1
|
Li H, Wen H, Liu J, Luo X, Pei B, Ge P, Sun Z, Liu J, Wang J, Chen H. The glycocalyx: a key target for treatment of severe acute pancreatitis-associated multiple organ dysfunction syndrome. Hum Cell 2025; 38:107. [PMID: 40411704 PMCID: PMC12103372 DOI: 10.1007/s13577-025-01227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/28/2025] [Indexed: 05/26/2025]
Abstract
The endothelial glycocalyx is a dynamic brush-like layer composed of proteoglycans and glycosaminoglycans, including heparan sulfate (HS) and hyaluronic acid (HA), and is an important regulator of vascular homeostasis. Its structure (thickness ranges from 20 to 6450 nm in different species) not only provides a charge-selective barrier but also serves to anchor mechanosensors such as the glypican-1 (GPC-1)/caveolin-1 (CAV-1) complex and buffers shear stress. In severe acute pancreatitis (SAP), inflammatory factors promote the expression of matrix metalloproteinases (MMPs) and heparinases, which degrade syndecan-1 (SDC-1) and HS, while oxidative stress disrupts HA-CD44 binding, leading to increased capillary leakage and neutrophil adhesion. This degradation process occurs before the onset of multiple organ dysfunction syndrome (MODS), highlighting the potential of the glycocalyx as an early biomarker. More importantly, the regeneration of glycocalyx through endothelial cell synthesis of glycosaminoglycans (GAGs) and shear stress-driven SDC recycling provides therapeutic prospects. This review redefines the pathophysiology of severe acute pancreatitis-associated multiple organ dysfunction (SAP-MODS) by exploring the glycocalyx's central mechanistic role and proposes stabilizing glycocalyx structure as a potential strategy to prevent microcirculatory failure.
Collapse
Affiliation(s)
- Huijuan Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Haiyun Wen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Jie Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Xinyu Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Boliang Pei
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Zhenxuan Sun
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Jin Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Junjie Wang
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China.
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China.
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China.
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China.
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China.
| |
Collapse
|
2
|
Wang Y, Zhang Z, Qu X, Zhou G. Role of the endothelial cell glycocalyx in sepsis-induced acute kidney injury. Front Med (Lausanne) 2025; 12:1535673. [PMID: 40255592 PMCID: PMC12006053 DOI: 10.3389/fmed.2025.1535673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/25/2025] [Indexed: 04/22/2025] Open
Abstract
Sepsis-induced acute kidney injury (S-AKI) is a common complication of sepsis. It occurs at high incidence and is associated with a high level of mortality in the intensive care unit (ICU). The pathophysiologic mechanisms underlying S-AKI are complex, and include renal vascular endothelial cell dysfunction. The endothelial glycocalyx (EG) is a polysaccharide/protein complex located on the cell membrane at the luminal surface of vascular endothelial cells that has anti-inflammatory, anti-thrombotic, and endothelial protective effects. Recent studies have shown that glycocalyx damage plays a causal role in S-AKI progression. In this review, we first describe the structure, location, and basic function of the EG. Second, we analyze the underlying mechanisms of EG degradation in sepsis and S-AKI. Finally, we provide a summary of the potential therapeutic strategies that target the EG.
Collapse
Affiliation(s)
- Yixun Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Critical Care Medicine, Yichang Central People's Hospital, Yichang, China
- Yichang Sepsis Clinical Research Center, Yichang, Hubei, China
| | - Zhaohui Zhang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Critical Care Medicine, Yichang Central People's Hospital, Yichang, China
- Yichang Sepsis Clinical Research Center, Yichang, Hubei, China
| | - Xingguang Qu
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Critical Care Medicine, Yichang Central People's Hospital, Yichang, China
- Yichang Sepsis Clinical Research Center, Yichang, Hubei, China
| | - Gaosheng Zhou
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Critical Care Medicine, Yichang Central People's Hospital, Yichang, China
- Yichang Sepsis Clinical Research Center, Yichang, Hubei, China
| |
Collapse
|
3
|
Zhan JH, Wei J, Liu YJ, Wang PX, Zhu XY. Sepsis-associated endothelial glycocalyx damage: a review of animal models, clinical evidence, and molecular mechanisms. Int J Biol Macromol 2025; 295:139548. [PMID: 39788232 DOI: 10.1016/j.ijbiomac.2025.139548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/21/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
In the mammalian cardiovascular system, endothelial glycocalyx is a gel-like layer that covers the luminal surface of endothelial cells (ECs) and plays crucial roles in vascular homeostasis, permeability and leukocyte adhesion. Degradation of this structure occurs early in sepsis and becomes accordingly dysfunctional. In severe cases, it is not self-regulated by the organism. However, the relationship between the glycocalyx and the occurrence and development of sepsis remains poorly understood. One possibility is that thinned glycocalyx promotes leukocyte recognition and adhesion, thereby facilitating the elimination of pathogens from infected areas. This may represent a protective mechanism developed by the organism during through evolutionary processes. However, if the damage persists and disrupts the dynamic balance of the microcirculation, interstitial edema or organ failure can occur. Thus, we asked the questions, what is the precise composition and structure of the glycocalyx? How is it degraded? What animal models are available to study the relationship between the glycocalyx and sepsis? What glycocalyx biomarkers are found in the blood of patients with sepsis? To determine whether sepsis can be treated by interfering with the glycocalyx, this study provides a systematic summary and discussion of the latest progress in addressing these questions.
