1
|
Jiang S, Liang Z, Hua J, Li Y, Fan X, Qiao Z, Wang Z, Shen Y, Fan L, Wang J. Network pharmacology and transcriptomics reveal Complanatoside A regulates lipid metabolism in hyperlipidemia and non-alcoholic fatty liver disease via the AMPK pathway. J Nutr Biochem 2025:109960. [PMID: 40354830 DOI: 10.1016/j.jnutbio.2025.109960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/28/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and hyperlipidemia belong to the metabolic disorder syndromes of metabolic syndrome. They share a common pathological basis and are often complicated. Complanatoside A (CA), a flavonoid abundant in Astragali complanati semen, helps to prevent NAFLD and hyperlipidemia. However, the exact molecular mechanism is uncertain. Therefore, this study aims to explore the core mechanism. Network pharmacology was used to analyze the preventive mechanism of CA against NAFLD and hyperlipidemia. The efficacy of CA was proven in a high-fat diet-fed mouse model and a steatogenic hepatocyte model. Transcriptomic analysis, Western blot validation, and molecular docking methods were used to explore the common mechanism of CA in preventing NAFLD and hyperlipidemia. Network pharmacology revealed that the AMP-activated protein kinase (AMPK) pathway is a common mechanism leading to NAFLD and hyperlipidemia. It is also a potential pathway by which CA exerts its protective effect, which was confirmed in transcriptomics in vivo. Both in vitro and in vivo experiments showed that CA could inhibit lipid synthesis and promote fatty acid oxidation by activating the AMPK, alleviating lipid accumulation, and lipotoxic liver injury. This was demonstrated by the use of an AMPK inhibitor in vitro. Furthermore, molecular docking results showed that CA could directly interact with AMPK to regulate downstream lipid-related proteins. In conclusion, the AMPK pathway is key in developing NAFLD and hyperlipidemia. CA plays a dual preventive role in NAFLD and hyperlipidemia by activating AMPK to regulate lipid metabolism.
Collapse
Affiliation(s)
- Sijia Jiang
- Beijing University of Chinese Medicine, 102488, Beijing, China
| | | | - Jian Hua
- Beijing University of Chinese Medicine, 102488, Beijing, China
| | - Yajin Li
- Xinjiang Medical University, 830011, Urumqi, China
| | - Xiaoxu Fan
- Beijing University of Chinese Medicine, 102488, Beijing, China
| | - Zhiyuan Qiao
- Xinjiang Medical University, 830011, Urumqi, China
| | - Zhen Wang
- Beijing University of Chinese Medicine, 102488, Beijing, China
| | - Yiwei Shen
- Beijing University of Chinese Medicine, 102488, Beijing, China
| | - Le Fan
- Department of Endocrinology, Xiyuan Hosipital of China Academy of Chinese Medical Sciences.
| | - Jingxia Wang
- Beijing University of Chinese Medicine, 102488, Beijing, China.
| |
Collapse
|
2
|
Chu X, Hou Y, Peng C, Li W, Liang M, Mei J, Qian M, Wang J, Xu S, Jiang Y, Wen X, Chen Y, Yuan F, Xie J, Wang C, Zhang J. Exosome-derived miR-548ag drives hepatic lipid accumulation via upregulating FASN through inhibition of DNMT3B. J Lipid Res 2025:100818. [PMID: 40339699 DOI: 10.1016/j.jlr.2025.100818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the leading cause of chronic liver disease worldwide. This study investigates the role of serum miR-548ag in regulating lipid metabolism and its contribution to MASLD in obesity. We found that miR-548ag levels were significantly elevated in the serum of both obese and MASLD patients, and positively correlated with body mass index (BMI), fasting plasma glucose (FPG), triglycerides (TG), total cholesterol (TC), LDL, HDL, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. Additionally, miR-548ag expression was significantly higher in the liver and abdominal adipose tissue of obese individuals compared to those of normal weight. In vitro studies in HepG2 and L02 cells, along with previous findings, demonstrated that miR-548ag promotes fatty acid synthase (FASN) expression by inhibiting DNA methyltransferase 3B (DNMT3B), thereby enhancing lipid synthesis. This was confirmed in two mouse models: one with tail vein injections of miR-548ag mimic/inhibitor adeno-associated viruses, and another with tail vein injections of exosomes from serum of normal-weight and obese individuals. Both models showed that miR-548ag upregulated FASN through DNMT3B inhibition, leading to increased lipid synthesis and larger hepatic lipid droplets, effects that were reversed by miR-548ag inhibition. Taken together, elevated miR-548ag expression in obesity enhances hepatic lipid synthesis by targeting DNMT3B to upregulate FASN, contributing to the development of MASLD.
