1
|
Schneider R, Mansour B, Kolvenbach CM, Buerger F, Salmanullah D, Lemberg K, Merz LM, Mertens ND, Saida K, Yousef K, Franken GAC, Bao A, Yu S, Hölzel S, Nicolas-Frank C, Steinsapir A, Goncalves KA, Shril S, Hildebrandt F. Phenotypic quantification of Nphs1-deficient mice. J Nephrol 2025; 38:143-152. [PMID: 39003671 PMCID: PMC11772050 DOI: 10.1007/s40620-024-01987-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/06/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Steroid-resistant nephrotic syndrome (SRNS) is the second most frequent cause of chronic kidney disease in children and young adults. The most severe form of steroid-resistant nephrotic syndrome is congenital nephrotic syndrome Finnish type (CNSF), caused by biallelic loss-of-function variants in NPHS1, encoding nephrin. Since each of the 68 monogenic causes of steroid-resistant nephrotic syndrome represents a rare cause of the disease, tailoring therapeutic interventions to multiple molecular targets remains challenging, suggesting gene replacement therapy (GRT) as a viable alternative. To set the ground for a gene replacement study in vivo, we established rigorous, quantifiable, and reproducible phenotypic assessment of a conditional Nphs1 knockout mouse model. METHODS By breeding a floxed Nphs1fl/- mouse (Nphs1tm1Afrn/J) previously studied for pancreatic β-cell survival with a podocin promoter-driven Cre recombinase mouse model (Tg(NPHS2-Cre)295Lbh/J), we generated mice with podocyte-specific nephrin deficiency (Nphs1fl/fl NPHS2-Cre +). RESULTS We observed a median survival to postnatal day P5 in nephrin-deficient mice, whereas heterozygous control mice and wild type (WT) control group showed 90% and 100% survival, respectively (at P50 days). Light microscopy analysis showed a significantly higher number of renal-tubular microcysts per kidney section in nephrin-deficient mice compared to the control groups (P < 0.0022). Transmission electron microscopy demonstrated reduced foot process (FP) density in nephrin-deficient mice compared to controls (P < 0.0001). Additionally, proteinuria quantitation using urine albumin-to-creatinine ratio (UACR) was significantly higher in nephrin-deficient mice compared to controls. CONCLUSIONS This study represents the first comprehensive description of the kidney phenotype in a nephrin-deficient mouse model, laying the foundation for future gene replacement therapy endeavors.
Collapse
Affiliation(s)
- Ronen Schneider
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Bshara Mansour
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Caroline M Kolvenbach
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, USA
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Florian Buerger
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Daanya Salmanullah
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Katharina Lemberg
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Lea M Merz
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, USA
- Department of Pediatrics, University Leipzig, Leipzig, Germany
| | - Nils D Mertens
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Ken Saida
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Kirollos Yousef
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Gijs A C Franken
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Aaron Bao
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Seyoung Yu
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Selina Hölzel
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Camille Nicolas-Frank
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Andrew Steinsapir
- Deerfield Discovery and Development, Deerfield Management Company, L.P. (Series C), New York, USA
| | - Kevin A Goncalves
- Deerfield Discovery and Development, Deerfield Management Company, L.P. (Series C), New York, USA
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
2
|
Liu PJ, Sayeeda K, Zhuang C, Krendel M. Roles of myosin 1e and the actin cytoskeleton in kidney functions and familial kidney disease. Cytoskeleton (Hoboken) 2024; 81:737-752. [PMID: 38708443 PMCID: PMC11538376 DOI: 10.1002/cm.21861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Mammalian kidneys are responsible for removing metabolic waste and maintaining fluid and electrolyte homeostasis via selective filtration. One of the proteins closely linked to selective renal filtration is myosin 1e (Myo1e), an actin-dependent molecular motor found in the specialized kidney epithelial cells involved in the assembly and maintenance of the renal filter. Point mutations in the gene encoding Myo1e, MYO1E, have been linked to familial kidney disease, and Myo1e knockout in mice leads to the disruption of selective filtration. In this review, we discuss the role of the actin cytoskeleton in renal filtration, the known and hypothesized functions of Myo1e, and the possible explanations for the impact of MYO1E mutations on renal function.
Collapse
Affiliation(s)
- Pei-Ju Liu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Kazi Sayeeda
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Cindy Zhuang
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
3
|
Finn LS. Nephrotic Syndrome Throughout Childhood: Diagnosing Podocytopathies From the Womb to the Dorm. Pediatr Dev Pathol 2024; 27:426-458. [PMID: 38745407 DOI: 10.1177/10935266241242669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The etiologies of podocyte dysfunction that lead to pediatric nephrotic syndrome (NS) are vast and vary with age at presentation. The discovery of numerous novel genetic podocytopathies and the evolution of diagnostic technologies has transformed the investigation of steroid-resistant NS while simultaneously promoting the replacement of traditional morphology-based disease classifications with a mechanistic approach. Podocytopathies associated with primary and secondary steroid-resistant NS manifest as diffuse mesangial sclerosis, minimal change disease, focal segmental glomerulosclerosis, and collapsing glomerulopathy. Molecular testing, once an ancillary option, has become a vital component of the clinical investigation and when paired with kidney biopsy findings, provides data that can optimize treatment and prognosis. This review focuses on the causes including selected monogenic defects, clinical phenotypes, histopathologic findings, and age-appropriate differential diagnoses of nephrotic syndrome in the pediatric population with an emphasis on podocytopathies.
Collapse
Affiliation(s)
- Laura S Finn
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at The University of Pennsylvania, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
4
|
Baltar J, Miranda RM, Cabral M, Rebelo S, Grahammer F, Huber TB, Reguenga C, Monteiro FA. Neph1 is required for neurite branching and is negatively regulated by the PRRXL1 homeodomain factor in the developing spinal cord dorsal horn. Neural Dev 2024; 19:13. [PMID: 39049046 PMCID: PMC11271021 DOI: 10.1186/s13064-024-00190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
The cell-adhesion molecule NEPH1 is required for maintaining the structural integrity and function of the glomerulus in the kidneys. In the nervous system of Drosophila and C. elegans, it is involved in synaptogenesis and axon branching, which are essential for establishing functional circuits. In the mammalian nervous system, the expression regulation and function of Neph1 has barely been explored. In this study, we provide a spatiotemporal characterization of Neph1 expression in mouse dorsal root ganglia (DRGs) and spinal cord. After the neurogenic phase, Neph1 is broadly expressed in the DRGs and in their putative targets at the dorsal horn of the spinal cord, comprising both GABAergic and glutamatergic neurons. Interestingly, we found that PRRXL1, a homeodomain transcription factor that is required for proper establishment of the DRG-spinal cord circuit, prevents a premature expression of Neph1 in the superficial laminae of the dorsal spinal cord at E14.5, but has no regulatory effect on the DRGs or on either structure at E16.5. By chromatin immunoprecipitation analysis of the dorsal spinal cord, we identified four PRRXL1-bound regions within the Neph1 introns, suggesting that PRRXL1 directly regulates Neph1 transcription. We also showed that Neph1 is required for branching, especially at distal neurites. Together, our work showed that Prrxl1 prevents the early expression of Neph1 in the superficial dorsal horn, suggesting that Neph1 might function as a downstream effector gene for proper assembly of the DRG-spinal nociceptive circuit.
Collapse
Affiliation(s)
- João Baltar
- Unidade de Biologia Experimental, Departamento de Biomedicina, FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Pain Neurobiology, IBMC - Instituto de Biologia Celular e Molecular, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Rafael Mendes Miranda
- Unidade de Biologia Experimental, Departamento de Biomedicina, FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Pain Neurobiology, IBMC - Instituto de Biologia Celular e Molecular, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Maria Cabral
- Unidade de Biologia Experimental, Departamento de Biomedicina, FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Pain Neurobiology, IBMC - Instituto de Biologia Celular e Molecular, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sandra Rebelo
- Unidade de Biologia Experimental, Departamento de Biomedicina, FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Pain Neurobiology, IBMC - Instituto de Biologia Celular e Molecular, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Departamento de Patologia Clínica, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carlos Reguenga
- Unidade de Biologia Experimental, Departamento de Biomedicina, FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Pain Neurobiology, IBMC - Instituto de Biologia Celular e Molecular, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Filipe Almeida Monteiro
- Unidade de Biologia Experimental, Departamento de Biomedicina, FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal.
- Pain Neurobiology, IBMC - Instituto de Biologia Celular e Molecular, Porto, Portugal.
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
5
|
Qadri AH, Prajapati J, Faheem I, Bhattacharjee U, Padmanaban HK, Mulukala SKN, Pasupulati AK. Biophysical characterization and insights into the oligomeric nature of CD2-associated protein. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 15:20-33. [PMID: 38765876 PMCID: PMC11101965 DOI: 10.62347/uvsh8436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/27/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Glomerular podocytes are specialized epithelial cells localized to the blood-urine interface of the kidney. Podocyte slit-diaphragm (SD), a size-and-charge-selective junction, is instrumental in blood ultrafiltration and the formation of protein-free urine. The SD consists of macromolecular complexes of several proteins, such as nephrin, podocin, and CD2-associated protein (CD2AP). CD2AP is an adapter protein and is considered to be crucial for the integrity of SD. Mutations in the SD proteins cause nephrotic syndrome (NS), characterized by proteinuria. SD proteins' structural features must be elucidated to understand the mechanism of proteinuria in NS. In this study, we expressed, purified, and biophysically characterized heterologously expressed human CD2AP. METHODS Codon-optimized human CD2AP was expressed in E. coli Rosetta cells. The recombinant protein was induced with 1 mM IPTG and purified by Ni-NTA affinity chromatography. Analytical size-exclusion chromatography, blue native-PAGE, circular dichroism, and fluorescence spectroscopy were performed to decipher the oligomeric nature, secondary structural content, and tertiary packing of CD2AP. RESULTS Our analysis revealed that CD2AP adopts a predominantly disordered secondary structure despite exhibiting moderate tertiary packing, characterized by low helical and β-sheet content. CD2AP readily assembles into homo-oligomers, with octamers and tetramers constituting the primary population. Interestingly, the inherent flexibility of CD2AP's secondary structural elements appears resistant to thermal denaturation. Frameshift mutation (p.K579Efs*7) that leads to loss of the coiled-coil domain promotes aberrant oligomerization of CD2AP through SH3 domains. CONCLUSION We successfully expressed full-length human CD2AP in a heterologous system, wherein the secondary structure of CD2AP is predominantly disordered. CD2AP can form higher-order oligomers, and the significance of these oligomers and the impact of mutations in the context of size-selective permeability of SD needs further investigation.
Collapse
Affiliation(s)
- Abrar H Qadri
- Department of Biochemistry, University of HyderabadHyderabad 500046, India
| | - Jyotsana Prajapati
- Department of Biochemistry, University of HyderabadHyderabad 500046, India
| | - Iqball Faheem
- Department of Microbiology and Cell Biology, Indian Institute of ScienceBangalore 560012, India
| | - Utsa Bhattacharjee
- Department of Biochemistry, University of HyderabadHyderabad 500046, India
| | | | | | - Anil K Pasupulati
- Department of Biochemistry, University of HyderabadHyderabad 500046, India
| |
Collapse
|
6
|
Unnersjö-Jess D, Ramdedovic A, Butt L, Plagmann I, Höhne M, Hackl A, Brismar H, Blom H, Schermer B, Benzing T. Advanced optical imaging reveals preferred spatial orientation of podocyte processes along the axis of glomerular capillaries. Kidney Int 2023; 104:1164-1169. [PMID: 37774923 DOI: 10.1016/j.kint.2023.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 10/01/2023]
Abstract
Mammalian kidneys filter enormous volumes of water and small solutes, a filtration driven by the hydrostatic pressure in glomerular capillaries, which is considerably higher than in most other tissues. Interdigitating cellular processes of podocytes form the slits for fluid filtration connected by the membrane-like slit diaphragm cell junction containing a mechanosensitive ion channel complex and allow filtration while counteracting hydrostatic pressure. Several previous publications speculated that podocyte processes may display a preferable orientation on glomerular capillaries instead of a random distribution. However, for decades, the controversy over spatially oriented filtration slits could not be resolved due to technical limitations of imaging technologies. Here, we used advanced high-resolution, three-dimensional microscopy with high data throughput to assess spatial orientation of podocyte processes and filtration slits quantitatively. Filtration-slit-generating secondary processes preferentially align along the capillaries' longitudinal axis while primary processes are preferably perpendicular to the longitudinal direction. This preferential orientation required maturation in development of the mice but was lost in mice with kidney disease due to treatment with nephrotoxic serum or with underlying heterologous mutations in the podocyte foot process protein podocin. Thus, the observation that podocytes maintain a preferred spatial orientation of their processes on glomerular capillaries goes well in line with the role of podocyte foot processes as mechanical buttresses to counteract mechanical forces resulting from pressurized capillaries. Future studies are needed to establish how podocytes establish and maintain their orientation and why orientation is lost under pathological conditions.
