene expression signatures show promise as potential biomarkers for treatment response. The tumor-infiltrating immune response was compromised by prior treatments in third-line therapy, implying that, to enhance immunotherapeutic outcomes, commencing treatment at an earlier stage might be preferable. Larger cohort validation is crucial to optimize immune-checkpoint inhibitors in gastric cancer treatment.
Collapse
Affiliation(s)
- Yasuyoshi Sato
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.S.); (H.Y.); (A.K.); (N.S.); (R.I.); (Y.O.); (K.Y.); (S.A.); (S.N.); (Y.S.)
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.K.); (K.N.)
- Department of Chemotherapy and Cancer Center, The University of Tokyo Hospital, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroharu Yamashita
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.S.); (H.Y.); (A.K.); (N.S.); (R.I.); (Y.O.); (K.Y.); (S.A.); (S.N.); (Y.S.)
- Department of Digestive Surgery, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Yukari Kobayashi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.K.); (K.N.)
| | - Koji Nagaoka
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.K.); (K.N.)
| | | | - Takuya Kawahara
- Clinical Research Promotion Center, The University of Tokyo Hospital, Bunkyo-ku, Tokyo 113-8655, Japan;
| | - Akihiro Kuroda
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.S.); (H.Y.); (A.K.); (N.S.); (R.I.); (Y.O.); (K.Y.); (S.A.); (S.N.); (Y.S.)
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.K.); (K.N.)
| | - Noriyuki Saito
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.S.); (H.Y.); (A.K.); (N.S.); (R.I.); (Y.O.); (K.Y.); (S.A.); (S.N.); (Y.S.)
| | - Ryohei Iwata
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.S.); (H.Y.); (A.K.); (N.S.); (R.I.); (Y.O.); (K.Y.); (S.A.); (S.N.); (Y.S.)
- Department of Digestive Surgery, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Yasuhiro Okumura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.S.); (H.Y.); (A.K.); (N.S.); (R.I.); (Y.O.); (K.Y.); (S.A.); (S.N.); (Y.S.)
| | - Koichi Yagi
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.S.); (H.Y.); (A.K.); (N.S.); (R.I.); (Y.O.); (K.Y.); (S.A.); (S.N.); (Y.S.)
| | - Susumu Aiko
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.S.); (H.Y.); (A.K.); (N.S.); (R.I.); (Y.O.); (K.Y.); (S.A.); (S.N.); (Y.S.)
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.S.); (H.Y.); (A.K.); (N.S.); (R.I.); (Y.O.); (K.Y.); (S.A.); (S.N.); (Y.S.)
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.K.); (K.N.)
- Department of Immunology, Kindai University Faculty of Medicine, Osakasayama-shi 589-8511, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.S.); (H.Y.); (A.K.); (N.S.); (R.I.); (Y.O.); (K.Y.); (S.A.); (S.N.); (Y.S.)
| |
Collapse
|
27
|
Lin Z, Liu M, Xing W, Wang F, Zhang H, Wei X, Schmitthenner H, Xie X, Xia X, Yang J. A near-infrared fluorescence-enhancing plasmonic biosensing microarray identifies soluble PD-L1 and ICAM-1 as predictive checkpoint biomarkers for cancer immunotherapy. Biosens Bioelectron 2023; 240:115633. [PMID: 37683502 DOI: 10.1016/j.bios.2023.115633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/29/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Sensitive and accurate biomarker-driven assay guidance has been widely adopted to identify responsive patients for immune checkpoint blockade (ICB) therapy to impede disease progression and extend survival. However, most current assays are invasive, requiring surgical pathology specimens and only informing monochronic information. Here, we report a multiplexed enhanced fluorescence microarray immunoassay (eFMIA) based on a nanostructured gold nanoisland substrate (AuNIS), which macroscopically amplifies near-infrared fluorescence (NIRF) of a structurally symmetric IRDye78 fluorophore by over two orders of magnitude of 202.6-fold. Aided by non-contact piezo-driven micro-dispensing (PDMD), eFMIA simultaneously and semi-quantitatively detected intracellular and secreted programmed death-ligand 1 (PD-L1) and intercellular adhesion molecule-1 (ICAM-1) in human nasopharyngeal carcinoma (NPC) cells. The assay performance was superior to fluorescence immunoassays (FIA) and enzyme-linked immunosorbent assays (ELISA), with lower detection limits. Using eFMIA, we found significantly differential levels of soluble PD-L1 (sPD-L1) and sICAM-1 in the sera of 28 cancer patients, with different clinical outcomes following anti-PD-1 ICB therapy. With a well-characterized mechanism, the high-performance plasmonic multiplexed assay with the composite biomarkers may be a valuable tool to assist clinicians with decision-making and patient stratification to afford predictive ICB therapy responses.