Collapse
Affiliation(s)
- Xiaolong Chu
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Department of Medical Genetics , Medical College of Tarim University, 296 Tarim Avenue, Alar, Xinjiang, 843300, China
| | - Yanting Hou
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Chaoling Peng
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Wei Li
- First Affiliated Hospital of Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Maodi Liang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Jin Mei
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Meiyu Qian
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Juan Wang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Shibo Xu
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yidan Jiang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Xin Wen
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yao Chen
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Fangyuan Yuan
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Jianxin Xie
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Department of Medical Genetics , Medical College of Tarim University, 296 Tarim Avenue, Alar, Xinjiang, 843300, China.
| | - Cuizhe Wang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China.
| | - Jun Zhang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
3
|
Ates E, My Ong HT, Yu SM, Kim JH, Kang MJ. Comparative Analysis of the Total Proteome in Nonalcoholic Steatohepatitis: Identification of Potential Biomarkers. Mol Cell Proteomics 2025; 24:100921. [PMID: 39894410 PMCID: PMC11910689 DOI: 10.1016/j.mcpro.2025.100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/06/2024] [Accepted: 11/08/2024] [Indexed: 02/04/2025] Open
Abstract
Nonalcoholic fatty liver disease is a hepatic condition characterized by excessive fat accumulation in the liver with advanced stage nonalcoholic steatohepatitis (NASH), potentially leading to liver fibrosis, cirrhosis, and cancer. Currently, the identification and classification of NASH require invasive liver biopsy, which has certain limitations. Mass spectrometry-based proteomics can detect crucial proteins and pathways implicated in NASH development and progression. We collected the liver and serum samples from choline-deficient, L-amino acid-defined high-fat diet fed NASH C57BL/6J mice and human serum samples to examine proteomic alterations and identify early biomarkers for NASH diagnosis. In-depth targeted multiple reaction monitoring scanning and immunoblotting assays were used to verify the biomarker candidates from mouse liver and serum samples, and enzyme-linked immunosorbent assay (ELISA) was employed to analyze human serum samples. The multiple reaction monitoring analysis of NASH liver revealed 50 proteins with altered expression (21 upregulated and 29 downregulated) that are involved in biological processes such as detoxification, fibrosis, inflammation, and fatty acid metabolism. Ingenuity pathway analysis identified impaired protein synthesis, cellular stress and defense, cellular processes and communication, and metabolism in NASH mouse liver. Immunoblotting analysis confirmed that the expression of proteins associated with fatty acid metabolism (Aldo B and Fasn) and urea cycle (Arg1, Cps1, and Otc) was altered in the mouse liver and serum. Further analysis on human serum samples using ELISA confirmed the increased expression of multiple proteins, including Aldo B, Asl, and Lgals3, demonstrating values of 0.917, 0.979, and 0.965 of area under the curve in NASH diagnosis. These findings offer valuable insights into the molecular mechanisms of NASH and possible diagnostic biomarkers for early detection.
Collapse
Affiliation(s)
- Eda Ates
- Center for Advanced Biomolecular Recognition, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, Republic of Korea
| | - Hien Thi My Ong
- Center for Advanced Biomolecular Recognition, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, Republic of Korea
| | - Seung-Min Yu
- Center for Advanced Biomolecular Recognition, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hoon Kim
- Center for Advanced Biomolecular Recognition, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Min-Jung Kang
- Center for Advanced Biomolecular Recognition, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Taniguchi A, Watanabe H, Kimura K, Hashiuchi E, Ohashi N, Sato H, Sakai M, Matsumoto M, Asahara SI, Inoue H, Inaba Y. Proline enhances the hepatic induction of lipogenic gene expression in male hepatic fasn reporter mice. Biochem Biophys Res Commun 2025; 747:151314. [PMID: 39799864 DOI: 10.1016/j.bbrc.2025.151314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Hepatic de novo lipogenesis (DNL) is increased by both carbohydrate intake and protein consumption. In hepatic fat synthesis, a key role is played by the induction of the hepatic expression of lipogenic genes, including Fasn, Scd1, and Srebf1. Regarding carbohydrate intake, increased blood glucose and insulin levels promote the expression of hepatic lipogenic genes. However, although amino acids serve as a carbon source for hepatic DNL during protein consumption, their effects on hepatic lipogenic gene expression remain unclear. We investigated the effects of amino acids on hepatic lipogenic gene induction using primary cultured mouse hepatocytes and hepatic Fasn reporter (l-FasnGLuc) mice. In primary cultured hepatocytes, lipogenic gene expression (Fasn, Scd1, Srebf1) was induced under postprandial-mimicking conditions (treatment with insulin and LXR agonist). When hepatocytes were stimulated with an amino acid mixture containing 20 amino acids, the induction of lipogenic gene expression was enhanced, but this effect disappeared when proline was removed from the mixture. Furthermore, when each amino acid was tested individually, only proline potentiated the induction of lipogenic gene expression in hepatocytes under postprandial-mimicking conditions. In mouse liver, continuous proline infusion via osmotic pump increased Fasn gene expression and showed a trend toward increased Srebf1 expression. In l-FasnGLuc mice, continuous proline infusion resulted in sustained enhancement of hepatic Fasn transcription, measured by secreted luciferase activity. These results demonstrate that proline enhances the induction of hepatic lipogenic gene expression both in vitro and in vivo.