Collapse
Affiliation(s)
- Jun-Hui Zhan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Department of Physiology, Naval Medical University, Shanghai 200433, China
| | - Juan Wei
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China
| | - Yu-Jian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Peng-Xiang Wang
- Department of Physiology, Naval Medical University, Shanghai 200433, China.
| | - Xiao-Yan Zhu
- Department of Physiology, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
4
|
Rehani C, Abdullah S, Kozar RA. Injury induced endotheliopathy: overview, diagnosis, and management. Curr Opin Crit Care 2025:00075198-990000000-00234. [PMID: 39808442 DOI: 10.1097/mcc.0000000000001239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
PURPOSE OF REVIEW This review aims to examine recent advances in the understanding of injury-induced endotheliopathy and therapeutics to mitigate its development in critically injured patients. RECENT FINDINGS Clinical studies have clearly demonstrated that syndecan-1 ectodomains can be found in circulation after various types of trauma and injury and correlates with worse outcomes. As the mechanisms of endotheliopathy are better understood, pathologic hyperadhesive forms of von Willebrand factor, along with a relative deficiency of its cleaving enzyme, a disintegrin and metalloprotease with thrombospondin type I motifs, member 13 (ADAMTS13), have emerged as additional biomarkers. Therapeutics to date have focused primarily on the protective effects of fresh frozen plasma and its constituents to restore the glycocalyx. Human recombinant ADAMTS13 holds promise, as do synthetic variants of heparan sulfate and activated protein C, although all data to date are preclinical. SUMMARY Injury-induced endotheliopathy represents an important pathologic response to trauma. Key biomarkers, such as syndecan-1, can aid in the diagnosis, but testing is not yet available clinically. As the mechanisms of endotheliopathy are better understood, therapeutics are being identified and show promise. To date, plasma has been the most widely studied; however, like all therapeutics for injury-induced endotheliopathy, it has primarily been studied in the preclinical setting.
Collapse
Affiliation(s)
- Chavi Rehani
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
5
|
Mathews R, Pang J, Muralidaran SA, King CGX, McCarty OJT, Hinds MT. AMP dependent protein kinase regulates endothelial heparan sulfate expression in response to an inflammatory stimulus under arterial shear stress. Biochem Biophys Res Commun 2024; 735:150743. [PMID: 39393311 PMCID: PMC11601061 DOI: 10.1016/j.bbrc.2024.150743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/13/2024]
Abstract
Heparan sulfate (HS) is the most abundant glycosaminoglycan on the vascular endothelium and can regulate endothelial cell morphology and function in response to mechanical stimuli. This study investigated endothelial HS response to an inflammatory stimulus under static and arterial shear stress conditions. Human aortic endothelial cells (HAECs) under static conditions expressed significantly higher HS when treated with an inflammatory stimulus compared to untreated controls. HAECs exposed to an inflammatory stimulus after being conditioned with 10 dyn/cm2 of shear stress for 24 h did not express significantly higher HS compared to untreated controls under flow. To investigate the mechanism underlying this differential endothelial HS expression in response to an inflammatory stimulus under static and shear stress conditions, we hypothesized a shear dependent increase in AMP dependent protein kinase (AMPK) was regulating HS response to the inflammatory stimulus. AMPK inhibition using compound C decreased HAEC HS expression in response to inflammatory stimulus under arterial shear stress, revealing AMPK as a regulator of HS expression. Further investigation is needed to elucidate the mechanistic pathways underlying the interactions between HS and AMPK expression in endothelial cells and how they regulate HAEC inflammatory response.
Collapse
Affiliation(s)
- Rick Mathews
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Avenue CH13B, Portland, OR, 97239, USA.
| | - Jiaqing Pang
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Avenue CH13B, Portland, OR, 97239, USA.
| | - Siddharth A Muralidaran
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Avenue CH13B, Portland, OR, 97239, USA.
| | - Caitlin G X King
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Dr, Madison, WI, 53706, USA.
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Avenue CH13B, Portland, OR, 97239, USA.
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Avenue CH13B, Portland, OR, 97239, USA.
| |
Collapse
|
6
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
7
|
Bizzi MF, Drummond JB, Pinheiro SVB, Paulino E, Araújo SA, Soares BS, Giannetti AV, Schweizer JRDOL, Barry S, Korbonits M, Ribeiro-Oliveira A. Activated AMP-protein kinase (pAMPK) is overexpressed in human somatotroph pituitary adenomas. Mol Cell Endocrinol 2024; 592:112318. [PMID: 38908427 DOI: 10.1016/j.mce.2024.112318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
INTRODUCTION AMPK (AMP-activated protein kinase) is an enzyme that acts as a metabolic sensor and regulates multiple pathways via phosphorylating proteins in metabolic and proliferative pathways. The aim of this work was to study the activated cellular AMPK (phosphorylated-AMPK at Thr172, pAMPK) levels in pituitary tumor samples from patients with sporadic and familial acromegaly, as well as in samples from normal human pituitary gland. METHODS We studied pituitary adenoma tissue from patients with sporadic somatotroph adenomas, familial acromegaly with heterozygote germline variants in the aryl hydrocarbon receptor interacting protein (AIP) gene (p.Q164*, p.R304* and p.F269_H275dup) and autopsy from normal pituitary glands without structural alterations. RESULTS Cellular levels of pAMPK were significantly higher in patients with sporadic acromegaly compared to normal pituitary glands (p < 0.0001). Tissues samples from patients with germline AIP mutations also showed higher cellular levels of pAMPK compared to normal pituitary glands. We did not observe a significant difference in cellular levels of pAMPK according to the cytokeratin (CAM5.2) pattern (sparsely or densely granulated) for tumor samples of sporadic acromegaly. CONCLUSION Our data show, for the first time in human cells, an increase of cellular levels of pAMPK in sporadic somatotropinomas, regardless of cytokeratin pattern, as well as in GH-secreting adenomas from patients with germline AIP mutations.