Collapse
Affiliation(s)
- Zhijun Lin
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Mengyao Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wei Xing
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Fenghua Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hongxia Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaoli Wei
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hans Schmitthenner
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, 14623, United States
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
28
|
Li K, Cardenas-Lizana P, Kellner AV, Yuan Z, Ahn E, Lyu J, Li Z, Salaita K, Ahmed R, Zhu C. Mechanical force regulates ligand binding and function of PD-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553152. [PMID: 37645980 PMCID: PMC10462004 DOI: 10.1101/2023.08.13.553152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Immune checkpoint blockade targeting PD-1 shows great success in cancer therapy. However, the mechanism of how ligand binding initiates PD-1 signaling remains unclear. As prognosis markers of multiple cancers, soluble PD-L1 is found in patient sera and can bind PD-1, but fails to suppress T cell function. This and our previous observations that T cells exert endogenous forces on PD-1-PD-L2 bonds prompt the hypothesis that mechanical force might be critical to PD-1 triggering, which is missing in the soluble ligand case due to the lack of mechanical support afforded by surface-anchored ligand. Here we show that PD-1 function is eliminated or reduced when mechanical support on ligand is removed or dampened, respectively. Force spectroscopic analysis reveals that PD-1 forms catch bonds with both PD-Ligands <7 pN where force prolongs bond lifetime, but slip bonds >8 pN where force accelerates dissociation. Steered molecular dynamics finds PD-1-PD-L2 complex very sensitive to force due to the two molecules' "side-to-side" binding via β sheets. Pulling causes relative rotation and translation between the two molecules by stretching and aligning the complex along the force direction, yielding new atomic contacts not observed in the crystal structure. Compared to wild-type, PD-1 mutants targeting the force-induced new interactions maintain the same binding affinity but display lower rupture force, shorter bond lifetime, reduced tension, and most importantly, impaired capacity to suppress T cell activation. Our results uncover a mechanism for cells to probe the mechanical support of PD-1-PD-Ligand bonds using endogenous forces to regulate PD-1 triggering.
Collapse
Affiliation(s)
- Kaitao Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Paul Cardenas-Lizana
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Anna V. Kellner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Zhou Yuan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Eunseon Ahn
- Emory Vaccine Center, Emory University, Atlanta, GA 30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322
| | - Jintian Lyu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Zhenhai Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Khalid Salaita
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Department of Chemistry, Emory University, Atlanta, GA 30322
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University, Atlanta, GA 30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
29
|
Pulanco MC, Madsen AT, Tanwar A, Corrigan DT, Zang X. Recent advancements in the B7/CD28 immune checkpoint families: new biology and clinical therapeutic strategies. Cell Mol Immunol 2023; 20:694-713. [PMID: 37069229 PMCID: PMC10310771 DOI: 10.1038/s41423-023-01019-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/25/2023] [Indexed: 04/19/2023] Open
Abstract
The B7/CD28 families of immune checkpoints play vital roles in negatively or positively regulating immune cells in homeostasis and various diseases. Recent basic and clinical studies have revealed novel biology of the B7/CD28 families and new therapeutics for cancer therapy. In this review, we discuss the newly discovered KIR3DL3/TMIGD2/HHLA2 pathways, PD-1/PD-L1 and B7-H3 as metabolic regulators, the glycobiology of PD-1/PD-L1, B7x (B7-H4) and B7-H3, and the recently characterized PD-L1/B7-1 cis-interaction. We also cover the tumor-intrinsic and -extrinsic resistance mechanisms to current anti-PD-1/PD-L1 and anti-CTLA-4 immunotherapies in clinical settings. Finally, we review new immunotherapies targeting B7-H3, B7x, PD-1/PD-L1, and CTLA-4 in current clinical trials.
Collapse
Affiliation(s)
- Marc C Pulanco
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Anne T Madsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
- Department of Urology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Ankit Tanwar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Devin T Corrigan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Urology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, 10461, USA.