Collapse
Affiliation(s)
- Akinori Taniguchi
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, 920-8640, Kanazawa, Ishikawa, Japan
| | - Hitoshi Watanabe
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, 920-8640, Kanazawa, Ishikawa, Japan
| | - Kumi Kimura
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, 920-8640, Kanazawa, Ishikawa, Japan
| | - Emi Hashiuchi
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, 920-8640, Kanazawa, Ishikawa, Japan; Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, 920-8640, Kanazawa, Ishikawa, Japan
| | - Nami Ohashi
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-2-1 Higashi-Tamagawagakuen, Machida, 194-8543, Tokyo, Japan
| | - Hirofumi Sato
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, 113-8602, Tokyo, Japan
| | - Mashito Sakai
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, 113-8602, Tokyo, Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjyuku-ku, 162-8655, Tokyo, Japan
| | - Shun-Ichiro Asahara
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, 650-0017, Kobe, Hyogo, Japan
| | - Hiroshi Inoue
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, 920-8640, Kanazawa, Ishikawa, Japan; Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, 920-8640, Kanazawa, Ishikawa, Japan
| | - Yuka Inaba
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, 920-8640, Kanazawa, Ishikawa, Japan; Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, 920-8640, Kanazawa, Ishikawa, Japan.
| |
Collapse
|
5
|
Yang M, Guo D, Ren Z, Feng D, Cheng X, Yang R, Wang X, Liu W. Anti-obesity effects of luteoloside on high fat diet induced obese mice: Modulation of white adipose tissue, gut microbiota, and PPAR signaling pathways. Food Res Int 2025; 203:115892. [PMID: 40022400 DOI: 10.1016/j.foodres.2025.115892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 03/03/2025]
Abstract
The effect of luteoloside on the regulation of lipid metabolism imbalance in obese mice and its mechanism were investigated. After 12 weeks of luteoloside (25, 50 and 100 mg/kg), obesity-related indicators were analyzed, such as serum, liver and adipose tissue indexes as well as gut microbiota and liver tissue-related protein expression levels. The results suggested that luteoloside intervention could reduce body fat mass and fat storage, improve lipid levels, glucose tolerance, and alleviate inflammatory disorders, especially in medium-dose treated mice. The serum levels of TC, TG, LDL-C in the HFD + M group decreased by 25.74 %, 42.03 %, 29.61 %, respectively, while HDL-C levels increased by 27.45 %. The levels of ALT and AST decreased by 44.15 % and 33.00 %, respectively. The intervention of luteoloside improved the variegation of gut microbes, more specifically, it balanced homeostasis of gut microbiota in obese mice. Luteoloside could regulate the expression of PPARα protein and down-regulate the expression proteins related to lipid synthesis, thereby inhibiting lipid accumulation and regulating lipid metabolism. The purpose of this study was to elucidate the molecular mechanism of luteoloside regulating lipid metabolism imbalance in obese mice and to provide a rationale for it.