Collapse
Affiliation(s)
- Mariana Ferreira Bizzi
- Departments of Internal Medicine of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Juliana Beaudette Drummond
- Departments of Internal Medicine of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Sergio Veloso Brant Pinheiro
- Departments of Pediatrics of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Eduardo Paulino
- Departments of Pathology of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Stanley Almeida Araújo
- Departments of Pathology of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Beatriz Santana Soares
- Departments of Internal Medicine of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Alexandre V Giannetti
- Departments of Surgery of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | | | - Sayka Barry
- Centre for Endocrinology of Queen Mary University of London, London, EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology of Queen Mary University of London, London, EC1M 6BQ, UK
| | - Antonio Ribeiro-Oliveira
- Departments of Internal Medicine of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil.
| |
Collapse
|
8
|
Serlo M, Inkinen N, Lakkisto P, Valkonen M, Pulkkinen A, Selander T, Pettilä V, Vaara ST. Fluid bolus increases plasma hyaluronan concentration compared to follow-up strategy without a bolus in oliguric intensive care unit patients. Sci Rep 2024; 14:20808. [PMID: 39242877 PMCID: PMC11379687 DOI: 10.1038/s41598-024-71670-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Fluid therapy is a fundamental part of supportive therapy in critical care. However, it is also a suspected risk for endothelial glycocalyx degradation which is associated with poor clinical outcomes. This secondary analysis of RESPONSE randomized trial compares the effect of follow-up strategy (FU) on endothelial biomarkers to that of 500 ml crystalloid fluid bolus (FB) in oliguric, hemodynamically optimized intensive care unit (ICU) patients. 130 adult subjects were enrolled in two Finnish ICUs from January 2017 to November 2020. Blood and urine samples of 63 patients in FU group and 67 patients in FB group were collected before and after the intervention and analyzed using enzyme-linked immunosorbent assays. Single fluid bolus, given after median of 3887 ml (interquartile range 2842; 5359 ml) resuscitation fluids in the preceding 24 h, increased plasma hyaluronan concentration compared to the follow-up strategy (difference in medians 29.2 ng/ml with 95% CI [14.5ng/ml; 55.5ng/ml], P < 0.001). No treatment effect was detected in the plasma levels of syndecan-1, , angiopoietin-2, angiopoietin receptors Tie2 and Tie1, or in soluble thrombomodulin in the adjusted median regression analysis. The increase in hyaluronan was independent of its simultaneous renal clearance but correlated moderately with the increase in endothelium-specific Tie1. The follow-up strategy did not show consistent endothelium-sparing effect but protected against hyaluronan increase. The mechanisms and consequences of hyaluronan fluctuations need further clarification. Trial registration: clinicaltrials.gov, NCT02860572. Registered 1 August 2016, https://www.clinicaltrials.gov/study/NCT02860572?term=NCT02860572&rank=1.
Collapse
Affiliation(s)
- Maija Serlo
- Department of Perioperative and Intensive Care, Intensive and Intermediate Care Unit, University of Helsinki and Helsinki University Hospital, P.O. Box 320, 00290 HUS, Helsinki, Finland.
| | - Nina Inkinen
- Department of Anesthesia and Intensive Care, Hospital Nova of Central Finland, Central Finland Health Care District, Hoitajantie 3, 40620, Jyväskylä, Finland
| | - Päivi Lakkisto
- Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Miia Valkonen
- Department of Perioperative and Intensive Care, Intensive and Intermediate Care Unit, University of Helsinki and Helsinki University Hospital, P.O. Box 320, 00290 HUS, Helsinki, Finland
| | - Anni Pulkkinen
- Department of Anesthesia and Intensive Care, Hospital Nova of Central Finland, Central Finland Health Care District, Hoitajantie 3, 40620, Jyväskylä, Finland
| | - Tuomas Selander
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | - Ville Pettilä
- Department of Perioperative and Intensive Care, Intensive and Intermediate Care Unit, University of Helsinki and Helsinki University Hospital, P.O. Box 320, 00290 HUS, Helsinki, Finland
| | - Suvi T Vaara
- Department of Perioperative and Intensive Care, Intensive and Intermediate Care Unit, University of Helsinki and Helsinki University Hospital, P.O. Box 320, 00290 HUS, Helsinki, Finland
| |
Collapse
|
9
|
Tang F, Zhao XL, Xu LY, Zhang JN, Ao H, Peng C. Endothelial dysfunction: Pathophysiology and therapeutic targets for sepsis-induced multiple organ dysfunction syndrome. Biomed Pharmacother 2024; 178:117180. [PMID: 39068853 DOI: 10.1016/j.biopha.2024.117180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Sepsis and septic shock are critical medical conditions characterized by a systemic inflammatory response to infection, significantly contributing to global mortality rates. The progression to multiple organ dysfunction syndrome (MODS) represents the most severe complication of sepsis and markedly increases clinical mortality. Central to the pathophysiology of sepsis, endothelial cells play a crucial role in regulating microcirculation and maintaining barrier integrity across various organs and tissues. Recent studies have underscored the pivotal role of endothelial function in the development of sepsis-induced MODS. This review aims to provide a comprehensive overview of the pathophysiology of sepsis-induced MODS, with a specific focus on endothelial dysfunction. It also compiles compelling evidence regarding potential small molecules that could attenuate sepsis and subsequent multi-organ damage by modulating endothelial function. Thus, this review serves as an essential resource for clinical practitioners involved in the diagnosing, managing, and providing intensive care for sepsis and associated multi-organ injuries, emphasizing the importance of targeting endothelial cells to enhance outcomes of the patients.