Collapse
Affiliation(s)
- David Unnersjö-Jess
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany; MedTechLabs, BioClinicum, Karolinska University Hospital, Solna, Sweden; Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden; Division of Renal Medicine, Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden.
| | - Amer Ramdedovic
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ingo Plagmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Agnes Hackl
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Hans Blom
- MedTechLabs, BioClinicum, Karolinska University Hospital, Solna, Sweden; Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
7
|
Anders HJ, Kitching AR, Leung N, Romagnani P. Glomerulonephritis: immunopathogenesis and immunotherapy. Nat Rev Immunol 2023; 23:453-471. [PMID: 36635359 PMCID: PMC9838307 DOI: 10.1038/s41577-022-00816-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 01/14/2023]
Abstract
'Glomerulonephritis' (GN) is a term used to describe a group of heterogeneous immune-mediated disorders characterized by inflammation of the filtration units of the kidney (the glomeruli). These disorders are currently classified largely on the basis of histopathological lesion patterns, but these patterns do not align well with their diverse pathological mechanisms and hence do not inform optimal therapy. Instead, we propose grouping GN disorders into five categories according to their immunopathogenesis: infection-related GN, autoimmune GN, alloimmune GN, autoinflammatory GN and monoclonal gammopathy-related GN. This categorization can inform the appropriate treatment; for example, infection control for infection-related GN, suppression of adaptive immunity for autoimmune GN and alloimmune GN, inhibition of single cytokines or complement factors for autoinflammatory GN arising from inborn errors in innate immunity, and plasma cell clone-directed or B cell clone-directed therapy for monoclonal gammopathies. Here we present the immunopathogenesis of GN and immunotherapies in use and in development and discuss how an immunopathogenesis-based GN classification can focus research, and improve patient management and teaching.
Collapse
Affiliation(s)
- Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig Maximilian University Munich, Munich, Germany.
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
- Department of Nephrology, Monash Health, Clayton, VIC, Australia
- Department of Paediatric Nephrology, Monash Health, Clayton, VIC, Australia
| | - Nelson Leung
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Paola Romagnani
- Department of Experimental and Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| |
Collapse
|
8
|
Kylies D, Zimmermann M, Haas F, Schwerk M, Kuehl M, Brehler M, Czogalla J, Hernandez LC, Konczalla L, Okabayashi Y, Menzel J, Edenhofer I, Mezher S, Aypek H, Dumoulin B, Wu H, Hofmann S, Kretz O, Wanner N, Tomas NM, Krasemann S, Glatzel M, Kuppe C, Kramann R, Banjanin B, Schneider RK, Urbschat C, Arck P, Gagliani N, van Zandvoort M, Wiech T, Grahammer F, Sáez PJ, Wong MN, Bonn S, Huber TB, Puelles VG. Expansion-enhanced super-resolution radial fluctuations enable nanoscale molecular profiling of pathology specimens. NATURE NANOTECHNOLOGY 2023; 18:336-342. [PMID: 37037895 PMCID: PMC10115634 DOI: 10.1038/s41565-023-01328-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/13/2023] [Indexed: 06/19/2023]
Abstract
Expansion microscopy physically enlarges biological specimens to achieve nanoscale resolution using diffraction-limited microscopy systems1. However, optimal performance is usually reached using laser-based systems (for example, confocal microscopy), restricting its broad applicability in clinical pathology, as most centres have access only to light-emitting diode (LED)-based widefield systems. As a possible alternative, a computational method for image resolution enhancement, namely, super-resolution radial fluctuations (SRRF)2,3, has recently been developed. However, this method has not been explored in pathology specimens to date, because on its own, it does not achieve sufficient resolution for routine clinical use. Here, we report expansion-enhanced super-resolution radial fluctuations (ExSRRF), a simple, robust, scalable and accessible workflow that provides a resolution of up to 25 nm using LED-based widefield microscopy. ExSRRF enables molecular profiling of subcellular structures from archival formalin-fixed paraffin-embedded tissues in complex clinical and experimental specimens, including ischaemic, degenerative, neoplastic, genetic and immune-mediated disorders. Furthermore, as examples of its potential application to experimental and clinical pathology, we show that ExSRRF can be used to identify and quantify classical features of endoplasmic reticulum stress in the murine ischaemic kidney and diagnostic ultrastructural features in human kidney biopsies.
Collapse
Affiliation(s)
- Dominik Kylies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Center On Rare Kidney Diseases (RECORD), University Hospital Erlangen, Erlangen, Germany
| | - Marina Zimmermann
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Haas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria Schwerk
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Kuehl
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Brehler
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Czogalla
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lola C Hernandez
- Cell Communication and Migration Laboratory, Department of Biochemistry and Molecular Cell Biology (IBMZ), Center for Experimental Medicine, Hamburg, Germany
| | - Leonie Konczalla
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yusuke Okabayashi
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Ilka Edenhofer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sam Mezher
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hande Aypek
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bernhard Dumoulin
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hui Wu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Smilla Hofmann
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola M Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology and Division of Nephrology and Clinical Immunology, RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology and Division of Nephrology and Clinical Immunology, RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Bella Banjanin
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Rebekka K Schneider
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
- Institute for Cell and Tumor Biology, RWTH Aachen University, Aachen, Germany
| | - Christopher Urbschat
- Department of Obstetrics and Fetal Medicine, Division of Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra Arck
- Department of Obstetrics and Fetal Medicine, Division of Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marc van Zandvoort
- Department of Genetics and Cell Biology, Maastricht University, School for Oncology and Reproduction GROW, School for Mental Health and Neuroscience MHeNS, and School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| | - Thorsten Wiech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pablo J Sáez
- Cell Communication and Migration Laboratory, Department of Biochemistry and Molecular Cell Biology (IBMZ), Center for Experimental Medicine, Hamburg, Germany
| | - Milagros N Wong
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
9
|
Boyer O, Mollet G, Dorval G. [Neurological disorders and hereditary podocytopathies: Some fascinating pathophysiological overlaps]. Med Sci (Paris) 2023; 39:246-252. [PMID: 36943121 DOI: 10.1051/medsci/2023029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Genetic studies of hereditary steroid resistant nephrotic syndrome (SRNS) have identified more than 60 genes involved in the development of single-gene, isolated or syndromic forms of hereditary podocytoapthies. Sometimes, syndromic SRNS is associated with neurological disorders. Over the past decades, various studies have established links between the podocyte, an epithelial glomerular cell involved in the renal filtration barrier, and neuronal cells, both morphologically (slit diaphragm and synapse) and functionally (signaling platforms). Variants of genes encoding proteins expressed in different compartments of the podocyte and neurons are responsible for phenotypes associating renal lesions with proteinuria to central and/or peripheral neurological disorders. In this review, we aim to focus on genetic syndromes associating proteinuria and neurological disease and to present the latest advances in the description of these neuro-renal disorders.
Collapse
Affiliation(s)
- Olivia Boyer
- Service de néphrologie pédiatrique, AP-HP, Centre de référence de maladies rénales rares de l'enfant et de l'adulte (MARHEA), hôpital Necker - Enfants Malades, Paris, France - Université Paris Cité, institut Imagine, laboratoire des maladies rénales héréditaires, Inserm UMR1163, Paris, France
| | - Géraldine Mollet
- Université Paris Cité, institut Imagine, laboratoire des maladies rénales héréditaires, Inserm UMR1163, Paris, France
| | - Guillaume Dorval
- Université Paris Cité, institut Imagine, laboratoire des maladies rénales héréditaires, Inserm UMR1163, Paris, France - Service de génétique moléculaire, AP-HP, hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
10
|
Seifert L, Zahner G, Meyer-Schwesinger C, Hickstein N, Dehde S, Wulf S, Köllner SMS, Lucas R, Kylies D, Froembling S, Zielinski S, Kretz O, Borodovsky A, Biniaminov S, Wang Y, Cheng H, Koch-Nolte F, Zipfel PF, Hopfer H, Puelles VG, Panzer U, Huber TB, Wiech T, Tomas NM. The classical pathway triggers pathogenic complement activation in membranous nephropathy. Nat Commun 2023; 14:473. [PMID: 36709213 PMCID: PMC9884226 DOI: 10.1038/s41467-023-36068-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/13/2023] [Indexed: 01/29/2023] Open
Abstract
Membranous nephropathy (MN) is an antibody-mediated autoimmune disease characterized by glomerular immune complexes containing complement components. However, both the initiation pathways and the pathogenic significance of complement activation in MN are poorly understood. Here, we show that components from all three complement pathways (alternative, classical and lectin) are found in renal biopsies from patients with MN. Proximity ligation assays to directly visualize complement assembly in the tissue reveal dominant activation via the classical pathway, with a close correlation to the degree of glomerular C1q-binding IgG subclasses. In an antigen-specific autoimmune mouse model of MN, glomerular damage and proteinuria are reduced in complement-deficient mice compared with wild-type littermates. Severe disease with progressive ascites, accompanied by extensive loss of the integral podocyte slit diaphragm proteins, nephrin and neph1, only occur in wild-type animals. Finally, targeted silencing of C3 using RNA interference after the onset of proteinuria significantly attenuates disease. Our study shows that, in MN, complement is primarily activated via the classical pathway and targeting complement components such as C3 may represent a promising therapeutic strategy.
Collapse
Affiliation(s)
- Larissa Seifert
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunther Zahner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Naemi Hickstein
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silke Dehde
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonia Wulf
- Institute of Pathology, Nephropathology Section, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah M S Köllner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renke Lucas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Kylies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Froembling
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Zielinski
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Yanyan Wang
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hong Cheng
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Helmut Hopfer
- Department of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Ulf Panzer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, Nephropathology Section, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola M Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
11
|
Xu Z, Yue P, Feng JJ. Poroelastic modelling reveals the cooperation between two mechanisms for albuminuria. J R Soc Interface 2023; 20:20220634. [PMID: 36628531 PMCID: PMC9832287 DOI: 10.1098/rsif.2022.0634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/08/2022] [Indexed: 01/12/2023] Open
Abstract
Albuminuria occurs when albumin leaks abnormally into the urine. Its mechanism remains unclear. A gel-compression hypothesis attributes the glomerular barrier to compression of the glomerular basement membrane (GBM) as a gel layer. Loss of podocyte foot processes would allow the gel layer to expand circumferentially, enlarge its pores and leak albumin into the urine. To test this hypothesis, we develop a poroelastic model of the GBM. It predicts GBM compression in healthy glomerulus and GBM expansion in the diseased state, essentially confirming the hypothesis. However, by itself, the gel compression and expansion mechanism fails to account for two features of albuminuria: the reduction in filtration flux and the thickening of the GBM. A second mechanism, the constriction of flow area at the slit diaphragm downstream of the GBM, must be included. The cooperation between the two mechanisms produces the amount of increase in GBM porosity expected in vivo in a mutant mouse model, and also captures the two in vivo features of reduced filtration flux and increased GBM thickness. Finally, the model supports the idea that in the healthy glomerulus, gel compression may help maintain a roughly constant filtration flux under varying filtration pressure.
Collapse
Affiliation(s)
- Zelai Xu
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2
| | - Pengtao Yue
- Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA
| | - James J. Feng
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2
| |
Collapse
|
12
|
A slit-diaphragm-associated protein network for dynamic control of renal filtration. Nat Commun 2022; 13:6446. [PMID: 36307401 PMCID: PMC9616960 DOI: 10.1038/s41467-022-33748-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/29/2022] [Indexed: 12/25/2022] Open
Abstract
The filtration of blood in the kidney which is crucial for mammalian life is determined by the slit-diaphragm, a cell-cell junction between the foot processes of renal podocytes. The slit-diaphragm is thought to operate as final barrier or as molecular sensor of renal filtration. Using high-resolution proteomic analysis of slit-diaphragms affinity-isolated from rodent kidney, we show that the native slit-diaphragm is built from the junction-forming components Nephrin, Neph1 and Podocin and a co-assembled high-molecular weight network of proteins. The network constituents cover distinct classes of proteins including signaling-receptors, kinases/phosphatases, transporters and scaffolds. Knockout or knock-down of either the core components or the selected network constituents tyrosine kinase MER (MERTK), atrial natriuretic peptide-receptor C (ANPRC), integral membrane protein 2B (ITM2B), membrane-associated guanylate-kinase, WW and PDZ-domain-containing protein1 (MAGI1) and amyloid protein A4 resulted in target-specific impairment or disruption of the filtration process. Our results identify the slit-diaphragm as a multi-component system that is endowed with context-dependent dynamics via a co-assembled protein network.
Collapse
|
13
|
Lausecker F, Koehler S, Fresquet M, Naylor RW, Tian P, Wanner N, Braun F, Butt L, Huber TB, Lennon R. Integrating basic science with translational research: the 13th International Podocyte Conference 2021. Kidney Int 2022; 102:708-719. [PMID: 35964799 PMCID: PMC9386279 DOI: 10.1016/j.kint.2022.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
The 13th International Podocyte Conference was held in Manchester, UK, and online from July 28 to 30, 2021. Originally planned for 2020, this biannual meeting was postponed by a year because of the coronavirus disease 2019 (COVID-19) pandemic and proceeded as an innovative hybrid meeting. In addition to in-person attendance, online registration was offered, and this attracted 490 conference registrations in total. As a Podocyte Conference first, a day for early-career researchers was introduced. This premeeting included talks from graduate students and postdoctoral researchers. It gave early career researchers the opportunity to ask a panel, comprising academic leaders and journal editors, about career pathways and the future for podocyte research. The main meeting over 3 days included a keynote talk and 4 focused sessions each day incorporating invited talks, followed by selected abstract presentations, and an open panel discussion. The conference concluded with a Patient Day, which brought together patients, clinicians, researchers, and industry representatives. The Patient Day was an interactive and diverse day. As well as updates on improving diagnosis and potential new therapies, the Patient Day included a PodoArt competition, exercise and cooking classes with practical nutrition advice, and inspirational stories from patients and family members. This review summarizes the exciting science presented during the 13th International Podocyte Conference and demonstrates the resilience of researchers during a global pandemic.