Collapse
Affiliation(s)
- Meng Yang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Danyue Guo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Ziyi Ren
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Danqi Feng
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Xinying Cheng
- Hebei Chenguang Detection Technology Service Co. Ltd., Handan 056107, China
| | - Ruili Yang
- Hebei Chenguang Detection Technology Service Co. Ltd., Handan 056107, China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| | - Weihua Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
6
|
Chu S, Liu D, Zhao H, Liu L, Li J, Wang G, Liu X, Li H. Baihu Jia Renshen Decoction may improve skeletal muscle and adipose tissue functions of type I diabetic rats by affecting pancreatic β-cell function. Genes Genomics 2025; 47:263-273. [PMID: 39708266 PMCID: PMC11758189 DOI: 10.1007/s13258-024-01607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Baihu Jia Renshen Decoction (BJRD) is used for diabetes mellitus (DM) management in clinics. OBJECTIVE To elucidate the potential mechanism of BJRD in treating type 1 DM (T1DM). METHODS T1DM models were established via intraperitoneal injection of streptozotocin (STZ). Rats were subsequently randomly divided into the normal control (NC), model (MOD), insulin (INS), INS + BJRD-medium dose (MID), and INS + BJRD-high dose (HIGH) groups. The rats' body weight was measured. Transcriptome sequencing was performed to detect differentially expressed genes (DEGs) in the muscle and adipose tissues. Quantitative real-time polymerase chain reaction was utilized to verify the DEG levels. RESULTS Body weights of MOD, INS, MID, and HIGH groups were significantly reduced as compared to those of NC group. Compared with NC group, MOD group showed significant Hspa1b and Notch3 downregulation and Camkk2 level elevation. Compared with MOD group, INS group showed further downregulation of the Hspa1b level, whereas MID group exhibited an increase. The Camkk2 levels in INS, MID, and HIGH groups were further reduced. The Notch3 levels did not significantly change in INS and MID groups, whereas that of HIGH group increased. Additionally, compared with NC group, MOD group demonstrated upregulation of the Myl1, Mylpf, Acacb, and Pygm levels and downregulation of Fasn level. Compared with MOD group, Myl1, Mylpf, and Pygm levels in INS, MID, and HIGH groups were down-regulated, whereas Fasn and Acacb levels were up-regulated. CONCLUSION BJRD may influence pancreatic β-cell function, thereby enhancing the function of the skeletal muscle and adipose tissues in a T1DM rat model.
Collapse
Affiliation(s)
- Shufang Chu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, No. 1, Futian District, Shenzhen, 518033, Guangdong, China
| | - Deliang Liu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, No. 1, Futian District, Shenzhen, 518033, Guangdong, China
| | - Hengxia Zhao
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, No. 1, Futian District, Shenzhen, 518033, Guangdong, China
| | - Ling Liu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, No. 1, Futian District, Shenzhen, 518033, Guangdong, China
| | - Juntong Li
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, 518033, China
| | - Gaoxiang Wang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Qinhuai District, Nanjing, 210000, Jiangsu, China.
| | - Xuemei Liu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, No. 1, Futian District, Shenzhen, 518033, Guangdong, China.
| | - Huilin Li
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, No. 1, Futian District, Shenzhen, 518033, Guangdong, China.
| |
Collapse
|
7
|
Tomasini S, Vigo P, Margiotta F, Scheele US, Panella R, Kauppinen S. The Role of microRNA-22 in Metabolism. Int J Mol Sci 2025; 26:782. [PMID: 39859495 PMCID: PMC11766054 DOI: 10.3390/ijms26020782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
microRNA-22 (miR-22) plays a pivotal role in the regulation of metabolic processes and has emerged as a therapeutic target in metabolic disorders, including obesity, type 2 diabetes, and metabolic-associated liver diseases. While miR-22 exhibits context-dependent effects, promoting or inhibiting metabolic pathways depending on tissue and condition, current research highlights its therapeutic potential, particularly through inhibition strategies using chemically modified antisense oligonucleotides. This review examines the dual regulatory functions of miR-22 across key metabolic pathways, offering perspectives on its integration into next-generation diagnostic and therapeutic approaches while acknowledging the complexities of its roles in metabolic homeostasis.
Collapse
Affiliation(s)
- Simone Tomasini
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark; (S.T.); (U.S.S.); (R.P.)
| | - Paolo Vigo
- Resalis Therapeutics Srl, Via E. De Sonnaz 19, 10121 Torino, Italy
| | - Francesco Margiotta
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy;
| | - Ulrik Søberg Scheele
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark; (S.T.); (U.S.S.); (R.P.)
| | - Riccardo Panella
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark; (S.T.); (U.S.S.); (R.P.)
- Resalis Therapeutics Srl, Via E. De Sonnaz 19, 10121 Torino, Italy
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy;
- European Biomedical Research Institute of Salerno (EBRIS), Via Salvatore de Renzi 50, 84125 Salerno, Italy
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark; (S.T.); (U.S.S.); (R.P.)