| |
Collapse
|
30
|
Ancel J, Dormoy V, Raby BN, Dalstein V, Durlach A, Dewolf M, Gilles C, Polette M, Deslée G. Soluble biomarkers to predict clinical outcomes in non-small cell lung cancer treated by immune checkpoints inhibitors. Front Immunol 2023; 14:1171649. [PMID: 37283751 PMCID: PMC10239865 DOI: 10.3389/fimmu.2023.1171649] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023] Open
Abstract
Lung cancer remains the first cause of cancer-related death despite many therapeutic innovations, including immune checkpoint inhibitors (ICI). ICI are now well used in daily practice at late metastatic stages and locally advanced stages after a chemo-radiation. ICI are also emerging in the peri-operative context. However, all patients do not benefit from ICI and even suffer from additional immune side effects. A current challenge remains to identify patients eligible for ICI and benefiting from these drugs. Currently, the prediction of ICI response is only supported by Programmed death-ligand 1 (PD-L1) tumor expression with perfectible results and limitations inherent to tumor-biopsy specimen analysis. Here, we reviewed alternative markers based on liquid biopsy and focused on the most promising biomarkers to modify clinical practice, including non-tumoral blood cell count such as absolute neutrophil counts, platelet to lymphocyte ratio, neutrophil to lymphocyte ratio, and derived neutrophil to lymphocyte ratio. We also discussed soluble-derived immune checkpoint-related products such as sPD-L1, circulating tumor cells (detection, count, and marker expression), and circulating tumor DNA-related products. Finally, we explored perspectives for liquid biopsies in the immune landscape and discussed how they could be implemented into lung cancer management with a potential biological-driven decision.
Collapse
Affiliation(s)
- Julien Ancel
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, Reims, France
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, Reims, France
| | - Valérian Dormoy
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, Reims, France
| | - Béatrice Nawrocki Raby
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, Reims, France
| | - Véronique Dalstein
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, Reims, France
- Department of Biopathology, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, Reims, France
| | - Anne Durlach
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, Reims, France
- Department of Biopathology, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, Reims, France
| | - Maxime Dewolf
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, Reims, France
| | - Christine Gilles
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Myriam Polette
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, Reims, France
- Department of Biopathology, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, Reims, France
| | - Gaëtan Deslée
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, Reims, France
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, Reims, France
| |
Collapse
|
31
|
Zhang G, Lan B, Zhang X, Lin M, Liu Y, Chen J, Guo F. AR-A014418 regulates intronic polyadenylation and transcription of PD-L1 through inhibiting CDK12 and CDK13 in tumor cells. J Immunother Cancer 2023; 11:jitc-2022-006483. [PMID: 37164450 PMCID: PMC10174041 DOI: 10.1136/jitc-2022-006483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Immune checkpoint molecules, especially programmed death 1 (PD-1) and its ligand, programmed death ligand 1 (PD-L1), protect tumor cells from T cell-mediated killing. Immune checkpoint inhibitors, designed to restore the antitumor immunosurveillance, have exhibited significant clinical benefits for patients with certain cancer types. Nevertheless, the relatively low response rate and acquisition of resistance greatly limit their clinical applications. A deeper understanding of the regulatory mechanisms of PD-L1 protein expression and activity will help to develop more effective therapeutic strategies. METHODS The effects of AR-A014418 and THZ531 on PD-L1 expression were detected by western blot, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and flow cytometry. In vitro kinase assays with recombinant proteins were performed to confirm that AR-A014418 functioned as a CDK12 and CDK13 dual inhibitor. The roles of CDK12 and CDK13 in intronic polyadenylation (IPA) and transcription of PD-L1 were determined via RNA interference or protein overexpression. T-cell cytotoxicity assays were used to validate the activation of antitumor immunity by AR-A014418 and THZ531. RESULTS AR-A014418 inhibits CDK12 to enhance the IPA, and inhibits CDK13 to repress the transcription of PD-L1. IPA generates a secreted PD-L1 isoform (PD-L1-v4). The extent of IPA was not enough to reduce full-length PD-L1 expression obviously. Only the superposition of enhancing IPA and repressing transcription (dual inhibition of CDK12 and CDK13) dramatically suppresses full-length PD-L1 induction by interferon-γ. AR-A014418 and THZ531 could potentiate T-cell cytotoxicity against tumor cells. CONCLUSIONS Our work identifies a new regulatory pathway for PD-L1 expression and discovers CDK12 and CDK13 as promising drug targets for immune modulation and combined therapeutic strategies.
Collapse
Affiliation(s)
- Ganggang Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Lan
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Xin Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengyao Lin
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Liu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junsong Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Zhou K, Li S, Zhao Y, Cheng K. Mechanisms of drug resistance to immune checkpoint inhibitors in non-small cell lung cancer. Front Immunol 2023; 14:1127071. [PMID: 36845142 PMCID: PMC9944349 DOI: 10.3389/fimmu.2023.1127071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) in the form of anti-CTLA-4 and anti-PD-1/PD-L1 have become the frontier of cancer treatment and successfully prolonged the survival of patients with advanced non-small cell lung cancer (NSCLC). But the efficacy varies among different patient population, and many patients succumb to disease progression after an initial response to ICIs. Current research highlights the heterogeneity of resistance mechanisms and the critical role of tumor microenvironment (TME) in ICIs resistance. In this review, we discussed the mechanisms of ICIs resistance in NSCLC, and proposed strategies to overcome resistance.