Collapse
Affiliation(s)
- Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Sybille Koehler
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maryline Fresquet
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard W Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Pinyuan Tian
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
14
|
Lang K, Milosavljevic J, Heinkele H, Chen M, Gerstner L, Spitz D, Kayser S, Helmstädter M, Walz G, Köttgen M, Spracklen A, Poulton J, Hermle T. Selective endocytosis controls slit diaphragm maintenance and dynamics in Drosophila nephrocytes. eLife 2022; 11:79037. [PMID: 35876643 PMCID: PMC9355562 DOI: 10.7554/elife.79037] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/24/2022] [Indexed: 11/28/2022] Open
Abstract
The kidneys generate about 180 l of primary urine per day by filtration of plasma. An essential part of the filtration barrier is the slit diaphragm, a multiprotein complex containing nephrin as major component. Filter dysfunction typically manifests with proteinuria and mutations in endocytosis regulating genes were discovered as causes of proteinuria. However, it is unclear how endocytosis regulates the slit diaphragm and how the filtration barrier is maintained without either protein leakage or filter clogging. Here, we study nephrin dynamics in podocyte-like nephrocytes of Drosophila and show that selective endocytosis either by dynamin- or flotillin-mediated pathways regulates a stable yet highly dynamic architecture. Short-term manipulation of endocytic functions indicates that dynamin-mediated endocytosis of ectopic nephrin restricts slit diaphragm formation spatially while flotillin-mediated turnover of nephrin within the slit diaphragm is needed to maintain filter permeability by shedding of molecules bound to nephrin in endosomes. Since slit diaphragms cannot be studied in vitro and are poorly accessible in mouse models, this is the first analysis of their dynamics within the slit diaphragm multiprotein complex. Identification of the mechanisms of slit diaphragm maintenance will help to develop novel therapies for proteinuric renal diseases that are frequently limited to symptomatic treatment.
Collapse
Affiliation(s)
- Konrad Lang
- Department of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Helena Heinkele
- Department of Medicine, University of Freiburg, Freiburg, Germany
| | - Mengmeng Chen
- Department of Medicine, University of Freiburg, Freiburg, Germany
| | - Lea Gerstner
- Department of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominik Spitz
- Department of Medicine, University of Freiburg, Freiburg, Germany
| | - Severine Kayser
- Department of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Gerd Walz
- Department of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Köttgen
- Department of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrew Spracklen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - John Poulton
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Tobias Hermle
- Department of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Woznowski MP, Potthoff SA, Königshausen E, Haase R, Hoch H, Meyer-Schwesinger C, Wiech T, Stegbauer J, Rump LC, Sellin L, Quack I. Inhibition of p38 MAPK decreases hyperglycemia-induced nephrin endocytosis and attenuates albuminuria. J Mol Med (Berl) 2022; 100:781-795. [PMID: 35451598 PMCID: PMC9110524 DOI: 10.1007/s00109-022-02184-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/20/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022]
Abstract
Abstract Chronic hyperglycemia, as in diabetes mellitus, may cause glomerular damage with microalbuminuria as an early sign. Noteworthy, even acute hyperglycemia can increase glomerular permeability before structural damage of the glomerular filter can be detected. Despite intensive research, specific antiproteinuric therapy is not available so far. Thus, a deeper understanding of the molecular mechanisms of albuminuria is desirable. P38 MAPK signaling is involved in the development of hyperglycemia-induced albuminuria. However, the mechanism of increased p38 MAPK activity leading to increased permeability and albuminuria remained unclear. Recently, we demonstrated that acute hyperglycemia triggers endocytosis of nephrin, the key molecule of the slit diaphragm, and induces albuminuria. Here, we identify p38 MAPK as a pivotal regulator of hyperglycemia-induced nephrin endocytosis. Activated p38 MAPK phosphorylates the nephrin c-terminus at serine 1146, facilitating the interaction of PKCα with nephrin. PKCα phosphorylates nephrin at threonine residues 1120 and 1125, mediating the binding of β-arrestin2 to nephrin. β-arrestin2 triggers endocytosis of nephrin by coupling it to the endocytic machinery, leading to increased glomerular permeability. Pharmacological inhibition of p38 MAPK preserves nephrin surface expression and significantly attenuates albuminuria. Key messages Acute hyperglycemia triggers endocytosis of nephrin. Activated p38 MAPK phosphorylates the nephrin c-terminus at serine 1146, facilitating the interaction of PKCα with nephrin. PKCα phosphorylates nephrin at threonine residues 1120 and 1125, mediating the binding of β-arrestin2 to nephrin. β-arrestin2 triggers endocytosis of nephrin by coupling it to the endocytic machinery, leading to a leaky glomerular filter. Pharmacological inhibition of p38 MAPK preserves nephrin surface expression and significantly attenuates albuminuria under hyperglycemic conditions.
Supplementary Information The online version contains supplementary material available at 10.1007/s00109-022-02184-5.
Collapse
Affiliation(s)
| | | | - Eva Königshausen
- Department of Nephrology, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Raphael Haase
- Department of Nephrology, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Henning Hoch
- Department of Nephrology, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, University Clinic Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Thorsten Wiech
- Institute of Pathology, Nephropathology Section, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Johannes Stegbauer
- Department of Nephrology, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Lars Christian Rump
- Department of Nephrology, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Lorenz Sellin
- Department of Nephrology, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Ivo Quack
- Emergency Department, Klinikum Konstanz, 78464, Konstanz, Germany
| |
Collapse
|
16
|
Doi K, Kimura H, Matsunaga YT, Fujii T, Nangaku M. Glomerulus-on-a-Chip: Current Insights and Future Potential Towards Recapitulating Selectively Permeable Filtration Systems. Int J Nephrol Renovasc Dis 2022; 15:85-101. [PMID: 35299832 PMCID: PMC8922329 DOI: 10.2147/ijnrd.s344725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Glomerulopathy, characterized by a dysfunctional glomerular capillary wall, results in proteinuria, leading to end-stage renal failure and poor clinical outcomes, including renal death and increased overall mortality. Conventional glomerulopathy research, including drug discovery, has mostly relied on animal experiments because in-vitro glomerulus models, capable of evaluating functional selective permeability, was unavailable in conventional in-vitro cell culture systems. However, animal experiments have limitations, including time- and cost-consuming, multi-organ effects, unstable reproducibility, inter-species reliability, and the social situation in the EU and US, where animal experiments have been discouraged. Glomerulus-on-a-chip, a new in-vitro organ model, has recently been developed in the field of organ-on-a-chip research based on microfluidic device technology. In the glomerulus-on-a-chip, the podocytes and endothelial cells are co-cultured in a microfluidic device with physical stimuli that mimic the physiological environment to enhance cell function to construct a functional filtration barrier, which can be assessed by permeability assays using fluorescently labeled molecules including inulin and albumin. A combination of this glomerulus-on-a chip technology with the culture technology to induce podocytes and endothelial cells from the human pluripotent stem cells could provide an alternative organ model and solve the issue of animal experiments. Additionally, previous experiments have verified the difference in the leakage of albumin using differentiated podocytes derived from patients with Alport syndrome, such that it could be applied to intractable hereditary glomerulopathy models. In this review, we provide an overview of the features of the existing glomerulus-on-a-chip systems, focusing on how they can address selective permeability verification tests, and the challenges they involved. We finally discuss the future approaches that should be developed for solving those challenges and allow further improvement of glomerulus-on-a-chip technologies.
Collapse
Affiliation(s)
- Kotaro Doi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kimura
- Department of Mechanical Engineering, School of Engineering, Tokai University, Kanagawa, Japan
| | | | | | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Tian X, Bunda P, Ishibe S. Podocyte Endocytosis in Regulating the Glomerular Filtration Barrier. Front Med (Lausanne) 2022; 9:801837. [PMID: 35223901 PMCID: PMC8866310 DOI: 10.3389/fmed.2022.801837] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/06/2022] [Indexed: 12/26/2022] Open
Abstract
Endocytosis is a mechanism that internalizes and recycles plasma membrane components and transmembrane receptors via vesicle formation, which is mediated by clathrin-dependent and clathrin-independent signaling pathways. Podocytes are specialized, terminally differentiated epithelial cells in the kidney, located on the outermost layer of the glomerulus. These cells play an important role in maintaining the integrity of the glomerular filtration barrier in conjunction with the adjacent basement membrane and endothelial cell layers within the glomerulus. An intact podocyte endocytic machinery appears to be necessary for maintaining podocyte function. De novo pathologic human genetic mutations and loss-of-function studies of critical podocyte endocytosis genes in genetically engineered mouse models suggest that this pathway contributes to the pathophysiology of development and progression of proteinuria in chronic kidney disease. Here, we review the mechanism of cellular endocytosis and its regulation in podocyte injury in the context of glomerular diseases. A thorough understanding of podocyte endocytosis may shed novel insights into its biological function in maintaining a functioning filter and offer potential targeted therapeutic strategies for proteinuric glomerular diseases.
Collapse
Affiliation(s)
| | | | - Shuta Ishibe
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
18
|
Qu C, Roth R, Puapatanakul P, Loitman C, Hammad D, Genin GM, Miner JH, Suleiman HY. Three-Dimensional Visualization of the Podocyte Actin Network Using Integrated Membrane Extraction, Electron Microscopy, and Machine Learning. J Am Soc Nephrol 2022; 33:155-173. [PMID: 34758982 PMCID: PMC8763187 DOI: 10.1681/asn.2021020182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 10/19/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Actin stress fibers are abundant in cultured cells, but little is known about them in vivo. In podocytes, much evidence suggests that mechanobiologic mechanisms underlie podocyte shape and adhesion in health and in injury, with structural changes to actin stress fibers potentially responsible for pathologic changes to cell morphology. However, this hypothesis is difficult to rigorously test in vivo due to challenges with visualization. A technology to image the actin cytoskeleton at high resolution is needed to better understand the role of structures such as actin stress fibers in podocytes. METHODS We developed the first visualization technique capable of resolving the three-dimensional cytoskeletal network in mouse podocytes in detail, while definitively identifying the proteins that comprise this network. This technique integrates membrane extraction, focused ion-beam scanning electron microscopy, and machine learning image segmentation. RESULTS Using isolated mouse glomeruli from healthy animals, we observed actin cables and intermediate filaments linking the interdigitated podocyte foot processes to newly described contractile actin structures, located at the periphery of the podocyte cell body. Actin cables within foot processes formed a continuous, mesh-like, electron-dense sheet that incorporated the slit diaphragms. CONCLUSIONS Our new technique revealed, for the first time, the detailed three-dimensional organization of actin networks in healthy podocytes. In addition to being consistent with the gel compression hypothesis, which posits that foot processes connected by slit diaphragms act together to counterbalance the hydrodynamic forces across the glomerular filtration barrier, our data provide insight into how podocytes respond to mechanical cues from their surrounding environment.
Collapse
Affiliation(s)
- Chengqing Qu
- Department of Mechanical Engineering, National Science Foundation Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri
| | - Robyn Roth
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | | | - Charles Loitman
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| | - Dina Hammad
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| | - Guy M. Genin
- Department of Mechanical Engineering, National Science Foundation Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri
| | - Jeffrey H. Miner
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri,Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| | - Hani Y. Suleiman
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
19
|
Agarwal S, Sudhini YR, Polat OK, Reiser J, Altintas MM. Renal cell markers: lighthouses for managing renal diseases. Am J Physiol Renal Physiol 2021; 321:F715-F739. [PMID: 34632812 DOI: 10.1152/ajprenal.00182.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Kidneys, one of the vital organs in our body, are responsible for maintaining whole body homeostasis. The complexity of renal function (e.g., filtration, reabsorption, fluid and electrolyte regulation, and urine production) demands diversity not only at the level of cell types but also in their overall distribution and structural framework within the kidney. To gain an in depth molecular-level understanding of the renal system, it is imperative to discern the components of kidney and the types of cells residing in each of the subregions. Recent developments in labeling, tracing, and imaging techniques have enabled us to mark, monitor, and identify these cells in vivo with high efficiency in a minimally invasive manner. In this review, we summarize different cell types, specific markers that are uniquely associated with those cell types, and their distribution in the kidney, which altogether make kidneys so special and different. Cellular sorting based on the presence of certain proteins on the cell surface allowed for the assignment of multiple markers for each cell type. However, different studies using different techniques have found contradictions in cell type-specific markers. Thus, the term "cell marker" might be imprecise and suboptimal, leading to uncertainty when interpreting the data. Therefore, we strongly believe that there is an unmet need to define the best cell markers for a cell type. Although the compendium of renal-selective marker proteins presented in this review is a resource that may be useful to researchers, we acknowledge that the list may not be necessarily exhaustive.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Internal Medicine, Rush University, Chicago, Illinois
| | | | - Onur K Polat
- Department of Internal Medicine, Rush University, Chicago, Illinois
| | - Jochen Reiser
- Department of Internal Medicine, Rush University, Chicago, Illinois
| | | |
Collapse
|
20
|
Boyer O, Mollet G, Dorval G. Neurological involvement in monogenic podocytopathies. Pediatr Nephrol 2021; 36:3571-3583. [PMID: 33791874 DOI: 10.1007/s00467-020-04903-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/27/2020] [Accepted: 12/11/2020] [Indexed: 01/22/2023]
Abstract
Genetic studies of hereditary nephrotic syndrome (NS) have identified more than 50 genes that, if mutated, are responsible for monogenic forms of steroid-resistant NS (SRNS), either isolated or syndromic. Most of these genes encode proteins expressed in the podocyte with various functions such as transcription factors, mitochondrial proteins, or enzymes, but mainly structural proteins of the slit diaphragm (SD) as well as cytoskeletal binding and regulator proteins. Syndromic NS is sometimes associated with neurological features. Over recent decades, various studies have established links between the physiology of podocytes and neurons, both morphologically (slit diaphragm and synapse) and functionally (signaling platforms). Variants in genes expressed in different compartments of the podocyte and neurons are responsible for phenotypes associating kidney lesions with proteinuria (mainly Focal and Segmental Glomerulosclerosis (FSGS) or Diffuse Mesangial Sclerosis (DMS)) and central and/or peripheral neurological disorders. The Galloway-Mowat syndrome (GAMOS, OMIM#251300) associates neurological defects, microcephaly, and proteinuria and is caused by variants in genes encoding proteins of various functions (microtubule cytoskeleton regulation (WDR73), regulation of protein synthesis via transfer RNAs (KEOPS and WDR4 complexes)). Pierson syndrome (OMIM#609049) associating congenital nephrotic syndrome and central neurological and ophthalmological anomalies is secondary to variants in LAMB2, involved in glomerular and ocular basement membranes. Finally, Charcot-Marie-Tooth-FSGS (OMIM#614455) combines peripheral sensory-motor neuropathy and proteinuria and arises from INF2 variants, resulting in cytoskeletal polymerization defects. This review focuses on genetic syndromes associating nephrotic range proteinuria and neurological involvement and provides the latest advances in the description of these neuro-renal disorders.