Collapse
Affiliation(s)
- Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
10
|
Richter RP, Odum JD, Margaroli C, Cardenas JC, Zheng L, Tripathi K, Wang Z, Arnold K, Sanderson RD, Liu J, Richter JR. Trauma promotes heparan sulfate modifications and cleavage that disrupt homeostatic gene expression in microvascular endothelial cells. Front Cell Dev Biol 2024; 12:1390794. [PMID: 39114570 PMCID: PMC11303185 DOI: 10.3389/fcell.2024.1390794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction: Heparan sulfate (HS) in the vascular endothelial glycocalyx (eGC) is a critical regulator of blood vessel homeostasis. Trauma results in HS shedding from the eGC, but the impact of trauma on HS structural modifications that could influence mechanisms of vascular injury and repair has not been evaluated. Moreover, the effect of eGC HS shedding on endothelial cell (EC) homeostasis has not been fully elucidated. The objectives of this work were to characterize the impact of trauma on HS sulfation and determine the effect of eGC HS shedding on the transcriptional landscape of vascular ECs. Methods: Plasma was collected from 25 controls and 49 adults admitted to a level 1 trauma center at arrival and 24 h after hospitalization. Total levels of HS and angiopoietin-2, a marker of pathologic EC activation, were measured at each time point. Enzymatic activity of heparanase, the enzyme responsible for HS shedding, was determined in plasma from hospital arrival. Liquid chromatography-tandem mass spectrometry was used to characterize HS di-/tetrasaccharides in plasma. In vitro work was performed using flow conditioned primary human lung microvascular ECs treated with vehicle or heparinase III to simulate human heparanase activity. Bulk RNA sequencing was performed to determine differentially expressed gene-enriched pathways following heparinase III treatment. Results: We found that heparanase activity was increased in trauma plasma relative to controls, and HS levels at arrival were elevated in a manner proportional to injury severity. Di-/tetrasaccharide analysis revealed lower levels of 3-O-sulfated tetramers with a concomitant increase in ΔIIIS and ΔIIS disaccharides following trauma. Admission levels of total HS and specific HS sulfation motifs correlated with 24-h angiopoietin-2 levels, suggesting an association between HS shedding and persistent, pathological EC activation. In vitro pathway analysis demonstrated downregulation of genes that support cell junction integrity, EC polarity, and EC senescence while upregulating genes that promote cell differentiation and proliferation following HS shedding. Discussion: Taken together, our findings suggest that HS cleavage associated with eGC injury may disrupt homeostatic EC signaling and influence biosynthetic mechanisms governing eGC repair. These results require validation in larger, multicenter trauma populations coupled with in vivo EC-targeted transcriptomic and proteomic analyses.
Collapse
Affiliation(s)
- Robert P. Richter
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James D. Odum
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Camilla Margaroli
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jessica C. Cardenas
- Division of Gastrointestinal, Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado, Aurora, CO, United States
| | - Lei Zheng
- Division of Trauma and Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kaushlendra Tripathi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zhangjie Wang
- Glycan Therapeutics Corp, Raleigh, NC, United States
| | - Katelyn Arnold
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ralph D. Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jillian R. Richter
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, United States
- Division of Trauma and Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
11
|
Hauger PC, Hordijk PL. Shear Stress-Induced AMP-Activated Protein Kinase Modulation in Endothelial Cells: Its Role in Metabolic Adaptions and Cardiovascular Disease. Int J Mol Sci 2024; 25:6047. [PMID: 38892235 PMCID: PMC11173107 DOI: 10.3390/ijms25116047] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Endothelial cells (ECs) line the inner surface of all blood vessels and form a barrier that facilitates the controlled transfer of nutrients and oxygen from the circulatory system to surrounding tissues. Exposed to both laminar and turbulent blood flow, ECs are continuously subject to differential mechanical stimulation. It has been well established that the shear stress associated with laminar flow (LF) is atheroprotective, while shear stress in areas with turbulent flow (TF) correlates with EC dysfunction. Moreover, ECs show metabolic adaptions to physiological changes, such as metabolic shifts from quiescence to a proliferative state during angiogenesis. The AMP-activated protein kinase (AMPK) is at the center of these phenomena. AMPK has a central role as a metabolic sensor in several cell types. Moreover, in ECs, AMPK is mechanosensitive, linking mechanosensation with metabolic adaptions. Finally, recent studies indicate that AMPK dysregulation is at the center of cardiovascular disease (CVD) and that pharmacological targeting of AMPK is a promising and novel strategy to treat CVDs such as atherosclerosis or ischemic injury. In this review, we summarize the current knowledge relevant to this topic, with a focus on shear stress-induced AMPK modulation and its consequences for vascular health and disease.