Collapse
Affiliation(s)
- Kexun Zhou
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, China
- Abdominal Oncology Ward, Division of Radiation Oncology, Cancer Center, State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuo Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Lung Cancer Center, West China Hospital Sichuan University, Chengdu, China
| | - Yi Zhao
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Ke Cheng
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, China
- Abdominal Oncology Ward, Division of Radiation Oncology, Cancer Center, State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
He Y, Zhang X, Zhu M, He W, Hua H, Ye F, Zhou X, Chen N, Li Y, Zhong W, Wu G, Cai H, Jiang W. Soluble PD-L1: a potential dynamic predictive biomarker for immunotherapy in patients with proficient mismatch repair colorectal cancer. J Transl Med 2023; 21:25. [PMID: 36639643 PMCID: PMC9837921 DOI: 10.1186/s12967-023-03879-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Circulating soluble programmed death ligand 1 (sPD-L1) can negatively regulate T-cell function and serve as a prognostic or predictive marker in a variety of cancers. However, rare studies have evaluated the potential roles of sPD-L1, and no study has estimated its predictive value for the efficacy of immune treatment in colorectal cancer (CRC). METHODS Plasma samples from 192 CRC patients were used to estimate correlations between clinicopathological features and sPD-L1, secreted PD-L1 (secPD-L1) and exosomal PD-L1 (exoPD-L1). Baseline and posttreatment sPD-L1 levels were also investigated in 55 patients with metastatic CRC (mCRC) treated with chemotherapy ± targeted therapy and 40 patients with proficient mismatch repair (pMMR) mCRC treated with combination immunotherapy. Both sPD-L1 and secPD-L1 were quantified by enzyme-linked immunosorbent assay, while exoPD-L1 was analyzed using flow cytometry. RESULTS secPD-L1 was the major component and positively correlated with sPD-L1 in CRC, while exoPD-L1 was almost undetectable. Higher levels of sPD-L1 were detected in patients with distant metastasis, especially those with distant lymph node metastasis and tissue combined positive score (CPS) instead of tumor proportion score (TPS). Chemotherapy or targeted therapy did not significantly impact sPD-L1 concentration. Progressive disease on combination immunotherapy was associated with an increase in sPD-L1 level, whereas no significant change was observed in patients with durable clinical benefit. CONCLUSION sPD-L1 mainly consisted of secPD-L1, and its level was higher in patients with distant metastasis, especially distant lymph node metastasis and positive CPS. sPD-L1 is a potential dynamic marker to identify rapid progression on combination immunotherapy and avoid ineffective treatment for pMMR CRC.
Collapse
Affiliation(s)
- Yinjun He
- grid.13402.340000 0004 1759 700XDepartment of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XCollege of Medicine, Zhejiang University, Hangzhou, China
| | - Xiang Zhang
- grid.417234.70000 0004 1808 3203General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China ,grid.412643.60000 0004 1757 2902The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ming Zhu
- grid.13402.340000 0004 1759 700XCollege of Medicine, Zhejiang University, Hangzhou, China
| | - Wenguang He
- grid.13402.340000 0004 1759 700XDepartment of Radiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanju Hua
- grid.13402.340000 0004 1759 700XDepartment of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Ye
- grid.13402.340000 0004 1759 700XDepartment of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xile Zhou
- grid.13402.340000 0004 1759 700XDepartment of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Chen
- Department of Colorectal Surgery, Yuyao Hospital of Traditional Chinese Medicine, Ningbo, China
| | - Yandong Li
- grid.13402.340000 0004 1759 700XDepartment of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weixiang Zhong
- grid.13402.340000 0004 1759 700XDepartment of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guosheng Wu
- grid.13402.340000 0004 1759 700XDepartment of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Cai
- grid.417234.70000 0004 1808 3203General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China ,grid.412643.60000 0004 1757 2902The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Weiqin Jiang
- grid.13402.340000 0004 1759 700XDepartment of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
34
|
3′UTR heterogeneity and cancer progression. Trends Cell Biol 2022:S0962-8924(22)00232-X. [DOI: 10.1016/j.tcb.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
|
35
|
Wang G, Xie Z, Su J, Chen M, Du Y, Gao Q, Zhang G, Zhang H, Chen X, Liu H, Han L, Ye Y. Characterization of Immune-Related Alternative Polyadenylation Events in Cancer Immunotherapy. Cancer Res 2022; 82:3474-3485. [PMID: 35930727 DOI: 10.1158/0008-5472.can-22-1417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/26/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022]