| |
Collapse
|
8
|
Zhang X, Zheng Y, Yang J, Yang Y, He Q, Xu M, Long F, Yang Y. Abnormal ac4C modification in metabolic dysfunction associated steatotic liver cells. Sci Rep 2025; 15:1013. [PMID: 39762452 PMCID: PMC11704021 DOI: 10.1038/s41598-024-84564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
The pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) remains unclear due to the complexity of its etiology. The emerging field of the epitranscriptome has shown significant promise in advancing the understanding of disease pathogenesis and developing new therapeutic approaches. Recent research has demonstrated that N4-acetylcytosine (ac4C), an RNA modification within the epitranscriptome, is implicated in progression of various diseases. However, the role of ac4C modification in MASLD remains unexplored. Herein, we performed acRIP-ac4c-seq and RNA-seq analysis in free fatty acids-induced MASLD model cells, identifying 2128 differentially acetylated ac4C sites, with 1031 hyperacetylated and 1097 hypoacetylated peaks in MASLD model cells. Functional enrichments analysis showed that ac4C differentially modified genes were significantly involved in processes related to MASLD, such as nuclear transport and MAP kinase (MAPK) signaling pathway. We also identified 341 differentially expressed genes (DEGs), including 61 lncRNAs and 280 mRNAs, between control and MASLD model cells. Bioinformatics analysis showed that DEGs were significantly enriched in long-chain fatty acid biosynthetic process. Notably, 118 genes exhibited significant changes in both ac4C modification and expression levels in MASLD model cells. Among these proteins, JUN, caveolin-1 (CAV1), fatty acid synthase (FASN), and heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) were identified as core proteins through protein-protein interaction (PPI) network analysis using cytoscape software. Collectively, our findings establish a positive correlation between ac4C modification and the pathogenesis of MASLD and suggest that ac4C modification may serve as a therapeutic target for MASLD.
Collapse
Affiliation(s)
- Xiqian Zhang
- Department of Pharmacy, Affiliated Hospital of Southwest Jiao Tong University, The Third People's Hospital of Chengdu, Chengdu, 610014, China
| | - Yaxian Zheng
- Department of Pharmacy, Affiliated Hospital of Southwest Jiao Tong University, The Third People's Hospital of Chengdu, Chengdu, 610014, China
| | - Jing Yang
- Department of Pharmacy, Affiliated Hospital of Southwest Jiao Tong University, The Third People's Hospital of Chengdu, Chengdu, 610014, China
| | - Yan Yang
- Department of Pharmacy, Affiliated Hospital of Southwest Jiao Tong University, The Third People's Hospital of Chengdu, Chengdu, 610014, China
| | - Qin He
- Department of Pharmacy, Affiliated Hospital of Southwest Jiao Tong University, The Third People's Hospital of Chengdu, Chengdu, 610014, China
| | - Min Xu
- Department of Pharmacy, Affiliated Hospital of Southwest Jiao Tong University, The Third People's Hospital of Chengdu, Chengdu, 610014, China
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Women's and Children's Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610041, China.
| | - Yujie Yang
- Department of Pharmacy, Affiliated Hospital of Southwest Jiao Tong University, The Third People's Hospital of Chengdu, Chengdu, 610014, China.
| |
Collapse
|
9
|
Yan M, Cui Y, Xiang Q. Metabolism of hepatic stellate cells in chronic liver diseases: emerging molecular and therapeutic interventions. Theranostics 2025; 15:1715-1740. [PMID: 39897543 PMCID: PMC11780521 DOI: 10.7150/thno.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/10/2024] [Indexed: 02/04/2025] Open
Abstract
Chronic liver diseases, primarily metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic and metabolic dysfunction-associated alcoholic liver disease (MetALD), and viral hepatitis, can lead to liver fibrosis, cirrhosis, and cancer. Hepatic stellate cell (HSC) activation plays a central role in the development of myofibroblasts and fibrogenesis in chronic liver diseases. However, HSC activation is influenced by the complex microenvironments within the liver, which are largely shaped by the interactions between HSCs and various other cell types. Changes in HSC phenotypes and metabolic mechanisms involve glucose, lipid, and cholesterol metabolism, oxidative stress, activation of the unfolded protein response (UPR), autophagy, ferroptosis, senescence, and nuclear receptors. Clinical interventions targeting these pathways have shown promising results in addressing liver inflammation and fibrosis, as well as in modulating glucose and lipid metabolism and metabolic stress responses. Therefore, a comprehensive understanding of HSC phenotypes and metabolic mechanisms presents opportunities for novel therapeutic approaches aimed at halting or even reversing chronic liver diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Qian Xiang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
10
|