Collapse
Affiliation(s)
| | - Peter L. Hordijk
- Department of Physiology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Microcirculation, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| |
Collapse
|
12
|
Machin DR, Sabouri M, Zheng X, Donato AJ. Therapeutic strategies targeting the endothelial glycocalyx. Curr Opin Clin Nutr Metab Care 2023; 26:543-550. [PMID: 37555800 PMCID: PMC10592259 DOI: 10.1097/mco.0000000000000973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
PURPOSE OF REVIEW This review will highlight recent studies that have examined the endothelial glycocalyx in a variety of health conditions, as well as potential glycocalyx-targeted therapies. RECENT FINDINGS A degraded glycocalyx is present in individuals that consume high sodium diet or have kidney disease, diabetes, preeclampsia, coronavirus disease 2019 (COVID-19), or sepsis. Specifically, these conditions are accompanied by elevated glycocalyx components in the blood, such as syndecan-1, syndecans-4, heparin sulfate, and enhanced heparinase activity. Impaired glycocalyx barrier function is accompanied by decreased nitric oxide bioavailability, increased leukocyte adhesion to endothelial cells, and vascular permeability. Glycocalyx degradation appears to play a key role in the progression of cardiovascular complications. However, studies that have used glycocalyx-targeted therapies to treat these conditions are scarce. Various therapeutics can restore the glycocalyx in kidney disease, diabetes, COVID-19, and sepsis. Exposing endothelial cells to glycocalyx components, such as heparin sulfate and hyaluronan protects the glycocalyx. SUMMARY We conclude that the glycocalyx is degraded in a variety of health conditions, although it remains to be determined whether glycocalyx degradation plays a causal role in disease progression and severity, and whether glycocalyx-targeted therapies improve patient health outcomes. Future studies are warranted to investigate therapeutic strategies that target the endothelial glycocalyx.
Collapse
Affiliation(s)
- Daniel R Machin
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Mostafa Sabouri
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Xiangyu Zheng
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah, Utah
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, VA SLC
- Department of Nutrition and Integrative Physiology
- Department of Biochemistry
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
13
|
Subedi S, Hwang HJ, Kang D, Mehta PK, Kim N, Park H, Lee JS, Lee KH. Development of peptide-based ratiometric fluorescent probe for sensing heparan sulfate and heparin in aqueous solutions at physiological pH and quantitative detection of heparan sulfate in live cells. Biosens Bioelectron 2023; 238:115595. [PMID: 37595478 DOI: 10.1016/j.bios.2023.115595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
Heparan sulfate (HS) plays a critical role in various biological processes as a vital component of the extracellular matrix. In this study, we synthesized three fluorescent probes (1-3) comprising Arg-rich peptides as HS receptors and a fluorophore capable of exhibiting red-shifted emissions upon aggregation. All three probes demonstrated ratiometric responses to HS and heparin in aqueous solutions. Remarkably, probe 3 exhibited a unique ratiometric response to HS in both aqueous solutions at physiological pH and HS proteoglycans on live cells. Probe 3 displayed exceptional sensing properties, including high biocompatibility, water solubility, visible light excitation, a large Stokes shift for ratiometric detection and remarkable selectivity and sensitivity for HS (with a low limit of detection: 720 pM). Binding mode studies unveiled the crucial role of charge interactions between probe 3 and negatively charged HS sugar units. Upon binding, the fluorophore segments of the probes overlapped, inducing green and red emission changes through restricted intramolecular rotation of the fluorophore moiety. Importantly, probe 3 was effectively employed to quantify the reduction of HS proteoglycan levels in live cells by inhibiting HS sulfation using siRNA and an inhibitor. It successfully detected decreased HS levels in cells treated with doxorubicin and irradiation, consistent with results obtained from western blot and immunofluorescence assays. This study presents the first ratiometric fluorescent probe capable of quantitatively detecting HS levels in aqueous solutions and live cells. The unique properties of peptide-based probe 3 make it a valuable tool for studying HS biology and potentially for diagnostic applications in various biological systems.
Collapse
Affiliation(s)
- Sumita Subedi
- Research Center for Controlling Intercellular Communication and Education and Research Center for Smart Energy Materials and Process, South Korea; Department of Chemistry and Chemical Engineering, South Korea
| | - Hyun Jung Hwang
- Research Center for Controlling Intercellular Communication and Education and Research Center for Smart Energy Materials and Process, South Korea
| | - Donghee Kang
- Research Center for Controlling Intercellular Communication and Education and Research Center for Smart Energy Materials and Process, South Korea; Program in Biomedical Science & Engineering, Inha University, Incheon, 402-751, South Korea
| | - Pramod Kumar Mehta
- Research Center for Controlling Intercellular Communication and Education and Research Center for Smart Energy Materials and Process, South Korea; Department of Chemistry and Chemical Engineering, South Korea
| | - Nayeon Kim
- Research Center for Controlling Intercellular Communication and Education and Research Center for Smart Energy Materials and Process, South Korea; Program in Biomedical Science & Engineering, Inha University, Incheon, 402-751, South Korea
| | - Hyojin Park
- Research Center for Controlling Intercellular Communication and Education and Research Center for Smart Energy Materials and Process, South Korea; Department of Chemistry and Chemical Engineering, South Korea
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication and Education and Research Center for Smart Energy Materials and Process, South Korea; Program in Biomedical Science & Engineering, Inha University, Incheon, 402-751, South Korea.