Collapse
Affiliation(s)
- Olivia Boyer
- Service de Néphrologie Pédiatrique, AP-HP, Centre de Référence de maladies rénales rares de l'enfant et de l'adulte (MARHEA), Hôpital Necker - Enfants Malades, 149 Rue de Sèvres, 75015, Paris, France.
- Institut Imagine, Laboratoire des maladies rénales héréditaires, INSERM UMR 1163, Université de Paris, Paris, France.
| | - Géraldine Mollet
- Institut Imagine, Laboratoire des maladies rénales héréditaires, INSERM UMR 1163, Université de Paris, Paris, France
| | - Guillaume Dorval
- Institut Imagine, Laboratoire des maladies rénales héréditaires, INSERM UMR 1163, Université de Paris, Paris, France
- Service de Génétique Moléculaire, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
21
|
Hatje FA, Wedekind U, Sachs W, Loreth D, Reichelt J, Demir F, Kosub C, Heintz L, Tomas NM, Huber TB, Skuza S, Sachs M, Zielinski S, Rinschen MM, Meyer-Schwesinger C. Tripartite Separation of Glomerular Cell Types and Proteomes from Reporter-Free Mice. J Am Soc Nephrol 2021; 32:2175-2193. [PMID: 34074698 PMCID: PMC8729851 DOI: 10.1681/asn.2020091346] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/09/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The glomerulus comprises podocytes, mesangial cells, and endothelial cells, which jointly determine glomerular filtration. Understanding this intricate functional unit beyond the transcriptome requires bulk isolation of these cell types for biochemical investigations. We developed a globally applicable tripartite isolation method for murine mesangial and endothelial cells and podocytes (timMEP). METHODS We separated glomerular cell types from wild-type or mT/mG mice via a novel FACS approach, and validated their purity. Cell type proteomes were compared between strains, ages, and sex. We applied timMEP to the podocyte-targeting, immunologic, THSD7A-associated, model of membranous nephropathy. RESULTS timMEP enabled protein-biochemical analyses of podocytes, mesangial cells, and endothelial cells derived from reporter-free mice, and allowed for the characterization of podocyte, endothelial, and mesangial proteomes of individual mice. We identified marker proteins for mesangial and endothelial proteins, and outlined protein-based, potential communication networks and phosphorylation patterns. The analysis detected cell type-specific proteome differences between mouse strains and alterations depending on sex, age, and transgene. After exposure to anti-THSD7A antibodies, timMEP resolved a fine-tuned initial stress response, chiefly in podocytes, that could not be detected by bulk glomerular analyses. The combination of proteomics with super-resolution imaging revealed a specific loss of slit diaphragm, but not of other foot process proteins, unraveling a protein-based mechanism of podocyte injury in this animal model. CONCLUSION timMEP enables glomerular cell type-resolved investigations at the transcriptional and protein-biochemical level in health and disease, while avoiding reporter-based artifacts, paving the way toward the comprehensive and systematic characterization of glomerular cell biology.
Collapse
Affiliation(s)
- Favian A. Hatje
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uta Wedekind
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wiebke Sachs
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Desiree Loreth
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Reichelt
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fatih Demir
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Christopher Kosub
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Heintz
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola M. Tomas
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sinah Skuza
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlies Sachs
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Zielinski
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus M. Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
Solanki AK, Arif E, Srivastava P, Furcht CM, Rahman B, Wen P, Singh A, Holzman LB, Fitzgibbon WR, Budisavljevic MN, Lobo GP, Kwon SH, Han Z, Lazzara MJ, Lipschutz JH, Nihalani D. Phosphorylation of slit diaphragm proteins NEPHRIN and NEPH1 upon binding of HGF promotes podocyte repair. J Biol Chem 2021; 297:101079. [PMID: 34391780 PMCID: PMC8429977 DOI: 10.1016/j.jbc.2021.101079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Phosphorylation (activation) and dephosphorylation (deactivation) of the slit diaphragm proteins NEPHRIN and NEPH1 are critical for maintaining the kidney epithelial podocyte actin cytoskeleton and, therefore, proper glomerular filtration. However, the mechanisms underlying these events remain largely unknown. Here we show that NEPHRIN and NEPH1 are novel receptor proteins for hepatocyte growth factor (HGF) and can be phosphorylated independently of the mesenchymal epithelial transition receptor in a ligand-dependent fashion through engagement of their extracellular domains by HGF. Furthermore, we demonstrate SH2 domain–containing protein tyrosine phosphatase-2–dependent dephosphorylation of these proteins. To establish HGF as a ligand, purified baculovirus-expressed NEPHRIN and NEPH1 recombinant proteins were used in surface plasma resonance binding experiments. We report high-affinity interactions of NEPHRIN and NEPH1 with HGF, although NEPHRIN binding was 20-fold higher than that of NEPH1. In addition, using molecular modeling we constructed peptides that were used to map specific HGF-binding regions in the extracellular domains of NEPHRIN and NEPH1. Finally, using an in vitro model of cultured podocytes and an ex vivo model of Drosophila nephrocytes, as well as chemically induced injury models, we demonstrated that HGF-induced phosphorylation of NEPHRIN and NEPH1 is centrally involved in podocyte repair. Taken together, this is the first study demonstrating a receptor-based function for NEPHRIN and NEPH1. This has important biological and clinical implications for the repair of injured podocytes and the maintenance of podocyte integrity.
Collapse
Affiliation(s)
- Ashish K Solanki
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ehtesham Arif
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Pankaj Srivastava
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher M Furcht
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bushra Rahman
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Pei Wen
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Avinash Singh
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lawrence B Holzman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wayne R Fitzgibbon
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Milos N Budisavljevic
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Glenn P Lobo
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, USA
| | - Zhe Han
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew J Lazzara
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA.
| | - Deepak Nihalani
- Division of Kidney, Urologic and Hematologic Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Höhfeld J, Benzing T, Bloch W, Fürst DO, Gehlert S, Hesse M, Hoffmann B, Hoppe T, Huesgen PF, Köhn M, Kolanus W, Merkel R, Niessen CM, Pokrzywa W, Rinschen MM, Wachten D, Warscheid B. Maintaining proteostasis under mechanical stress. EMBO Rep 2021; 22:e52507. [PMID: 34309183 PMCID: PMC8339670 DOI: 10.15252/embr.202152507] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cell survival, tissue integrity and organismal health depend on the ability to maintain functional protein networks even under conditions that threaten protein integrity. Protection against such stress conditions involves the adaptation of folding and degradation machineries, which help to preserve the protein network by facilitating the refolding or disposal of damaged proteins. In multicellular organisms, cells are permanently exposed to stress resulting from mechanical forces. Yet, for long time mechanical stress was not recognized as a primary stressor that perturbs protein structure and threatens proteome integrity. The identification and characterization of protein folding and degradation systems, which handle force-unfolded proteins, marks a turning point in this regard. It has become apparent that mechanical stress protection operates during cell differentiation, adhesion and migration and is essential for maintaining tissues such as skeletal muscle, heart and kidney as well as the immune system. Here, we provide an overview of recent advances in our understanding of mechanical stress protection.
Collapse
Affiliation(s)
- Jörg Höhfeld
- Institute for Cell BiologyRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports MedicineGerman Sport UniversityCologneGermany
| | - Dieter O Fürst
- Institute for Cell BiologyRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Sebastian Gehlert
- Institute of Cardiovascular Research and Sports MedicineGerman Sport UniversityCologneGermany
- Department for the Biosciences of SportsInstitute of Sports ScienceUniversity of HildesheimHildesheimGermany
| | - Michael Hesse
- Institute of Physiology I, Life & Brain CenterMedical FacultyRheinische Friedrich‐Wilhelms UniversityBonnGermany
| | - Bernd Hoffmann
- Institute of Biological Information Processing, IBI‐2: MechanobiologyForschungszentrum JülichJülichGermany
| | - Thorsten Hoppe
- Institute for GeneticsCologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) and CMMCUniversity of CologneCologneGermany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA3Forschungszentrum JülichJülichGermany
- CECADUniversity of CologneCologneGermany
| | - Maja Köhn
- Institute of Biology IIIFaculty of Biology, and Signalling Research Centres BIOSS and CIBSSAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Waldemar Kolanus
- LIMES‐InstituteRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Rudolf Merkel
- Institute of Biological Information Processing, IBI‐2: MechanobiologyForschungszentrum JülichJülichGermany
| | - Carien M Niessen
- Department of Dermatology and CECADUniversity of CologneCologneGermany
| | | | - Markus M Rinschen
- Department of Biomedicine and Aarhus Institute of Advanced StudiesAarhus UniversityAarhusDenmark
- Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Dagmar Wachten
- Institute of Innate ImmunityUniversity Hospital BonnBonnGermany
| | - Bettina Warscheid
- Institute of Biology IIFaculty of Biology, and Signalling Research Centres BIOSS and CIBSSAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| |
Collapse
|
24
|
Remuzzi A, Remuzzi G. Insights into Glomerular Filtration and Albuminuria. N Engl J Med 2021; 385:478. [PMID: 34320300 DOI: 10.1056/nejmc2108129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Butt L, Unnersjö-Jess D, Höhne M, Schermer B, Edwards A, Benzing T. A mathematical estimation of the physical forces driving podocyte detachment. Kidney Int 2021; 100:1054-1062. [PMID: 34332959 DOI: 10.1016/j.kint.2021.06.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/27/2021] [Accepted: 06/18/2021] [Indexed: 01/21/2023]
Abstract
Loss of podocytes, possibly through the detachment of viable cells, is a hallmark of progressive glomerular disease. Podocytes are exposed to considerable physical forces due to pressure and flow resulting in circumferential wall stress and tangential shear stress exerted on the podocyte cell body, which have been proposed to contribute to podocyte depletion. However, estimations of in vivo alterations of physical forces in glomerular disease have been hampered by a lack of quantitative functional and morphological data. Here, we used ultra-resolution data and computational analyses in a mouse model of human disease, hereditary late-onset focal segmental glomerular sclerosis, to calculate increased mechanical stress upon podocyte injury. Transversal shear stress on the lateral walls of the foot processes was prominently increased during the initial stages of podocyte detachment. Thus, our study highlights the importance of targeting glomerular hemodynamics to treat glomerular disease.
Collapse
Affiliation(s)
- Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - David Unnersjö-Jess
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Aurelie Edwards
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
26
|
Daehn IS, Duffield JS. The glomerular filtration barrier: a structural target for novel kidney therapies. Nat Rev Drug Discov 2021; 20:770-788. [PMID: 34262140 PMCID: PMC8278373 DOI: 10.1038/s41573-021-00242-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
Loss of normal kidney function affects more than 10% of the population and contributes to morbidity and mortality. Kidney diseases are currently treated with immunosuppressive agents, antihypertensives and diuretics with partial but limited success. Most kidney disease is characterized by breakdown of the glomerular filtration barrier (GFB). Specialized podocyte cells maintain the GFB, and structure-function experiments and studies of intercellular communication between the podocytes and other GFB cells, combined with advances from genetics and genomics, have laid the groundwork for a new generation of therapies that directly intervene at the GFB. These include inhibitors of apolipoprotein L1 (APOL1), short transient receptor potential channels (TRPCs), soluble fms-like tyrosine kinase 1 (sFLT1; also known as soluble vascular endothelial growth factor receptor 1), roundabout homologue 2 (ROBO2), endothelin receptor A, soluble urokinase plasminogen activator surface receptor (suPAR) and substrate intermediates for coenzyme Q10 (CoQ10). These molecular targets converge on two key components of GFB biology: mitochondrial function and the actin-myosin contractile machinery. This Review discusses therapies and developments focused on maintaining GFB integrity, and the emerging questions in this evolving field.