Li T, Xiong Z, Rong W, Yang Q, Chen Y, Zhao H, Liu Q, Song J, Wang W, Liu Y, Wang X, Liu S. Effects of exposure to 17α-methyltestosterone on hepatic lipid metabolism in Gobiocypris rarus. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110041. [PMID: 39278608 DOI: 10.1016/j.cbpc.2024.110041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
This study aimed to investigate the effects of 17α-Methyltestosterone (MT) on hepatic lipid metabolism in Gobiocypris rarus. G. rarus was exposed to varying concentrations of MT (0, 25, 50, and 100 ng/L) for durations of 7, 14, and 21 d. Biochemical and transcriptomic analyses were conducted using methods, such as ELISA, RT-qPCR, Western Blotting, and RNA-seq, to decipher the key signals and molecular mechanisms triggered by MT in vivo. The results revealed that MT induced hepatomegaly in G. rarus and markedly increased the hepatic steatosis index (HSI). After 14 d of exposure, significant increase in PPARγ mRNA expression was observed, whereas after 21 d, PPARα mRNA expression was significantly reduced. The expression pattern of SREBP1C mRNA initially decreased before increasing, mirroring the trend observed for SREBP1C protein expression. Furthermore, MT increased the levels of key lipid synthesis enzymes, including HSL, CPT1, GPAT, and FAS, thereby fostering lipid accumulation. RNA-seq analysis revealed that MT modulated hepatic bile acid metabolism via the PPAR pathway, consequently influencing cholesterol and lipid metabolism. Considering the differential metabolic pathways of MT across genders, it is postulated that MT may undergo aromatization to estrogen within G. rarus, thereby exerting estrogenic effects. These findings provide crucial experimental insights into the detrimental effects of MT in aquatic settings, underscoring its implications for safeguarding aquatic organisms and human health.
Collapse
Affiliation(s)
- Tongyao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zijun Xiong
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Weiya Rong
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Qiong Yang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yue Chen
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Haiyan Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Qing Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jing Song
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Weiwei Wang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yu Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xianzong Wang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China.
| | - Shaozhen Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030801, China.
| |
Collapse
|
11
|
Sukhatme MG, Kar A, Arasu UT, Lee SHT, Alvarez M, Garske KM, Gelev KZ, Rajkumar S, Das SS, Kaminska D, Männistö V, Peltoniemi H, Heinonen S, Säiläkivi U, Saarinen T, Juuti A, Pietiläinen KH, Pihlajamäki J, Kaikkonen MU, Pajukanta P. Integration of single cell omics with biobank data discovers trans effects of SREBF1 abdominal obesity risk variants on adipocyte expression of more than 100 genes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.22.24317804. [PMID: 39606332 PMCID: PMC11601756 DOI: 10.1101/2024.11.22.24317804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Given the fast-increasing prevalence of obesity and its comorbidities, it would be critical to improve our understanding of the cell-type level differences between the two key human adipose tissue depots, subcutaneous (SAT) and visceral adipose tissue (VAT), in their depot-specific contributions to cardiometabolic health. We integrated cell-type level RNA- and ATAC-seq data from human SAT and VAT biopsies and cell-lines to comprehensively elucidate transcriptomic, epigenetic, and genetic differences between the two fat depots. We identify cell-type marker genes for tissue specificity and functional enrichment, and show through genome-wide association study (GWAS) and partitioned polygenic risk score (PRS) enrichment analyses that the marker genes upregulated in SAT adipocytes have more prominent roles in abdominal obesity than those of VAT. We also identify SREBF1 , a master transcription factor (TF) of fatty acid synthesis and adipogenesis, as specifically upregulated in SAT adipocytes and present in numerous SAT functional pathways. By integrating multi-omics data from an independent human cohort, we further show that the risk allele carrier status of seven abdominal obesity GWAS variants in the cis region of SREBF1 affects the adipocyte expression of 146 SAT adipocyte marker genes in trans . We replicate this finding independently in the UK Biobank by showing that the partitioned abdominal obesity PRSs of the trans gene sets differ by the regional SREBF1 risk allele carrier status. In summary, we discover the master TF, SREBF1 , driving the SAT adipocyte expression profiles of more than a hundred of adipocyte marker genes in trans , a finding that indicates that human trans genes can be identified by integrating single cell omics with biobank data.