| | - Keun-Hyeung Lee
- Research Center for Controlling Intercellular Communication and Education and Research Center for Smart Energy Materials and Process, South Korea; Department of Chemistry and Chemical Engineering, South Korea.
| |
Collapse
|
14
|
Mannion AJ, Holmgren L. Nuclear mechanosensing of the aortic endothelium in health and disease. Dis Model Mech 2023; 16:dmm050361. [PMID: 37909406 PMCID: PMC10629673 DOI: 10.1242/dmm.050361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
The endothelium, the monolayer of endothelial cells that line blood vessels, is exposed to a number of mechanical forces, including frictional shear flow, pulsatile stretching and changes in stiffness influenced by extracellular matrix composition. These forces are sensed by mechanosensors that facilitate their transduction to drive appropriate adaptation of the endothelium to maintain vascular homeostasis. In the aorta, the unique architecture of the vessel gives rise to changes in the fluid dynamics, which, in turn, shape cellular morphology, nuclear architecture, chromatin dynamics and gene regulation. In this Review, we discuss recent work focusing on how differential mechanical forces exerted on endothelial cells are sensed and transduced to influence their form and function in giving rise to spatial variation to the endothelium of the aorta. We will also discuss recent developments in understanding how nuclear mechanosensing is implicated in diseases of the aorta.
Collapse
Affiliation(s)
- Aarren J. Mannion
- Department of Oncology-Pathology, Karolinska Institute, Stockholm 171 64, Sweden
| | - Lars Holmgren
- Department of Oncology-Pathology, Karolinska Institute, Stockholm 171 64, Sweden
| |
Collapse
|
15
|
Angelov AK, Markov M, Ivanova M, Georgiev T. The genesis of cardiovascular risk in inflammatory arthritis: insights into glycocalyx shedding, endothelial dysfunction, and atherosclerosis initiation. Clin Rheumatol 2023; 42:2541-2555. [PMID: 37581758 DOI: 10.1007/s10067-023-06738-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
This narrative review provides a comprehensive examination of the complex interplay between inflammatory arthritis (IA) and cardiovascular pathology. It particularly illuminates the roles of atherosclerosis initiation, endothelial dysfunction, and glycocalyx shedding. IA not only provokes tissue-specific inflammatory responses, but also engenders a considerable degree of non-specific systemic inflammation. This review underscores the accelerating influence of the chronic inflammatory milieu of IA on cardiovascular disease (CVD) progression. A focal point of our exploration is the critical function of the endothelial glycocalyx (EG) in this acceleration process, which possibly characterizes the earliest phases of atherosclerosis. We delve into the influence of inflammatory mediators on microtubule dynamics, EG modulation, immune cell migration and activation, and lipid dysregulation. We also illuminate the impact of microparticles and microRNA on endothelial function. Further, we elucidate the role of systemic inflammation and sheddases in EG degradation, the repercussions of complement activation, and the essential role of syndecans in preserving EG integrity. Our review provides insight into the complex and dynamic interface between systemic circulation and the endothelium.
Collapse
Affiliation(s)
- Alexander Krasimirov Angelov
- Medical Faculty, Medical University - Sofia, Sofia, 1431, Bulgaria
- Clinic of Rheumatology, University Hospital St. Ivan Rilski - Sofia, Sofia, 1431, Bulgaria
| | - Miroslav Markov
- Faculty of Medicine, Medical University - Varna, Varna, 9002, Bulgaria
- Clinic of Internal Medicine, University Hospital St. Marina - Varna, Varna, 9010, Bulgaria
| | - Mariana Ivanova
- Medical Faculty, Medical University - Sofia, Sofia, 1431, Bulgaria
- Clinic of Rheumatology, University Hospital St. Ivan Rilski - Sofia, Sofia, 1431, Bulgaria
| | - Tsvetoslav Georgiev
- Faculty of Medicine, Medical University - Varna, Varna, 9002, Bulgaria.
- Clinic of Rheumatology, University Hospital St. Marina - Varna, Varna, 9002, Bulgaria.