Collapse
Affiliation(s)
- Ilse S Daehn
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jeremy S Duffield
- Research and Development, Prime Medicine, Cambridge, MA, USA. .,Department of Medicine, University of Washington, Seattle, WA, USA. .,Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
27
|
Möller-Kerutt A, Rodriguez-Gatica JE, Wacker K, Bhatia R, Siebrasse JP, Boon N, Van Marck V, Boor P, Kubitscheck U, Wijnholds J, Pavenstädt H, Weide T. Crumbs2 Is an Essential Slit Diaphragm Protein of the Renal Filtration Barrier. J Am Soc Nephrol 2021; 32:1053-1070. [PMID: 33687977 PMCID: PMC8259666 DOI: 10.1681/asn.2020040501] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 12/28/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Crumbs2 is expressed at embryonic stages as well as in the retina, brain, and glomerular podocytes. Recent studies identified CRB2 mutations as a novel cause of steroid-resistant nephrotic syndrome (SRNS). METHODS To study the function of Crb2 at the renal filtration barrier, mice lacking Crb2 exclusively in podocytes were generated. Gene expression and histologic studies as well as transmission and scanning electron microscopy were used to analyze these Crb2podKO knockout mice and their littermate controls. Furthermore, high-resolution expansion microscopy was used to investigate Crb2 distribution in murine glomeruli. For pull-down experiments, live cell imaging, and transcriptome analyses, cell lines were applied that inducibly express fluorescent protein-tagged CRB2 wild type and mutants. RESULTS Crb2podKO mice developed proteinuria directly after birth that preceded a prominent development of disordered and effaced foot processes, upregulation of renal injury and inflammatory markers, and glomerulosclerosis. Pull-down assays revealed an interaction of CRB2 with Nephrin, mediated by their extracellular domains. Expansion microscopy showed that in mice glomeruli, Crb2 and Nephrin are organized in adjacent clusters. SRNS-associated CRB2 protein variants and a mutant that lacks a putative conserved O-glycosylation site were not transported to the cell surface. Instead, mutants accumulated in the ER, showed altered glycosylation pattern, and triggered an ER stress response. CONCLUSIONS Crb2 is an essential component of the podocyte's slit diaphragm, interacting with Nephrin. Loss of slit diaphragm targeting and increasing ER stress are pivotal factors for onset and progression of CRB2-related SRNS.
Collapse
Affiliation(s)
- Annika Möller-Kerutt
- Internal Medicine D, Department of Molecular Nephrology, University Hospital of Muenster, Muenster, Germany
| | - Juan E. Rodriguez-Gatica
- Institute of Physical and Theoretical Chemistry, Department of Biophysical Chemistry, Rheinische Friedrich Wilhelms University Bonn, Bonn, Germany
| | - Karin Wacker
- Internal Medicine D, Department of Molecular Nephrology, University Hospital of Muenster, Muenster, Germany
| | - Rohan Bhatia
- Institute of Physical and Theoretical Chemistry, Department of Biophysical Chemistry, Rheinische Friedrich Wilhelms University Bonn, Bonn, Germany
| | - Jan-Peter Siebrasse
- Institute of Physical and Theoretical Chemistry, Department of Biophysical Chemistry, Rheinische Friedrich Wilhelms University Bonn, Bonn, Germany
| | - Nanda Boon
- Leiden University Medical Center, Department of Ophthalmology, Leiden, The Netherlands
| | - Veerle Van Marck
- Gerhard-Domagk Institute of Pathology, University Hospital of Muenster, Muenster, Germany
| | - Peter Boor
- Institute of Pathology, Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany,The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Ulrich Kubitscheck
- Institute of Physical and Theoretical Chemistry, Department of Biophysical Chemistry, Rheinische Friedrich Wilhelms University Bonn, Bonn, Germany
| | - Jan Wijnholds
- Leiden University Medical Center, Department of Ophthalmology, Leiden, The Netherlands
| | - Hermann Pavenstädt
- Internal Medicine D, Department of Molecular Nephrology, University Hospital of Muenster, Muenster, Germany
| | - Thomas Weide
- Internal Medicine D, Department of Molecular Nephrology, University Hospital of Muenster, Muenster, Germany
| |
Collapse
|
28
|
Tomas NM, Mortensen SA, Wilmanns M, Huber TB. Across scales: novel insights into kidney health and disease by structural biology. Kidney Int 2021; 100:281-288. [PMID: 33940110 DOI: 10.1016/j.kint.2021.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022]
Abstract
Over the past decades, structural biology methods such as X-ray crystallography and cryo-electron microscopy have been increasingly used to study protein functions, molecular interactions, physiological processes, and disease mechanisms. This review outlines a selection of structural biology methods, highlights recent examples of how structural analyses have contributed to a more profound understanding of the machinery of life, and gives a perspective on how these methods can be applied to investigate functions of kidney molecules and pathogenic mechanisms of renal diseases.
Collapse
Affiliation(s)
- Nicola M Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon A Mortensen
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany; University Hamburg Clinical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
29
|
Yoshida S, Wei X, Zhang G, O'Connor CL, Torres M, Zhou Z, Lin L, Menon R, Xu X, Zheng W, Xiong Y, Otto E, Tang CHA, Hua R, Verma R, Mori H, Zhang Y, Hu CCA, Liu M, Garg P, Hodgin JB, Sun S, Bitzer M, Qi L. Endoplasmic reticulum-associated degradation is required for nephrin maturation and kidney glomerular filtration function. J Clin Invest 2021; 131:143988. [PMID: 33591954 DOI: 10.1172/jci143988] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Podocytes are key to the glomerular filtration barrier by forming a slit diaphragm between interdigitating foot processes; however, the molecular details and functional importance of protein folding and degradation in the ER remain unknown. Here, we show that the SEL1L-HRD1 protein complex of ER-associated degradation (ERAD) is required for slit diaphragm formation and glomerular filtration function. SEL1L-HRD1 ERAD is highly expressed in podocytes of both mouse and human kidneys. Mice with podocyte-specific Sel1L deficiency develop podocytopathy and severe congenital nephrotic syndrome with an impaired slit diaphragm shortly after weaning and die prematurely, with a median lifespan of approximately 3 months. We show mechanistically that nephrin, a type 1 membrane protein causally linked to congenital nephrotic syndrome, is an endogenous ERAD substrate. ERAD deficiency attenuated the maturation of nascent nephrin, leading to its retention in the ER. We also show that various autosomal-recessive nephrin disease mutants were highly unstable and broken down by SEL1L-HRD1 ERAD, which attenuated the pathogenicity of the mutants toward the WT allele. This study uncovers a critical role of SEL1L-HRD1 ERAD in glomerular filtration barrier function and provides insights into the pathogenesis associated with autosomal-recessive disease mutants.
Collapse
Affiliation(s)
- Sei Yoshida
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,State Key Laboratory of Medical Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Xiaoqiong Wei
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gensheng Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Christopher L O'Connor
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mauricio Torres
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Zhangsen Zhou
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Liangguang Lin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Rajasree Menon
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xiaoxi Xu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenyue Zheng
- State Key Laboratory of Medical Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Yi Xiong
- Center for Molecular Medicine and Genetics, Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Edgar Otto
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Chih-Hang Anthony Tang
- Houston Methodist Cancer Center, Houston Methodist Academic Institute, Houston, Texas, USA
| | - Rui Hua
- State Key Laboratory of Medical Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Rakesh Verma
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Hiroyuki Mori
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics and Department of Biological Chemistry and
| | - Chih-Chi Andrew Hu
- Houston Methodist Cancer Center, Houston Methodist Academic Institute, Houston, Texas, USA
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Puneet Garg
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Shengyi Sun
- Center for Molecular Medicine and Genetics, Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Markus Bitzer
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
30
|
Lehtonen S. Metformin Protects against Podocyte Injury in Diabetic Kidney Disease. Pharmaceuticals (Basel) 2020; 13:ph13120452. [PMID: 33321755 PMCID: PMC7764076 DOI: 10.3390/ph13120452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Metformin is the most commonly prescribed drug for treating type 2 diabetes mellitus (T2D). Its mechanisms of action have been under extensive investigation, revealing that it has multiple cellular targets, either direct or indirect ones, via which it regulates numerous cellular pathways. Diabetic kidney disease (DKD), the serious complication of T2D, develops in up to 50% of the individuals with T2D. Various mechanisms contribute to the development of DKD, including hyperglycaemia, dyslipidemia, oxidative stress, chronic low-grade inflammation, altered autophagic activity and insulin resistance, among others. Metformin has been shown to affect these pathways, and thus, it could slow down or prevent the progression of DKD. Despite several animal studies demonstrating the renoprotective effects of metformin, there is no concrete evidence in clinical settings. This review summarizes the renoprotective effects of metformin in experimental settings. Special emphasis is on the effects of metformin on podocytes, the glomerular epithelial cells that are central in maintaining the glomerular ultrafiltration function.
Collapse
Affiliation(s)
- Sanna Lehtonen
- Research Program for Clinical and Molecular Metabolism and Department of Pathology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
31
|
Yamada H, Shirata N, Makino S, Miyake T, Trejo JAO, Yamamoto-Nonaka K, Kikyo M, Empitu MA, Kadariswantiningsih IN, Kimura M, Ichimura K, Yokoi H, Mukoyama M, Hotta A, Nishimori K, Yanagita M, Asanuma K. MAGI-2 orchestrates the localization of backbone proteins in the slit diaphragm of podocytes. Kidney Int 2020; 99:382-395. [PMID: 33144214 DOI: 10.1016/j.kint.2020.09.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 08/22/2020] [Accepted: 09/10/2020] [Indexed: 01/19/2023]
Abstract
Podocytes are highly specialized cells within the glomerulus that are essential for ultrafiltration. The slit diaphragm between the foot processes of podocytes functions as a final filtration barrier to prevent serum protein leakage into urine. The slit-diaphragm consists mainly of Nephrin and Neph1, and localization of these backbone proteins is essential to maintaining the integrity of the glomerular filtration barrier. However, the mechanisms that regulate the localization of these backbone proteins have remained elusive. Here, we focused on the role of membrane-associated guanylate kinase inverted 2 (MAGI-2) in order to investigate mechanisms that orchestrate localization of slit-diaphragm backbone proteins. MAGI-2 downregulation coincided with a reduced expression of slit-diaphragm backbone proteins in human kidneys glomerular disease such as focal segmental glomerulosclerosis or IgA nephropathy. Podocyte-specific deficiency of MAGI-2 in mice abrogated localization of Nephrin and Neph1 independently of other scaffold proteins. Although a deficiency of zonula occuldens-1 downregulated the endogenous Neph1 expression, MAGI-2 recovered Neph1 expression at the cellular edge in cultured podocytes. Additionally, overexpression of MAGI-2 preserved Nephrin localization to intercellular junctions. Co-immunoprecipitation and pull-down assays also revealed the importance of the PDZ domains of MAGI-2 for the interaction between MAGI-2 and slit diaphragm backbone proteins in podocytes. Thus, localization and stabilization of Nephrin and Neph1 in intercellular junctions is regulated mainly via the PDZ domains of MAGI-2 together with other slit-diaphragm scaffold proteins. Hence, these findings may elucidate a mechanism by which the backbone proteins are maintained.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naritoshi Shirata
- Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharmaceutical Corporation, Saitama, Japan
| | - Shinichi Makino
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takafumi Miyake
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Kanae Yamamoto-Nonaka
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuhiro Kikyo
- Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharmaceutical Corporation, Saitama, Japan
| | - Maulana A Empitu
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Maiko Kimura
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Ichimura
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideki Yokoi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Akitsu Hotta
- Department of Reprogramming Science, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Katsuhiko Nishimori
- Department of Obesity and Inflammation Research, Fukushima Medical University, Fukushima, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Katsuhiko Asanuma
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
32
|
Rinschen MM, Saez-Rodriguez J. The tissue proteome in the multi-omic landscape of kidney disease. Nat Rev Nephrol 2020; 17:205-219. [PMID: 33028957 DOI: 10.1038/s41581-020-00348-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Kidney research is entering an era of 'big data' and molecular omics data can provide comprehensive insights into the molecular footprints of cells. In contrast to transcriptomics, proteomics and metabolomics generate data that relate more directly to the pathological symptoms and clinical parameters observed in patients. Owing to its complexity, the proteome still holds many secrets, but has great potential for the identification of drug targets. Proteomics can provide information about protein synthesis, modification and degradation, as well as insight into the physical interactions between proteins, and between proteins and other biomolecules. Thus far, proteomics in nephrology has largely focused on the discovery and validation of biomarkers, but the systematic analysis of the nephroproteome can offer substantial additional insights, including the discovery of mechanisms that trigger and propagate kidney disease. Moreover, proteome acquisition might provide a diagnostic tool that complements the assessment of a kidney biopsy sample by a pathologist. Such applications are becoming increasingly feasible with the development of high-throughput and high-coverage technologies, such as versatile mass spectrometry-based techniques and protein arrays, and encourage further proteomics research in nephrology.
Collapse
Affiliation(s)
- Markus M Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark. .,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany. .,Department of Chemistry, Scripps Center for Metabolomics and Mass Spectrometry, Scripps Research, La Jolla, CA, USA.
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, and Heidelberg University Hospital, Bioquant, Heidelberg, Germany.,Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Heidelberg University, Heidelberg, Germany
| |
Collapse
|
33
|
Mechanism of progression of diabetic kidney disease mediated by podocyte mitochondrial injury. Mol Biol Rep 2020; 47:8023-8035. [PMID: 32918716 DOI: 10.1007/s11033-020-05749-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022]
Abstract
Diabetic kidney disease (DKD) is an important diabetic microvascular complication, which has become the main cause of end-stage renal disease (ESRD) all over the world. It is of great significance to find effective therapeutic targets and improve the prognosis of the disease. Traditionally, it is believed that the activation of the renin-angiotensin-aldosterone system (RAAS) is the main reason for the progression of DKD, but with the progress of research, it is known that the production of proteinuria in patients with DKD is also related to podocyte injury and loss. Many studies have shown that mitochondrial dysfunction in podocytes plays an important role in the occurrence and development of DKD, and oxidative stress is also the main pathway and common hub of diabetes to the occurrence and development of microvascular and macrovascular complications. Thus, the occurrence and progression of DKD is correlated with not only the activation of the RAAS, but also the damage of mitochondria, oxidative stress, and inflammatory mediators. Besides, diabetes-related metabolic disorders can also cause abnormalities in mitochondrial dynamics, autophagy and cellular signal transduction, which are intertwined in a complex way. Therefore, in this review, we mainly explore the mechanism and the latest research progress of podocyte mitochondria in DKD and summarize the main signal pathways involved in them. Thus, it provides feasible clinical application and future research suggestions for the prevention and treatment of DKD, which has important practical significance for the later treatment of patients with DKD.