Collapse
|
12
|
Liu L, Sun W, Tang X, Zhen D, Guan C, Fu S, Liu J. Chiglitazar attenuates high-fat diet-induced nonalcoholic fatty liver disease by modulating multiple pathways in mice. Mol Cell Endocrinol 2024; 593:112337. [PMID: 39098464 DOI: 10.1016/j.mce.2024.112337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/06/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide; however, effective intervention strategies for NAFLD are still unavailable. The present study sought to investigate the efficacy of chiglitazar, a pan-PPAR agonist, in protecting against NAFLD in mice and its underlying molecular mechanism. Male C57BL/6 J mice were fed a high-fat diet (HFD) for 8 weeks to generate NAFLD and the HFD was continued for an additional 10 weeks in the absence or presence of 5 mg/kg/d or 10 mg/kg/d chiglitazar by gavage. Chiglitazar significantly improved dyslipidemia and insulin resistance, ameliorated hepatic steatosis and reduced liver inflammation and oxidative stress in NAFLD mice. RNA-seq revealed that chiglitazar alleviated HFD-induced NAFLD in mice through multiple pathways, including fatty acid metabolism regulation, insulin signaling pathway, and AMPK signaling pathway. This study demonstrated the potential therapeutic effect of chiglitazar on NAFLD. Chiglitazar ameliorated NAFLD by modulating multiple pathways.
Collapse
Affiliation(s)
- Lijuan Liu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Weiming Sun
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xulei Tang
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Donghu Zhen
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Conghui Guan
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Songbo Fu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Jinjin Liu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| |
Collapse
|
13
|
Sonkar R, Ma H, Waxman DJ. Steatotic liver disease induced by TCPOBOP-activated hepatic constitutive androstane receptor: primary and secondary gene responses with links to disease progression. Toxicol Sci 2024; 200:324-345. [PMID: 38710495 PMCID: PMC11285164 DOI: 10.1093/toxsci/kfae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
Constitutive androstane receptor (CAR, Nr1i3), a liver nuclear receptor and xenobiotic sensor, induces drug, steroid, and lipid metabolizing enzymes, stimulates liver hypertrophy and hyperplasia, and ultimately, hepatocellular carcinogenesis. The mechanisms linking early CAR responses to later disease development are poorly understood. Here we show that exposure of CD-1 mice to TCPOBOP (1,4-bis[2-(3,5-dichloropyridyloxy)]benzene), a halogenated xenochemical and selective CAR agonist ligand, induces pericentral steatosis marked by hepatic accumulation of cholesterol and neutral lipid, and elevated circulating alanine aminotransferase, indicating hepatocyte damage. TCPOBOP-induced steatosis was weaker in the pericentral region but stronger in the periportal region in females compared with males. Early (1 day) TCPOBOP transcriptional responses were enriched for CAR-bound primary response genes, and for lipogenesis and xenobiotic metabolism and oxidative stress protection pathways; late (2 weeks) TCPOBOP responses included many CAR binding-independent secondary response genes, with enrichment for macrophage activation, immune response, and cytokine and reactive oxygen species production. Late upstream regulators specific to TCPOBOP-exposed male liver were linked to proinflammatory responses and hepatocellular carcinoma progression. TCPOBOP administered weekly to male mice using a high corn oil vehicle induced carbohydrate-responsive transcription factor (MLXIPL)-regulated target genes, dysregulated mitochondrial respiratory and translation regulatory pathways, and induced more advanced liver pathology. Overall, TCPOBOP exposure recapitulates histological and gene expression changes characteristic of emerging steatotic liver disease, including secondary gene responses in liver nonparenchymal cells indicative of transition to a more advanced disease state. Upstream regulators of both the early and late TCPOBOP response genes include novel biomarkers for foreign chemical-induced metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
- Ravi Sonkar
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - Hong Ma
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
14
|
Klag KA, Bell R, Jia X, Seguin A, Maschek JA, Bronner M, Cox JE, Round JL, Ward DM. Low-Iron Diet-Induced Fatty Liver Development Is Microbiota Dependent and Exacerbated by Loss of the Mitochondrial Iron Importer Mitoferrin2. Nutrients 2024; 16:1804. [PMID: 38931165 PMCID: PMC11206261 DOI: 10.3390/nu16121804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Iron deficiency is the number one nutritional problem worldwide. Iron uptake is regulated at the intestine and is highly influenced by the gut microbiome. Blood from the intestines drains directly into the liver, informing iron status and gut microbiota status. Changes in either iron or the microbiome are tightly correlated with the development of metabolic dysfunction-associated steatotic liver disease (MASLD). To investigate the underlying mechanisms of the development of MASLD that connect altered iron metabolism and gut microbiota, we compared specific pathogen free (SPF) or germ-free (GF) mice, fed a normal or low-iron diet. SPF mice on a low-iron diet showed reduced serum triglycerides and MASLD. In contrast, GF low-iron diet-fed mice showed increased serum triglycerides and did not develop hepatic steatosis. SPF mice showed significant changes in liver lipid metabolism and increased insulin resistance that was dependent upon the presence of the gut microbiota. We report that total body loss of mitochondrial iron importer Mitoferrin2 (Mfrn2-/-) exacerbated the development of MASLD on a low-iron diet with significant lipid metabolism alterations. Our study demonstrates a clear contribution of the gut microbiome, dietary iron, and Mfrn2 in the development of MASLD and metabolic syndrome.