| |
Collapse
|
16
|
Arteaga GM, Crow S. End organ perfusion and pediatric microcirculation assessment. Front Pediatr 2023; 11:1123405. [PMID: 37842022 PMCID: PMC10576530 DOI: 10.3389/fped.2023.1123405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/05/2023] [Indexed: 10/17/2023] Open
Abstract
Cardiovascular instability and reduced oxygenation are regular perioperative critical events associated with anesthesia requiring intervention in neonates and young infants. This review article addresses the current modalities of assessing this population's adequate end-organ perfusion in the perioperative period. Assuring adequate tissue oxygenation in critically ill infants is based on parameters that measure acceptable macrocirculatory hemodynamic parameters such as vital signs (mean arterial blood pressure, heart rate, urinary output) and chemical parameters (lactic acidosis, mixed venous oxygen saturation, base deficit). Microcirculation assessment represents a promising candidate for assessing and improving hemodynamic management strategies in perioperative and critically ill populations. Evaluation of the functional state of the microcirculation can parallel improvement in tissue perfusion, a term coined as "hemodynamic coherence". Less information is available to assess microcirculatory disturbances related to higher mortality risk in critically ill adults and pediatric patients with septic shock. Techniques for measuring microcirculation have substantially improved in the past decade and have evolved from methods that are limited in scope, such as velocity-based laser Doppler and near-infrared spectroscopy, to handheld vital microscopy (HVM), also referred to as videomicroscopy. Available technologies to assess microcirculation include sublingual incident dark field (IDF) and sublingual sidestream dark field (SDF) devices. This chapter addresses (1) the physiological basis of microcirculation and its relevance to the neonatal and pediatric populations, (2) the pathophysiology associated with altered microcirculation and endothelium, and (3) the current literature reviewing modalities to detect and quantify the presence of microcirculatory alterations.
Collapse
Affiliation(s)
- Grace M. Arteaga
- Department of Pediatric and Adolescent Medicine, Pediatric Critical Care, Mayo Clinic, Rochester MN, United States
| | - Sheri Crow
- Department of Pediatric and Adolescent Medicine, Pediatric Critical Care, Mayo Clinic, Rochester MN, United States
| |
Collapse
|
17
|
Abdullah S, Ghio M, Cotton-Betteridge A, Vinjamuri A, Drury R, Packer J, Aras O, Friedman J, Karim M, Engelhardt D, Kosowski E, Duong K, Shaheen F, McGrew PR, Harris CT, Reily R, Sammarco M, Chandra PK, Pociask D, Kolls J, Katakam PV, Smith A, Taghavi S, Duchesne J, Jackson-Weaver O. Succinate metabolism and membrane reorganization drives the endotheliopathy and coagulopathy of traumatic hemorrhage. SCIENCE ADVANCES 2023; 9:eadf6600. [PMID: 37315138 PMCID: PMC10266735 DOI: 10.1126/sciadv.adf6600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
Acute hemorrhage commonly leads to coagulopathy and organ dysfunction or failure. Recent evidence suggests that damage to the endothelial glycocalyx contributes to these adverse outcomes. The physiological events mediating acute glycocalyx shedding are undefined, however. Here, we show that succinate accumulation within endothelial cells drives glycocalyx degradation through a membrane reorganization-mediated mechanism. We investigated this mechanism in a cultured endothelial cell hypoxia-reoxygenation model, in a rat model of hemorrhage, and in trauma patient plasma samples. We found that succinate metabolism by succinate dehydrogenase mediates glycocalyx damage through lipid oxidation and phospholipase A2-mediated membrane reorganization, promoting the interaction of matrix metalloproteinase 24 (MMP24) and MMP25 with glycocalyx constituents. In a rat hemorrhage model, inhibiting succinate metabolism or membrane reorganization prevented glycocalyx damage and coagulopathy. In patients with trauma, succinate levels were associated with glycocalyx damage and the development of coagulopathy, and the interaction of MMP24 and syndecan-1 was elevated compared to healthy controls.
Collapse
Affiliation(s)
- Sarah Abdullah
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Michael Ghio
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | - Robert Drury
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Jacob Packer
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Oguz Aras
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Jessica Friedman
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Mardeen Karim
- Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | - Kelby Duong
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Farhana Shaheen
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Patrick R. McGrew
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Charles T. Harris
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Robert Reily
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Mimi Sammarco
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Partha K. Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Derek Pociask
- Tulane University School of Medicine, Center for Translational Research in Infection and Inflammation, New Orleans, LA, USA
| | - Jay Kolls
- Tulane University School of Medicine, Center for Translational Research in Infection and Inflammation, New Orleans, LA, USA
| | - Prasad V. Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alison Smith
- Louisiana State University Health Sciences Center, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Sharven Taghavi
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Juan Duchesne
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Olan Jackson-Weaver
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
18
|
Pretorius D, Richter RP, Anand T, Cardenas JC, Richter JR. Alterations in heparan sulfate proteoglycan synthesis and sulfation and the impact on vascular endothelial function. Matrix Biol Plus 2022; 16:100121. [PMID: 36160687 PMCID: PMC9494232 DOI: 10.1016/j.mbplus.2022.100121] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/05/2022] Open
Abstract
The glycocalyx attached to the apical surface of vascular endothelial cells is a rich network of proteoglycans, glycosaminoglycans, and glycoproteins with instrumental roles in vascular homeostasis. Given their molecular complexity and ability to interact with the intra- and extracellular environment, heparan sulfate proteoglycans uniquely contribute to the glycocalyx's role in regulating endothelial permeability, mechanosignaling, and ligand recognition by cognate cell surface receptors. Much attention has recently been devoted to the enzymatic shedding of heparan sulfate proteoglycans from the endothelial glycocalyx and its impact on vascular function. However, other molecular modifications to heparan sulfate proteoglycans are possible and may have equal or complementary clinical significance. In this narrative review, we focus on putative mechanisms driving non-proteolytic changes in heparan sulfate proteoglycan expression and alterations in the sulfation of heparan sulfate side chains within the endothelial glycocalyx. We then discuss how these specific changes to the endothelial glycocalyx impact endothelial cell function and highlight therapeutic strategies to target or potentially reverse these pathologic changes.