Collapse
|
34
|
Ferretti AM, Usseglio S, Mondini S, Drago C, La Mattina R, Chini B, Verderio C, Leonzino M, Cagnoli C, Joshi P, Boraschi D, Italiani P, Li Y, Swartzwelter BJ, Sironi L, Gelosa P, Castiglioni L, Guerrini U, Ponti A. Towards bio-compatible magnetic nanoparticles: Immune-related effects, in-vitro internalization, and in-vivo bio-distribution of zwitterionic ferrite nanoparticles with unexpected renal clearance. J Colloid Interface Sci 2020; 582:678-700. [PMID: 32911414 DOI: 10.1016/j.jcis.2020.08.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Iron oxide and other ferrite nanoparticles have not yet found widespread application in the medical field since the translation process faces several big hurdles. The incomplete knowledge of the interactions between nanoparticles and living organisms is an unfavorable factor. This complex subject should be made simpler by synthesizing magnetic nanoparticles with good physical (relaxivity) and chemical (colloidal stability, anti-fouling) properties and no biological activity (no immune-related effects, minimal internalization, fast clearance). Such an innocent scaffold is the main aim of the present paper. We systematically searched for it within the class of small-to-medium size ferrite nanoparticles coated by small (zwitter)ionic ligands. Once established, it can be functionalized to achieve targeting, drug delivery, etc. and the observed biological effects will be traced back to the functional molecules only, as the nanosized scaffold is innocent. EXPERIMENTS We synthesized nine types of magnetic nanoparticles by systematic variation of core composition, size, coating. We investigated their physico-chemical properties and interaction with serum proteins, phagocytic microglial cells, and a human model of inflammation and studied their biodistribution and clearance in healthy mice. The nanoparticles have good magnetic properties and their surface charge is determined by the preferential adsorption of anions. All nanoparticle types can be considered as immunologically safe, an indispensable pre-requisite for medical applications in humans. All but one type display low internalization by microglial BV2 cells, a process strongly affected by the nanoparticle size. Both small (3 nm) and medium size (11 nm) zwitterionic nanoparticles are in part captured by the mononuclear phagocyte system (liver and spleen) and in part rapidly (≈1 h) excreted through the urinary system of mice. FINDINGS The latter result questions the universality of the accepted size threshold for the renal clearance of nanoparticles (5.5 nm). We suggest that it depends on the nature of the circulating particles. Renal filterability of medium-size magnetic nanoparticles is appealing because they share with small nanoparticles the decreased accumulation-related toxicity while performing better as magnetic diagnostic/therapeutic agents thanks to their larger magnetic moment. In conclusion, many of our nanoparticle types are a bio-compatible innocent scaffold with unexpectedly favorable clearance.
Collapse
Affiliation(s)
- Anna M Ferretti
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, Via G. Fantoli 16/15, 20138 Milano, Italy
| | - Sandro Usseglio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, Via G. Fantoli 16/15, 20138 Milano, Italy
| | - Sara Mondini
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, Via G. Fantoli 16/15, 20138 Milano, Italy
| | - Carmelo Drago
- Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche, Via P. Gaifami, 18, 95126 Catania, Italy
| | - Rosa La Mattina
- Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche, Via P. Gaifami, 18, 95126 Catania, Italy
| | - Bice Chini
- Istituto di Neuroscienze (IN), Consiglio Nazionale delle Ricerche, Via L. Vanvitelli 32, 20129 Milano, Italy
| | - Claudia Verderio
- Istituto di Neuroscienze (IN), Consiglio Nazionale delle Ricerche, Via L. Vanvitelli 32, 20129 Milano, Italy
| | - Marianna Leonzino
- Istituto di Neuroscienze (IN), Consiglio Nazionale delle Ricerche, Via L. Vanvitelli 32, 20129 Milano, Italy
| | - Cinzia Cagnoli
- Istituto di Neuroscienze (IN), Consiglio Nazionale delle Ricerche, Via L. Vanvitelli 32, 20129 Milano, Italy
| | - Pooja Joshi
- Istituto di Neuroscienze (IN), Consiglio Nazionale delle Ricerche, Via L. Vanvitelli 32, 20129 Milano, Italy
| | - Diana Boraschi
- Istituto di Biochimica e Biologia Cellulare (IBBC), Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Napoli, Italy
| | - Paola Italiani
- Istituto di Biochimica e Biologia Cellulare (IBBC), Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Napoli, Italy
| | - Yang Li
- Istituto di Biochimica e Biologia Cellulare (IBBC), Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Napoli, Italy
| | - Benjamin J Swartzwelter
- Istituto di Biochimica e Biologia Cellulare (IBBC), Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Napoli, Italy
| | - Luigi Sironi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milano, Italy; Centro Cardiologico Monzino IRCCS, Via C. Parea 3, 20138 Milano, Italy
| | - Paolo Gelosa
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milano, Italy; Centro Cardiologico Monzino IRCCS, Via C. Parea 3, 20138 Milano, Italy
| | - Laura Castiglioni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milano, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milano, Italy
| | - Alessandro Ponti
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, Via G. Fantoli 16/15, 20138 Milano, Italy.
| |
Collapse
|
35
|
Kawachi H, Fukusumi Y. New insight into podocyte slit diaphragm, a therapeutic target of proteinuria. Clin Exp Nephrol 2020; 24:193-204. [PMID: 32020343 PMCID: PMC7040068 DOI: 10.1007/s10157-020-01854-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/15/2020] [Indexed: 12/26/2022]
Abstract
Dysfunction of slit diaphragm, a cell–cell junction of glomerular podocytes, is involved in the development of proteinuria in several glomerular diseases. Slit diaphragm should be a target of a novel therapy for proteinuria. Nephrin, NEPH1, P-cadherin, FAT, and ephrin-B1 were reported to be extracellular components forming a molecular sieve of the slit diaphragm. Several cytoplasmic proteins such as ZO-1, podocin, CD2AP, MAGI proteins and Par-complex molecules were identified as scaffold proteins linking the slit diaphragm to the cytoskeleton. In this article, new insights into these molecules and the pathogenic roles of the dysfunction of these molecules were introduced. The slit diaphragm functions not only as a barrier but also as a signaling platform transfer the signal to the inside of the cell. For maintaining the slit diaphragm function properly, the phosphorylation level of nephrin is strictly regulated. The recent studies on the signaling pathway from nephrin, NEPH1, and ephrin-B1 were reviewed. Although the mechanism regulating the function of the slit diaphragm had remained unclear, recent studies revealed TRPC6 and angiotensin II-regulating mechanisms play a critical role in regulating the barrier function of the slit diaphragm. In this review, recent investigations on the regulation of the slit diaphragm function were reviewed, and a strategy for the establishment of a novel therapy for proteinuria was proposed.
Collapse
Affiliation(s)
- Hiroshi Kawachi
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Yoshiyasu Fukusumi
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| |
Collapse
|
36
|
BENZING THOMAS. MOLECULAR DESIGN OF THE KIDNEY FILTRATION BARRIER. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2020; 131:125-139. [PMID: 32675853 PMCID: PMC7358502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Kidneys are the central regulators of organismal homeostasis. These organs filter enormous amounts of fluid from plasma; excrete toxic waste products; maintain salt, water, and volume balance; coordinate blood pressure regulation; and maintain the acid-base equilibrium essential for life. Although it has been known for decades that renal glomeruli serve as the site of plasma ultrafiltration and urine production, both the molecular design and function of the kidney filtration barrier have remained elusive. Indeed, the past two decades have witnessed enormous breakthroughs in our fundamental understanding of kidney filtration and the critical role that podocytes, specialized terminally differentiated epithelial cells at the glomerular capillaries, fulfill in the function of the kidney filtration barrier. Here we discuss recent advances in this field that will change the way we think about plasma ultrafiltration in health and proteinuria as a manifestation of glomerular diseases.
Collapse
Affiliation(s)
- THOMAS BENZING
- Correspondence and reprint requests: Thomas Benzing, MD, Department II of Internal Medicine, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany+ 49 221 4784480, 49 221 4785959
| |
Collapse
|
37
|
Yes-associated protein regulates podocyte cell cycle re-entry and dedifferentiation in adriamycin-induced nephropathy. Cell Death Dis 2019; 10:915. [PMID: 31801948 PMCID: PMC6892849 DOI: 10.1038/s41419-019-2139-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/02/2019] [Accepted: 11/06/2019] [Indexed: 01/19/2023]
Abstract
Podocytes are terminally differentiated cells with little proliferative capacity. The high expression levels of cell cycle inhibitory proteins, including p21, p27, and p57, play an important role in maintaining the low level of proliferation of mature podocytes. In the present study, we aimed to explore the role of yes-associated protein (YAP) signalling in adriamycin-induced podocyte re-entry into the cell cycle and dedifferentiation. Proliferating cell nuclear antigen (PCNA)-, cyclin-dependent kinase 4 (CDK4)-, and Cyclin D1-positive podocytes were found in mice with adriamycin-induced nephropathy. In vitro, adriamycin administration increased the percentage of cells in S phase and the upregulation of mesenchymal-related marker proteins. CDK4 and cyclin D1 were significantly up-regulated after incubation with adriamycin. Overexpression of YAP in podocytes promoted their entry into the cell cycle; up-regulated cyclin D1, desmin, and snail2 expression and down-regulated Wilms’ tumour 1 (WT1) and nephrin production. Recombinant murine FGF-basic induced podocytes to re-enter the cell cycle, inhibited WT1 and nephrin, and increased desmin and snail2 expression. Pretreating podocytes with verteporfin, an inhibitor of YAP/ TEA domain transcription factor (TEAD), decreased the adriamycin-induced overexpression of cyclin D1 and reduced the ratio of S-phase podocytes. This result was further verified by knocking down YAP expression using RNA interference. In conclusion, adriamycin induced podocytes to re-enter the cell cycle via upregulation of CDK4 and cyclin D1 expression, which was at least partly mediated by YAP signalling. Re-entry into the cell cycle induced the over-expression of mesenchymal markers in podocytes.
Collapse
|
38
|
Kim S, Kalappurakkal JM, Mayor S, Rosen MK. Phosphorylation of nephrin induces phase separated domains that move through actomyosin contraction. Mol Biol Cell 2019; 30:2996-3012. [PMID: 31599693 PMCID: PMC6857567 DOI: 10.1091/mbc.e18-12-0823] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 09/03/2019] [Accepted: 10/03/2019] [Indexed: 01/12/2023] Open
Abstract
The plasma membrane of eukaryotic cells is organized into lipid and protein microdomains, whose assembly mechanisms and functions are incompletely understood. We demonstrate that proteins in the nephrin/Nck/N-WASP actin-regulatory pathway cluster into micron-scale domains at the basal plasma membrane upon triggered phosphorylation of transmembrane protein nephrin. The domains are persistent but readily exchange components with their surroundings, and their formation is dependent on the number of Nck SH3 domains, suggesting they are phase separated polymers assembled through multivalent interactions among the three proteins. The domains form independent of the actin cytoskeleton, but acto-myosin contractility induces their rapid lateral movement. Nephrin phosphorylation induces larger clusters at the cell periphery, which are associated with extensive actin assembly and dense filopodia. Our studies illustrate how multivalent interactions between proteins at the plasma membrane can produce micron-scale organization of signaling molecules, and how the resulting clusters can both respond to and control the actin cytoskeleton.
Collapse
Affiliation(s)
- Soyeon Kim
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
- The HHMI/MBL Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543
| | - Joseph M. Kalappurakkal
- The HHMI/MBL Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543
- National Centre for Biological Sciences, Bangalore 560065, India
| | - Satyajit Mayor
- The HHMI/MBL Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543
- National Centre for Biological Sciences, Bangalore 560065, India
| | - Michael K. Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
- The HHMI/MBL Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
39
|
Felizardo RJF, de Almeida DC, Pereira RL, Watanabe IKM, Doimo NTS, Ribeiro WR, Cenedeze MA, Hiyane MI, Amano MT, Braga TT, Ferreira CM, Parmigiani RB, Andrade-Oliveira V, Volpini RA, Vinolo MAR, Mariño E, Robert R, Mackay CR, Camara NOS. Gut microbial metabolite butyrate protects against proteinuric kidney disease through epigenetic- and GPR109a-mediated mechanisms. FASEB J 2019; 33:11894-11908. [PMID: 31366236 DOI: 10.1096/fj.201901080r] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Butyrate is a short-chain fatty acid derived from the metabolism of indigestible carbohydrates by the gut microbiota. Butyrate contributes to gut homeostasis, but it may also control inflammatory responses and host physiology in other tissues. Butyrate inhibits histone deacetylases, thereby affecting gene transcription, and also signals through the metabolite-sensing G protein receptor (GPR)109a. We produced an mAb to mouse GPR109a and found high expression on podocytes in the kidney. Wild-type and Gpr109a-/- mice were induced to develop nephropathy by a single injection of Adriamycin and treated with sodium butyrate or high butyrate-releasing high-amylose maize starch diet. Butyrate improved proteinuria by preserving podocyte at glomerular basement membrane and attenuated glomerulosclerosis and tissue inflammation. This protective phenotype was associated with increased podocyte-related proteins and a normalized pattern of acetylation and methylation at promoter sites of genes essential for podocyte function. We found that GPR109a is expressed by podocytes, and the use of Gpr109a-/- mice showed that the protective effects of butyrate depended on GPR109a expression. A prebiotic diet that releases high amounts of butyrate also proved highly effective for protection against kidney disease. Butyrate and GPR109a play a role in the pathogenesis of kidney disease and provide one of the important molecular connections between diet, the gut microbiota, and kidney disease.-Felizardo, R. J. F., de Almeida, D. C., Pereira, R. L., Watanabe, I. K. M., Doimo, N. T. S., Ribeiro, W. R., Cenedeze, M. A., Hiyane, M. I., Amano, M. T., Braga, T. T., Ferreira, C. M., Parmigiani, R. B., Andrade-Oliveira, V., Volpini, R. A., Vinolo, M. A. R., Mariño, E., Robert, R., Mackay, C. R., Camara, N. O. S. Gut microbial metabolite butyrate protects against proteinuric kidney disease through epigenetic- and GPR109a-mediated mechanisms.