Abstract
UNLABELLED Alternative polyadenylation (APA) is an important posttranscriptional modification commonly involved in tumor development. However, the functional roles of APA in tumor immunity remain largely unknown. Here, we performed an in-depth analysis of the 3'UTR usage of protein-coding genes and tumor immune response in 10,303 tumor samples across 31 cancer types to develop the immune-related APA event (ImmAPA) score pipeline, an integrated algorithm to characterize the regulatory landscape of APA events in cancer immunity-related pathways. Tumor-specific ImmAPAs that strongly correlate with immune cell infiltration and immune checkpoint blockade (ICB) treatment-related biomarkers were identified. Among these ImmAPAs, the top-ranking COL1A1 3'UTR usage was strongly associated with worse prognosis and tumor immune evasion. Furthermore, a machine learning approach to construct an ICB-related ImmAPA score model predicted immunotherapy efficacy. Overall, the characterization of immune-related APA that corresponds to tumor progression and tumor immunity highlights the clinical utility of APA events as potential biomarkers in cancer immunotherapy. SIGNIFICANCE Elucidation of the landscape of immune-related alternative polyadenylation in cancer identifies alternative polyadenylation events that may play a role in immune modulation and immunotherapy efficacy.
Collapse
Affiliation(s)
- Gaoyang Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zuozhong Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
| | - Meishan Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhua Du
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Gao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
| | - Guanxiong Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
| | - Hailun Zhang
- Department of Research and Development, Beijing GAP Biotechnology Co., Ltd, Beijing, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Wang Y, He H. Prognostic value of soluble programmed cell death ligand-1 in patients with non-small-cell lung cancer: a meta-analysis. Immunotherapy 2022; 14:945-956. [PMID: 35822688 DOI: 10.2217/imt-2021-0238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Previously published data was collected and a meta-analysis was conducted to precisely identify the prognostic and clinicopathological significance of soluble programmed cell death ligand-1 (sPD-L1) in patients with non-small-cell lung cancer (NSCLC). Materials & methods: Combined hazard ratios (HRs), odds ratios and 95% confidence intervals were used to assess the correlation between sPD-L1 expression and prognosis in patients with NSCLC. Results: A total of 11 studies with 976 patients were included in this meta-analysis. High levels of sPD-L1 were associated with poor overall and progression-free survival (HR: 2.65, 95% CI: 2.32-3.02; p < 0.001 vs HR: 2.02, 95% CI: 1.24-3.29; p = 0.005). sPD-L1 level was not significantly correlated with sex, smoking status, age, Eastern Cooperative Oncology Group performance status, subtype or EGFR mutation. Conclusion: High levels of sPD-L1 are a prognostic marker for poor survival in patients with NSCLC.
Collapse
Affiliation(s)
- Yan Wang
- Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Haiyun He
- Department of Respiration, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang, 313000, China
| |
Collapse
|
37
|
Wang T, Denman D, Bacot SM, Feldman GM. Challenges and the Evolving Landscape of Assessing Blood-Based PD-L1 Expression as a Biomarker for Anti-PD-(L)1 Immunotherapy. Biomedicines 2022; 10:1181. [PMID: 35625917 PMCID: PMC9138337 DOI: 10.3390/biomedicines10051181] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
While promising, PD-L1 expression on tumor tissues as assessed by immunohistochemistry has been shown to be an imperfect biomarker that only applies to a limited number of cancers, whereas many patients with PD-L1-negative tumors still respond to anti-PD-(L)1 immunotherapy. Recent studies using patient blood samples to assess immunotherapeutic responsiveness suggests a promising approach to the identification of novel and/or improved biomarkers for anti-PD-(L)1 immunotherapy. In this review, we discuss the advances in our evolving understanding of the regulation and function of PD-L1 expression, which is the foundation for developing blood-based PD-L1 as a biomarker for anti-PD-(L)1 immunotherapy. We further discuss current knowledge and clinical study results for biomarker identification using PD-L1 expression on tumor and immune cells, exosomes, and soluble forms of PD-L1 in the peripheral blood. Finally, we discuss key challenges for the successful development of the potential use of blood-based PD-L1 as a biomarker for anti-PD-(L)1 immunotherapy.
Collapse
Affiliation(s)
- Tao Wang
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA; (D.D.); (S.M.B.); (G.M.F.)
| | | | | | | |
Collapse
|