Collapse
Key Words
- ACE2, Angiotensin-converting enzyme 2
- CLP, cecal ligation and puncture
- COVID-19, Coronavirus disease 2019
- EXT, Exostosin
- EXTL, Exostosin-like glycosyltransferase
- FFP, Fresh frozen plasma
- FGF, Fibroblast growth factor
- FGFR1, Fibroblast growth factor receptor 1
- GAG, Glycosaminoglycan
- GPC, Glypican
- Gal, Galactose
- GlcA, Glucuronic acid
- GlcNAc, N-actetyl glucosamine
- Glycocalyx
- HLMVEC, Human lung microvascular endothelial cell
- HS, Heparan sulfate
- HS2ST, Heparan sulfate 2-O-sulfotransferase
- HS3ST, Heparan sulfate 3-O-sulfotransferase
- HS6ST, Heparan sulfate 6-O-sulfotransferase
- HSPG, Heparan sulfate proteoglycan
- HUVEC, Human umbilical vein endothelial cell
- Heparan sulfate proteoglycan
- LPS, lipopolysaccharide
- NDST, N-deacetylase/N-sulfotransferase
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
- SDC, Syndecan
- Sulf, Endosulfatase
- Sulfation
- Synthesis
- TNFα, Tumor necrosis factor alpha
- UA, Hexuronic acid
- VEGF, Vascular endothelial growth factor
- Vascular endothelium
- XYLT, Xylosyltransferase
- Xyl, Xylose
- eGCX, Endothelial glycocalyx
- eNOS, Endothelial nitric oxide synthase
Collapse
Affiliation(s)
- Danielle Pretorius
- Division of Trauma & Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert P. Richter
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tanya Anand
- Division of Trauma, Critical Care, Burn & Emergency Surgery, Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Jessica C. Cardenas
- Division of Acute Care Surgery, Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Translational Injury Research, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jillian R. Richter
- Division of Trauma & Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
19
|
Bol ME, Huckriede JB, van de Pas KGH, Delhaas T, Lorusso R, Nicolaes GAF, Sels JEM, van de Poll MCG. Multimodal measurement of glycocalyx degradation during coronary artery bypass grafting. Front Med (Lausanne) 2022; 9:1045728. [PMID: 36523784 PMCID: PMC9744810 DOI: 10.3389/fmed.2022.1045728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/02/2022] [Indexed: 11/04/2023] Open
Abstract
Background Glycocalyx shedding and subsequent endothelial dysfunction occur in many conditions, such as in sepsis, in critical illness, and during major surgery such as in coronary artery bypass grafting (CABG) where it has been shown to associate with organ dysfunction. Hitherto, there is no consensus about the golden standard in measuring glycocalyx properties in humans. The objective of this study was to compare different indices of glycocalyx shedding and dysfunction. To this end, we studied patients undergoing elective CABG surgery, which is a known cause of glycocalyx shedding. Materials and methods Sublingual glycocalyx thickness was measured in 23 patients by: 1) determining the perfused boundary region (PBR)-an inverse measure of glycocalyx thickness-by means of sidestream dark field imaging technique. This is stated double, 2) measuring plasma levels of the glycocalyx shedding products syndecan-1, hyaluronan, and heparan sulfate and 3) measuring plasma markers of impaired glycocalyx function and endothelial activation (Ang-2, Tie-2, E-selectin, and thrombomodulin). Measurements were performed directly after induction, directly after onset of cardiopulmonary bypass (CPB), and directly after cessation of CPB. We assessed changes over time as well as correlations between the various markers. Results The PBR increased from 1.81 ± 0.21 μm after induction of anesthesia to 2.27 ± 0.25 μm (p < 0.0001) directly after CPB was initiated and did not change further during CPB. A similar pattern was seen for syndecan-1, hyaluronan, heparan sulfate, Ang-2, Tie-2, and thrombomodulin. E-selectin levels also increased between induction and the start of CPB and increased further during CPB. The PBR correlated moderately with heparan sulfate, E-selectin, and thrombomodulin and weakly with Syndecan-1, hyaluronan, and Tie-2. Shedding markers syndecan-1 and hyaluronan correlated with all functional markers. Shedding marker heparan sulfate only correlated with Tie-2, thrombomodulin, and E-selectin. Thrombomodulin correlated with all shedding markers. Conclusion Our results show that glycocalyx thinning, illustrated by increased sublingual PBR and increased levels of shedding markers, is paralleled with impaired glycocalyx function and increased endothelial activation in CABG surgery with CPB. As correlations between different markers were limited, no single marker could be identified to represent the glycocalyx in its full complexity.
Collapse
Affiliation(s)
- Martine E. Bol
- Department of Intensive Care Medicine, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - J. B. Huckriede
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - K. G. H. van de Pas
- Department of Intensive Care Medicine, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
| | - T. Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - R. Lorusso
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Department of Cardio-Thoracic Surgery, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
| | - G. A. F. Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - J. E. M. Sels
- Department of Intensive Care Medicine, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
- Department of Cardiology, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
| | - M. C. G. van de Poll
- Department of Intensive Care Medicine, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Department of Surgery, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
| |
Collapse
|