Collapse
Affiliation(s)
- Raphael J F Felizardo
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences IV, Universidade de São Paulo, São Paulo, Brazil.,Department of Biochemistry and Molecular Biology, Biodiscovery Institute, Monash University, Clayton, Victoria, Australia
| | - Danilo C de Almeida
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences IV, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael L Pereira
- Department of Physiology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Ingrid K M Watanabe
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences IV, Universidade de São Paulo, São Paulo, Brazil
| | - Nayara T S Doimo
- Center for Molecular Oncology, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Willian R Ribeiro
- Department of Pharmaceutics Sciences, Institute of Environmental Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Marcos A Cenedeze
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Meire I Hiyane
- Department of Immunology, Institute of Biomedical Sciences IV, Universidade de São Paulo, São Paulo, Brazil
| | - Mariane T Amano
- Department of Immunology, Institute of Biomedical Sciences IV, Universidade de São Paulo, São Paulo, Brazil.,Center for Molecular Oncology, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Tárcio T Braga
- Department of Immunology, Institute of Biomedical Sciences IV, Universidade de São Paulo, São Paulo, Brazil
| | - Caroline M Ferreira
- Department of Pharmaceutics Sciences, Institute of Environmental Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | | | - Vinicius Andrade-Oliveira
- Department of Immunology, Institute of Biomedical Sciences IV, Universidade de São Paulo, São Paulo, Brazil
| | - Rildo A Volpini
- Laboratório de Investigação Médica 12 (LIM12), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marco Aurélio R Vinolo
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Eliana Mariño
- Department of Biochemistry and Molecular Biology, Biodiscovery Institute, Monash University, Clayton, Victoria, Australia
| | - Remy Robert
- Department of Biochemistry and Molecular Biology, Biodiscovery Institute, Monash University, Clayton, Victoria, Australia
| | - Charles R Mackay
- Department of Biochemistry and Molecular Biology, Biodiscovery Institute, Monash University, Clayton, Victoria, Australia
| | - Niels O S Camara
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences IV, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
Nihalani D, Solanki AK, Arif E, Srivastava P, Rahman B, Zuo X, Dang Y, Fogelgren B, Fermin D, Gillies CE, Sampson MG, Lipschutz JH. Disruption of the exocyst induces podocyte loss and dysfunction. J Biol Chem 2019; 294:10104-10119. [PMID: 31073028 PMCID: PMC6664173 DOI: 10.1074/jbc.ra119.008362] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/06/2019] [Indexed: 11/06/2022] Open
Abstract
Although the slit diaphragm proteins in podocytes are uniquely organized to maintain glomerular filtration assembly and function, little is known about the underlying mechanisms that participate in trafficking these proteins to the correct location for development and homeostasis. Identifying these mechanisms will likely provide novel targets for therapeutic intervention to preserve podocyte function following glomerular injury. Analysis of structural variation in cases of human nephrotic syndrome identified rare heterozygous deletions of EXOC4 in two patients. This suggested that disruption of the highly-conserved eight-protein exocyst trafficking complex could have a role in podocyte dysfunction. Indeed, mRNA profiling of injured podocytes identified significant exocyst down-regulation. To test the hypothesis that the exocyst is centrally involved in podocyte development/function, we generated homozygous podocyte-specific Exoc5 (a central exocyst component that interacts with Exoc4) knockout mice that showed massive proteinuria and died within 4 weeks of birth. Histological and ultrastructural analysis of these mice showed severe glomerular defects with increased fibrosis, proteinaceous casts, effaced podocytes, and loss of the slit diaphragm. Immunofluorescence analysis revealed that Neph1 and Nephrin, major slit diaphragm constituents, were mislocalized and/or lost. mRNA profiling of Exoc5 knockdown podocytes showed that vesicular trafficking was the most affected cellular event. Mapping of signaling pathways and Western blot analysis revealed significant up-regulation of the mitogen-activated protein kinase and transforming growth factor-β pathways in Exoc5 knockdown podocytes and in the glomeruli of podocyte-specific Exoc5 KO mice. Based on these data, we propose that exocyst-based mechanisms regulate Neph1 and Nephrin signaling and trafficking, and thus podocyte development and function.
Collapse
Affiliation(s)
- Deepak Nihalani
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425,
| | - Ashish K Solanki
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Ehtesham Arif
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Pankaj Srivastava
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Bushra Rahman
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Xiaofeng Zuo
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Yujing Dang
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Ben Fogelgren
- the Department of Anatomy, Biochemistry, and Physiology, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| | | | | | - Matthew G Sampson
- the Department of Pediatrics-Nephrology and.,Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Joshua H Lipschutz
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425.,the Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401
| |
Collapse
|
41
|
Dittmayer C, Völcker E, Wacker I, Schröder RR, Bachmann S. Modern field emission scanning electron microscopy provides new perspectives for imaging kidney ultrastructure. Kidney Int 2019; 94:625-631. [PMID: 30143069 DOI: 10.1016/j.kint.2018.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/09/2018] [Accepted: 05/17/2018] [Indexed: 11/30/2022]
Abstract
Recent progress in electron microscopy (EM) techniques has opened new pathways to study renal tissue in research and pathology. Modern field emission scanning EM may be utilized to scan thin sections of resin-embedded tissue mounted on a conductive support. Here we sought to achieve automated imaging without the typical limitations of transmission EM with equivalent or superior quality. Extended areas of tissue were either imaged in two (nanotomy) or in three dimensions (volume EM) by serial-section-based array tomography. Single-beam and fast-recording multi-beam field emission scanning EM instruments were compared using perfusion-fixed rodent kidneys. High-resolution scans produced excellent images of tissue, cells, and organelles down to macromolecular complexes. Digital stitching of image tiles in both modes allowed seamless Google Earth-like zooming from overview to regions of interest at the nanoscale. Large datasets were created that can be rapidly shared between scientists of different disciplines or pathologists using open source software. Three-dimensional array tomography of thin sections was followed by segmentation to visualize selected features in a large volume. Furthermore, correlative light-EM enabled the identification of functional information in a structural context. Thus, limitations in biomedical transmission EM can be overcome by introducing field emission scanning EM-based technology that permits high-quality, large field-of-view nanotomy, volume EM, and correlative light-EM modes. Advantages of virtual microscopy in clinical and experimental nephrology are illustrated.
Collapse
Affiliation(s)
- Carsten Dittmayer
- Department of Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Irene Wacker
- Centre for Advanced Materials, University of Heidelberg, Heidelberg, Germany
| | - Rasmus R Schröder
- Centre for Advanced Materials, University of Heidelberg, Heidelberg, Germany; BioQuant, University Hospital Heidelberg, Heidelberg, Germany
| | - Sebastian Bachmann
- Department of Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
42
|
Espiritu EB, Jiang H, Moreau-Marquis S, Sullivan M, Yan K, Beer Stolz D, Sampson MG, Hukriede NA, Swiatecka-Urban A. The human nephrin Y 1139RSL motif is essential for podocyte foot process organization and slit diaphragm formation during glomerular development. J Biol Chem 2019; 294:10773-10788. [PMID: 31152064 DOI: 10.1074/jbc.ra119.008235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/16/2019] [Indexed: 11/06/2022] Open
Abstract
Nephrin is an immunoglobulin-type cell-adhesion molecule with a key role in the glomerular interpodocyte slit diaphragm. Mutations in the nephrin gene are associated with defects in the slit diaphragm, leading to early-onset nephrotic syndrome, typically resistant to treatment. Although the endocytic trafficking of nephrin is essential for the assembly of the slit diaphragm, nephrin's specific endocytic motifs remain unknown. To search for endocytic motifs, here we performed a multisequence alignment of nephrin and identified a canonical YXXØ-type motif, Y1139RSL, in the nephrin cytoplasmic tail, expressed only in primates. Using site-directed mutagenesis, various biochemical methods, single-plane illumination microscopy, a human podocyte line, and a human nephrin-expressing zebrafish model, we found that Y1139RSL is a novel endocytic motif and a structural element for clathrin-mediated nephrin endocytosis that functions as a phosphorylation-sensitive signal. We observed that Y1139RSL motif-mediated endocytosis helps to localize nephrin to specialized plasma membrane domains in podocytes and is essential for normal foot process organization into a functional slit diaphragm between neighboring foot processes in zebrafish. The importance of nephrin Y1139RSL for healthy podocyte development was supported by population-level analyses of genetic variations at this motif, revealing that such variations are very rare, suggesting that mutations in this motif have autosomal-recessive negative effects on kidney health. These findings expand our understanding of the mechanism underlying nephrin endocytosis and may lead to improved diagnostic tools or therapeutic strategies for managing early-onset, treatment-resistant nephrotic syndrome.
Collapse
Affiliation(s)
- Eugenel B Espiritu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201
| | - Huajun Jiang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Sophie Moreau-Marquis
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Mara Sullivan
- Department of Nephrology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201
| | - Kunimasa Yan
- Department of Pediatrics, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan, and
| | - Donna Beer Stolz
- Department of Nephrology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201
| | - Matthew G Sampson
- Department of Pediatrics-Nephrology University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201
| | - Agnieszka Swiatecka-Urban
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224,.
| |
Collapse
|
43
|
Herwig J, Skuza S, Sachs W, Sachs M, Failla AV, Rune G, Meyer TN, Fester L, Meyer-Schwesinger C. Thrombospondin Type 1 Domain-Containing 7A Localizes to the Slit Diaphragm and Stabilizes Membrane Dynamics of Fully Differentiated Podocytes. J Am Soc Nephrol 2019; 30:824-839. [PMID: 30971456 DOI: 10.1681/asn.2018090941] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/20/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND About 3%-5% of adults with membranous nephropathy have autoantibodies directed against thrombospondin type 1 domain-containing 7A (THSD7A), a podocyte-expressed transmembrane protein. However, the temporal and spatial expression of THSD7A and its biologic function for podocytes are unknown, information that is needed to understand the effects of THSD7A autoantibodies in this disease. METHODS Using a variety of microscopic techniques, we analyzed THSD7A localization in postnatal, adult, and autoantibody-injected mice as well as in human podocytes. We also analyzed THSD7A function in human podocytes using confocal microscopy; Western blotting; and adhesion and migration assays. RESULTS We found that THSD7A expression begins on glomerular vascularization with slit diaphragm formation in development. THSD7A localizes to the basal aspect of foot processes, closely following the meanders of the slit diaphragm in human and mice. Autoantibodies binding to THSD7A localize to the slit diaphragm. In human podocytes, THSD7A expression is accentuated at filopodia and thin arborized protrusions, an expression pattern associated with decreased membrane activity of cytoskeletal regulators. We also found that, phenotypically, THSD7A expression in human podocytes is associated not only with increases in cell size, enhanced adhesion, and reduced detachment from collagen type IV-coated plates but also, with decreased ability to migrate. CONCLUSIONS Our findings suggest that THSD7A functions as a foot process protein involved in the stabilization of the slit diaphragm of mature podocytes and that autoantibodies to THSD7A, on the basis of their localization, might structurally and functionally alter the slit diaphragm's permeability to protein.