Collapse
Affiliation(s)
- Kendra A. Klag
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (K.A.K.); (R.B.); (X.J.); (A.S.); (M.B.); (J.L.R.)
| | - Rickesha Bell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (K.A.K.); (R.B.); (X.J.); (A.S.); (M.B.); (J.L.R.)
| | - Xuan Jia
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (K.A.K.); (R.B.); (X.J.); (A.S.); (M.B.); (J.L.R.)
| | - Alexandra Seguin
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (K.A.K.); (R.B.); (X.J.); (A.S.); (M.B.); (J.L.R.)
| | - J. Alan Maschek
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT 84112, USA; (J.A.M.); (J.E.C.)
| | - Mary Bronner
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (K.A.K.); (R.B.); (X.J.); (A.S.); (M.B.); (J.L.R.)
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - James E. Cox
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT 84112, USA; (J.A.M.); (J.E.C.)
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - June L. Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (K.A.K.); (R.B.); (X.J.); (A.S.); (M.B.); (J.L.R.)
| | - Diane M. Ward
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (K.A.K.); (R.B.); (X.J.); (A.S.); (M.B.); (J.L.R.)
| |
Collapse
|
15
|
Lin SX, Yang C, Jiang RS, Wu C, Lang DQ, Wang YL, Li XY, Jiang CP, Liu Q, Shen CY. Flavonoid extracts of Citrus aurantium L. var. amara Engl. Promote browning of white adipose tissue in high-fat diet-induced mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117749. [PMID: 38219880 DOI: 10.1016/j.jep.2024.117749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Obesity has become a public burden worldwide due to its booming incidence and various complications, and browning of white adipose tissue (WAT) is recognized as a hopeful strategy to combat it. Blossom of Citrus aurantium L. var. amara Engl. (CAVA) is a popular folk medicine and dietary supplement used for relieving dyspepsia, which is recorded in the Chinese Materia Medica. Our previous study showed that blossom of CAVA had anti-obesity potential, while its role in browning of WAT was still unclear. AIM OF THE STUDY This study aimed to characterize the constituents in flavonoids from blossom of CAVA (CAVAF) and to clarify the anti-obesity capacities especially the effects on browning of WAT. MATERIALS AND METHODS Gradient ethanol eluents from blossom of CAVA were obtained by AB-8 macroporous resin. 3T3-L1 cells and pancreatic lipase inhibition assay were employed to investigate the potential anti-obesity effects in vitro. HPLC and UPLC/MS assays were performed to characterize the chemical profiles of different eluents. Network pharmacology and molecular docking assays were used to reveal potential anti-obesity targets. Furthermore, high-fat diet (HFD)-induced mice were constructed to explore the anti-obesity actions and mechanisms in vivo. RESULTS 30% ethanol eluents with high flavonoid content and great inhibition on proliferation of 3T3-L1 preadipocytes and pancreatic lipase activity were regarded as CAVAF. 19 compounds were identified in CAVAF. Network pharmacology analysis demonstrated that AMPK and PPARα were potential targets for CAVAF in alleviating obesity. Animal studies demonstrated that CAVAF intervention significantly decreased the body weight, WAT weight, serum TG, TC and LDL-C levels in HFD-fed obese mice. HFD-induced insulin resistance and morphological changes in WAT and brown adipose tissue were also markedly attenuated by CAVAF treatment. CAVAF supplementation potently inhibited iWAT inflammation by regulating IL-6, IL-1β, TNF-α and IL-10 mRNA expression in iWAT of mice. Furthermore, the gene expression levels of thermogenic markers including Cyto C, ATP synthesis, Cidea, Cox8b and especially UCP1 in iWAT of mice were significantly up-regulated by CAVAF administration. CAVAF intervention also markedly increased the expression levels of PRDM16, PGC-1α, SIRT1, AMPK-α1, PPARα and PPARγ mRNA in iWAT of mice. CONCLUSION CAVAF treatment significantly promoted browning of WAT in HFD-fed mice. These results suggested that flavonoid extracts from blossom of CAVA were probably promising candidates for the treatment of obesity.
Collapse
Affiliation(s)
- Song-Xia Lin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China
| | - Chun Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China
| | - Ru-Shan Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China
| | - Chao Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China
| | - Deng-Qin Lang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China
| | - Ya-Li Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China
| | - Xiao-Yi Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China
| | - Cui-Ping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China.
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China
| | - Chun-Yan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China.
| |
Collapse
|