Collapse
Affiliation(s)
| | - Sinah Skuza
- Institutes of Cellular and Integrative Physiology and
| | - Wiebke Sachs
- Institutes of Cellular and Integrative Physiology and
| | - Marlies Sachs
- Institutes of Cellular and Integrative Physiology and
| | - Antonio Virgilio Failla
- University Microscopy Imaging Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and
| | | | - Tobias N Meyer
- Department of Internal Medicine, Nephrology, Asklepios Klinikum Barmbek, Hamburg, Germany
| | | | | |
Collapse
|
44
|
Völker LA, Maar BA, Pulido Guevara BA, Bilkei-Gorzo A, Zimmer A, Brönneke H, Dafinger C, Bertsch S, Wagener JR, Schweizer H, Schermer B, Benzing T, Hoehne M. Neph2/Kirrel3 regulates sensory input, motor coordination, and home-cage activity in rodents. GENES BRAIN AND BEHAVIOR 2018; 17:e12516. [DOI: 10.1111/gbb.12516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/22/2018] [Accepted: 08/17/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Linus A. Völker
- Department II of Internal Medicine and Center for Molecular Medicine Cologne; University of Cologne; Cologne Germany
| | - Barbara A. Maar
- Department II of Internal Medicine and Center for Molecular Medicine Cologne; University of Cologne; Cologne Germany
| | - Barbara A. Pulido Guevara
- Department II of Internal Medicine and Center for Molecular Medicine Cologne; University of Cologne; Cologne Germany
| | - Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry; Medical Faculty of the University of Bonn; Bonn Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry; Medical Faculty of the University of Bonn; Bonn Germany
| | - Hella Brönneke
- Mouse Phenotyping Core Facility; Cologne Excellence Cluster on Cellular Stress Responses (CECAD); 50931 Cologne Germany
| | - Claudia Dafinger
- Department II of Internal Medicine and Center for Molecular Medicine Cologne; University of Cologne; Cologne Germany
| | - Sabine Bertsch
- Department II of Internal Medicine and Center for Molecular Medicine Cologne; University of Cologne; Cologne Germany
| | - Jan-Robin Wagener
- Institute for Neuroanatomy, Universitätsmedizin Göttingen; Georg-August-University Göttingen; Göttingen Germany
| | - Heiko Schweizer
- Renal Division; University Hospital Freiburg; Freiburg Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne; University of Cologne; Cologne Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne; Cologne Germany
- Systems Biology of Ageing Cologne (Sybacol); University of Cologne; Cologne Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne; University of Cologne; Cologne Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne; Cologne Germany
- Systems Biology of Ageing Cologne (Sybacol); University of Cologne; Cologne Germany
| | - Martin Hoehne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne; University of Cologne; Cologne Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne; Cologne Germany
- Systems Biology of Ageing Cologne (Sybacol); University of Cologne; Cologne Germany
| |
Collapse
|
45
|
Affiliation(s)
- William H Fissell
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Jeffrey H Miner
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
46
|
Siegerist F, Endlich K, Endlich N. Novel Microscopic Techniques for Podocyte Research. Front Endocrinol (Lausanne) 2018; 9:379. [PMID: 30050501 PMCID: PMC6050355 DOI: 10.3389/fendo.2018.00379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/22/2018] [Indexed: 01/16/2023] Open
Abstract
Together with endothelial cells and the glomerular basement membrane, podocytes form the size-specific filtration barrier of the glomerulus with their interdigitating foot processes. Since glomerulopathies are associated with so-called foot process effacement-a severe change of well-formed foot processes into flat and broadened processes-visualization of the three-dimensional podocyte morphology is a crucial part for diagnosis of nephrotic diseases. However, interdigitating podocyte foot processes are too narrow to be resolved by classic light microscopy due to Ernst Abbe's law making electron microscopy necessary. Although three dimensional electron microscopy approaches like serial block face and focused ion beam scanning electron microscopy and electron tomography allow volumetric reconstruction of podocytes, these techniques are very time-consuming and too specialized for routine use or screening purposes. During the last few years, different super-resolution microscopic techniques were developed to overcome the optical resolution limit enabling new insights into podocyte morphology. Super-resolution microscopy approaches like three dimensional structured illumination microscopy (3D-SIM), stimulated emission depletion microscopy (STED) and localization microscopy [stochastic optical reconstruction microscopy (STORM), photoactivated localization microscopy (PALM)] reach resolutions down to 80-20 nm and can be used to image and further quantify podocyte foot process morphology. Furthermore, in vivo imaging of podocytes is essential to study the behavior of these cells in situ. Therefore, multiphoton laser microscopy was a breakthrough for in vivo studies of podocytes in transgenic animal models like rodents and zebrafish larvae because it allows imaging structures up to several hundred micrometer in depth within the tissue. Additionally, along with multiphoton microscopy, lightsheet microscopy is currently used to visualize larger tissue volumes and therefore image complete glomeruli in their native tissue context. Alongside plain visualization of cellular structures, atomic force microscopy has been used to study the change of mechanical properties of podocytes in diseased states which has been shown to be a culprit in podocyte maintenance. This review discusses recent advances in the field of microscopic imaging and demonstrates their currently used and other possible applications for podocyte research.
Collapse
Affiliation(s)
| | | | - Nicole Endlich
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
47
|
Gonçalves S, Patat J, Guida MC, Lachaussée N, Arrondel C, Helmstädter M, Boyer O, Gribouval O, Gubler MC, Mollet G, Rio M, Charbit M, Bole-Feysot C, Nitschke P, Huber TB, Wheeler PG, Haynes D, Juusola J, Billette de Villemeur T, Nava C, Afenjar A, Keren B, Bodmer R, Antignac C, Simons M. A homozygous KAT2B variant modulates the clinical phenotype of ADD3 deficiency in humans and flies. PLoS Genet 2018; 14:e1007386. [PMID: 29768408 PMCID: PMC5973622 DOI: 10.1371/journal.pgen.1007386] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 05/29/2018] [Accepted: 04/30/2018] [Indexed: 12/25/2022] Open
Abstract
Recent evidence suggests that the presence of more than one pathogenic mutation in a single patient is more common than previously anticipated. One of the challenges hereby is to dissect the contribution of each gene mutation, for which animal models such as Drosophila can provide a valuable aid. Here, we identified three families with mutations in ADD3, encoding for adducin-γ, with intellectual disability, microcephaly, cataracts and skeletal defects. In one of the families with additional cardiomyopathy and steroid-resistant nephrotic syndrome (SRNS), we found a homozygous variant in KAT2B, encoding the lysine acetyltransferase 2B, with impact on KAT2B protein levels in patient fibroblasts, suggesting that this second mutation might contribute to the increased disease spectrum. In order to define the contribution of ADD3 and KAT2B mutations for the patient phenotype, we performed functional experiments in the Drosophila model. We found that both mutations were unable to fully rescue the viability of the respective null mutants of the Drosophila homologs, hts and Gcn5, suggesting that they are indeed pathogenic in flies. While the KAT2B/Gcn5 mutation additionally showed a significantly reduced ability to rescue morphological and functional defects of cardiomyocytes and nephrocytes (podocyte-like cells), this was not the case for the ADD3 mutant rescue. Yet, the simultaneous knockdown of KAT2B and ADD3 synergistically impaired kidney and heart function in flies as well as the adhesion and migration capacity of cultured human podocytes, indicating that mutations in both genes may be required for the full clinical manifestation. Altogether, our studies describe the expansion of the phenotypic spectrum in ADD3 deficiency associated with a homozygous likely pathogenic KAT2B variant and thereby identify KAT2B as a susceptibility gene for kidney and heart disease in ADD3-associated disorders.
Collapse
Affiliation(s)
- Sara Gonçalves
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR1163, Imagine Institute, Paris, France
- Laboratory of Epithelial Biology and Disease, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR1163, Imagine Institute, Paris, France
- Université Paris Descartes—Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Julie Patat
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR1163, Imagine Institute, Paris, France
- Université Paris Descartes—Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Maria Clara Guida
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, United States of America
| | - Noelle Lachaussée
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR1163, Imagine Institute, Paris, France
- Université Paris Descartes—Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Christelle Arrondel
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR1163, Imagine Institute, Paris, France
- Université Paris Descartes—Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Martin Helmstädter
- Department of Medicine IV, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Olivia Boyer
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR1163, Imagine Institute, Paris, France
- Université Paris Descartes—Sorbonne Paris Cité, Imagine Institute, Paris, France
- Department of Pediatric Nephrology, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Hôpital Necker-Enfants Malades, Assistance Publique—Hôpitaux de Paris (AP-HP), Paris, France
| | - Olivier Gribouval
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR1163, Imagine Institute, Paris, France
- Université Paris Descartes—Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Marie-Claire Gubler
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR1163, Imagine Institute, Paris, France
- Université Paris Descartes—Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Geraldine Mollet
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR1163, Imagine Institute, Paris, France
- Université Paris Descartes—Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Marlène Rio
- Department of Genetics, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Marina Charbit
- Department of Pediatric Nephrology, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Hôpital Necker-Enfants Malades, Assistance Publique—Hôpitaux de Paris (AP-HP), Paris, France
| | | | - Patrick Nitschke
- Université Paris Descartes—Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Tobias B. Huber
- Department of Medicine IV, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Center for Biological Signalling Studies and Center for Systems Biology (ZBSA), Albert-Ludwigs-University, Freiburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patricia G. Wheeler
- Division of Genetics, Arnold Palmer Hospital for Children, Orlando Health, Orlando, FL, United States of America
| | - Devon Haynes
- Division of Genetics, Arnold Palmer Hospital for Children, Orlando Health, Orlando, FL, United States of America
| | - Jane Juusola
- GeneDx, Inc, Gaithersburg, MD, United States of America
| | - Thierry Billette de Villemeur
- Sorbonne Université, UPMC, GRC ConCer-LD and AP-HP, Hôpital Trousseau, Service de Neuropédiatrie—Pathologie du développement, Paris, France
- Centre de référence des déficits intellectuels de causes rares, Inserm U 1141, Paris, France
| | - Caroline Nava
- Sorbonne Universités, UPMC Univ Paris 06, Inserm U1127, CNRS UMR 7225, Institut du Cerveau et de la Moèlle Épinière (ICM), Paris, France
- AP-HP, GH Pitié-Salpêtrière, Department of Genetics, Unit of Developmental Genomics, Paris, France
| | - Alexandra Afenjar
- AP-HP, Hôpital Trousseau, Centre de référence des malformations et maladies congénitales du cervelet, Département de génétique et embryologie médicale, Paris, France
| | - Boris Keren
- AP-HP, GH Pitié-Salpêtrière, Department of Genetics, Unit of Developmental Genomics, Paris, France
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, United States of America
| | - Corinne Antignac
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR1163, Imagine Institute, Paris, France
- Université Paris Descartes—Sorbonne Paris Cité, Imagine Institute, Paris, France
- Department of Genetics, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
- * E-mail: (CA); (MS)
| | - Matias Simons
- Laboratory of Epithelial Biology and Disease, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR1163, Imagine Institute, Paris, France
- Université Paris Descartes—Sorbonne Paris Cité, Imagine Institute, Paris, France
- * E-mail: (CA); (MS)
| |
Collapse
|
48
|
The protective effect of the EP2 receptor on TGF-β1 induced podocyte injury via the PI3K / Akt signaling pathway. PLoS One 2018; 13:e0197158. [PMID: 29746568 PMCID: PMC5945042 DOI: 10.1371/journal.pone.0197158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/27/2018] [Indexed: 12/17/2022] Open
Abstract
Transforming growth factor β1 (TGF-β1) plays a central role in chronic kidney diseases. TGF-β1 induction causes podocyte injury, which results in proteinuria and renal failure. However, the effect of the prostaglandin E2 /E-prostanoid receptor (EP2) on TGF-β1-induced podocyte injury remains unknown. Previous studies have shown that phosphoinositide 3-OH kinase (PI3K)/Akt is widespread in cells, and is vital for the regulation of cell proliferation, differentiation, apoptosis and metabolism. In this study, we cultured immortalized mouse podocytes in vitro in different groups: control group; TGF-β1 (5ng/ml) group; EP2 agonist Butaprost treatment (10−7, 10−6, or 10-5mol/L) +TGF-β1 group; EP2 antagonist AH6809 treatment (10−7, 10−6, or 10-5mol / L) + TGF-β1 group. We found that compared with the control group, proliferation of podocytes in the TGF-β1 group significantly decreased and apoptosis increased. Expression of cAMP decreased, whereas PGE2 increased. Meanwhile, expressions of nephrin, podocin and CD2AP mRNA and protein were dramatically downregulated, activated caspase-3 was increased, and activated PI3K/Akt activity were depressed. Butaprost intervention promoted podocyte proliferation with reduced apoptosis. Conversely, AH6809 intervention led to opposite results (P<0.05). Our findings suggested that EP2 agonist protects podocytes by increasing expression of cAMP, which creates feedback of inhibiting PGE2 expression. This causes the interaction of nephrin, podocin and CD2AP resulting the inhibition of apoptosis induced by activation of the PI3K / Akt signaling pathway.
Collapse
|
49
|
The long journey through renal filtration: new pieces in the puzzle of slit diaphragm architecture. Curr Opin Nephrol Hypertens 2018; 26:148-153. [PMID: 28212178 DOI: 10.1097/mnh.0000000000000322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW The podocyte slit diaphragm is probably the least understood component of the kidney filtration barrier. In this review, we aim to integrate the most recent findings on the molecular make-up and structural architecture of this specialized cell-cell junction into a current concept of glomerular filtration. RECENT FINDINGS Analysis of cryopreserved mammalian tissue revealed a bipartite composition of the slit diaphragm. Single NEPH1 molecules span the lower part of the slit close to the glomerular basement membrane whereas NEPHRIN molecules are positioned in the apical part toward Bowman's space. This molecular arrangement could lead to heterogeneous ellipsoidal and circular pores, which are mainly located in the central region of the slit diaphragm. SUMMARY Despite having been first identified in the 1970s, the slit diaphragm's structural architecture has not been fully elucidated to date and remains an area of intense research and scientific debate. The slit diaphragm has been initially described as a rigid 'zipper-like' structure in which periodic, rod-like units extend from a podocyte foot processes to a linear central bar, giving rise to homogeneous 4 × 14 nm pores. Several recent findings have challenged these long-held beliefs and instead pointed to an unanticipated complexity of slit diaphragm structure. High-resolution ultrastructural analysis found evidence that the slit diaphragm is a dynamic and adjustable cell-cell junction that forms a nonclogging barrier within the renal filtration system.
Collapse
|
50
|
Kriz W, Lemley KV. Potential relevance of shear stress for slit diaphragm and podocyte function. Kidney Int 2018; 91:1283-1286. [PMID: 28501303 DOI: 10.1016/j.kint.2017.02.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/07/2017] [Accepted: 02/24/2017] [Indexed: 11/30/2022]
Abstract
Filtrate flow through the glomerular barrier produces shear stresses that tend to disconnect podocytes from the glomerular basement membrane. Forces are highest within the filtration slits. The slit diaphragm mechanically balances the lateral components of the shear stresses on opposing foot processes, preventing widening of the slit.
Collapse
Affiliation(s)
- Wilhelm Kriz
- Department of Neuroanatomy, Medical Faculty Mannheim, Germany.
| | - Kevin V Lemley
- Division of Nephrology, Children's Hospital Los Angeles, California, USA
| |
Collapse
|